{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

introduction to neural networks" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The text.latex.preview rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The mathtext.fallback_to_cm rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: Support for setting the 'mathtext.fallback_to_cm' rcParam is deprecated since 3.3 and will be removed two minor releases later; use 'mathtext.fallback : 'cm' instead.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The validate_bool_maybe_none function was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The savefig.jpeg_quality rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The keymap.all_axes rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The animation.avconv_path rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n", "In /Users/holtz/anaconda3/lib/python3.7/site-packages/matplotlib/mpl-data/stylelib/_classic_test.mplstyle: \n", "The animation.avconv_args rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.\n" ] } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will get some familiarity with neural networks by looking at and working with this code from http://neuralnetworksanddeeplearning.com/chap1.html by Michael Neilsen.\n", "

\n", "The code writes a feedforward neural network from scratch in raw Python in just a few dozen lines of code! Following the online book, we will use the code to try to classify handwritten digits as taken from the MNIST data set (a very common test data set)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Start by loading the MNIST data using mnist_loader.py . This will load three subsets of the data: the training set, the validation set, and the test set. You will need to grab the file mnist.pkl.gz first." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "length of training data: 50000\n", "length of validation data: 10000\n", "length of test data: 10000\n" ] } ], "source": [ "import mnist_loader\n", "import pickle\n", "training_data, validation_data, test_data = mnist_loader.load_data_wrapper()\n", "print('length of training data: ',len(training_data))\n", "print('length of validation data: ',len(validation_data))\n", "print('length of test data: ',len(test_data))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each data set is returned as a list of tuples, with the first element of the tuple being the image data, and the second being the truth value. For the training data, the truth is encoded in a 10-element vector, with all entries 0 except for the entry for the correct digit, which is set to 1. For the validataion and test set, the truth value is just an integer with the true value>\n", "

\n", "For use with the neural network, the input image array, which is a 28x28 image, is unwrapped into a single vector of length 784; the simple neural network just treats the image as a series of unconnected intensity value (we can do better than that later!). To display the images, you can use numpy.reshape to reshape the images to 28x28 \n", "

\n", "Looking at code below, make sure you understand how the training and test data are stored.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "contents of one training object (784, 1) (10, 1)\n", "[[0.]\n", " [0.]\n", " [0.]\n", " [0.]\n", " [0.]\n", " [1.]\n", " [0.]\n", " [0.]\n", " [0.]\n", " [0.]]\n", "contents of one test object (784, 1) \n", "7\n" ] } ], "source": [ "print('contents of one training object',training_data[0][0].shape,training_data[0][1].shape)\n", "print(training_data[0][1])\n", "print('contents of one test object',test_data[0][0].shape,type(test_data[0][1]))\n", "print(test_data[0][1])\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's take a look at some of the training data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAKeCAYAAACLR/KVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZRkx33fiX4i7po396X2qq7q6uoVSwMNAiDABVwlihJNyqLtkW3JI2q8acZjv3lP4/f8xs9nfGZG5zwv47F9zrMl71qshRK1kCIp7hsWAmgA3eh9q+7at6zc896890a8P7J6AdAEGmB3V1YzP+fgkF2ZeTNuZNyIX/zi9/v+hNaaPn369OnTp0+fPn12AnK7G9CnT58+ffr06dOnz63SN1779OnTp0+fPn367Bj6xmufPn369OnTp0+fHUPfeO3Tp0+fPn369OmzY+gbr3369OnTp0+fPn12DH3jtU+fPn369OnTp8+OwXw7by6VSrqzoe5UW3YUdlHS74suPk1cktvdjG1n3yPTHHvxeL8vgDqb6xZ2qd8X/b64kX5fXKe/hlyn3xfX6ffFdepsrmutB2722tsyXqempsiXd9+eVu1wNqcu9ftii+f013hcfHi7m7HtfOWF3yMjCv2+AL6qP3vZJVnq90W/L26k3xfX6a8h1+n3xXX6fXGdr+rPXv5Br/XDBvr06dOnT58+ffrsGPrGa58+ffr06dOnT58dQ9947dOnT58+ffr06bNj6Buvffr06dOnT58+fXYMfeO1T58+ffr06dOnz47hbakN9OlxhAAhEYYBUiCEACnRcQxKg1bd/w+g9fa2tU+fPn3uBtK4PicaRvdvSqG1hjhGR9H2tq9Pn3sZIRCmBVJc/9tteO76xuu9gBAYgwOQTdMZy1KZcQhTgsakQiVi3EWLxKomsaHJnKwgm23Uyhqq1drulvfp06fPHUM4DuF776e2y6Y1LGhNhaAFZtXAbAuGngtJvnQF3WoT1+v9TX2fPrcZY+80iz8+RJi6/reBl0OcLx8FFb/j6/aN13sBIaGQpTOcZuOQS/3JNsPFKv9q3x9wxPb5RytP8sVLh6hdSmM109hlB7NWh77x2qdPn3sYYdts3OdQfTjgiX0X+dXJL9LSMV9qTnKiPc4X/CfxLme7HtlGE/Q7X0z79OnzRoLxHPKjGzxQXEOiUQhe1QcY/6qB/pEwXqWBsG7eXKOQJx4tog0JUqClQDkGsWPgbPjI8/MgBfGeMcKMTSdnEmS64b5CgYw0yaUQq9bBWK0QXZnfGTtwaWBkM4ikR/mhIpV9En805PD4IlOpDQZkC4nJA8l5lkaynDCHWerkcNctxsoF2Chv9x1sL9LAKBYQnktnqkRjzMHZjEkeW0A3m6hG8948UhQCc9c48UCWTs6hOWqjbni0spcCnPOr6HabuFz5oXbHfXqQ1x2jC9uCUgEcG20ZaFMiqy3UlQV0p7Mz5sLXIw1kwkXmsrQHNZNjGxxKLyGROEKzyyrja5swpYlyCczwHnzOryINjFQStn5zAOF56EySKONSn0oQJcRbXOS1iBjcSozhKxKXNonPz4JWO2usiO49y1QKmUmjkwnau/MoS5I6uUp0cXZ727fDMad2EY4VKB90OFi8yN7UKqfqw2z4SWTnNlz/h7/EHWYrjlMmXITnvTZuYgv/0BhLTzjErkZZoA1NXIjwsi2iUxmmPzuCNiWXPpVCT7V5//QZPjP4bWIkLeUw2ynxT47+GOalFEMvJkjMLe6IHbhMuOhdwwQlj9WfDPiVx/6AQaPOtFXDFYKUsDCE4JPJWT7iXaQ8ZnLu0CB/Wn6QC2cO4pzZ7jvYXqTrEO0bwx+wmfsY/NJ7v8Kvn38M8W/GSMzVkAvLxJXqdjfztiMMg/rDI6w+bBLNtPlf3/W7TFgb2MT42uIXvvUZdv3BKO5qG9loovzefxb63DrSdboGq2UjPBeVTrL5UA4/L4k8iF1Iz6Yp1RqoSnVHGrDStpCDJaKhLHJ/g3+4508YNepYwsHC4F1Oi1HzHL8yGNEadUkqjZj94TxBvYpMuDAyiHYttJRgCFpjHrVJk+aY5q/9xDf4SOoEMYL4FnO4l6Msvzb3fuY2cqS/NEhpfgnd6eyszf5WfogYKtHaU6QxZlH/WIN8ukX5vwyT6Ruv7xwhqD4ywtL7BIldVX5x+Nukpc9LlU8wv5Ej1ejm4PwwbJ/xKm4InhdbXlDL7E6qhoGwbZASTAOkRCUThDn32m7pRqpTNu2xCGyFtGOEoSllWgwkG5wqJWmPJNGmIBwMmRna4PHsRR5zNIH2WYsbWCLCsiOUAVoIhBQ/bL/eWaTRnZxzWZpjKVoDJsOlFR5yFkkLTcFwAIi1JtYaS0hyQuKKGNdZ4mJqgNPJ+0h43l2bcIRldz3nW0lkKIVq+9vr1TMMoqRJkDYw0j57nRVyCR9lpdGmRIh7TIxDCGQqhXBdWkWDYDhkarDM+xKXGTESWMIg0AFuOkDZHtrqPnt9djDiqnfVRqRTCNNEZ5Io10a5JrFn0smY1CckYVYTJTTaURi+iR4qYNg2am0d5fvbfSdvHyHQQgAag67xrVBb3lcLT0RgapQp0Ibk7fkeexdhmmAYSMdBeAl0Ook/mSN2ZPdeJTSHDJqjGjXq8/7Uad7tGsRaobi1+XjdXODFwhyOETE7mEaMDSMbLeL1MjoKd8RmRxgGwpCoXJL6hEVrRDBVKjPi1TieHOw+K3G8I+6lZ7h6GuwlaA1IjKEWu/KbFGULKTT1jkOnaWMEP/xXbZvxKh0HWSx0jVPDQEtBOJylNeIQJiWNMYFyNLEN2tKIEZ9HJq9gyzcaWkfcGgcTi1gixhLd1+txgrpySVkBzxvTCCvm5x9+lg+nT1CUbTaVYjEy+U7rPs60hlEXU2TPQWLZR6veHqzGQBE1PkB1KsXqp30OjM7xl4efY8iQWHQ3BLHWVFWHEPC1INQST2gGpGTaXqMxbpC6fw/mapV4YbmrRHCnjFghMCZGCUdyKFsSJQyMQOEcu0K8tnZnvvNWmmVbNEYsGuPdZetPNh5icT3HeNTbv/87xchm8B/bS2vQZPMDPn/3yDeYtldJC4lCEeruuOnP1fcOMpVCFvNEg1mWn0wT5CEYinAKbXKpJjO5dZJmwKRbxjMCXBHiypA/OHiE07ndJFYKjP2pA2cvbPetvC10FKFrdUzToLMwwH+eeA/vzZ5j0rxys8O7ewZhmhgjw+hMkvq+HJUZg6CgSRyskPfa2FIhhWZvssLh9BzDZpUDVpNYJ1Dc+oOfliZ/Jf8s5YzH/+eDn+R8dpjUFRj5oo3a2ES3273thRWi65FOuCw9keHJnz/KqFNh3C5TiT1eyD2AUSqifZ+4WusbsLeIkc2w+RP7qU9IeLzKPzj0FQbMGmkZMhdluLxYJHnWJrkS/tB21vZ5Xi0LnfLQltn18BgCf9ChMWbQyUCwx8dOhKTdDo4V8WOjp/nl4os4wrqly58KQy6GJRoZl7WpFAkz5IOpU7zL7lBVMRUlWI4znGsPcrFRxK4IEuUIoxmgetrtCiLh0ikmaA4ZfGTmDD9TeJ69VhVPJK69JyTE1+BrSUubNLUNss2QMEjLdrePB1xkK0TYVneiuYOTjUon8Es2sSPpJAWmr3Fd54593y0hDcKkIEx3H6KFVpa4bSB6fPPyjrFsWgMmzVHJzOgan06/iivEG54prQVvYx3rPbZCja798wdYK1rd5Ojq6ud2Wvze67kqm+clUBmPoORSn44xB9s8MrbIo7nLHHQXeCqxgSveuAxIFP/HngEaiSQqk7jJF/Q2Wml00EEGHcyG4FKtyB5vDcUsbG3w70mERKc9olyCxohBY0+EN9DkF/Y+w7S9iiEUBppRs8qMKbGEAbjXDFfFra19ljDYb0Fs+nxw+Cy/v9+jITJoz0XULbR/G1xrdxrDQFgW7SHNPxj6KjlpciaUnOsMETtAwoW4t22BXkM4No1xSXM65EOjl/l48hIATQW+tqBu4W5ozEb4Q3/XXTdejXwekcvQ2jfA/IcsokwMtkIYGjfVpJRuknF89qdXSJkBKcPHEjEPuHNbD9pbE+iQ/7zRzbD3WzaibKOl5m+u/lWSiYCWb9PxLXTbwNo0MRuCwVdCvMtVRLmK6qVFa0sjTRgSOVBCpxJsPFJk5UlFYrDG+zNnmDKrpF93xO3rmHNhnuUoyx+vPcSJ5REOjy7wTyf+mCkrZM8HL3H24ADGyQLFE1kSqx3MF8/cGfksIemUPKpTJnECOjmNWZfkjyVv/3e9nWaZBlEKolxMPt1iMlXmvDeANm5tg7TTEIYkTAk6GU3WaeMKgXWvhEYIgTk8hE55hMNZGhMOkSvwi4LYhiilid3rz7XZEhROaJzNGNOPkUFMlLJoF01kDOlLTWSlCeUK8Q5JbBSWjVHMQ8KleWCQ9oBJc1TQnIowMh3eu/siuxKbHEwsMmFt4IqQ+QhiYlrKIkYwYbYYMhz22Ks8NXWeo94EzV15Mstj6FqduFbb7tu8NbRC+wG65WM2BWv1JKuFNPGO3pW9NTLhsvGuIrVpQWemzUf2nmXc3eTRxEUKshv6YQhNWmgM8cM7DwwheH/qNNZMzG+pd9HelcWVEhnHxJXbkJVzF7GEwagREFrrRCmNyiaRSnU3tDsgB6YnME38giY/UmOPt4YjJCux4tn2FC80dpM+b1A83sBcrhDttJhXkcvQGS+w/qDN3/vEn/A+7xzDRkxqy/tj3CSmFUAiuZWCYAqFr2O+Orcf67sZnAiMQIMWIJJAkkJdY9diZEdhNltIP0JeWerNRUpIhG0hXIdoJE8w4LL+MPz9D3yBaXuVI06FtHS2+uc6odac6wxzrj3EiyemKbxk8NyRPZTHTPZbBr8780eEMzG/MPrnOJ6cIX3JZfhU4o7IZwkp8IsWzQlFnFIkSi3aFZc4vY2eVyHAMAiTYGUDRjM1phPrPONNoaV909jqHY9pEqYEYVpRcpp4t3iKsRMQhoEazBMMJSnvt6ke7uBmAz44dY7diTXe553lfvv6bv9pP83f/NZfw71iY9UtrKbGLwha0yGEgoFEitSCjav1jlHlEK6DKuWJ8glWHrPo7G3z6O7L/MOxL5CVMTlpIpEYQiCRLMUBJztFmsphLUoTahPLO8+QAXutNr9Q+i4T7n38/siHSA7nMbSGHWO8anTYQfs+VhOqNZf1IPXWn9vpJFzK98GuR+b5yeFX+cXcCSyMrXX1zjzv73V9nnCOsTqV5pnRdyGiJImNBOywZFcTg0HDI6ZFlFREaQcrCHs/B6aXsEyiYsThwUVm3GVcYVJXmu/V9vLK+hj5syE8d5zoNjgI737YQBhh+BFGAIGyCLVEEt+yVzXUMUtxB18bhFrSQZKTHca3vGUhMS2tqdcSjCzEyBhkRyP0jV6XGKMZIkKFbAWIMEL16DGHkc0QHdxFmLGpzFi0ByAxXWHKXmfQaGAJ+QbDFcASgjFrk1Ab4MRoaSAiyenOELDCpKlxhUnebhNlYiLPfM1R621FSIKsgBEf24wxDAViKznuznzjm7Mlo6PTHsFAxMHhNTKWz5xfoNV0GaqHiEa7m2V9DyDdrmRQPFKgNapIjNfZnejGGgc6oqwUG8rhC7UHudAcQF9M4mwGGHX/ekW2HkU4DsZACZ1MUH4gS31C0h6PmZjYYNCrc19ygWGziq8tzocRllC4IkYhGR0rs+Jm8VsmIpCQDhkbqtDqWNSXi8SOjdVIwwXRmyEEW5JXxvBgd2Obc6hMW4RpQWdvm72jq9yfXiQrY5Jb84QhBHXVoaU1X2nO8Bvzj9MOLYLQRAgNe+CwfR4LQVYG5M0mygZlGxjmDjpuv5qo5thEHjjJDjm7vd2tuvMojdkULFfTrBQzGIjXOIR8HRFoxVxkcboz8oaPx/r6e10ZMmZukhQhQ0Z4LRH4ZhhCIEUPPiNvA2Nr/bs2yu+RQ6m3RIhukpXrogtZOoOpro12bh5Va2xV6HzzdUB6HnKgSGe8gJP12ZUoY4uYxSjgZX+G785N015OsacW3La59K4br7pWxxACZzPFrF9kxskxZKySvcXPl1WHLzUPstTJUQ6TNCKbI5kr1+L3fK0pxxb2rEP2q6e7Zche31lKwdairLZiWnT0w8dg3An02BCXPuWhx3w+eeBFPpF7mQGjyajRVRGwbhKvBpCWNk+5qxy2l/n3uSeJHQcRCD67+i72pVb52dz3mbFgt7dOeqROUM51lR7uAMKQ1CfhMw88zWW/wAsrE3fke24V6TrIQh5/JMPD91/in0x+jv9SeZwvzh9CLLjYlxeIF5Z7dky8XeTQAK2Dw9QmTR567Bx/dfhZ9lurgMma0jzbnuLZ+gzf+Z0jlF4N2bNUQSysQidE9bgBb+Rz1B4bpzUgiX6iwl/f+wwTVplD9jKuUKSlQAF/2tzNC/Xd5KwWI3aFtGzzK/v+gIwI6CBRWuKKCE9GLEZp/vfkTzK7UsRsJ8l9vwePDYVAJj2EbVF59xhL7wOjFPCXDj3HjLvCXnuZYaOFJyAr7WsGTKw150OX2bDEPzvxEYq/mcRrxiSkIHYF//Ez7+ZvPHIeT1pMiJgpe40wCZ2sjblub/NN3zrCMJDpNCKTxi8pHhpZ4qC3dC2h9Z4l7JCa11TdDC/nxokH9DV/a6w1K7GiHLv8VvndfOH0/ehIwo1G5w3Gq+lE3D+2yLhX4adyL/NUol/U5l5EGAZ6cpT2cJL1B2zid9dor3rs/fUJzPOL6Hr9LeUS5fAgm48N0xiTPDbxKh9On6CuXJ4PxvjtxUdJ/GmGgcUI+9Iqtyuz5u4br3EMnQ6mr7jSLHDGHaFoNIAWoYYQgSs0JWm/xhvbDQeIWI8tjtYmWWhlqQYufseio0ym7HXSso0rQirKw2wJ4kqlNz0mt8KWVyVOO0QDHaYGyzyZPs973BDoLiKhjmmpkBCNrzW+Fq+RynKESVJ2DTARgxEI5uo5pNA0s92f3pEhjhnTvsNzurJg0lmnGie2PdtXJFziwSx+0eQ+r8IuM4FE0/RtZAAEHXTY20bbrXBVMkdlkzSHTNoDgn2pVfZaa+Rkd9NWVxYXgiEu1EqkFhWJCxuIehPVave2TMxW0RKdTtIclLSHBA+UVnnSO0dahBQNTUfDSiypK5sX6rt5aWOMlNVhIFFkyKmxz15h1IzwhIElQGICJhY18k6LJTeDMns0WUlIhOsikgn8gsQZaTBZLPPB9EmmzCoFKfHkaz1loY7xdczZzihHm1O01zySc01k3Ue7FrFns9K+/hlLGFjEaIOuF2qnhdIYEm2ZKFuTt9ukjTd6XoWhiC2BsiSGZd6Sl6mX0bHCriucTYO5zRzP+RncrTVAaclsOE45SnF0fQK56CJefxx+w+MeuxZnnUHKqST3Jxd40r14zXt/I76OaKmYaphAht2iP1rt8HP2rZPBHTfm3wmGQZhP0BrqJq8dGV7iVUaIkg6W66BvIZRQJxzaJYlf1Iy4NYqyzWKY55Q/ymIlQ2k1xl1toW+j5N5dN15V20dEEemLDc5+dQ/Hi7v57T2PsDtXZqGRZX0zzfjAJv9672+zz7puUV2OOrwcjPL5jcO8/Hv3k56LsX2NG2pmizn+l4kDdDKaxKEKhWSLxIru3YX3FjAGiuihAtW9Ho/vO8PHiq/ygLMEuNfeU1UdvtyaZr5T4Ftre5nbyPHErln+ydiXcIXBYhyzHCdprCaZmIuwawbV5hDfHyxxvHCSR+xFDHT3uPBOP6MCDBTGLWaz3kmifRNc+mkPNerzVKZbqWExyNJaS5Kqip0/8UJXb29ijGggw/LjadyfWOVIbp2PZY8xZKhrG8OnW3v5L99/EnvZZOp8A728hup00GH0Q4tI3xG2sujNkSHi4Tzlg2mcT67y3oEr/FTuZabMDqfDJF9sTHOiMcrXXzmItWmSvgTJ5ZimKajZguODkuc/PskHh8/y4fQJHneue9lb2uDM+iCtuTT5qurJfpC2Ree+CZojNuVHIv7RA19m1Nxkv1UlLY03eBhbKuRM6DAbjvCPnv4U+e9bTF6JkLNLAIiBAng7x7P6lhgGwnFQroVOR9yXWmDC2niN4WULQS7fpD7pAg7FhWHMq1qlO3Tzqtttci+ukDnn0Tif5pe/99fRV4+/NRgdEJEmsaGYnmsiYn2js/U1TlhlG/ilJEEyzf/1Mx/koSOXr4Xo3diP32gP8PXqQb59boY951tYc+uoeuPu3PAdQhsaZUu0ee/HDsiEy+L7XFLvXuPDA/P8bPE5Pus8yrOTRzBbRSylUM3mm16jPZ7Gf6rOocFVfiJzjFFD849WH+Hl52ZIXZEkTy9DuYKq3b5xcfdjXlWMDmLM1Sq5s2mCnGDTyFMfcInWE7hLBrOTFht7EnCDYHJF2Zz1RzixPszQ822sVy6g2j467JAYGCA3NUx7KMF8Ikuj5DLc6L0F5+0gvARBKYlfEDySvcyTiUsMvM5l2dJwojXGhUaJ85eHcOYtXnbG8Ec1ltCUY5flKItsGjgbATLQyNjA6BisR2kApFDXY5Xuwi5Tii1jeRvp5G0yBzd4cGCJPdYaYFIPXYymxGxzLaRkp6OySfzBBM1xzd+b/jZ77WX2Wu3XJGpdCQokLlt4SxpzrUZUr29ji98aYRhdOaCUhz/o0RyV/PeTz/Lx1Bmy0sAVNnXlcrwxxssrY+RfNknPxyTPllGzc1txkA7ZPWOcOVzkeGKUg+4iOKvXviPUkmbLwa4KjHaPjgXLwi9ZNEckpdEyP526vCV5dfO4RF8rFqI854MhvHM2w19fQdSbRBtlhG0jCzmAbX82bxdCCDANtGVg2Iphs0pavtHrk0341HKKzqZEpRJIrRFVc+car1FEtDXO0wtZ0icyr3ldRDEohW40iTfKbwipu/FfQhqkMilEKsXKE+OsHU5jUEMZCuMGPfHZTomj6xOIVQdzbQW1voHq7LyQq/jGTaoEZYgfjSItpkl7POTvTX+PA84ijzshZ1NzfCfzCJ2sjXUL4YSdjMGTE5d4X+4sM1aNlExwqVIgd1qQWgy7TpHbvLZsm86rbjTJnK8Tp2zMlksnm8KuahLlkErd4l8c+CgvFC7wkdRJDloWT7f28hunHyW6nGJwcxMVBNeSSXSrhbG8idcOGXo2R5h0SZ+v7TxRFGlgFAsIz2XjyRFWn9QkRyscScySFvqat+x8GPBKMMbT9Rm+8N1HcNYlqQ7IEKpXsvxPxU/ixxavzo5CxWboBbCWKli2hbPhYHSSLHW6UcaHnAU+NJLh9yopwl0lLECVN2+LZJYwzW4hikyKKBMzYW2wGOa3PbBfG4KEFZE2faTQKBRX6nmS8xJvNb6jerd3C2EYNCdTlA+aMNFi2l5l1GjhCRNDCE51FBfCAb65uJfCqRhvyUfXetxwtWzk3inCgsfywx7VhzsMDa92ZfSAl4Iky1GWf3P5KZafHcEpCwZO+VjrLShX0WGEUSoSTg1S2+0yvWuRHyud5IC9DEhaukM5jjnRmcS4lKBwUpNYbPSWdN4WwjRpjBrU90bcn1/DuOHoJNaaddWhrgwWogwXO4OcbI3y+RMPINdtRk9GsFlDB8G1a8WFJEHJIeHsEDWBt6BbpKCBYRjIKyP82tD7+PDgGQ4VXsHZSsxxhOQTI8f5ph1wPDOBU0mTWE+QqDbuiOrKXUMrdNxdF1/vjtBb+sW67b/lyaR0HfTUGEExgSx0KMomaRkiX6dasBklqbQSGG3RTX6OevTU5hYxhECmQprDLkaQwDKMe2JNeFOUoKVsQm0Q6w4Gqltx1Hjz0Akjn0ekkrSLkt3eOlPWOq4Q3Up2AmJz6xp3gG0zXuPNTThawTAMisfSCMdG+z6q2Wb48D5e3jfN+fESpQM1DlorPFuZxno+TW5JIdc3iYLr6gCq2ewaW/OQOd018Ho9S/pmCMOAwQKdgsfquzW/9rF/x7DRYNwEd0uTT6E42Rnmt5cf4/iVUaZ/P8C+uIJ/YITGqA3K4KXmPqymYM+329hzy+jNajf+d4tMaz+L7SwKzRGnwl7raS5Olriyax8pSphB57ZM3sK20UMFwqKHnfeZNFtcMGvb7t3RBqTsgLzVwhUxYLBaSTFyLsJd93eGwPZbICyT+oRJ8GCLRycvc8Bqkpfd+E2F4lgwxlc3D7FxocDBZ68QLa0Q93isn7At6gfy1CYM+OAm3znya6SlgStMWkryXGsPz21OsfT8CDP/aQldb6IqVdQN5SpVPkP5UIL6JPzc6Ev8fObStSzjuupqI7/c3EXuDOSfXUT3qNyPcGwaE5p9+xZ5InfxNYojCsVc5DEXFnm+sZtn16ZYXCiw63MSb7aCWF4jXt+4fi3bJig4tAYM0u7OH/vQNV7jzU1kFJE5P8KsO8q3HlT87fxLOFtrqStM/lbuNL+YO8H/2/sAX1k5QrBk4531YPsK//3waA067h71vsVx75shEi713Wmaw5Kh4gpDRpukFG+Ied0MPVo1l0RTdPMFdrihJ4FspkVzNIFTN7GF2HmOsLeJiAWN2KWpHKAbG64NUFa3dPLNPySgmKMznMUfENyfmGfaquEKk1hrDKmITIEyRfck5DazfRW2oLsDjOOuByCO0Z0OOgqRYYwIBWFoEupuEwt2i6CgMdsSrJu4sbcWpx354EgD6TqIZBJ/LE1zyEIWfIaNBmkZE2qB0iFN3S3hecof5fxGCTYcjEYd3WxiVXwStsToGMhIYrY05kYbXW92+/eGXbZQCrUV6GQJSVIqht0ap0YkQiXILSZuy+QtTJNOwaNdsvDcFq4Q2GIbDaStJJ/YluScNnmziYUm1hoVG5jtGOlHb1Sn2GEI00QkXIIcTA1tsDe1ioXYKgHbTdp5pbmLo0sTuOuyOz562HCVySRidAiVS1KZMWjuinlXaZW0NAi14pWOxXJU4guL9zO3UCS3INDNFrrVekPSWZxxaIwLOsMdBszaaxbi+SjBH28e4furu3CrMbrZRvfo8acOQxKrgrNXhviiVAxZFUJtshjmaMQuJ2ojrLbSLG+miVY8EmsSd72BrDdRweuOxKVA2d1iDpbRu+PgHRGGeOsx4RWT+V3ZNxQpMITAwMSUMbcoJX7PIz0Pmc+hihkaIwbtIZjy6rgCrNf5chWKi40S1rxNYlWjw958Xn4gWiMUBBoiYkwMDAQJO6SZ0MT2vRs6ID0POTxIOJRF5juMWBVcEbISd1gKc5gtsJoxIryJTbVVPCkayFCfcvFLirRsI4G1OKKlDcrVJMUNhVMJ74gzcXuNVwCtUe32VhWLrZKMscYIBB3f7JYUA96fOcO5xwY4f2mI4W+nYL5HtRffATLhIsaGiYoplp60CaZ9Prr3NONmN0N0OYaWNpkNS6xFaT53+UH4fpbCisZY3SSqNZCnLuFdsPAMg7xloWPVlbiIojcdOK4wsdC8L32Wr7x3P0vLKZILBcTslR/6voSXoLK3aywcKa2Qlva1zNftwEglEekUfk7wYHqBh9wrpLfiiOO2gb3RQlabxDvQa38VYZrIbAYKOYL9bf7lnt8hKRWOsAl1zEocsaEc/vjMg2S+mSA9F6Jbva1/KXaNMveTA/iDmve//xg/N/A0o2YdV9i80rH4Rxc+ycJ6jszXPPa/XMfYWOvG891ELaE+meDABy7wcG6Oh5xFrip3AHy+9hBf+dIRvCVB6fQqanOzZ09wVK3B+JfLhC94LDw4xd8/PIpoGaQvGJhNjbemsGsRu+sdjPIKIghR5U3iTvhGCThp0ElKwowgae3MWM8fhAoCUt8+R/qFBBfyk7Qe1bcsy/ijihgbZvPIIO2SpP5km4nBMj85cPw1kmtXidGcOD/Ggc9Wu3NndQeFncQxOoqQHcFy7OGIFgOGgxSCIa/OYqlEkDHuWcUBOTzI/CdGaY9oPrbvKB9Pnmcudnjan+TZ8m4ycxHuxY03nj4JgUwkEAmX1cMelScDDu1aYtqsYgBfbU9ztj2McSpJ4TuX0c0Wcfv2qQxcZfuNV7h2zHEVEccYLUHYtNiMkrR0h5zRYn9mlYVcFuXZSMfpBoX3sMfoVhGuQ1xI0inYBKWYkcEKk24ZC4Oq7nAxKlGJk5xqj7LWSbG5mSJf1rgV1fUMqbgbNvEOTvolEikgZzQZzta57NvEjnF7BoZhECa7FZ1ydhvzapC/khCL1xSOuBuIpIfOpQlTgoLZuJbAEegIIonoRHCzXeZOQXaTkSjkiEppMpk2M9b1cJNAKdbiBAtRnqhik1yJcTZ6txCBsGyEbREVkrSHFYwEvC93lve4IYE2qKsOi+Eg82t51IpLej5CXlrsJnK+7gTmqmxYmBTcn13k/sQ86a3wlZbqnmpcbJbwlgSppRjRaPX0KY6OY+RKGafeJl0cxh+wMJuC7KUIqxbjrDQQ1UZ34djcfPOLSUG85Xm1Ze/e8ztC6+79b25itqZe89KNoRa9oIKyLQiBsG2EEAjXAcsmHMrQHJYERc1Qscq+7CrDVuUNhmuoYwKtEE0TsbR+XV5vh6C1RiiNiKGiPArKpyC7c4JtxGAptGHem55XaaA8l/aQJhruMJ1YIyttzkUWp9qjLNXTZBsxotl+Q/KdMAxEOoVIegR5wehghenUOpYAfyuJ/ER1BKfSzZ/Rnc4dsdN6w3h9PasbjH8rRXvA5jcKj5K9r03BbPDpwvOEWnL04EPkxX6s2RWipeXtbu07Z0vLVU2NcPnjSYLBmA89dIIfLxxnzNykrDp8tTXNP372E8gNi8SKxK5qhisabyXArAe3TTctLX2mUmUqbZfYyd6egWGZdHKgSx2G7O6OfDXKsL6WwVo3ke3GXVsyhGlSf3wXqw+b6AMNjiRmGTI6XIwcynEKo24gWj7a99Fq53n0ZTKJzGUJdw1w+ac8OqMd/vruZ1/znsVY8P+d/xhn1wcpvGKQPraIbrSIe9FgFwL98H427ktRm4EPv/9lHkzNc8S9QktrnvMzfLtxgD9bOED+zxKkFkMSZ1eJr1aEuXoZy0ZYJmL3BJ3BJLVpeNi7zAF7BU8axFrzq5XD/MnCAyyfGGTPC3XMtRpqs7J9934rqBhdraFbbbJHBd5iFtmJMTbq0Ol601UQdCXP3gJh27RGBO1dIbuTG2/5/p2KFlcjAwTqno9ivDWMbIbwgWmCgsXGIZPWZIRTaPPg6BkGnQbvzZxl1Npkymxwo5KFryNeCpLMhiWsmugmNO0gw7WbtNatouhuaD67/iiHUov8bOYV0vLeLmQhk0lkJk1jKkPhoTXeM3SRI4lZQmJ+c/0Jvv6Nh/CWBO7lZVS19oZKk7JYYP0n9tAcFSTfs8b/OP01MtJnMXY42p7iTz7/boqvakbObHYrl96h5L2eNF7jzSrm0fNki3mWnxjlufHdvD9/lsccn9nMBb47/DBO3SWzkYSl7W7tO0dIgTAkQTGBONjg4aFlfm7gaZ5wA+qqQ1V1dzHpVxzSczGpC1WM1c2uBIxtIToh8W2qgOSKmJLTIJfwiYzcbbkmUhJ5mmTaJ2t23cKN2IW6iVUXiPAuTnZCUh8zsR6s8K6ROabMDp4weaWT5mIwhOEDQac7Ce/ATFnhOuhMkvaIy8AjK3x89AQfSb/KjUF8GyrBqwuj6CseA5cjokuXt6/Bt0BrzGPzELh7avy9wa8xYzm0tCbUioudQZ7bmGJtLs+Bo5twYY44CF7rLRXd50vYVtdw3eUQFiOmrHWGDIW7FUrxTHmapdODZM8JjLNXiHo0Sev1KN8H30fV64iLXZmjd7QNsUw6GY1XbDFo76Bj33eAwVYZUK36BiwgXJf6LofWkMR8fJO/u/cZpu1VHnVWcYXE2VIneb0EW6AVFzqDnG6PYLZE13DdYfrYOoogirDrmtObg0g0rfQx0tvdsDuMcB10OomfN/jAyHl+OvsiQ0abUAteLY8w8JImsdqBtY2bqg4JL0FlH4g9DT41cYxPJtdZiwPOhFlOtkYZfi7C+cLzd9wx1ZPGK1p1k7caTXKnBc+IAyw8kOVj+88yYNYIDzdYHPZojA6Rvr+E0VbYtRDZCpEX5ohrO2MCvhqb2By2eGDkEu/Ln2fIaAAWv1M/wK/PPs7KXJ5d5yMSy22Mcg3dbIJhgGl2H76dtNsFylESZ8PALWu4A8kwV4+HZS6LHiigPIvWmEcnJak83OEnxy/wYGoOR0jKKuI3V57g1bVhUvNdge+dqjQgshma0znq4waP5lc47F1mQAZAgqW4zfFOiW/WDiLPJslc1LjLzZ49KBWWjXAdGiMG2QPrPDiwRFIqAh3yQpBiLizyq+ffi/9ckdKSRpbr3VjOrWdBui4ilYRCjs13DeDnJfUpjR72eWRqjoLs4Gt4rp1mrlPklXMTlI4JUgthzyZovVPMkWHCqSGQAm2KbtUg6BYl2bLdGoM28UjAaK7GgNmVSyvHAeeiFN9r7iOxokksNBG3UWB8u4jp6nnes4arEMhUqlvqe7BIZzhN5Br4BQNlvTF2M8gKag92SObb/PjEGR5w5yjKFq6QWOJ6NS1fR1vJkRl+v/woi60sxy6PwabNyPkY3Qm769E9kodyzyEERi6HcB2aD0+wdtiiNRnxoDdHWnb4VnuaS8EAi5dK7L3SxtxsvWEuNIeHCKeH2ZxIYO6r856JSxz2ug6Qk508/3rhw5xeHGKyenfm0B41XjU6CFBxzOA3Vyi+kuRiNMringQTZoVfOfKHbMQp/mDpYS4sDxBVbBILHu6GZqSShx1ivFLI4e8uUN8l+GvD3+Mpt4K1JSD/ny+9G/lfi0ytRSReuEC8WSW6mtAG3SDyHThRrHVSeEua1EI3nuZ2IxwH4Tqo8QHK92cICoLGI21GSlX+7sRRPp1+laSQpITL+TjimeN7yZw2KZxud5MNdmCfAkSlNJv7LBqTio/mX90aS11vybkwy++sPcaLixMMPxuSPLaA6lXvohDIZAKRSNCY0vyzA59nzKxQkCYtHfNntQc4Wp4g/G6RqV89gWr7RJ3Oa9U0Ukn08ACNfVmaf7HKE6Oz/ET+OI87y7iiWzb1ctThd9Ye49TGMIXnLQa+cAHaPnG7t5PX3i7h1BBL70sSW6Acfb3a0g3Ga5TSHNi1zAO5RSasbtjAYmzzhepDfG9lmuxshD51gagXw0veBkKDgnvXcAUQsrtxT3tUHiyw8YCgk4+ZnFmm4L5RNms0UeMXSt9h0gyxhNyqzCYwxGsVfVoqpqIknyu/i69+7WGcdcHk8Q7uchW5Uibaybq4PwIIs7uZCYtJFt9v8vMf/zozzgof8uaJteYPVx7m2OwY+WMGxivnuwlWr4tTjScGWXgqSXs05n8+9A3+fPrslmayyTPNvZx6ZjfessBaXeFuuNR603jdQsfdxAlDCJyNNJ+rPsK4vcmkvcaYVeZAdgWtBUtemrqRIkqZBFNFHK3R9Qaq0byWUdhzCEFUSlPbZeEPxhRlE0sYrMUBdSXZrCYZX4tw1ttdQenXBzz/kEaWFHpbYr8MsVWO8C0SOKXrvkYSTZgmIul1QyZMoxtEv+UV0JZJnHHQliR0uh6G5qBJY1c3WSyV8knZAWnp4wqBFN379rWJbHXjiI1WtPOWNCEw0mlwHBqjCZrjCmOoTdFoIJFUVYem0rzQOsDz85MEi0nsahvdbPbmMwFd1REhwTBQlmbQqJOTHSQ2vo54ZXOMC/MDFDY0uhMiTBNjoASWiUom0K6JX3BpDZo0xiQHims8mJpnytygYFw/+mwpk9lakY2NFEM13VVcCMMdu3nphkgYiESie/pQzKGTLuW9Hs3JGG0psBRCvq4UtAbHC5lJrzFub+KKkJYKOdcZ49vLe1hezLO31sPlgn8I1A1nD/FO18i6KrfoJQhmBmkN2lSnJeGETzrT5v78EkX7jZ7zQavGkNEhe4MG9M0oK4PZKM/5eonEsiCxpnDW28hK47bWq+8VTKEQpkLv8PBX4TjIXBaR9KjdV6Q5KInHfQ66i4yZmzhCEqDwzA6mHROmBWJ8ZKtM8ga607lW1TDM2AQFjSx0GDDrOEKyHsdsKJNXqmN4KwJvRSHad+f0sqeNV7QmXi8jNisMP5fl88aTtMYj/h8f+CIf8M7ymeJ3UQVBU1vUVYLnmnv4dfv9JOfGKZ7skDi5hG63icubvbcoCcn6YQ/zE+t8uLTIuNmmpSRfbU1zojWGvJAg8fKFbuLF7fYGCYEU+jWxXwb6rmTc2jIi8gRhUoJ58+EnTBMxPoLKetcM1E7WoTJjdz+bgtjtepG0hCgTc9/BOXYlN7FlhIHCkRGOjGgpm3P1AfzYwtcWdaVJSoUrFHWVIrEqyV7yMdZrRL02Rt4CYVrEh6ZojSZYeo/gMx/9BjPuMoesKiEG32mPcKw9wW8ce4yx37dw13zMs/PEtUZvGyKm2TVGXcW05V+rCrYcO1x6Zhe7vhvhrtWR2QxqqMDyY1k6OUFjOsIbaDKaW+F9+XlG7CofSp6iZIRbSRjXDZTlOMP86SGy5yTp2Saq2ertPnkThGl2M8bTKdToAGHOYfG9Lv6egL0Tc/zPE98mKQMkCkMojBu2aTECS8QMG008oakqgzOhw3+cfw/R7w4ytRRhXVwmugdUXe5ljFQSJkboDCa58LMGjx46x4+nl3gieY6kDChIH1u8cXw7AgrSvskVrxNrzbPt3XytfJCzp8bZ//UycnUTVW8QR9EtJQXuJAwEOauNm+wQO+4dEdi/42xtZo2RISqPjdIalHg/tczf2PUcB5wlDtsNLCFxhA10eCx3CYDn9SRX5CCJVc3g103U8ioilUS4LhuTNuOHlziUX2aPtYbSms/WHuZLy4eYOzbC3q+UEWtl4rt0qtfbxiugww46BHu1QfqyjRYmV4IiFddhwmxRkCaSCEu0yMnj/ObYu2jFSbxVEzeT7EqA1BpdbcNeMU6kgbQtOjnBe4dmOeQt4gpBjGa+U+BCo4RdF6hy5a7V2I4RhNq4VrzgtqFB33BNT3aIEtBJCnTaQ6bfGB4vHJu4lCbIO10vkYAga9AcFUSeJs5ESC8CAUJqBrJN/urIsxxylq61v6ktNuIUy1GOU7VhaoFLS9koupNxrDUdbWC0wawGsNNiXYVAWCZ+3qE5JGHY58fTxxkwOqSlSYxmI05xpV2ADYfk+Qpyo0Jcrfe+vJzcKkm4JYp+tSxyqA3MpsBd9yHWqGKOYNCjNSIICoqxqXUeH+g+T08mLpKUioI0r4VPXCXWmppysSuSxLrCrPk9X13spgjRPSb2PEQmjU57BEMeQdagPRFy39QiHyqd4SPeCq4wCbfkCB1hYQnjWi337umLC0BL+zS1TbntkVqKcBfrPa8D3IfuSUXCopMxKY1W+EuDz7PHWuOgLbckwZw3/fjVUzh5Ew90SEhLOVQ6CWRLIjdqXa9cr57e3AaSZoBrhwQ9byHdHGFaCNtCZTyaQ5LWiOZnRk/yi9krSASG8AAIdIjSmgGzzpS3weVCnqVRB2UYxPk0hh+g00lUwqaTFTyYWWcmsYojYmI0F9sl5lYLuKsSsbRKvFG+a/e4c36alXUKRzWphTSfV0/y2YF3s+uBJf786MvsdxZ5r9tk0uzwSw98m/N7hvjCwP00xkuk5hWFZ4xuGEG1fteMwR+EcBzE3t1ExQTNqYiPZE8wbFZxhcFaHPGN1X1cnB1kcFnfOU+Q1igtri1eAGtxkqPlCeZWC0y2btNCvlW9JIokgbJQaD6cOcHJHxthuZnm1GN5jHrhjR8zwRptUsx04+8EkLE6HEpWSBghjgwxpWI9SLHQ6kqO/8bSu1FasFDN0my6xDULd8VEBpBY1cgYfuNTj/HRwydBhqRR+NrCqWjk/Gq3lOIOQVg2spCDQpb5jxg8+Oh53lu4wIQZ4ghjyzCJWOjkOVcZwKpK5GatK3uyExL8oq7erggkc7EkpwNK0mbSbPHYnzvOy4+PEWuBUgYpt8J7i0sU7CYPenPXYjbLyqWqNBUZYhAxZCjS0qalQtaU5lR7jMxFTe6ldVi/exPubWGrUpwxMoRKeaw+nmfj0RiZDCnkq6ScgL9YuszBxCIDZo3LkaCuDJ5uHaARu3wwdeoGz8v10JyrR8YGmrF0lYv3lfCKOYoNH3GTamV9eht5i2W4u8bMD1ZgsITBU8kzjI5t8r/X0zSOjJNYKmCcn7trXra7iSUMPpw+QWF3k397+UNg7Rwz6Spyehft3XnK+y3yP7nIk/llfix9nKunT7FWNHTA+dDA1y5T1hpT2TUOJBY5MTTOhUaJFyemMRpp4pRCJCL2jM/xF0rPk5MtQiQXI4M/e+V+Jr4gSCxvhWneRXbMrxJvlGGjjHUlya7KJJ1iglk5wrfcJmHe4HH3BCUjwX+fu0CQPY1C8Gf2QaJEguyZFIbWiFZ7+41X28YfT9McMkkNVTnirJIUEktY+Foxt57DnbNxN6M7qjeq9GvjXesqwXI1jarYGMHt80KKGOLIINwKHjpi1/mVyc9R1xZHp6ZYj97oeU0ZPj+ePMmM5SC3AvQUmlDHKBQVFdHSguPBCE9bMyz4OV68vIuoaeEuWKTXwVuJyZ7c6Gq3bmyCFJx+5ADNBy0c3d01+srCbijitZ1VyFxYJmRShKUU4w8s8zt7vrT1ivua9210UpQbHlaT7uZtpyRVbMnuyBCWozSYdQpSMWQk+NWJb8JE920/KD5vMQo4F+ZRSCoKLBHhiSppCb5WlOME836e9HyH+Mz5u3dft4Orsa22TVzKEBRdyg8r/umHfpsxc5ODdgdXmNRVh5bWVJTJWpxktjPAN9b20+g4lMYbTJonSEp9zat9FQONJSKGEjWOjymUJcm/mugqnKjXFpPp07sYWyECN/Ok3sg1w/VN3yM5aEkOWpt8beQyz+w6gjKTZJaScA8aryYGDzkVpqyX+bXie2Cn6b4KQTiQojJjUTsQ8Wt7f4/DW5Eh3Tmz+3u3VMxsOISvLR51rzBp2rzLWYL0EouFgM/mD7MeptnjrrLL2mDUrDJjSkJiLoWS5ShL8oJF4o+e6SbZ3+Xb3DHG61V0FGFUGtiRIncyz8vhXl4ameDo9C6mvA1+Pv8s44bFI6lZylMeR41xlqpZEutpit/RqMvbv4BrCcoEUyrsrXCBchywGGeJVhPkLmuc9dt4jL11vGgOlgj3jFDe7XLQ6y7aV6I2s1GWP9p4mPjVLNkVMMvN25ItqBstCic1zU2PXzcew99v4ckOWbOF0pIrQYFm/MbjLFtGfEfOcC6scLkzwLn2IM3IYcVP044sVusp2m2buGkh6wZGIEisCQwfEmWFXY2xKx1EtdEVu989RpR2kMWAAaONgWYlFiyFeWS88zxJMpOmdv8AzSHJoVTlpu8JtOKFtQniU2my82rnHPHprapxok36ouSXX/009w0s8/8c+yKjho+3deRdVT5lBeXY5WV/F+UoxbH6GMvNDDXfod5I4HkBPzl5gil3nQGj6xW4HCX4XPURjq6OUfR3kCG29QwbqSQMD6CyHovvS9McV+w+0FUJqCuXX63soxp5nK4PseEn2Wh6NCoeOpBYm93p/ivuQR5w5xgwmqSEfk3lJE9AQfo8kr7MiUMjLA1mqV7KkmUaY3WTeG19x3pgr0Yv3eyIfNCq0ylFyMBC29YPuELvooMAo9zAE4LVo0V+ufZpdg2WeaJ0iXZsca4xSBCZKMQbQsOuemiv/n3Eq3Ekc4WSWeND3ixDRuKu38/dxGor5teyWFLRGtpxJtE1hGVjjA2jUh4rD3vUH2szM7pOWoSEWuLrGF9rvtyc4Yvr91PtJFisZAD45PRxPpw5wahRZ9I0SUrBIXeBipVkzNykYLTIyQiwMRBkZciwWcV/sMXGf/dukksxqZfm0c0mqnF3EoJ33C+lg4DoygLCMBhezzOUTtKeLnDs/kM8M6bY9/El/lJ6iU+nL/HJ1AW+OzjEfxh5L6eXBknPFpGX57a1/UIIlCVQFlhmjCcMfB0zFzuc9MfJnDMoPbcG5epti8MThoEwTcI9I1z+WILOSMiRVFef7cVgjM9vHOY7p/ax//N1jPm121ZdKF5fJ/eHTfIJl/LKPv7rwntQ+ZCp8XUSZojS4jXxsDdytjaIFJqTV0ZwzruYLUguKay2Zvx8FbG00A2r0BqUvv6wxHF3cVWaKI4xBops3p+lOSo5NHaRSdNmJQ44EQxwvjWI7Oy8RViV8iy/W6LHfR7PXrqpB7KpNGtnS0z/mY+1WkfdpmIWdxytux5iP2D4u2Uay1mOHs7z/F88xbsTlxg1IixhsBJLXg7GOdaa4I/OPUCw6ZJ/ySR7KaToxww2OjR2Z/jizx3iPaOX2GOvsN/yedGf4g/PPkg85zFYrfSs1u0bELJbKayYp3Z/icawwaGfOc0/Hv8T0kKTlTZ/1k7wb195P3rNIX1R4q0qhpYCJs7Md6/hJVAZj+O5XTxf3M0hd4FJs4LBdc9SwXDISs1o+gIfP3SW5/xR/v7SXyH0cuRP2xjVGoTRtp9gvVMkNy9SMO2sMjq5waIoorw3jw/tRVSrhZqdQy5aTDd3EeUSlO8b47/eN4rZEORPa6ymRoYa8boN++tXmRN7xvnekRkKAzXGDv0+Q8b13zq+3TkRPYCzGeJcTDAXFdmY8YCdqfUsEy6N+4dpjhjEH6rw+Yf/HUmp8ISgpWOWY4O6svkXpz+E+ydZTF9TqisiV/DbP/koKwcyvC93lonUFbLS5im3QswmFgaGMGBrnjAwGDIkBSPi3z7+65w8PM6/Ov4UuxrD2ItVRBj1jdcfiIrRKkbVG4gwxEkl8JZNYkdSjlMAeMIGARNmmYOZZSp+gjBbwstkumUTb+PR+Dvl2o6XbjJKS9kYgUbUW7evfUIg83nIpmiNOHRGQvKDdZIyoKECzvvDnC4PYWxYyOrm7d013WCIJNYivEWbTstmVg8grbc2zLUWmPMOySWN2dIkl0OMdoRYKd/yUb+Qkk5a0MlpcnYLE4OmkpwPhlloZZHRzjFer2aVx2mHKBdRyjYpmA3iG7xgITHrccxslMWsC6xyC9Fs77yStypG1lokVly85QS/t/QIx7PjDFp10obPBX+Ai40SC7UM0VwStypJrsS4y02INSKOkZHGsSKKdgNXhEgkLWXTaVnYvkDslIpAQmDks5DP0hnLUZs0aA9p7k8vMmna1FWHpbjDuWAIvergrkq8FYW30sFabRBvVpAJFzU+QFB0EV60JRsXEqOJdcTlSNBSFp4McUWMJzQFaTNlraNHfBrNBEYnQb49hWwFsLHZNWJf74VVChUEO84zWzAaTKQrrGVSxEkL03W7Nd13UiKfilEdMDdrmJ2QZNEhyJuYDUgudTBaETKM4S1Om8JUitaSRVlnqOxPorj3pLBuRIRqq8KiJNQmEHY3OWik0AjHRlh2byV93wzLxM8btAcEg6kmOamoa8HxTpF6nOBYa4K1TprmlQzF5QjDV5itkNg1MZYdXiqMkTBCnkxcIi0istLGEW8MmVCo7mmNNnBFiCcDpNSISCGiGH2X+mhnGq9bqLaPCALE+ZDiahr3wTEu/vkBwuxpLNGN1Zk2I/5K/llG7Ar//uDHMZszOJc3eqo0Zqw1TeVQj13shiZeW78tlbOEZSNsi+bju9m436S5t8Pff+KLTNnruCLklU6K3754BL6TZ3BewcZmVzLodk/YKibx4iUmLmS6EkiefU0C662QrUa3mEEUd/UE4xj1doobuA6NSZB7GjyQXgDgZGeYX7/wGJXFDPsqOyeT2igVUcNFqjMe+/de4YMDZzlgv7Y+8kqs+LWN93GiOkLmEujZeVQU7axFeAu1vIpZrTOykKbz6iDH7WGU2VUikKFCRopiqBisVRBhBJUautVGDA8QTOSpj5p8auwkP5/7PgXDAGw2wyTGhoWzKe5IhbfbzlZyVvtd06wesWntivj0489wILHEB7zzgMMLQYE/rTzI1y7vY+xbCm+ujrFeQzea3b7KZYn2jHDurzrkx6v8D9PP8/HUGSxAacm5yOL/deFnWChnGcnXmEht8lB6np/PHmfaFPyfj/8Oi0fy/OHyQ5y5Moy5lGX42SJ2LepuJm8o8ywbAWJ2riecA6/napGCm1XYesip8MujX+J3vcf4xp4nKJV3YaxuEK9vbE9j3ykq7spLVk2S9SbJU8muQVFvbMWS67c0LnLlHKnLOSoHUhx71wQ/ldxhffA2MVohzqYmyBn42gLaGAgcoXETHeKhHAZ0Q2Z6cFxfRXge5Qcgd2idB/KLvNIp8rXaIT770iMYZYviMUgtdNi/XkEsbXTXhDjGsGx2Gbtovprni+/Kk3mqzR53lR9Pnn/TkBGF4unWXr60fB/xpRT2/AJqebW76bsL7Ezj9XWGj/YD4k4HuzpAO36tZp0nLSZFxLS9SpSEMG1iu2+ua3e3iQFfW7RjCxnqH/4BuZrU4ToI16U1YNCaiBkdK/Oh5FlyEo4GBRbCPPWNJCMLCm+10y2NeoeMnHh9A97BQvDDtkabBlFSMZJpUtiKe9yIU1Q3k1ibBjKIds7RccKlU0wQ5AQz6XX2u0vkZAfojuduMpvNmfoQsxsFCjW1o1QUXo/yffB92NxEzl75gaknr//9zIEicUISebDbWWW3lbpmsATKxPAFRhtE3OO/vBBI20LYNu2SSWsyYmhXmc8Uvse0ZeFrg5YKme2UOFEZobWWZGK+hby8jGo0UUGAkc0gMmmCgsPw7g1+cuwET3rnGDIcfB1RVTFzYZHLqwVYcrkSmDTyDo6MKaePMyDhqcQGJDawRMyX7ft42RmneckjciVW00SGiquJ7ZYhkabZm4u8Bl8LAh29Js4XICttsjacSMzz5Ywgyiawau4PuFBv05WX7ECrBSvv4AJhiOEHJHMO1ejejncFIFIYAcgIOluJxVIIDA2WEaNcB+naCMPo7UI2hiTKxOzJr5MwuvPCmfoQiVmbxKqm+P014jPn37jeSQPnShqzmaK+K8W8nyNlBIS6u6aEWwnOSmvCG3qgozWX2yUWN7NYNYFuNLtz9l1ixxmvwrIxhgbQCQd/Mk97wCJMCoK8oD2k+MvZc1jCuBaMX44DToZZvlPfT2pOkzxb7h559RDzUYLfWn03J9eGKNZ+OHNNptPIgSJxNsnG4Qx+UdB6pMVP7TtBwgj5bPUIl/0CX336MN68ZPxiTPrMJqLRIu7FBecOMOuXcM91wxFkrbVjjNfKoyMs/VSHkcFlfix3nL3WOlnZXYQvRxHHOyN8ZfN+zn91mtScJn16c8fc2+1EG5LYluit2e1GSbgz9SEKJzTJ5QBdq29TC28BITCyGVpP7KM1ZLL2ZMQnH3mJPe4atlBcDEP++cpHebU8zMrFEtlTBiNrCmOpjGr7yIESwnOp3V9k7WFJZzjklyZe5nHvAjGClwLJ71ee5HOnD6M2HAaelyTWI4KsQ5hyeXqgxMf2HcBNBTw0ssCUt0HeavKR4ilmkms8XZymFVo0QxOlBYFvEQUmzmya6ZVCT26aEqua/2Xuz3Ffeomfz32fUfONsa3DZpXagRhtJhkSIOYXtqGl24ssFfH3DVPdbVGy3liV615EqO5/N2IIgRSgTdFV2+h1gg6JOZPvu7v5fnUfVk3gbghGjgdY1eAHSgIKKdAJmzBl0cloHs1cZtpZISkFLRXyD5c/yDeuzBD4NnHduuYtEFqQmDdILWvSC527rge984xX2yIeyBFlHTYecGhMKij6zIyusSu1yRH3CpLr2aIVJTnuT3CqNkxqMSI+d6nnKuksRHleWRwjWPYYbvxwBqRMeoTDWVojLmvvjimMVfi708/xN3Ln+UY7xb+c+zBnlwaZ/qyP/N4r3Spmt+k+dgrzfo7MZUVqoYNubL/6xC0hBJUZyb958tcZM2uMm2Dd8Pguxmmeru/lmYUpxr7Zxnp1dudIY91upESZXVUPuF7LXqFYaaQpnaohV8rdSmO9ipCIZJKN+y0aeyI+cvgk/9vQd4nRVBXMRmm+dmY/idMuo2diss9dRrfbRJtVhBSofIpgMMn6gwbv/cgxDqSW+HT6FYYMmxc6NqeDYb44e4jSn7ok1iISRy8Sr6+T8DxEwkUPD1A/kMXP2zzz6Aynhob4iV0n+WT6GF7yLP9g4PvXZLZirbkUxZzuDPFPhz6K+mxymzvv5njrMc+f2c3scIEfTx9n1HzjOlA0mhQnN1k3s2RmXbxtaOd2ozNJapM2rRFByezhDd5tQmiNUPr6hEG3yhaAIRXKkGAatxzqtl3oMMRb1mjDIX9GkTu+gai3iJeW0VH0g9d5IdGORZQ0iNOKI4lLjBotPGFSVxFfPneQ9LcTZDc1qXm/K5lHt9+MjQZsVqETEt/uSqBvQc8brzKZRNg2FHOEw1mCjMXmXoswDe3dHYZGKgwmG9yfWWTErm7JOVw3XlvaZD1MUwtczEhdz1DfTraqRkE3LrdoNJgslrkYC2LXevs/ihCY42OoYob6VIqNgyadnGZi9zL7c6v42uTzzSKfWz/CmZd2kViVWOX11yT69Ol9lAk5o0VaxhivGyXngmG+vbCH1kIKo9HoHtvuhIIEdwDRaOEtpWiXErTUa71r1/LWenjsG7ksjA3THknR2BMxsXuN+1ILhFpxLrL4rfL7OFsbxL7kkprXmG2FKmXRZp7o8G5iV1KZsfBLGr2/wUPpORwZ8vnGfbSUzddX9zO7XoCzSZKLHaxNH7aSrHQUQdBB1pt4Sy5WwyL0LPzFAr/bPML87hzjboV3p86TlNc32n9SeZhvzc9QP5ej0FzqSY+/7ChEw6TRduhg8MaAky5C6Gvzc8+yZUgZuRwim4agQ1ze7JZqfSehX0JgDg+h8xmq9xcoH9YYw00m7Hs73hW680VyMUWQdTjVHuOKs0BSChwhGU1VuTwzQDKdJbW+CT14onAVHXRIz4eYvklyMUDUmmjf/8HJukIgTAuZcGkNutTHTYx8i7TsYAhYiyNW4gTxhkPmSoRVjzDLTbgh3Eo0WqigA+HdT2brbeNVGsiBIiqbpPxgjrVHFaLQ4RMHX+JAYolD7gJTZgMJuEJgIPBkd7FSKGKtqSuX2VaRctNjJOwBw/UGxFag2IxV4zPj3+W7mX0czR952z+KsG3qR0bZOGTSPuDzf3/0i0zZa+y1NvCE5t+Un+CfXPkxyscG2P8f12C9jOplr1Ofm6IszYQRUDC6Y/zGzce3N/cRPFOktKQxVjeJ2u2eGut3k2hpBWN9g5x7/02LYPQ8I4Msv69AaxT+yru/yy/mn8EQUNfwx9Uj/OmXHyWxIhh/xcee3yQaylKfSdMakGw+EuLlW/zU9Ak+nD7BoNFg3Ix4ISjwf3vpLxKseBRekkyebmOW19FXFtGdkDjqJlnoIEB3OqhmC7m8imsYjD3ngGnSemyKl+67n6cHFc89NEXR7S7kSgte/v4ME1+JGSw3Uavr29l7PxCzGeGu2bTdBHXlslMlkaArf4hhoKZGaexJ4WxGOMfirs7mO8hdEKZF+74xNvc5VB4K+d+e+gP2WKvMWD5XY+rvVaK5ReyVNUrhQb67vocZd4Ujzhz7LIf3F8/xL987QX3eYeZcDlZWt7u5PxDVaOB+5ySuYUAYEnXCN3XWCcNAJhOIbIbNvRa1+0IemZhn1IhRCI52Cpz0x8icM0h883hXSeR1SkRa6W1zCPaW8bolxC0ss1uv27EJxwr4JZvmqMAebjGcq3MkOcs+e4VJs03phmw4haKlQkI0y7HBWpzkmeZeTq4P0VzzkD0a02kLwbBZZdiu4eck2ZFhtB+g2+1uZuhVN71tdSctx0G4DhgSbZlox6Y+btIeiRkcqHGfs8CA0cRA09KCK+08axtpvLKA9fJdrT/ci1hCoUyBsiTIHnexCIFRyCM8jyipcUW3Vvk1uZItaqGLXQW7viXy/yNquEI3hkuYJtqUyN5OsbgpyrNpDwqCwYgZd4VR06GlQupXw526KjWEaRM5kKE14lAfM/BLmtJwjYnMJo8kL/GAvYmvYTE2OR2MEKx6JBYNUssh1lIF3Wx1Q0teP1Z0t5KWDuJu77VaIATuyhBesRuPcWmxxGIie+3tiWWJu1RF1lrEPariYPgRTgU6OYNKnKSlyjjCfE2VMVd0KCRaVNIekZtAOM4792bebqRxLYFP5LNox6axK0l9wiC2Ba7rQBAgZOfWIuOkcT2x10vQGrJojWrSgw0O2EuMGt1qbVeJtUZpCbp7ZHzPoGKUH2O0Q9ZaCS4HJfbay1sJnhba7xbC6fk59ao05S0iTBORzxHnUgQFTbLYYjTRrZhWUfBMc4bj1VHs6tu77t2ip4xX6XnIdApVylM+nCPISSoPhYxNrPOewhI/ljtB0WgwbdXwhOhqud5AXXX4rj/EbKfEfzz3BM1zORIrgtLxDgPVAOPMXG/Ed249A1oLFApPGEybDVTyHP/+qSdpDU2TmVXkTtaRnagrFSUEnV0FgpxFfdykNqNQCUWi1CLpdnhi6CiPpGZJygBfWxwPRnm6PsOyn+GFozMUjktS8yG6fW9r9r0VhpDkrBbtAYHRMUm4vS1IbmQzrH1yP9UZ2PvQlWuLbfi6eXSlkSZ3oYOz2kb34ERzNzFGhglmBqnMWJSsnRez15pIMvmByzxenOVR9zJgIoXA0vBY8gLHnhyj3PZofNCkEhtM5lf4QHaBgtnkkLtAWraZMFukpclnq/v51bPvobmYZtcXFIn5KnKtgqrWukbZrS7IWiPPz1Faz6ITDtH3PLRxffmw1tdgYQUVRV09zB5Enp9jpFokeXiALz75AMNmhb1WlZEbHCDjJvzDqT9hdmyAf3z+L5J/fhTRaBGtrm+7AWsUcqjdo/hFl+V3W/jDEcOTG3xq9DT/9dQjpC+XsK6AiN5aJF44TtdBlE3TPDiEXzBY/fEOf+GBozzozTFphrg3GPa+jgi0ohnZGJ1usYN7LSxJtjpszub5fQ7jTQdMGK/yxwsPMPmH4K5UYeGdSDf0LnKgxNpTo7SGBBPvmePv7PoaGemzGBv8ce0hfu/3niJzSVF6aaM37KbX0TvGqxAI20anPKJ8gsaEJChoDu+7wl8eeZY91hr322JLReC18h3XQwQ054IhzrcGqV/JMHAcUgsB9jOnUK1Wb/0AN6wZljDISRg168yMrnFODSJjF2/FxfBjTKOrbdkatGkXJfXdion7lhlO1vho4SRj1ib7rQ3GzQRXojbHO8OsRRlOVYdZqmZILBmkr2wZNvfYhPNOSBghsQthQoB887re245l05gQ2AeqvKtw5dpicrXE5dXqWu2ORbEcYFQaxDulFOwdQnsu7ZJFJ9P1pO00OknJJwZP81TyNEPGdReaIQRjZoUPFM/SUjZ5s4krQu5zFnjQvv5cd8eESYzmTGuY1myG5IIkeXqFaHYO9Q6P+eJK9Vot+xvC9ruvvcN7vZtcbX8yn2SplWEhzDNq1LmhwBgp4fAeV3K/Pc8/zCt0KoGI4m5G9jYH8grXxS+5tAZNwn0tHh5f4FODL/GX0ktcmiwyl96PmXAQpgnyzbPjhW0jkh4qm6Q5bOIPCA5MLPOLhe/hCU1aXt/Ux1oTaEVdaVqRjYhBxNw1Mfq7Rhhh1SSVSpKlTo6WhvVqipmTK6jl1XtOjUcnHJojgvZIzHtLF/hxr8pKHDAbpTjbHKR4MiZ9bPUHqhRsN9tmvAqzGxqAZUI+i/YcNu/PUb5P0MnHTM4sMpys8fHiMe6zl8nKGMlrQwTOhDFzUY5nGnv56uJ+NusenE3iVASjszGp2Rqy2toRpTElkpyM+ZnRo5zJDfPs0BSX9hQhMjBaXb1BMeJTzDV4LLvBe/LnyRktDthLuCLmcpTheMflWPs+vrM2w0I1i34+i7eiyVwOcOYqiHqTKPzRNmxeg6BnM0il6yIHSsTDefyJDj82fpEHvStAV/op0BEtHfLZ+j6ONSfwL2SQlZWuesKP+AZFJ2z8vCTMaJKy95/91yMjWAjyzNlFRo1F0oCFAQKGjA6Pe+cJtYkrQiwRsxxn+C+1IuUoxbH6GLWOy8W1IkHdwb1sM3IixtkM0NVabySsbjMiVCxX0xzNT7HLKjNjXfcUK7oxfEprei3iJJwosfBBk3iww8f2nubd6fM86CwAkn3JVV541/24U4PY9QGMtyh77RckrSFBmNYkZqoMphv8zPBRchKsLZnJuurwQlBgOcrypY37ObE6THAmy9SZFuZ6o1sE4x5HK9EtkNPrmtBvA+l5iGSSYCJH+6DP7tF1Dm+tLc/6Y/zG0hO8enmUmZUANquoHj2t3VbjVWTSaNcmmCwQ5ExWntB85qlvMuOs8CFvnqy0tzytbwwYj7XmZDDCs409fPH8IbxvpyiuK/LPzhMvrqDjbgnZnbKMG0KQFTZ/LXOZOD3LfOk7zM7kaGmH5TCLFJp3Jy4ybXYN3evxjoJQC170C3y/voeXN8ZYuFjCXTbZ/UfrxKfOAfSVBba4qvmpX+866jFE0iMaK9AaSTA6vsbPFF5gwqwCDhExgY4oK/jc0sOcvThC/gKwWUU3mj/y3vU4YdHJCaJ0jLsjjVfNqp9m0c0TOItAd34wMHENkwEj5rqvU3CinuKPVw6zVMtQu5DDrklKx2NSsw2MzXXU4jI6Vt2krP48gAhjWpUUpyrDPJlOo1i/pgsOXQM27jXLFWiNujzynjO8O3eRj6dOMGnasNXug+4i+nCdzboDgUREbz65JUZrfHTyLFPuBj+dPnaD5u31tbauNN+u7+dsY5CjL+0h/6qkOB9hvHKeuIez7m8XMQKtBVwNhblHnh3hJaCQpTls8dS+E/xE4RiH7BVibfFiczfHT+zCmzOxFheIejg/5q4Zr8I0wTCQE6OEw1k6SRO/aBK54toOMDdZZp+7xLBZxdlKTLlKVfmsxJINleBoe4rVToavL+1jdTWLfcUmtRjjbIboZqunB5qOY6x6jONJNmoe50NBVgYMGfY1g9QQgrTQDBoNOrRwRdczkJMRlnAIdUxLxbS05mSnyGqU5j9ceS+Xr5QwKibpRYlb1oj6TZIx+pA2fMKMotPsJrz1JEKgTImyBJ4VUjSaJGXX8A51TEUpluMUF5YHSJ2zSC1F6KBzT3kI3ilGO8SuaPyCxFc2khYKjUT2fH4egLsR8syJGY6VRjk2Ns6Mt0rebJIzmigtaSoHX1ucaQ2zHqQ4vjpCcz6N2ZRk5gVmU5NYCZDV1tZ8GG1lBffnAgDRCbFWLS4kSlweKkFy/Vr4zY1rTi8i0Vgi5vW1ngbMGgeHlilnk/iRSRi/+X3syW9wyFtk2KqSlt1wvJbuEGjFRiy4HOU56e/nc+cP468nyFw0SC1GOOv+W8bT3gtYIsYTmoQXEI+VME2z58vD3ipqYpiNhzLUZmCvt8qgUWc2zHEuNPjuyjSpiybJZQU96nG9yt1ZuaWBTCURrsvKB4fZfL9PMt3koaEFBuwGj6YuMWFtUJA+wwZYQuK8LhnrTJjgi7XDvFwZ5+wzU7hrgsKZkAOXqoiWjy5X0HFM3PZ7epLWnRB3dgNrM8n64Qy/u/9R9iWW+ankJdI33HPBcMhKjSImtioora/1SUvHLEYmpzvD/KtLH2RlI0vxyy6Hvr3QPeIIOhBFxPWdl6xyNxi3yxgTLZqGh0r1ZsKWME2ipEknKdjjVZmxYqwtr4ivY86FeV5qT5F+OsHIZ89D2yduNHp67N8t5EaN/DkXZbtUYg9DdI/LX1/PvlexX77AwbVholyCFx4+zHdLEAzEmMU2KjaIGyayZVA6KkjPBYw1OsjKareGfbMNKka3fVQYdb3wvZAp30tU6wy8NEBzyeOZ8Wn+x/zp7W7RD81hu80/m/wcIYJYv/UOzRWKpBRYCDzZnVfW45i1OMHXG4f4w7kHWVvOsutzkuTZDUS9iWo0IQxR94AB91akDZ8hI8GB0ioXj+wjuZwk+f2QuIelsm4JIVh5IssDP/cq96WW+HTmJRwB/3TtAzy3Okn1u0Ps/p0r6EaTqFrb7ta+KXfGeJUGwjK7oQGeh7AtdC5NnLBoDQumRjYYS1Z4KneWYavCYXudISMBvE5QHEVVdWgqzYlgH0c3J7i4VsRbFCRXFIm5OvryQjfDdac8ULq7o5GGxK5mebkyTkvZHHIWGJABBcPAFeYNXqJu4L0SW30Ra+biFKeDUU62RllaySHXbJKLHaLZK9t6azsFS0TYdkRo695O2BICLcGRMRbGNc+8Anxt0VI2VkPv/An1NqM7Hcx6B7PlUFcugQ6vedSE0GhTgmn2rEyaajSRc0tY1TSpoXFkRyJCgyD0EKHAbQrMFmSutLEvrKLb7a5hoXS3pn2fNyeKsGsxkSvYDDx8HWEgXiOZ1YsYHc1SK8M5d4j7nAUcUSMpJJ60cIXJqPnWy/nVOvVgoHQ3PGIt7taxP9EZ5HJngKPVCdaWs9jLFomFGnp+CdXp3PseVymJbbCcCE92kAhMoYgtgbIEokfzI94uyoZdiU1GrE3SW3Pgsp9hfTNNqgJqbR3l97bXFe6E8SoE5tgIcSlLYyrF+oMGYUrDqI+X9Hnf6Ev8dOEoadlm2GjhCMjJ1zbjql5rRSn+z7UP8v3VSdbOlBj8PgzXYrzZDUSzja5UtzytO+eoVMcxarMCjSZj30qzvjjJlZEpvvjwIUbyNX55+kt8JPFGj2lddfgX60/w9No0l+dLpE7bWDXN1MUQq9bCvLzKPT613BYMId9w5Nbn3kJVqsgoIlWc5vuV3RxJzDJtNhgyEqSdAH8wh6s1slbvyQxiHceoVgsRRWRelKRdB52wiT0LoTQijLv/rZRR9QY67F15ql5E+wHuUgMZelxeLfCNqQFGzU3ut3Sv7mcASF6osPS5Mf6sOMbXH9nLoYEVPlF6hU+nlm/p87HWXIxgOcrgawtfW6yEOb6zOcNaO8XlM8N4cwbuumbPxQCz0UDOLhL7wY5aY98pKu2S3rfJp6aOcThxmbbusNJOk1qOSSz73RPNnY7WpBYVv3XsUXYNl3lo3zw5GfHK4hj2qx7p+WjHhJ7dEc+rTiUIBhPUJwzMhyrsytT4ieFXOeAsMW2V2W26W+9M3PTzoY5pakVZ2by4PsHqhSKFVwX5r19AN5pdg3WnHoVp3d3V+D7mqSsMLGVo7ymxkExyedDh4tgQsVsjJr7maYu1pqU1L5Z3cXl2gPQZi5Hv1DGqbfTleZTv9w3XN0ML1C0cpfUiQrNj275d6CAgDgLszTFW2mlmOyWKss2AoXCMiGrKwKrbyF6Nd94q06qjCHX5umbv1VGg6blE+B2FjiKMehvLMojrHueCISSKvWa3MpghRDcCVtNbYThrmwy8nMAfcFgoZHklNJlJrhEmF27JaxwSsxanmA0HaCmbauQx7+c5tjhKUHEpHJMUX21irjeIz8/uqITn24GyDfYWl/hg+iTDRhNfQyu0SNQijFpwz3ie7WqEOe8wb+SpzLhYtPArLqVljVMJd8xG5Q54XiXBSIbKXpv6tOITu86yx13jcOIyA7JFbuuUtqEC5mJJRbk819rDQpAHugv1lWaB41dGUXWLzDmToWVF+kq7m0nd2Tmd+1bodhukwJ2zGHqxQJA2+ddrH+efl944ZYhIkLpkMLiqSS4FmCuVbhWue+SBulMIv0NiWbLsFjg7PEycWSTuZZmBLXTQwdnwiZ0ExzdG+Goxxx5rg33WvV2q8XZiNALOnRrh/2p/iL85811mrMs8lJvndx/fRWIlwWgwhmnbqFod9SOQPd1nizhGV2sYYcTQd1P8+9UfI3YhSsVXk/cRsWD4aYFcr6JbvaGPrVstrKUKRiPBoJfDP5/mNzee4NjBMfanV/hvC09TkDFp2S0ucKqjeNGfZCXM8mp9lHLgcXZ+CFG2kYHA8AVGAMl1TbYNmUvtbuW1RuueWWPfDjKIOLM+yJeSD3Igscguq0y1mSAVKkQco9W90SeJK1WGni/QvuDymeW/hbI0gy9IsudbmKs14h4Y67fCbTdehRQ0RyyqB2JGZtb4O6VvMr4lwyFviGmtKMVRf4rLQYnfu/AwzdVk9wUFiSWTvX9axVhZ7VaCabfRSqN2qrf1B3DVA0t5k8S5S3hSkDeMHxhbo2MFWqGVJurrNd4S2g9IzymEsjh3cAAGt7tFt4ZutzFWKyQEzC1l+cLAYT6cO8mM1Zt143sRUW1QPFqktVTiu6UZ/lrmMh9In+LKEwWOrY5QXciSUxoD+sbrjxA6irolssub5H57mZzR9Vq+ft7VUUTUQ84B1WyiZlsgJLkLLsK2yT45w4XL0xzfM84j75vlkLOEJWIsYfCiP8lvzD/OSjVNfCaNXRVMHgtJXFxDNNuojfK1NQX4kV9XpB9RW87yLXeGtXyafcll2jUX0Qnh7VSj63Hi0+dJnjNIAqUte+OqIkm8g37/O3Ju5m7GJBYslhjg7yc/Rd5uv+E9m50ElyoFmm2H+FIKryIQqntM6q5pjM0mutH40fAuXq0lruhqym13e+4lwg7uRoyWgpfOTPFL7nt4ZX2M9vks3oZANoOePBrTWqP9AKPuk5hN8xX7IC8Vx/lycYl2bHGlnme9lmRooxdb3xvoICBRjtGmwYVqiTNhjK8t9iZXqeVdLo7nkVGKrB/BylpfwP9Hja3wDLbWlx3xy19dK4IA4hhnIyC5aKKlzT8f+QiDyQY5u40jI46ujFOdz2LWJak5sBsKZ8NH1JvoZmtHJOXcTUTLx7tcZCkYZCmf45nUFO6sjVmrI/wOaod4JN+Sq+MedrS9cduNVx1FeE+fZepYCu3aNFODNIw3ehJFrBkKY1A+wq91dzbQ7dhOSFzbqr19j3lb+9xd4loD75mzeJZN8Zk0lzPT5IOYYnMRwgi1vrHdTbwpOghQG2VEtcbu/9xGey7aMllwJkFBOo7JRAEsXulJ47sXUPUG6aOLJPMpzh4c5F/lP8x9qQV+Nvc8TyTP8b9+0GNpJYeWOfJXkuhOp7+g99kR6KgrgyaPX6B0wWPAdVB/lCI2cqzLAkgY8SNGgq6EGltOIN1qE3c6Xd3fPq8hnl9i6tcjsK2u/rchEfUr3ez7rf7u0zvcEc/rjTWwfxD9R6fPXUHF3fEIsLYGdMfeToheupa0Mzf/xte2oT07DR1G6GoNqTVOucDJzSGSZgApyBkt9uXWUFrQSQ+CbXW9WkHQ97722Rlo3Q13uRryMvfal/um1ttDhx2i+YXtbkafW6RH02379OnT54dExai2j4hjxr45QP3SIF88MMTxJ0YZS1Z4PHuJp3Jn+JVdP8PQUAlZa6KaLdD9Zb9Pnz59epkeVmjv06dPnx8OHXZQzSbmS+cofPkcQy/EXDw/zCsrY+y1l/l48hKdQkyUcdEJB9HLQp99+vTp0wfoe1779OnzI4DudEX8vStNis9n6GTz/M3FX4BETOl5A2ulim62+rGAffr06bMD6Buvffr0uefRYadbOvWV05ROmgjDgC2ZGBUERJ2t6jn9eNc+ffr06Xn6xmufPn1+dFAxOoj7CW99+vTps4MR+m14Gkqlku5s7IQ87TuPXZT0+6KLTxOX5HY3Y9vZ98g0x1483u8LoM6mtrBFvy/6fXEj/b64Tn8NuU6/L67T74vr1NnUWuub5ma9Lc/r1NQU+fLu29OqHc7m1KV+X2zxnP4aj4sPb3cztp2vvPB7ZESh3xfAV/Vnj7okH+n3Rb8vbqTfF9fpryHX6ffFdfp9cZ2v6s8e/UGv9dUG+vTp06dPnz59+uwY+jGvffrc4wjHQaaSiEya6pFhgqxEbylCpRci3G+fQLVa29vIPn369OnT5xbpG699+tzjyFQSPTJIYyZD5zNlfnriGIZQWCLmXz33IQ4dz/WN1z59+vTps2PoG699+tyLCIFRLCBSSeKBLI1dHvVxg8OFFY54s9SUS0s5CKufGNCnT58+N0UIhG0jTBNZKqBtC52w0Y6FrLXRiyvoTgfd6fRl9u4yfeO1T597EGHbVD84w8YDkmA05JH9F3iXV+G/yT/HuNnmc/X7+M7mDGLdhrhfDrVPnz59Xo9MpZClAuFwjssfSuKPxOQnNzkyeJGvHj/IzH9KYa3U0IsrqGZzu5v7I0XvGq9iKyhPyG7JRiERRje/TGsNVyvh6OueI600qP5C3OdHGCEQpoX0PJrDBuF0m4NjK/zt0W8wbDQYNTRSGFTjBAuNLGZboOO+97VPnz59rrFlfwjXJc6lCEoO7amQsYkN/tLEi/xs5iQLrSytzBhmze4WPelzV+lJ41U4DkapiE44dCby+AWL5pBBc5dGROBsCowA7KrGal1feK2mwnv5CvH6BjqO+278Pj8yCMdBeh6MDLD0oRLtQU3y4XV+fterzLgrTJtVAE6GHmtxhv90/AnS30swfCVC9+Nd+/Tp06eLEJijI+hcmvLDeVY+EOFk2jw6usiwW+NYY5zna5OcOjPOvrKPrLVQUbTdrf6RozeNV9tGlbJEGZeN+1yaoxpzX43/6dA3qMYeX1o+RLnpsbqcxipf3/E4mwYTV7KwWel6ZnXfC9vnRwNh24hUktauLOojm3xs4hyfyh3lPW4IgMKhHAec6wxztj2MezzB6B9fRrfbxH3jtU+fPn26CIkqZmiPpVl/CP7jB/8DA0aT2SjPRpTi1xee4PzlIZKzJka5iW620WHfeL3b9JTxagwMwGCBzmCStcMunQz4uzqkii0eHp5nr7NMUzmUS0nKmSTnkyXWh65XammsJWnvyuK1h9GbFeJKdRvvpg8A0kAYBsZgCZ1Ndb3hSoMhiVMO2jLQUqANQZQw8Ivdf9t1hREoZKSRoeLN6nkKrREdhYwUcrMB9Sa0feJ6/Z73vkvPQzgOenKEzf0Z6rsk9w2s8IA3z4DRBGxOhSFfbx5gqZPjeyvTbNSTpJc1ut1G+8F238JtQZgm4tAMwXCKyJMEaQO7oci8sIAqb6KDAN33jvzIIF0XOTqMdm2iXII4YRI7ksiTKEMQOwJ1w0mvGXRP8cxGTOLVeeKNze7pXT8M7bUIgTAMZCpJeHgav2ijTIEywS3HeC9fQTVb3bllhz1vwrK761Qywdojeap7gdE232gcxFcWX53fR7XuIeYSpFcEqQWFaLbRQfCa8MU+d4eeMl6jmVFW35WkMan4uY9+k8eTFxg1q+RkhCcEaWkDPk8lnkFpjT+iCG/4/J80DvL/u/AJSsYg3lkD+sbr9iIEMuEiXIfW/aNUZmyE0sgIYkvQGtOEKY22FZiazECDv73v23gy4A9WHuFKNUej5RA2bK4Jk96MWGDUDYwAcmdSZGZ9rPUG4lxrx02gbwtpIAeKqGySlSey+B+uM1Us83dGvsohy8cR3cf787XD/NrTT2FWDFJXBNmaIn+8QrxZ7U6694CBL1NJ5n6sgH+kxd6RVT4z8gJ/sHKEyj/fRfqYgd7YJK7VtruZfe4Sslig/Pgwfl5Sm1EwGJDL1rmvtMyA3eDx9AVy8vqJwyv+Lr6xtp+zi0NM/vtxnFdCdLOF8vvG640Iw0AkEjA2zPm/bPLIoQsMu3Um3DL/5exjjPzrMey5TVhZR9fr293ct4XMpGjdP0pr0CL61Cb/7oHf5gvVh/idM0forHhMfkExdLGMaK6iW13jPGq27pk5dKfRU8ar0BqhQEuYcVc4ZG9QkjaeTL3mfY6wbvr5A84i/qCiPmZib6YxltMQhijfvxvN7/M6hGkhC3l0KkFz2KI51v19ZSRQlqYzEmInO9h2hG1GHCyu8j7vPJ6IWSrkydgjrLbTbKTevA56JzJopFw6gUGjaYNwSaRNPDWF6ITQ9tGxQvs+2g/uKY+Ktky0YxGmBFPFMgczywwYbVLSvfaeapzArBnYVYG3rrCrEbLeRt0jfYAQYBiEGc34wCZH8nO8L3GR89khvpLZTTLjIeqN7W5lnzuJ6Cb1GpkUIp0mHC/SGJN08hox7DNcqDGaqrLHW6dk1dljrVGQHZJS4AmDpDxHo+DSjiwaY6NY1RGMhXXU8o/Q2rHlVUVIkK9zFigNWiESCWQmTZhL4JVaPJ6/xJBZZdCsk08+gDLcm1+7l9lKchWpJM0Ri9awYCpbZUC2aMcWnVUPd9nAXaqhF5ZR/VOcnqCnjFfz8ipDkUJGac5/eIgHnAWy8tYX2AfsGp/56Dd49d2jvPj1A4wn9mGvtxAnL6DDzh1seZ+bIQs5Vj86QXNU4Dxa5u/MPANAqA0sETNg1vBkgC1iJIqi0WTSFEhsPp15iY+kTuBrk6Zy3vR7FJKmcgi1wcVHB1kN01xslDi3OoBfz+Gds3Eqmty5DokL6+hWm3htY8cbsEIKtOsQZmzaw4q/Nf5NpqwyQ8Zrqz7XIxe7IkisazJnqojlDdS9YswJgXQchOcRDEf8+dGX2e8sMmSY7HOX+OyMAJGjGClY39ju1va5EwiBkU6D41B7apqlJwW61OHP3fd9ptx1PNnBFhGXgxLnmoOcY5BTzVESRocPZ05y2N5gwoz4b7LP81jyAv/yv/0Isxt58p/bTea/rmz33d01jGwGkUyCbaGSidcUjxftDqITEpcyVKZTNEYNntp1lD+ffoW5KMOVsEDddxiudaDe7Oqe7hCMbAZKBRoHBtCf3uDHR84jheY/lN/Dn7x8mD2fDbHWq4j5JeK23w8R6BF6ynhVtTqG1iSmkmxGHi1lEepb3/nmpctfzb3IWvo4f2FimtaghYxcTEOiw7f+/I88W94L8fpdN1syZPC2DD7hOjRHBO3dHT616yS/lLv0Fp+4PhynzBuH5vW4THWT4FeJANrd11PrAJwKQ74zsJdTzVG+wAN0Vi3smoWzmkAq1TX8dvocJCTaMYhdSZxUHHFWGTISACi6NxdrTSOyMQKwmhq5USNaWd3OVt9ehATDANNAehH7nUUmzCqOcMgZLcKswi9IlGdvd0t7B3GTEBwht/7nB4fn9KyCi5DgOIhkgsaowcihZQ7mV/il0rcYNyzm45CKsilHKdb9JKEyWCKDY0TscVeZtsqkhWbGchg2yoS7vsmZwRF+65mPkpHGvXUsvDXHv+HPW+EAOuWhEzZR1kFfHQsazIaJbHUIcy6tQQN/QHPQW2LK9NhQAS3lEEYGshNDEFyXstwJOA4q7dEuGfzUxKv8fO77/Gb1XTxb3o29bGEfP0Nc3rx3xsCt8nq50pugtzzy3X/c3f7pKeNVd0JUvUFiOeCPXnmIo2MT/NLUN/mp5BKWMHCERahjluI2oYaSYZCViWuflwiy0gA6lAZqVKcHAIecZUE/dOA6QnR3m5aNMA0wDHQ2RXN3ljApqU1JOtnrA9HwBd6KxmpqCt9fIz574Za+Rjs27V0h9+1Z4EFv7ge+r6071FVEWRmcCwfw1c3DQgBiJPOdAuUoScmqM2GVsURMWrb//+z9d5hl13mfib5r7bxPDpVj54RGI4MgQYIESVGiaNKSJVnSONtXlnXnzlzbc+254zS25Ttj3bGvPbLlsWzLGkm+kiUqMYqiACYQJIjQABqdU3VXDufUyefstNb8caoT0AABEOiuatb7PHgesmufqr33WeFbX/h9uDJip9liyPAYNhIe9C4wba9iHkm43C5wItyNt5bGMQxY2LoeFWHZyGIesmnmHsvRPBBx//4LpK7blHo65p8sv48n5/bSOllg8sUAq9pDN7ZWHtp3RSt0GEEvQDUtjnanwZtht9XDFgnKVf0iHat/xPm+RxrIu/bQHc+AAC0FyhSEGUliQ2dIEJSvneqEArMlMQIY+k6A9cQLm24TN9Ip1j6+m8Yu0PtafGL4LAD/auXD1EKPZy5OI5YdrIbEXeNa8aeEfzk+xT8vxuzbvcC/3fVfyUjBTmuNjOzyf+yPyH7qAbylHvKFU/3CnC3I9dKTnb1lOgMmyobYE9dKCQQEBYjTisRTyGyEEP0XpRVYF7KkL2uCgqA9mSBLIaPWOgC1xOdiMEDQs9AiRJibyqx4fTaKicMD48w/5tIbjukomyc7u/mVF99L+iWXoXMxutvbdGP+3UKYZl92MZMm2jVClLGo7bLoDGu0BYmtubKQCgWZi5LMbIy33EMcPX1L58imGmU6CtFRiD2/Tv75MZbnh/l6cR+P+3P49HNdAx0xE6fpKAdLVMhdd4g0hCQnPFwRcai0xFen81gdi8JWmUy3CGEYiFwW7bso20RbBp1xn+UHDcJSwqcefI4fL3zn6vUv9qb41QuPsLKWwVstYJ95c39HezYD4zV+auQ7HHHmgZvnQzVVzHJicT4a4I9rh2jHr58mECqDs5UBmi2PXLbNnuIaKSNkyGmQNgJSmWOMGIKS9CjZAB1+wHuGlgp4eP5v0D3jYYQO1hb2xgvbgnKBcDBF76EWP3/v59ljL+HLa0Z/RyX8wckjFJ90mZwJsZ8+jur12NqJEjdB6/66EYaYTYPjrRHKZhPlzWKJGOHFxL6Bsg22ZcRBWCaNfTkqhyVagjZA2RqGe/ipHn9593f4G/njV69vqpivdSe4EAzyX/SHGX9SbjoJQpFJs/q+mJ948Fn2ukvc417m6c4efuv4A+hVh/EnFOmjs31ZuPVrRbzCMJBTYyTlDBc/McnsVJbdVoOdJkwYTQ7snedMc5L8aZ/Bky7JFjVepeOQDBaICi5L7zGJd3fJpHqM5+rIDQPVFAlHcvPscxeZsCrcZQdYGzOmoyN+ZupP8+JLO9HpmKGhOsOpJhNWBTCoKZ/ZTgHVM0D2DaDX5MxuQoRlIkyT2i6HPY9foOS0CZTJU/U95J5xGfn0ub5qTbd7u2/1liFsG5lJowYLrB326A0Ihj4wzz+e/jLDZp19VoyxYb32dMJPnflJZp4dJ3c2xeCpWztHNqdV1+2RXkiQseRsY4DZssWAEZKWkKDpKYu2ckhe5zCUaM1Ms4izYOGu6e/79pdGNotI+eiUh8qnSDyL9WmXKA2JLVAWhAUNu9sMZ9sc9BcYMK5N2AmrwlimThAbJG7mTf9d0QlYOz/AL4oPsTNXYU96hU5i04hdlL526lgPPeqhR6Xts76Sgfi1Ya2rKLDqBnZH0Ey5PJPLg6GRXozlxLAfJgov4AhJWvSNYInAEpJMuktnMIXVsbC2cEcU4bn0xjJ0Bk1KuToTVoVIGxwNNCtJhicbB7ncLmCf9UgtRtjVrSdb85aJYpyq4IXFCYp2hygzgyUSLDcm9vtyPlv3G3+LbERWhOuCY6NdB0yDOOsS+ybVAwbx7g5SaKShcKyEsVydotNhj7N8Q0FsIvVVD1tnR0Tvh+/HXe0hXzxz2wthheMg8zmSwQJ2LuCAtwDAi71JnqnvwLjo4i0LnLVuX7qp27sh7UlrhWh1MAwDt5Lms7V7OJya4yP+BfLSZGe6wtnRQboVv5+aslWxLcKSS69sEQzFHBhZoey2GHdrV41XQyh2OCsMm3V62uKZnoMrIyaMFpaAPZlVLk0XyLoBu7NrDDkN8jIEPM71hnlldRhzzUJ2G+gg3PRpA8I0kVPjxOU07XHBnvQKgbJ4cnYPrZrP6HLSL/QNwzvf63pdzrgaH6SxI023KKkdVIhiyJHiPMNmnZIMcIWDvC4Z+u78PHO78tRJk31oD3alizw/d0tkSjel8RqvrJF5oku2XOTEA8M8PbyHw+4sY0ZMpBXVJE0t8enYN19QIhJmLgyy+0+6WJU2qvt9nDIgBHpylM5UhtaISe2AJsnHPH7oGA9mL1I0W5SMFq6IyMsASyiKEvzrNjDDXuEHB17hqDfJS+kjeG/w565HL62y+7cyhPkC5wYGOF44gNXWeGsKGV1bEGSkMELFQDdmZGXtjQ8bSoNS/Ws2ch2REpXySLIO/+nn3ssD77nAmNlgr6W5EiyWSO4ZWODJu7IgbDKuA1u1F3Uxz8q9Nt0RxZ8dPssRu8tXugP83tp9HF0ax/vDHJnLITtml9BLq+gwvOONVx2GlI7H1IIcX9b7+EeDXycrAkaLdS5HBnHa4vWTUe4shGGgp8foDvkEBZPOoCRK9Y1PKxPyqX0v8JOFZzDQSKEx0LgiQQJ5KYFrkQ9XmBy2OuwxW/z993+Wr9y1n2++vJeD/8sA6tLrpwLdCmQ+R+/wBK0xmwcnTvKJ1EU+3dzL7yzcz4Vzw+z7wxby4kK/QLN3Ey1OrYlX1hCVdYon8vz+tx/kSyMHmDjyW3zADfmJ0jPs9pf5172P9A8CWxSRTlHbbdMdFnzwyHH+4cgXMQSvmQ9XVt0vtXfz/59/CMeI+YmR59hjL/FT+Wf4S4WnsYXCEWALQU7axCR8ZXUvyTMFSrMKViok9camL4YVjsPq+wZZPwhDh5f488Vv8en6A9ifz7PrZBd7Zol4i0l9vV2EYcDECOFgiqWHXHIfWmJvZp2fHHyGaatKUcbkpYnkxroBSxj8zYGv8xdLT/P7e+/j18YeRi5m2fWb43D0+9R4RSUkjQaGZSKbw5zsjJAz2rScWXpaI4XCEgnyDZTrRSQxGz1E5/urOlA4DjKd6ufzmAaYJp3xDM0xk+6QQIx0Gcq3eCx/ivd5M+SkICddIp1QVwkRUFWCVR3T0SZN5bKSDHC2O8R8J4/xFkLtOgyxFmuYdRejl8Zum1jNBHepjYiuW9yiGBFG6F5A/DZUAIRpIktFzCSHCnMoJMkbZThu0YO0TKWQ2QzhUJagpKEUULb6qgFLUY5T1SFay2kGL4e4F1ZRlXXU98kCrLXGasU4VYNW1yZBYwlFyW2zlkoROw7cKcU30kBIgcxlEbYNUvb/u4Jl0h5L0R40CfOC7qAmTiuKI3WG0i0O+7NMmRGWkLjiyhZwbSu4Uux3BUeYWEJxyJknKUieLUxuCk+kME0SzyBxwTMiXGFQjdMsNzKYdQNjrUH83RQmVIJWCVYzwq5YtF2PpvKQRJRkl2l7DdON++9XiC01doTjID2XpJQhKAqCUsIuf5Vx0yPQEU0VkwAKSDQsJD6VJM3zrWkuLZcwzITvpHdS833e659lrykwhLjB8xboiGrHw61qnLra8LpubsMV+gZbmBOooR4jqQZSaLqJhVtV2PPr/dqALfRdv22EQJgmUdGnPWzTG1R8ZOAyu9xV7nFWKEublhZUVUxPCzrKRIqEjIhxBWSkwYBhcMS/zPDAfhYiA+WZt6S+YHMarxvoXkDpZcGX43t5au8O1P4nGDAbHLKX8EXCgPH6t6+lRtsm2rz9i+wt5fAeZh/PEqUgLCZoVzE8XuWR8hwlu8Ved4m80eawvUZRmkRasa56vBjk+dXlj1HppbhUKRB2bKx5m/QlMEKwOhojUORfWuDN+vB0GKJW1hCWiVtxcR0b4gTdbt8QVtJao5PkbeuvykyG3pFJOoMmY6MrHLEr+NK46nUNdExdhTw9u4PStyzSc1E/hLjFaH/kEHMfFZilHp/c+wwTbpUJq8rRIMWvXHwv8WfLjK0p3PMrqNXKlpKr+Z5JEuyFBrkozdr9DgoYNTQ/M/I1ThTH+E8TH6cwWO574bZw5zVh2ch8DgpZ5j4xRGtngvYT7NS171pKzXB+hSm3TclpM+Gu48uQnc4KrohoKJc/bO1il73CA04HS7zxGmkIAVriy4i80caykmuV6LcT0S820wJm23me7mX4wsIh1NEc+XmN7rz5XEVzpUH5ZZd6y2b2PSXwG1hCkZFdLDtG+y7S9/tRvC1gnAFw916W70vTGofDHzzDPbk5PpF5CTB5qpfjN1YeoRNbrAc+7dCmeqJMZkbg1BVTixGJY/Ktnffx1Rx88fHL/Ktdv01GKgaMvmd+NQmoKpPqbJ79z9SR9Xbfw72ZuaLpmvJp7kr4ycPPAfBb6w/xlfk9lJcC1Mrali3OeysI00SmU4hCnrkPedj3rfPY8Cw/WXgGX0Y0lUE10fxh40Ger00ys16gNZtF24q9uxeZzlT4ZPEoH/GaTJhVHhs6x1NiF1GmhGPZ77qe+uY2XuOY9EKEsiyqqSzHJ8fY5Vo86FQYNNJv/GEJypRI+Qb5k3cgvUGP9qEemVyXh4bmGXdr/GDuZd7n9L0p16Sm+sH/nu5RU3AhHOSlpVE6dQ9n1iZdh9KJCO/p030jNAj6Yba3cjNao66G5t+9MIJwHToDJu1hyeHMOoOGf/VnCk2gYzoaelWXkYshzmpn6/WiFoLmhMmHH3yJvaklPpE+Rl4qTkQ55uMCqytZ9rzcway0Ucurtz0f8VajkwTRaGEBRscj0ZqC4fJet8mYeZJ/l/sh8L2+0bqFvdHCMhEpj7iYonkg4vHDJ9nlr3LEv4SxMbclikGjRU5GpGQ/vHuFSCd8oeNyqjuCJWKO2K0bPGnGzWS0Nv7dQuGKCCk3USRr43abocOFcJDlapbcgsZf2ZBserM02/jzPcK0Tz3pr40WGldEGIZCOybCthFBsGUCeb0Bl/oejRzv8DMjX+Mep0Z6Ix3sfDjIi0tjBD2LuGUhepLRZxS5b8/1C9uq69i+j7s4TTjgcf7gAPUdDoboryuJ1tSVwWqSwqobiJl5km5vS+ipC0OCYyNLAT+Ye5nnOjv5emUPtfUUQ83OdXvWHY6QCM9DZTx60yF/fc+3OOjMc5cdEWnFhdhkNcnwfG2SE3MjiDmXgeMQ+ZIz9hDrgx53p+fAa5KXIfu9BWbSJebtgf471updnSub2nglSXAv1TA6aYzA4w+b7yEaCkkelrzPO8e4GVM2Xtt9ycJgaLLK4vsHyV50yS6ubLlWdW8KIZCeh7At4kM7aI27rB0RfGjfSUbcOiN2jZQMqCU+3ww6vNSd4osrh2gELrWORxQZxJGBiiRy3SJ7TpLqaNz1GLOd4M43+kbrZtN3vNJNZ99OGgeLdAYk6w9FFMpNPlw8ecOl56KA/+f5n+DCcpni8ybu7Cqi1SHeIkV8wjQxJsdJcilaE5r3504zZq2T3zAgvt7az7PVKcxlGxkG3/fFidfTL9Qz8EVAOJDQOjiIt9hGVKpbLgfYGBiAcp7eRI7lB2yCouLhg2d4vHCSAaPBmHmt9a1Ek5EKWwicDfm0l0L4H878BEvVLHHFxWxIfjfzEP+kFGCaCY4d41gxn5w4xp/JvkBGKorSvsGYXUgyvNydpN10EUnnNfd4q9HtDqlLLeyay+qXh/kXg58kewGKp7oY9X43vTeN0shYIRJINopJ+/m/HaYK61QOTZEueFjHL5NskWYX2ugX4zpWQkoGOEKypkJ6WvD55cPwnRypDth1jRloMuca6FYLDANjcACKOVYfyNIZEuwdnWHI6OKKvgzfcqL431c+wvHqCOnL/SjpVlh7jFKR4O5pOsMWo6Vl8rLHC41Jjj2/g9SCRDbW2CJnk+8ZY2yYpY+N0RkSHNl1nnvcy7S1zefaIxztTPHbRx/AqFh4K4J8VePWFam5LolnoiyXZmmAL6cP8qn0SUItmbSqTPsVzhX3kx4ZQtcaJOvr79r9b2rjVccxyZnzyLOS0skcpW/lad41wO9N3IsakTyeOkX5JhEvSxh8YvwVPvPYYSrpMrmvulva2/J6CMNApFKItM/Swz7t+7o8uOMSPz/6R/jSYCHWdLTJsWCc5zs7+NzlQ0RfLWPXNANzEVYzQoYRIkoQ7R56Yblf3LMR0k82aX6gMAyEadLcX2T+hxIKgzX+9YHPco+zQlGacF1i+bFwhIUvTjJ5NMC9sEA8c3lTPtPrIWyb7s4SrTEbY0eLP5W6vCGJ5VBNAp5e28m5syPkFgSiFyOiGLWFnu/dwhACQ0gMJBkZkhluUj1YIG+lSR83t5zxqodKtPbmqBw0+KEf+TYPpi/yoDvLiNEf64Z446X86c4eOr8zzPTxDmajhmh30b5LnPPQtkmv6BP5gl//5EPcdd8co+Y6eZlwRWAs0ZrZqMQLtQl0vZ/+c7tJ6g3kqRDHMBh/yQRpoHs9VLuDeqtrl1aIKEEmGrXhzs1Kl6yE+wuX+a1D0/QKHiPz2S3TqU0boC2FY8VkZIgrTM4lBrNxkZMXR9n/RzVkrdVPMQoC1IaTwigVoVygO5Glcn/C0GSVTw69xKTpE+iYlo6YifL88fGDeOcchs9fi8xteop5lh526A4rfqR8ibyMOb46zPhXVF+Volq73Xd4y4hGC8Q/VOPDYxf4idIzPGCH/HHX5/dW7+P5mUn2/VIPjh272hoY+hEuy/cZXR4jKvoc2zXK8qSNKxKmzAZ7vSU+VxZEowUspeD71XhFCIxiAeH7qFyaqOzTLUkmvCZDVg1XvP4CWo89mh0XGYg7tmBLeB5qaoiw6NIZVUwPVyjaHV4Iy7SVw5fX72K5l2GxmaXRdknmfAYWFE4jwan0kM0eJAkiTtDdHqoXbNp8LmGa/QIVy0KX8iQpm8a0wdBohd35NcbMGjlpIJEoNJfjLs/2Jvhc5QhuRWPVerCVxKY3+owLxyHKmgR5ge+GyOsKJhIgiE1EKDACjegF8AYyNcKyMYYG0K59TanhClHc79t9h4bMDKEJDdBbMYtICOKSR2PCoDeUsNNbZcKqkJHiNWH+RGsiEo4GqX7LTuWxHqf44sJB/LUEs9ruG669HiJOMBOFSjvEow5BTpLyAvKyQ0rEyA3DtalCelrzzfoeXrw4gTdvQLQJRJK16h9CkgQ2DiM6it/eGhbHiG6I2dOshhlWkg4ZaeIJG1+GJK4m8cSmKFR7s5gdhV21qGd8ZuM8RbkG2ORlBy/bo7Ujg7tqY9WbqG6vnwtqSCgXae7L0x6SpIfq7C2sMGA26eqQ2VjxdHcXR1tT2PM2qQWNvR5snRpYyyTKaciH/XbiUZZmy6O8HmLWvw8kBa9HCAypMGWCgcIQgpU4y8VaCb1uI9utm+q26jhGxAkyVmjVNyETBBGCnrIQMf2C7OTdtbs2tfEqbJvw7mmaEw69oqA7pImGQ35i8Fkec1fw5c3F7BWK4/UR4gtpckv66sJ2pyHLRS59OEtnLOFDD73C3xr+Ml9o3cU/PPlJqitZhv/EJHO5R6kTMdDrInp1dLMFcdzvZnYlzHPlZLVJDVcAmcsSHZwizFus3m3SHYvZvW+W/3Xn71KUIUOGjSVsIp0Q6Ihfqz3Mrz/1KO6iweSxBnJmEdW+/aHON4swDGQmg8hnaUwYNHclPFBcuyoQfYV2aGF2JHZTo5fXUN3XX4BlPkf1AxN96aQ0xKlrW47VEEz9oQEn3mQHik1O8qpDipSq74mS3FiZvxUQkuo+F+PDFd5bXuZx/zSjpuDV4l+J1nR0xGoi+H+f+RGWzwzgVCX+osZdV2SemyNZXQPVL5AUsm+MyYlR6jtzdKciPjV2niN2C0tIDCHo6ZjTkcd8XOCJ5+5i12+FWNUKyXrt9ryL69G6Hyl61b+9HVSrjUgUXjHF0bUxnsxOcZ8zy14LCmYbVY7ohTba3TqCa+5cg4GjBWotj8/vv4dm9jSHnQV2O21+fM9Rfu2T78Ge89jZGELGMTLlg2Ozfm+ZpY+HDJYb/I+7v8z9zjwJgtlY8Fv1B/m1Zx/BWrGY+lIP69Qcut1GbxGnQJx1kTtb3DO8RDVM8eur78WYcbFOn0M3m30P8vcLWhPGJu3YIdImkPBia5LaKyWyCwLRevMFjz1t0FQ2y1EOq60x6v0D8rvJ5jJeN3IZhbVRBef7NIZs2qOCMK+JBiOK5Saj5jqF64pyXk2iNY3AxWoIrI5Cv8sngFuCEEjHAWvjdGzZJKUMUUaj0wl5q4MrEtaiDNXlLPaiRe5sE3nmMqrbI9kCifQ35YoH0vfpDNv0CpLeaEJ+rMF9xVkOWOCIG8dCgmYpyOIsG3irGtnsobu9rXWqFhKkQFsmsQ86nZCzejcU1yggSgxkIDBChe4FNzyjsOx+N64r/z+TojMg6Q5romyCSF+7Nk5bBCMZ3OpQP+za7mx5WalkI+JiIPoNfwTX+nVvEYTZLxQKs4JDpVX2p5fIS4Urbjy4RzqhoxNmY4uZqMzySo7UnMRb1WQuh1iNAFVv3FBFrRV9j2OiSHyNlQ0YtJo3dGpTWlNJ0ixEBayqxJ5ZRXc2UcHjOzQ+dZJAL0D2YnqhRTVOE2zoiNsiRloKbYLeQgcf0enhViPsumSpm2HBK3DQWcQXFjucVYaG6iwHRZK0g5Xy0YUsKu3SGZCMD61zoLDEIXuJSdPjXBRwKS5wujWEvWThLQuspTrJ6urtfsw3x4bKQOIY5NNtxv0aM+0StZ6H1RTodvvmRa4bnwM2CpD0ll8Xr6L7j6H0tTWxFdtYLYHZ3tBTh6vSfBhGv2jR91BZjyhtIU1FpA0aymUhLjDTLWH2dF/68vvJ82rksohigd6OEpd/wCYuRUxNLvG+/DJ5q8u4vc6QVWOnGfJaieVrKBQLK3nGj8d4S72tLRkkRL9lm+fSfc9emuMmnWFBdyqCSOAtClJnbP6w+hC/l7sfd9Zi4qUYp9ZDzq6guj10vAlCfG8To1xGj5RYP5Cn9VN1Dg4sc3dmnilnjT320uvK/NQjD7sBdkMjghCVJFdzebcEWvU94kIQFDUTYxX2pvrPKxEoNJGG5kqagQsab+lGEXZhmqgHD9CcvtZSoleQhI82OTi4wq70KtPutdy9euLxlQN7udwsYf7JLkb/YKYvK7UFBMfvVITjIPbsIC55tHbG/KnyS0xYfRm461lNAhYShz9pHuE/PPMBrDWTkaOazPk6shMiGu1+pOV12lxqQxKlNUO5NkWzdcPPakrx6bUHOL42TGoeVK3eX0/vtDGhNTqOkElCrCQ9bRKydQzVm6FrdZyLkPWHODY3Ri+x2OcucMBqs99e5BPjr/CEtY/qwVFSxSmWHzJIdnfZNXyJvzL+FMNmnSFDEemEf7f2GH907gBcSDH5RIBV7cLy2u1+xDeNOTxEMlqitsfhwyPnuD91kc8e/QlyL1sMng5f10YwymXU5GDfedQO+rnea+vvaiHSLeNV53iJpJdYGD0wAw1SIl0XWcij0z7heJ71PQ5RWtAZVSRpxaGxBc6EQ/zByr288vRu3FXB2Cs11Fr1rRVMvg02lfEqPI+kmKYxZfPgo6f4gdJxHnZnmDJNLGFcZ6i8VmHgehI01C1SFxt97bktUAX5ugjZ9754HvVpk/p+TX5Xhb+z56t8q7GLp37/XvxFjb8oQJik5wLc5y/05U62ShL9GyDSPsFAiuak5B8c/AKfSq0hkRsarjc3XJXW9GILs6OxumpTFJe8LbQCKUjSCbtya0xYVST9QiS0IkFgNA1SyzFmrYe63jg3DNpjLuv7N1YoLQgLCZ/YcYrHsqc57Cyyw7zWNUgi+PvlUwQ6Yv/qzzHyZKrvqGw279SU8U2PME3CwRSdIQun3OZB9zIZobFe1emmqSSzUYnvrE9TesYkMxvhn1ginp3jTY18KdGOIuf08OWNG05HG5xZH6S6kGO0qlGt1pZfU14XrUGBUuKG9tVbFdVqI3oBzmCOpOoz6+WpjKSBNqNml0dSZ1kv+nxxeAxlGvj3VPl7+7/IhFXhiM1GlMelo0NeWJvAOJEmd15hPXd2yzU/0ZkUvWGfblnwUOoCe+wV7CWToWeamKuN11WfESmP7kgKBNgNCxkkmJ3eu1qIdCsRgn6baNFf5GMlMUKQMSAFWBY6myYupmhMOqzfrSATsWd8hSG/wYjbYC3OcnJ5mJGnErylTl827RaMj01lvOqUR1ByCfKCab/CtLVGRqqr3qY3i4HAGe6wdn+ezFwKZ2Vta4WMr8Mo5gnunqZXtli/J2Hf3nnyTpcX25O8XBklPa/JXA4QST8GYFU76CDYss/7apJylvU9Np0RRV52rjNcb44hBA4mHy6f4hc/NEy17pDePYVTn8StKpz1GKsZYiyt9/Vrq7VNqU0ofR89OUJvJE1qqM0jufPstFcAg0BHLCcBM1EBoycwu/0OZbBR2FYo9FMEhgyCoQiZiinm25T8Ng9nLjBtreEKTUeHdFRCTUkMoRk1+gfEqelVZn94lNRiidJTBrreQLXad8yY2ioIz6W2x6Y5DfuHVskIjbuRixrphHORYCVJ85n1+/jq7G46sxmmZ0LcxRa69fqFd8KyEYZE5nOowQKtnVkKo3UeLs0wbfe9adUk4Gyc5lhvJ8sLebw5C6e2+ebJO8ZGyhqmxDAUjoyu6uaG2kTFAjMBofWWKU7SSdJ3fiQKEQrC0NzIbQRfCEaNJg9nzvPVh3fTbLv8yMRpdlmr5GQEONRVjye7o1wMBpmfKTM4o0ktRZujWO8tEg9kWN9r0R1WLMU5Im1gNwXGevtqMwvp+4jpcZKsS2OnT3tYEuYgGN5YW3sOMhQUTqQonB7oa2qfn9my66K2JAOZFntTS+RlD7A4mF3i6MEdtCYM2sMTyHCC3iCEOQXlHgcnlogSg5m1Ime7Q+iOgdGRpC9L/Nl1ZL2NCm/N+NhcxmvaozNk0Str7kld4ojdwpfOd+0A82osYfCeiRm++t59hMdtxp51oLN1inVuYKDI4vscumMxf+mRp/jvis/xO63d/Nql97B0uci+ky3k6UtX+9cnSt9RIb3OqEftLkVmvMGw2XxNf+VXY2JgCvirubP81KMnWE4kn67fz0y3xFMXdiEue3hLDgMvWZi1ABkEJJtwUxbZDM1dOVqjBu8bP85PZy5gCQOFpqlCzkY5TgRjmC2B0QgRQdiX+3F81PggUdGlNa4Znarw4MBl/vvyV8lIgSv6igwdLairhKXE4UQwhisifG+WIcPi56a/wpd+7DBfOb2XzFwZa95EJOrO1ErexIiUz/pdiv13zfKpwRfJXae72tMJ3+zu53h7jC8ePczgUybl1Rj36EWS9fobrgHCdRC+Rzw9RPVgita44EcmTvITuecYMBRgs5DYfL5+D8dqo6TO2eQuKJyl1p0rwyYk0rbQloFjBvgyxNrwRkXaQAcGRiCu5QFuBbRGRyEySDBCQRwa9HQ/3S4nXTJSMWWu8vg9/xkF+MLAERZXzILlRPIrc49yYaVE4SWD4gvryGab+BYZJ+8knRGHxuGQTLHN5aDE6WQYd1X35SHjGLRGZjNU7i3SGZZkP7rEL+z+PEWjxYTRj0Y0taCpLP7yS3+RhW8XyF3wyC4sb9l1MbEkB/LLvNc/y4CMURh8KHOCxgMugTKJlYEpE34gf5wH3QUswBKCJ7uj/E9Hf4rCWUHpWAfj2AWIIlQYvXWJuu+BTWW8im7Yl3GqmTzV2IuB5j5ngUnT6IdK3wIZs4fhxySO3Xd/b1G0Y9EbTsgON9ntLpOVLq3EZWU9g1kzEd2o70EMozvKaL2CEWiMlkG77XI2HCQlFshJgS8sDCEwXyd1wBEmjjAx6HHAmydj9JgbynNRl2l6DiJxsRsOeXcac60JtSaqVr8mv3O7uOIBskxiT5C4kDYCLGGQaE2PkOVEcqw3wbHmOFYLZCeARCF9H5nP0R716ZZM4nLEjmyVSaeKuzEFLsWathacCHZwrjdEI3ZZ6ObIWT322MsMGZCXHYacBqYTowxr61Xnb/BW14xNR6Iw2pKlZobLxRLLyTmgX6i3mng8sbaf06uDuAsW/kqEXd0Q5n+jdUAIZDFPUszSmvBo7IRwKGLSqZCRCT0NYRLwYm83T87vpVJJU1zVONUI0blzK7GFYSA8j9gxSNkhg2aDlIgBm1biIlsGZmtDAuiGD/YLShES6blg9QvscJ2+/FyjiY7j2ypDKJRChhCFBoG6VisikUgBuVdFNls6YDlRHA9HubhaIln0cdc1stVBd7Zm574wJSkOrJNxQk42hql2fey2via1JgR4Lp1hSWdEkQGe6+y4+nmJJmd2UFqSckKWJmOMwCQ/UOrXFzSbW9IDGymDSJtE9Avd87LLTm/1atqMIyN2WasMbbQETrTGQGN0BXZTYzSC25ZCsqmMVz27QLqyjrs8zh/lH+Czw0f42Qe/xs8WXsbF3DgVfnckkpLVppDt0PR8kFtHm+/VBIM+n3j4Bf5c6emNQjWP5+pTOEdT+Esaud4gvgNyW18Pd67JwIt5mlWPXxr6IIfyizyWPc1+e5miTG5oBXsz0tLhcW+BnjvPR9InqE77/crIqMD53iCffu4B3IVhyi8PkH1mFt3rfVfP1buJsG2k46ByKbolSVDUZM3+hlFVIQuJwzOd3fyHU++js5pi6lyEvjQHuSxifITeeI75D5gkIwE/euhF/lrpKRSCVWWyFGf4ncpDzLSKXHh5jPxJgZagTUGvDId+bIG77bOkZMCg3cBxYniTc26z8XptTrcSut2h9IqmWS/xO+G9lA+0iLTBWpTmQqfM2c/tYfClEHe5hphd6hdlfZcIkzAtWodHqB40aR8M+NsP/THT9ipH7DUy0uCV0OFsOMy/PfsY7n8psHMlxJlZQNca6Ncp+LoTkOkUDJfpDjvcV5znUXcZX/SjPBe6ZfKnBemFGFG7caMWpoXMZRCOQzxRJsradAb7rarthqb8chtjvYOxvEpSe/daZL8hUYxdF8S+ebX17RvxSujwm5VHOFoZw/96mtzFCP/8Osnict/Q22pOEiFojwl+4cBn+GZzL7/95HvxliRjFxr9Qi0hEaZFPJSD96/z4dEZvnzqAL/xzOO4FchdjEkcwfoegyinGb53iZ//8O/yryY/THV5GH+phHPs8tZRXthAJprVXprLUZG87OKLiFFD86OZV/o/37guIw1A0tMxHZWwEBVw1wTp+R6y2b5tHck2lfGqOh3odLAyaVJzKbqxxamDwyxkXiIlA3wRvkbnEsASEk/YN3haXBlhmzHa3NpGnTIFB/0F7rUlkv7C00tMjC6Yvb6chTCMfn7THWjAyk4PtxoTpixm1/IoLShZbSwR0zSaJHQwuGasWAgs0c+MdYSJRFCQ/fc2YgBWDLRQNDnnn+WZqWlmzRLtJYtMLo2QElFv3LYiJWGa4DgknnVVi9W/ErZSsi9H0ivRWfOxVw3segcVBJhSEhVT9IomyVDI6GCNI6nL7LYclpMuF+I0C3GBk+tDLFezpGYlhTM9EkcSZg20NKgnHgrFlUI4rQVotlao9A5CxzFuNSGxBWtrPi+3xgmUQS30mavnyFxW+KeW0Y3Wm6p+FqaJcB16RYPOsGJ0eJ1PpU8yYDiAQ6I1NeVzMRigVk2z93wLY2kdtVa5uYzQncCVQ45toVIOkbfh+JDXjLxYGcgIZKTBtpC+v1HpIhGuC/kMyrPpDbj08gad4X41duxLglkHR2mM6hunO72raI1QIBJBom9eM6DQKNRGJ7UhjteGWVrNMbKU4M23oHajzNqWYcMzHnuaI/YaZ+1h7JrEW+lLKCZaIwzRb7HumoxmK9yVWuCP24fJzGjSCxHei5cRnguM0ClLoiOS97iX2FNY5US5jIxMXOc2fr9vExFrVrspzgdD5I0OsI4vY3yhsYUgJ+2r0owKRaQVNSWpJx5mV2O0wn5TnNvEpjJer6Ar6wx9K02cd3gmOMzHd+xDWArTudEtL6VGCLh/bJZ/PPY5ilKSle7r/NatidFTfH19L6PWOvc4K4wZPn968Cj/7uNZFhYKyHiK1OUyxuwKyfLK7b7ddxy9VsVLEpylFF41R9f3+d2hMX4rA4mriX0NpkY7CcJSTI5U2ZNb5cHsRX46cwFP3HxRkQiGDfi56a9yYWSQT5fv4czuIpmLZUZ+OyBZW7sthwE5NEA4UWDtkMfoR2a5pzDH46mTgOBP2gf49ZmHWJ3PM/qEgbcSYK42oVSkfe8EC4+aRAMxP3r4KEdSl9nvLLKuQp7ujfHbyw9ytjIAXy0wOJ9gNyNErGjtdFh7f0ihVOOQN9dvOds5wucXDtOZzeAsVWGtuuW8bq9uUrAV0b2A1MkVvMseqcUMLz5zN0KDSMALNLmX1voFh29CClCmUui90wQll5VHEn74gZd4IHNxw6tyrcHB7609wFdO78U/5WCsrqDWa7esAONWIkyz36Ahk+6r3AwXaOxK0R4TlK0bvauPF07y9A/tYK3m4l2ewGpOEGYhyiqUBToVIyxFubxO0eswZfco2B3O1AeZzYziVDNMfFnD7fDMCYFOubTHFHKsy6Rz89a2CsVXumle6k7yq6feQ/oLacaqCekTq7Bef8MCwE2LNDCHBtBpnzijcYXoF+EpENedx2U+hx4dIChYXFoa4L+G95M7YVJ+topsdVDNFrrTJfuSSTrnc2FqkL+b/tMstbM0H+zSXHXIXMjD3Pxte9S3g31hmfavTvLZ/BD/dfQDhHmFdhQyFTNQbPK/H/hN7r1u+zwRpfjtysN8c2EH+csxcm4V1Wy9/h94l9mUxmvSaMDR45iOw1h8kNZFh9gRxN6Nhqk2AAFPP7CTpWEfR3TwSW4Qct/qyDDhYqPI8+kdjJk1RgzN+70ZBvc0+Uz5Xp46cR+QIlNPwx1ovCaNBjQaAPgvA9KgNDKEzqZQvk2ccVC2JMibxK5g/tAIC1NZgimDH02fxXuD6HFWuvx4ugLpCrvdJb44eDdfzexn9As+3A4JQyFIcilaow6tKc2/3vFZHnYirgjyvdIepXK2ROayJP/NGeKFRSgVEekUzQmT0r0r7C+s8NdKT7HTsqgmATUlONMb4eW5MdSCx+6nGoiTFxGjQ8QDGXpFwY/efZTDqTmmrTVqSnKmPczscgF3RSKqdeLbFe78Hkm2uMaXjkLii5cAcF6BV/cTfCvBW+G5tCdTtIcM9u6d5X8efhJLSFzR3wIiEnpac6wygnvGJXNJoaq1O7NdsNgQXDdNRDqFyqXoDbi0h/ppOhl540HtQfcyf/3gN1gM83x9fBe1ls+ugTXeU7xI2ugxYVXJyC6H7XUGDZ+G6lFTimfzY/zr5MMsreYIjnrfpdT0XXpOIVGehSpHTA2sM2zWbnppojXHeuM8ubIPfSLDwO8fJ6nV39IY22wIw+jLPJVSKC/pR+SE6h8Alb7qnBApn95gisgXJFWH+V6RyZkY9cqpG0PizSbCssndfT8vjEyRynV5eOcM54plolx2cxpTb0A8v0DmtxbImibirr30hlNEaUkv77K+w2Vmd5l77erV62fCMk8vTlOfyzG81LztzrLN/b6TBGutRVprtCVJnBtzV7UEBAQFl3+/54McSi/yU7mjjBk+I9Y6O7JVFrMDkM9gBAGq09mUSdXCcTAKeRACVW/0k/s3qvasaof1Zwf5taEiz+6d4tHSecbtCoecBe5JX+aP799PZ9RFJGXStSa619tyGnxvCa3QnW5f5bUXIrsR2pSYTQdt93UJuytpnlo7wH+rTMbcGo9lTzFm1pgwI0ry5jlf09YaD2cv8MrYCI17hkmVs8gL8ySV6k2vf7dQvkWQF8SZBPtVW8fx6giF44LUUtx/B7ZN94Gd1KdN1u9O+NHBi+z0VslIRU/H/PL6Q3xleS+X5kukjzs4NY2WAjk2zNojg9QOANMtjqQuUzJbfK29n7UowxOn95F5wSU9n7zrLf5uBQmaZsfBrYHVSr4/0yAKOZYfMIgmAz5ZvtBv/7pxKFpOAn6jdj+n2kNUT5QZPp3gLwZbQxJJGv1iK9tCWCYilUKnfbRjEue8Gw62V9BS9D2mBvSKgiitibIaY6BDudBkl33jppwRmv3OIkWjxVohzbKXYTpVJWd0qScen2seoZtYdGKbMDFohQ7twKbR9LDPeqRr4C7VbnluoLF3F60DReo7TPZPzfBg8RJjZo3X2/bvBG3bV6Ndi9g3weobqoGyMNvgNNRVeUHdC7DXewgNuVMOiWPgLr/OHqoV/kpC+5xDa4dg385lFIIlJ7/JjanXRyuNsd7E1Rqj4KGFRbdl0FM31jsc747TOF0kvfjWWse+W2zq963jGHX2Isa5fqvMV9+s2Mg7GokO8s3cQb49Os29D8ww5gXsdxaJCibPDU0QDWWxE4VYijel8SozaaJdI2gpsC9I9FoFkgQdx+gLl9n1qyFJLsXc49P8h93jHD54mY/v/F12ps9xzyOXuBAO8o86P4k/N4hRbfVbe261pPo3i9YktRrUav1E+w0lCbnRTrX4bN+jEh/awclz+3lhUHPykWEeLF7iBzLHKL3afbXBERsOWufp7bD4xff/IP5ihvFgEG6x8RrmLDojYBUCXBFzJW0+0Zr52RIHfv8MutUmCQKMfJ75D5rc/b6zvLdwgZ/KvowvDVzhsJoE/J9HH2Hwyxa7FkLsl0+BaRLvHKGzp0j9421+/+F/T0Ym5KTBpVjwz+d/iNmFIoNfsSl95ji6F/QbXWxxIq0JGg7lhQRnrXdntIt+i0RDWT76gy/wd4aeICMk7nWFeBeiLP/h2ffjXbSZ/HaA8/RJdBSjNqH+8Q1IA+k6fQ9qIYd2HYLRLK0xmzAjaE1BnFKUdqyzr3jNILVkQsoI8YyQ92XOctBexkJjCa7m+l3fAKVseDzi1uioCoNmk5U4gy0SpFCc7Q7y1RP7kDWT/GmBv6qwOopyO2aoEyIvz6F7vduSdrN+f5nqpzrsGlzjn07/Abut5Kqn/dWoDdNavQU99c2OMCRJ2iHMmRhugIGgnnh4FYW31EW3+9+JrjeQSuMuGIxedNFSwFr1pl5nnSSkTq9hN3PMWh4f+tAJppw1/qO/5zWRkS2DSohnFxDzAmdkGBmV6ZY8OurGJ3quMsn4V2PcpQ6s3Dz95FayqY1X4A2NTb2RbK8FqFRCzg9wZf80ZaBxZYSUGgzRH5CbpQJ5w1tglIvoYo6o4FHf5SE0FLpFDEA3WySNRt+AXa9jRDHeapYobbI0mQHAl1Zfg85eIXFB2SbS3LrKCm+aK/mMOnlNYdWVTEez0iK15CFjyanZYdZ7HrmJLlPmy6TEa3Oj+/qwBkWjhUolxCmJtm79u9SGQNlgmAopNInWVFVIU0lEx0C32qggQDoOIuUTpxW70mtM2WtkpEmkFS9FMBONIVdt/OUQq9pFhxHStumMunQGJeOlZXZbJtUk4ZXQ4XgwztxSAXvexluL+21h74C80avEErOjkGGC3uLpBG8FmUohC3nqQw5T3hpjho96lcx+T1vIholTBasRflfFgtvGxvpt5LKITAbt2qicT2IbhAWb2JN0S5LugCBOa5KxHp4fcld5kcPpfj5ipA2kUPgyxBURe6xVdpk3j8ZUVJdKIqgql9lolFri83J7gmp4TeHk9Nog9oKF3RCklmPc5QCj25cVE92ApFa/NU1Qrkh2XcnjdfvzfMdAhUO5RQaMEF94tFRATwf0dL97misSRox+QoMlEhwjRss7Z95r0Y/QXtn5E93vICWCa9KSOlGIIEBH4mo3xjdqbSq6AUYjxAi8vj62DF7TanXLoa7tpcqSaFP0O29ttCKXSKLEwOopZC/uF4jfZja98fpGXJms9R0Wf+vRL3Cfd5G77ABwSBC0lUOSSEg0Qmn0ZtiMpYFRzCM8j4VPTtL7YJOM32Z/8QKN0OP0k7vIn0mTO9uC54/3vc/NJqLbpfSMS+5civOFEr3DmhySnLTp6ADlKeKMhdG2EVJ837f01HOLFJptCq7D4HeyxJk8v/hnPkL9fR6HvDk+7i/ftJgrb3TwSl16oUS51i1fkxJbEHualB1hoejohN9u3M2LzXG8JYne0HMVU2MEQ2nswQ73py4yba1hCYOXQpufe/m/obGUYezbCvfFGYTjoEcG6U4XWPyRkAd3XOLHB55DIvlSZyf/7IWPo1ZcJv5EkTq/Bmu1O6Lg6QoJYDQNvIUastYiVnfOs3031OFdzL0/TXsq4bA7d7W18PUGbC3xSc1JiqcCzJU6my821UfYNsI06Tyyl9V7LIKixt3VIOc3OVhYZtStkTZ65IwurggZNJtYImbYaJGRCW0lqSuHEIOm6h9eXZEQ6Pg1XRxjEn6jfpjPL93FzFIJ75iH1YTsbIzVvPaGBoIEs7YGUQzNNgQBOlHoJEElCTq+NakXwrYxCnl0JsX6A4N0hiXxo3X+wfRnGTC6lKVNpBOeDXKcDYc52x3iZG2Y0VSdvzP8JaZMk7LZYMyvccqlrzV9B9JNLJxajFxZ70coAR1HJK1kI4rXBiFf/3vTGt1qYQBmp9+p605CZ1M0Jxy6A5A32jddLzYLW9t4NfuC0FFG8LH0CfZaKcAj0YpIG3SUjUpkPzl7k+S5CSkQKR+VSdGe0PzEnhcZshocdOeYjUr8k4FpeqsG6ZTVD4XrjfSBJMGo1rGCELN97eRvCIEEtNQoQ2xZQfl3GtXpXPUgiVkT2/Pw3nOY8+0BckaXxF+66edskeBYMV2rnx96S41XIft53IbGNBSG0CjgclDkQr2MueEQE5bZl/VJmXhOh5LRwhcxYFFTPo2VNN6ciVvpoVtthOuS5PuNC/aNLfCjA8+zy1qlrmLOdIdh1iO9KEidWSU5c/5WPvEtQ8b9JihsdCL7fiHM2bTHFe5wm7zscH04XNHPja4lPlZLY1e76O4mzXEWAuk4fSH5QZPOdERqoMNP7n6eSXuN93kzjJvXhNShX4R2DQNI6OiERAsibZJoSU8b/et0v7HJFSKdcK47yMxSCfOSS/lYhFMNME7PvkaW7Pb7oDYcOZ6LSnt0hiWtCcWRgRXutWMs4RLoiI5OmIkGON0Z5kxjkJm1Iu3IpjPUf25bJHhGBHeQ5/XVRNpAhgodhNfSh7S+aRTv9dBRDEGIjCFB3lG5wtoyiD1IHI0t+iP7ioyauiKduEkcG1vWeBWmSfzwAWo7XVoHQnxx7YUqNJ+v38tnLh7GOOtjriyi36SkzLuNUS5x6ScnaO+OOLL3Ao+kz3KiN8Y/PPspVqpZys9JisebGCs14utmk7BtekcmaUzZJDu62EKwrnp8ozvCyd4o3ryJN1tF1r+/PEtvBp0kiCjCbsDLKyM4MibIHSN9E8u0lvjUaz5WzUAGty8pXWlItCDRG4vG617X1268kquWkT28YpeuElz4ERv5iXtQrkanYpxUm3vTVc71hvlfTv4QjQt53BXJyMkYuxZDtXaLnm6bdx1pIKQgzBqYQx0mCjV8GZFcN5Y+1y7xS5c/yMWFMtPnQ+RSBbVJJZGMYoG1T+yjNSGI72rxY3uPMWLXOeJdwhIJ3+xOU09SLEdZVsM0y90sp5YHiUITrQQoge4ZmA0DEYPVFGgDJj50mb+343MMG212mAaRTphLIpaSFH90/BADT9h4lRj/bAXR6ZFs0pQKmc3Q2TtAd8Ck+3CLj+06wwdzJ7GEwcko4n9b/AFmGiXmjw+RmpPEHuiMZmHYorbHQ9HmQjDIsfVRrKa8Yw94UnyPe6MQiNEhotEcvTL0lEUt8W+Q3trSKNXXNE4g1P358HwAp8Ixlio5doQJJLeuBewbsaWN1/XdLpUHEw7sWCB1XZgj0gnPVycJT2XJX9SwUulLLm0CdDaN/4FVfunA71CSXYoy4aXOFMuvDOIvSkrPVVGvnHpN6E6YJvWdNuuHFftHVrAQrCrN1xr7OF4bwV/WiKVVVBDeucVabxet0YnCbmhWV9NczhQIX2fyNZQHDQurLpBBfNu6h7yaN1oq1HVFXa6IGMo1WZWaxyfP8JHccVwRkZU9GsrlaHeaS70S4beL7PvdZUQYoZstiOLNm+u4zVtGSIEwTSJfMlpssCe7iiuSq+E/heIbzb3MPTNGblHgziwSr6xt2rVDZNKsvifh3kMX+TNDL/AT6RUUio6KqCrFH7bv45XaKEvNDM26h6jaFF8WOE2FjDUiAbsRYa2sI7oBamkF4TqcGjjAqdFRlL3ElBkQkTAT5TkbDuOddih94VS/cLHT2RQb9uviezTHLTojgh/b9yL/ePDoRhqE4EJU5hvH9+IsWEx/LcR58SLRgUnWjvg0DZtakiKhxUKQZ2E9h9mmf3q+ExD9Whch9DsjoSkkSSlNY9IlzCuijRQUcYe8L5HofpQqFigtCXTEi71dPFXbg6rayLi7aaLYt8x4FZaNMCRi5yTdyRxGL8FebUMQohdX3rye4Eb4SGQydIcEw1MVDucXsF6Vo7PUzJBaEHiVzZFcfAURxawuD/Dbgw/zaPYMj3mz7HRWyOypUR/0uWwX8R965Nr1CZiBJrEE1XsShnf0E/CrSnEiHObJy3tpL6WYWE3QQbg15G1ejyvVw7YFI4OotIsIIkQ3RPRCkqWVt1/8IAWxB1YmoOS2sW9SvKfQtBIXqy6x6yDCW5z9pxV2I8FdsqnlUgTawBKag/4ClOFLA0MYo0No1+l38ykaZNyAjOxiCYUhTPIy5L7iLKvpNHel5jekcSBBUFM+f7x8gLlKnuyyRrT7hVw6jPrqFnfIAnxTBGBIMO6sHLXXIA2EZWKMDpPk07RHBe8pznPQX8AX/fDfyVAxE5f49vI0qVlIrSSIdndTe9u0aWDmQh7IXyZvtFlOupwIC/zG6iMsdnKcuzCMWTUxO4JUB6ymJjMbYnYTRKL6m3In7Ev8mAb6rt2EOQc50GPYrOGKiLoKmYltfmn+cc5VyqQWNLoX9IuGN6nhamSziGyG7s4StYMahnvs9fopUU90Hb5QP8IzK1Okztp4KxqzHSFcl+6QQ2O3whztMGA2UFpTizyCroUTsDnqQ94JdF/PVWtxVVHhbbNRFNcZcmnsEKh0xFcbBzjbHMTobt6582aQqVS/+95ImuakIBjq732rScwzjZ08OzuJt2hg1LuIVgcV3f7M+FtjvEoDmU4hfI+Fx8uEH6rTqfjkjpVwq4rStzTqwpszXoVpIQt5VClPd3+PX973OwwbHTxxLQ80IqGxmGHvcy2Mar86e7OgO12yx2y+0L6H6n0+j07M8qg3y8P3/EcUUHu/TU9f+1pWkyzfae0k0gYfzb7CQXudqjI5G5X4fPUI5ldyTF2ISJ1cJW61Nu0i+2aQtoUsFtDZFMvvL9EaB6cmcCsaby0h1WyS1N6G8Sr78llhXrB/ZIW7Mgu8uhRLoYl0wnyQJzUH2dkI0bzFnkit8eaalL0cy65L7b0eB2TAn82cpZ0+zR/v3U/74DDKETQmTMI83JetUpQ9MhvhsHHD4u8OfmPDC9tvkVtXIQuJzaWwzOyzY2TPQ+nlJvHi8jWDZQuPmzeDlv18LiFlvxhFb54D7TvGlcOf79E8MkR9yiS+p8V/O/BVBqTAlw6RTvh0/UGeWNzL+tEBdj61jqw1Sarrm3sM2BYHxpb4vxdf5FIseCks829nH2f5N6dILyYcOF+D1fX+eE5UXw+6F9xghCn68opiapy5j2TpjCZ8dPcJDtsr9LRkNrb44+Zhzn1xF8VTMemTq5vf4zoySHtngdV7LP7SR5/kkdRZDlp1wONfXPoYS5+bxFtRTD63gmi00CkPnU1R22Pwo499i/3eInvMFiBZ7aYRVRurtXlqRN5p3igF67shDAPhOtR2meQfWSaMDT577i6Cisfe9duve/q2kQZysEyST1M94OA8VGV3voYUitNRia+f203mOx65CzH68gJJt7cpIjS3xHgVhgHlAknOpzsAdw0uc94s01kpoCxJvpDq94tWqp9ErdVViawrHluMvkdBeB7xxABBySWTbTFhdsgIiSEkkU5YTrosJzZGy8Bo9BDdYHN5lOIYp6qJUgZn1wc4MVQgK3sMGV0cwYYW37UJtpr0T9E9ZTFo9KscF+IcX2ke4FhlBK+icCoBdLqbe5F9IzY6wYhMhni8RFBwaI8KwpEQmdi4FRBv9dmu/E7LROZziJRPmNWM+zXKZhP5Ks9roCOaKqYapbDaYLVi9O3wYkcxRlchQ5NQGyRa40sLHxjMtWhOplGWoDukibKKIaeBKxTGFRkhIci9SkWho2E+znOpW8apCvy1GNnokmyCBehWoWxNknYQvS0cmXgjhEB6LnJoAJX1aY0YdEY0Y4UGRQlSCC5EEavK57nqJEsLBbKrAtlso1st2ETRqZsiBL4ZkpMeBl2aiUc9cPFXFd5iB5bX3rihiBB9ia1CnmA0S3dIYQ11mXDXcQUsJw7Pdnfy3PoU7qrGW+ohWpvccBUC7dmEOYMoq9ntLLPT7HfFWku6/ejjosJbjaDWQHW6iGyaJOMSpTTT7hpj1jqukCRoQmUgIoHY5EPhzaK1RsYKI9IksaSnE6TQxL6Bk00jwvBNR/KEZfelLTMpwhzs9FvMN3MEFQ97zUD2ok2TYvaWEAJpW8RDOTojHt1Bzb58jSG3yUJUYE5LdNXGW1PYtbAfpdsk+8YtMV5lPsfCDw3T3KHYd88Mf2f8i1wYHOQz5Xu4UC+x0h2g5O3FaEfIVrevj7e82q+wHx8hyaeJcw5BwaJbklQejskMtPjre59iyHCu5rLMxV3+wfwnOLE2RP4MsLqODoJNFQ5TjRYDX5unlPZZrJf5G+t/Di8Vsru0xoDb4gcLxzhoX6uEjzApGi16wuLJ9gHmgzyfPXMY/+kUblVReH4NKuubttDizSB9H5lJ0753kks/rimUG3xq4jR3+7P8/Sf+DFOfbSPrHdRbqIS+klpCOc/Ke8t0BwUTD83xM+WvUTQifHGjtuOFGE4EE7ywNM7IqRby4gKqfhs6lal+jp6MoKZ8WrqGj4ElDP7R7s/wxM8eQgpN0WyTNno85F6kaBhYvDYc3lQhPa35amc3vz77Hi4vlJh+KcQ7voDaoi1f3w6uEJgjHVbvSZO/YONcmkMHm2MBficQlo1wHdg1wcU/lac3mHDw8AwfGzjBQXcOX1gcDU3+u+M/SXUlS/E7FnuOdTArNdTyal/NZBM2b3k1aqOAsaYcFqIClUaK6cst5KUlVOP1e6wL07wqsTX7UQMGA/7C4a9zrz/DtFXFEoJfq7yPJ/74XrxlwcizVcTs8qYtzrqe7miK6gGJmuqwx14mJQVPdsY5FwzROZ1n/JkFdKeLbrYQtkVnd4HGpEk0ETJmrTNgNLGEJNEJ7dDGagnM3uYoyPmeSRLMlQZ+kCDWMpyIUhgoVo9Y9IpjFL9jw3dTV9lIFTCGB1n45CTtcU3qYJW7cgucXBpi7AmBt9xDLKzemmd6J5EGMuUji3nOfzLFxEPzfKIwx6cKL3AqGOUXT32Q1mqK4W8Jik/Po9sdklsk/fZmuDWeV8emM6rJ7qzxWPks99qSUWMWynDUn+IzQ4N0VxzsuoFtCKRpINYtRCJRWZ9wwCPIm3QGJN0hzf37L/Jw4SLv887hiGtdIOrK4tjKCM35LGMVhb7SDnYTTUQdhcQzl0EI8pMP0Ct7dLMOp2LJQirLbn+FknHjQiyFQiE51x3kdH0Qfcln8Pk2Zq2LXlju69VtIgP9rSJcB3yPbtnk4X2neX/hLD+YOsmk6fH3vQRjpY5uNvsSJd/1l/U9kMK2EWmfqODTmhQEYyEPl2Y4bFsY4oqkzrV3Vk18LgSDtFouxlqVeO32dBARSiMSjVDQUQ5NpbGkwhIGj7o9PuAevXptP4dLcn0Xrut/1tGapjK4GAwwt5bHWLZxFtaJ5xdu8VPdQrRGwKtEkgTZVI92KU24ZuAaxiZULXz7CEMibIsw79LbFTA5WuEvj36TT6SujGHBapKlOpsnddmkdKyN+PYr/fG/idbGN0RfKTTTRNqipyzi2EC2uqhmq7/+yY0D3PVroZD9tcC2aA+bjBxc5kBhmZ/KP8sO06WlFG2tOdsYoHBS4y+FiIXV18hhbUqEJPYlYSEhn+6SkREWgoWowKnWMHZNkMwtouOo/w4MlyBn0B0Q+NkeGdnFFQkgUEAQmcgQZHxnpA1opaHT7WuydrMsxTkAgpJCxpJ81rvWuOjV8+DKPmIYCNtGZ1O0pjTmjhZ7SqvkzA5xaJA+38JYXCNpvv7habMipEA4Njrloaa7/K3pP2bMqLPb0tSSGq2VFN6sReZyh/jS7O2+3ddwS4xX3e2SOwOtXpHfNe/hgDtPStrssZcZMBuc/tAQZw+X6bYcqKcwuhm85QGEgtaUQpdCHK9NMdNmh9/kxwafZ9paY9SMAYf1pMOl2OBLrbsIjxYYOqNIn6/3i1E2azhMa/zz64yoArEnCbJplJ3m18of5Vf8j7zmcqHBrguMLoxejrHmq+hOr98JZCttQq9GCMLD06ze49Lck/BXi6e4x71EcUOv1nASknIOwzKRUdz/TuPoNc97RfNXH9pFe7wfNm3sVahMzKFdF9mZXuPD2eOv+fNdHdLTCb+y8kN846X9ZM6a6Nbt87jo9TqO1pQyQ/zjpz5JttzmByZPcX9qhv32Eofsm1fMHg0kX2oephG7XOoUaUUOC40snbaLmHMpngCvmiBWb22721uJ7nYRWmPVh3guGGantcbOLaun8uYRngeFHJ0hm7t2zPCxgePst5cBk2oSsJDYfKOxl8Ixg8LpAGu+2pfh20prRqJYaOV4OUxwBTyaPs2J6RFe+lMHcdYHUBZoKbA6GntDYcBqJmgJ63sdeoOQ7GvzcxMvkDc6nAoHOBaY/PLsBzg7N4h3ymXiVANZa6M7WyR/8XUcFsl1+fzCMpHpFGrXGL2iy/J7NQfvusg9+TlSImQpSfOF1jQXuwMELxUY+06AvdzeEp7474pWqGYLEUVkLo7w8yc+jm9HjN+9RDu0WUjKlPP34ay04eJ8Px86l0U7Vr9zW9qmPeJQ2y0Jc5rc/gpD6RbPnZ/ixYW9FC6AsbKMarbenGNlk2EMDVL9wCSdIcldY+fZaVa5EBf5UmuCJ1f2UXzeJDcTYs1VNmXjkltkvPYonOzgrzjM5Uv88eBhDqQW+OnMaQpGwgd3fxG1W3MmCjkeDjMXlniquotYG/zo0Au817tIXkJBukhEv+sDBpACYFVpnu9N8Y3KboaejfC/dQ7V6dyatnzfA8npc9hnBDbgw5vvaqIV8VbaeN4IIantceCD67x3cJGPp84wYviAgULjOBFhycWWIBsbYfzrcqL7v0P0PQu+R+VgmuphTW7fGv/50G8zZrQYMkwcYd3QQecKHZ1QU/D0xZ2M/YnAW+6i36zyxbtAsr4O6+uk44RRd4xuOc8fPnaYxckcYdHggL14U8mX53vTfPrCPXTaDnLexewI/EXNyJrCX2gjjp5Gh+Ed1TnrBrRGtbuIXoDdgOfaO+h5FqPGHMaW7934xgjXIcmn6JYkf3b4WX4svcSVpb2qDI4Ho7xQnWDgaBueObY11w6lqLZ8XuxNcr97iftt6Ax+i9MfHKTVdcj4PXwrYqGSI17xMLoSt2KiDUh/YIU/P/kCB915HnXrrCYxn24e4VRrhMtfn2THNwKc5QrqzEWSTb5n3BQt0FrcoOF7tTDJMBC5DPU9aTpDksceOMb/MfEk1SRgVZnMBGV+b/YelldzjB+NMZ98AbUVx8fN0LqvYtRukz8XsPidAsvTEf+/D/0mE2aVn2r+31h2UhTOmuRW1sE0iceKJJ5Ja8ymW5I0DsT81fd+lYLZpqNs1qMUM09OM/3pVUSz0y963SQ5oG8VVc6x8jDYY00+PniMnZbF0908v3v5HtZmiuz/ZpXkxJlNu17cGuM1STBrfW+WVU9xrlmmETt0lM2A2eRx/wKTZpqiTJg0q7gioplzibTBtLVGXoIv+nl/1xPoiEgnPNney7859UE682n2rHX6ea6b1eP6aq4fGHdiBfSbwOhBteGxmkkTXfc6JIIDg8uceM9erJZDelcGI1AYgUZG17wO2hAkjiRxBOsHwdvV4J6BBYaNNjkpXtP6MdGKmIRqEvBr9Xs51R5GXvLwlnuY691N4a3XvQB/JcQILbon03yztpfnSxP89sDaTYW2Ty0OIs6ncDp9dQaz11docNZDjPUOSbS50mfeDa58b0JpAmXS0xaK/jG36HWoFhVhWlwLFW5lhEB6HsK2SMbKNHan6Q5rMrLvNayrkLbSfKl1N7916f7+ZtRY37KHF9HpkZwc4n/TH+Xe0Tl+uPwyC1GeHfkKYcak5LTxjAjfCpn3cgShSavcTw8ac3osR1mWoyxfbyoWgxzfnNlBVHcYuKSxKx1Eq7Mp5v1bQkiUIdC2wrFiDKFJgE7i0IltgrKi+4H99PIG1cOCqBhxML2ARHIiyvHblYc41xhg5eQA3prEXd3kBWrfA9Z6l8xlGy0tfmvlIXanVsmku1T3WEQZi15uJ0gI8gJlQZjXxOkYu9DjVGuYUBmcXB2i03IozWpEs4Pubm55uddDplL9phYjaYyhLnsGVxk2a0Q64XJYYnUli7NmbHQj3Lzj4dYYr0GAOncJw7bI7r2b05PDnI5HebpxkMRX9B77PD+bn2fQ8CkaCYmu8V73WQB8YeEIb8PbeiN1FVJJBP/m1AcZ//8IjOV51OpaXxprE7/0ba5DK/yVCPe0yzkxQHPXjUPyX079ATN/Jc1MWOaPKoephR6NwCWIr11nGgk5p4dvhvyFgeN80D+LLzQDG8V8r/a4BjqmrkKeCYb55Sc+TP6kYOpED/OFM/3ilU0grZZUqpjPtrFMk8x3fLAtMAyUlbppVeueqAHdlb6mYRxDsuGdTpK+Jt8W9Q68JVSCVgkyhnbi0FbOhlqDwYOlS9T3uTQqgwxYWz+XQBhGX1kgl2Lt3gyVB2KKo3UmzXUirTkVpZgJy/zSS48x9psWe9a66NnF233bb5tkeYXdv6TQaZ/Tj+/nWw/vYnhknb+/5/NMmDVckWCg6Q0YRFqSIOhpk7Zy+IP1+/nO2hQzlwbInLBx1jW7jtaR6+voRgvV6ZAkyZacI4ktkOmInNPDQKMQrIYZVrspBg6u0jsgGE3X+R9HvsWEWWXCjACX/7T0AV7+zAG8Vc2+Z6qISg3VaG7Nivk3gT51geJln/zOUV7W+/nO0B4ee+gEf/Hgp/udpDYKXl3RL0jqaYuesvlC9W6+cmofxorN+BMR3kwNqnMk6+v9nNotaGeI0SHae0pUDln8pUNf52OZY+RlSE3Bs9Upsi87+EsKmpu7CPyWreI6CtFxhNNQGBULGQmcqiD2JK+0x7mYOn31WkP0K4QtBIYQrzFcr3jOLkQu56NB2qs+cubCbSuy2eZ7w+wl2E3otiyW4gyjRo2MtDExGDN8xgzFTnOGSJusxRnWojTt5Fqhni1jylaLtNHjPd4FdpneTf9OQ/Voa0VVmczGZZ5r78BdlmTmIqy1FsltTBd4DSq51vFqk3SH2yqIBBqRSytxSQCJJGd2yDk9atbtvrt3CLFRzFry6JUEqYEOU7l1HJGQbBTtnOmNoKo2/mwDWWuRbIL22G8XHcfEi0sgBOl9ZVqLFstmjrOTw0TaRKIwbtKjs5l4XGiWmK/ksFYsMnMKtxIhLi0Sb4WirO+C0BqtxNX20ACeEeKaMSW3zbDbYNqt8ICzRFHa1JVmLu5yqVnAX9L4KzEsrRK/kczYHYAOApIgwFxL4y9lEcpgrp2nUkzjyvCq0XqFtnLoKIfFbha5auOuCrzZBmpmtp/fugUPOldaRqt8itaISa+k2emsMGSELCQOtcRnvp7DqWqcWgKbPO/51rogtCb7wgL+YgGURiSKOOPwpdR9fGX37quX+U7ErsIag06Tny5+m/e4135FpBPqqsdyIvmZl/8K8XMFRk8nWyfJfpsb0RproU7RkqAd/vmeH+JwYYG/VPwmh+1raSJFafO4f46elgTauKEowUBjCYUlFAPytSHhmISejvnl2hE+v3AXS9UsXPRxaoKxb3awLq2iG7dBFmubdwW7pXl5ZYReYvLJzEsUJfgyJOd0UZZ+87nlmxiZTrH0SJ76Xs3A/hX+H7u+wrBZY9iAjkr41fn3cvrsKMVXJGJhDdVuo7ew8XoVrUm/OM+O5SJx2uK/fvEHUebGnL9JNohQGqeumOgkWI0WxmodgpBkC0sLXkUr7JbCWHZYSGfpaYMRYfCThWf4aPYVXBmREiGWUAQazsWKX1z+GC+sjNF5rsz0SzVkvX1nvIs3iVqtMPgNG+07dI6N8AuF/wYEvLp3gUw0aHAail2rbWQnhLml/hzagt5WpIFRKiJSHnOPZhj75AyPZlfYby9RVwZ/8/SfZfHsAPkTkvK3VxGtDskbyM9tBm55/Cy+NAuXZvtFNo6Dk8+R272TZpy9ek3V1zTHHAqZDo9mz/CgvnZCjnRCU2lWkxSd8zmmv9nDXm6h7oSF+fuVRgt30SJVtJhZKhElBh/N5ThE+2rI3xEmk+ZbG65X+rhHOiHQiufrk8xeHMBdNBl4McapRpinZ7c99ncYRqhoNTxWvAydjW51lkiwZcI70d58U2CadEYht3udj42d5FOp+Y2aAItaHDCzVsSfsUgtxahafdMXr74V4rl5mJvHALLf9epraNiUVdPfC0ZPY7YEva5NpCWWMLjbBuhtrJ0mXR1yKTZYijM8vzxO/XyB0iWNmFtGdbp3xqHmTaI6navaru6L4L7x5dc+967d0a1BSIHwXVTapz2u+HtTn+t3ZpSKhcRh4VKJ8lFJ/nwPdX5mS6hN3NbkLx3HqHaH4skuXuVaGDixBUE+TdfJ8PdGf5q/m7/RRS8igQwEQ89o7Lkaotneesn221xFd7rIiiBz3iT4Wpb1wgj/feUn2TFUYTxVY4+/QqBNFnp5AO7JXGaXvXL1823lMBsVCdS1mPB8kOdMY5BebFHteASBhTyZZuicwqnF+JcbiE6w7bG/A/Hnu2Sez7AwPsxnhu9l3r/IZ5aPcGp+mNSS2BIL8+shHAejkEcNFoh9jWdH+LJvfCzEAZ9rHeJ0Z5jkQpr8rMJd3VxNWrZ5Z3EXmpRO5KgFHn97+Mc5kFvmJ0rPcMTuMhfDTFxgNpzgyep+5ls5es+W+lKSlzv95gVb1ZO4zZtjo8mCTKdoHR6hNWZgTbYYMLp0lMk32rs50RklddGicKqNudLo539vAW6f8bpRWKKbTcS3jvWlojYQUlwL7UmBuEl1sNYakqT/orcn35ZGNZuoZhOxVmHgjIdMp6hfmGJ1ZIKZ8XG+OdUmDk3kSr/t6UsHRnlg8JpocjX0Obk6RBBeG87hik/mvIHZ0eSXEqxWgnNpsZ+zpDTqyoa+PXbuOOTFBUa7AzT35/jSoQOsDmQ4fmEM/5xNZi6B29H29x1Cei7JSJlg0CNJKdJWiC9DJJILcY5fu/gwa6sZyqchf7qNsdYg3iKb0TZvEa3h4jy5SgNveYh5e5yLQyMMvL/JdOE7vBhM8dXafs7WB5g9PoxTkYw/0UY+e7y/Bm7FvM1t3hpXmnRkMlTuMunsD/jw5AWGDMnJxORzK3dzfq1E6WS85RqXbI6y21dNolc7CrbGq9zme0UnCfQCtCHxVkO0sBHaoBOncEKBs5E9UjFKfKmavvo5FRoYVQt5nU2SWhekFhVmr+99MjoRNO8Q8e1t3pgwQrY6uGs+F8+U+VIlg3fRxl/UuJWof/DdogjXpTfs0x0wsYtt9mRXyRltqipkJpxkbSmLtWLhrSfIVg/eQkvlbbYgUYTudDHrXVLzLkbP4DcH7+f46AgXayUq1TQ0LDKXJXZdY9Y6JNtr4PcN0nMRo0NEg1m6w4rR4XUG7CZzcV8b/JVLoxiLDk6lu+WK0DaH8brNNtD3xkchSSPBfOEcOdsib1ngOpCoa9WPnou+Xu5Ia8SrdUyjGN3rgdJXQ2PbedHfHyTNJqLbw6qss/9yCW2ZiM4quhege70tPQ5UucDK/Ra9kYQ/v/95/kL+GSrK4aWwzBfX7qL8tEX2Uoh7fpVkcbmvd72FjfVt3hgVBP3DWrfLwHIVYZroz6VoOkOUY8VA1IAkQbS76DhBN7cLU7+fkEMDrDw6RGdY8IH3HONvDn+Zs+Egn67fz+9dPMLkbxr4F1ZheZWtZbpuG6/bbEZUgtpeZLd5u2wcgnQU3nnjyJQkrka7CSNWjXHToRLC2WCYuWYer5L023vWm5tCr3ibdxmtQSeoXgK9DS/7/O29pW02ARu5rirt0h0U9AYUk16VooypJT7HGqM0KilGZ5voS3OocOulUm0br9tss802WwTZ6JC9kKPdtbl8XwmY4VfX3s8fffsI/pzB5Nk1WFxFfR/JH22zzTY3Yg4NogYLVI8UcB5dY3e2zlOru3hicR8L5wfInTAYXUkQyxWSMNpyKQOwbbxus80222wduj1SyzHaMKlEKRKtebkySvElSWophoVlklr9dt/lNttscxvRmRTBYIr2qOCnp15i3K7wz49/jN7lDMXjgsFvriJa3f5asQUNV9g2XrfZZptttgy63cGba2F2PL76pXs4PL0f7xWP4XM9rFoPvQXDf9tss807TKOFu2BScg3+8x89jrI16YuSclWTmQ0QtWa/BmALK5FsG6/bbLPNNluEpNGAY21MKdj5HQdhGH3JwTBEKb1lvSjbbLPNO0eysgqrFbyzBru/YoGUfWWKDYnR+A4o5Nw2XrfZZpttthIqQSu2Zd+22Wabm7NRyKdVckd117se8VY0D8vlsg4r291aAOySZPtd9OnRxiV1u2/jtrP3/p28/Pyx7XcBNFnXFrbYfhfb7+J6tt/FNbb3kGtsv4trbL+LazRZ11rrmzb1fkue1+npaQrVHe/MXW1x1qcvbr+LDZ7RT/Cw+PDtvo3bzpef+x2yorj9LoA/0Z9+wSV1//a72H4X17P9Lq6xvYdcY/tdXGP7XVzjT/SnX3i9n93Uot1mm2222WabbbbZZpvNyLbxus0222yzzTbbbLPNlmHbeN1mm2222WabbbbZZsuwbbxus80222yzzTbbbLNl2JbK2mabbe5shMAolyGXBstE2yYiSmClgu720EGwLTu1zTbbbLOF2DZet9lmmzsa6ThUfmg3q/dryEUMDdVYW89Q/myR7Pk25nyFeH7hdt/mNttss802b5I703gVAmEYYBigNDqOtnw3ibeFECAkwjAQ1nVftVL9rjx3QJeNbbb5rhgGnSFBaVeFXYU1/nT5KE83d/PVkQdx6i5G1bndd/jOszH3b/gneWU9kP2OO0pxVec7SdBq439rtb0ubLPNNpuaO8p4FaaJLBURnkvtwRFquw3Sc5ry1+fQjRaq2fy+CQ8Kx0FOjqGyHouP5mgcikAAQiObJmNfU6QuNJAr68RLy7f7drfZ5l0l9mAsU2dfepmDziIZo8u3Ht/BpYNZxr44SHpm9o45zAnTRO6aJhpIgyHQUpA4Bt2SQewKmjsgHI6QTROnIjE7kL8QY9djzEaAbHQRrQ7x8up2u9ltttlmU3LHGa/ks8QFn5UHJA8+epJvHdtD4VQeQ2lEt/t9Y7xKxyEcy9MdtLE/usbxe34DSxhIBN/omfxs42cZ1FnSsYJt43WbOxkpSVzNZKrKLmeZfZbBlLnOP93/h5zaMcJ/Ov1x0oaB4A5puWoY9CZyNKZstAnKFMQ+tKcSyIb89Xu/wf9QPM03A8mvr76P07VBVr49grds4q9aeGsO1qqNWKuit43XbbbZZhPyjhqvwjSvhaUMox+KiuN+OOpWLIKWRTSYoTtoEw9EHMnO8fLgKI1dGfy0hR2GEAR3hHfl9TDyORgsE5fSVO5y6Q7AfYVVDCH6PxeSvOwSTvdYC11ir0jOPohodVGzC+gwvKPfzzaAEJjjYySDOaK8S2vMBg2pxRCzHWPNVYhn5273XX7vCIH0PGQ2Q5xRHPQXmLSqSCSuMBk2GvRsC2WBMIxrYfOtwkZqgPRchO8jMil60yWirMHaXSbd0bivJ2MppJMwUq5TcLvscxcxhGRAdrg7PUfW7PKFg2lqYw6tNQu77uKsO+RH78ZsRlgXl0jWa/31/A7xTn9fcN34kOUi2rEJJvIEeZPEFsSeeMOPmz1N9kIHo9GDOEHE1+3hWkO3h44idLuD6vXe5Ye5EZlKIQdKaM8hGMkSpwyilCTy3/iZriAUOA2F2U4w2zFmrYcII6jWIIzAMsE0IQhQ7S5odWccbO8g3jnjVQiE5yFME+E6YFsQ9ge2ThJUt/euG7DC96jtcWmNC47smuEv51+ks8vmNx5+P96Sy8RqEVGp3tkL8NgwK+8p0h0UpB5d5aGBOT5ZPEqiNQhFpGHUjPnr932D43tHeOr0HhpTedJzWYr1Fmp9/c5+P9sgDIPWPaOs3GsS7unyzx76LUJt8E9f+ATM+ow+5eDOzW/5MSBsG1kqkpRz2EMdfjRzBkdILOEBBofshCFjiTilrx62txLCtvspAoNlouE8zWmP5Y9FlAfW+XMTL/NY+iSuiPFFjCE0rtBIIC9NEm2z07L4c9mTJFnNz5W/Tk8bvBiMc643xEv1MV68MIlc89jx2VGsEwrd66HbHWA7J3YrIAyjnz42UKJ5zzDdokHlgwHv2XWGg5lFPpA+hU1Cws0Nvqfa+/iPn/8ImUspjB6YwbXvXMbgrYSYrRBjsYq6xQWPcqBE/f4RuiXJ+ntDRofX+ODQOX4w9zIGCoP+vb7eszWVxy8vfIBTK0P0FlNkzvvYdU3pFR/Z6KLSDsq1MOo95OIKesOW2U6j2Ty8Y8arMC1kPof2HOJiiiht9b04y/X+iSapoHq37ou3jZictJm0K4jBgF7skmQcDNuGMLzjTlHS9xGOQ1T0CUqCoKg5nK9wILXIgNG84VoLwQ5nBSkUpwaGWKuXMAKJcB2EafY9UHqLTlJpIGT/ICVTPpgm2nfBNK5dEyeIbgBxTFJdRwfB7bvfW40QYBgEOUkwlDA6UOe93iyRhumhCufjATplh1SpiA5CVKu1ZQ0VIURfGsuSWFZCWlhYoj8OEq1oqYCqMhDxm/PW3FZkv+jyikGCaSIyKbRjEQxnaI/YtMYlI8Pr7M+vcJ8/wz6riysMHPHagjSFRiJJy/7Pchu1XQnzZGQXgOXhDMtWjvq0Sy4Zw1rvYlbrfW9bp4tOkjszUiMNhGFglArobBrRDVCVKjqKN03xrzBNMIz+uu97N7/IttCWSTiYoTluEhRgfGidR/IXOOzO8oiT3DAfXstp/v3o+2nHDkZPIKNr80RGkFg2VsciHcaItcrVSOu7iXAcpOOQlLO0Rg2CEowMr3NfeZb3Zc7wPkdhvKpQ8WbP1tV1XirMoLTktBZ0ummilMBp+FgthzhlEDsCp2HhOgYiSjC6ISK57ncFIapWhyRB3eER3c3IO2a8ymKetQ9N0B4V9A53ef+uM3x7dhr7m6N4a4rSNyTq0uw79eduThCQWowRymShlQPgcf8cmQd/jydqBzn6yj2U14YR1RpJpfru3sstRJgm6u7dNKd86jsl6r4mU4U6PzrwPPc4C+QlgHX1el9avMed57C9yOF9c8zsKPNvTz9G+FwZG6BSRXU6t+lpvgeEwCjkEOkU3T2DrN7rEBQ06buqTOZqmDJBCs25apn6+QGcNcn0H1RIjp++3Xd+a9gIo4tUivX9gj/zyDMc8ufJyf4G9v+a+iNmR0v8fPLDGNEe/KUI51unUO32bb7xt4mUKN8lTtu4VhNHmFc3torq8n/W7+ZYcwxvGXQv6EccNinmYBlVLhDnXVqTLlFK0JyCqKDIjDV4bPwYg3aTR1Jnycsuo0ZIRr51FYUpUzMgV9hjrfFo+jS1nSme3r+bxV6Ob53cRfaVEm5VUzjZQrZ6ML9M0mi8C098exCmiVEuodM+l35sBO/RNdZPjbPz90qYay30/NJtnw/CNDFGhtFpj/V7S1QPCG7mYFQmaEuTFCN+4NBRdvsr3OfNMG3WyUgBuK9jtPbZZ3X5X9/zuyzcXyDSBpG6Zi7UE4/nKpOstVI0vlZkLIgR7S7J0vK7Z8AKgdw9TWcqy+oRi0M/fJq96RUeTZ9h1KwzIGPAf8NnuoIlDH4k+yKPpU6xMpph9lCJxTDPN1d30gocUnZIyoyoBy6LjRRamSSxh1bXXrR9yWHsayFWtYdxcY6kVn93nnubm/LOeV5tm/aIoD0V86n9x/jnw9/iX/h38Z9mP4SyJcWU1/f6vIunE50orFaMnZJ0o/6jjZoOnzLXcMVLPJO7F+07yKb1XX7TFuGKFJZt0y27tMYl3dGEuwdX2JVe5ZC9xLjx2meVSIYMh0RqpswmH3CbPD28i8uZfVie0w+hbjU25NGE76NyKTrDFq1dManBNv/zgc/yfncNR5hYwuCLQxn+pfsDXF4oEefc1wks3YEIibAthGMTFRQ/nHuJAaONhYElDN7rNuk4NX5lZJ3GyDAytnCtLVzTaRhoxyBxJKaR3OCRaSvNidYoJyvDWG29kSrz3Te924brEOddegMOzQlJlNHIfS32lqr88NAr/Ez+HPJqw0QDeB1v3HfBFza+AWUDdlshEPLJ1LMoFH9VfJSn2/uJPYm/7GALMOw7ZC29gmGA76FyPu1dEf9y/+/zD+WnCL5aRAYxcjPMB8NApz3ivE9rXCL3N5HytWPXNBSOFbM7v8bfGfoyk+aVMXFtbChefz/OSZcfSVWB1zp6Wirgy6mLnOsN8yvnPkRcTGFKgVgz3720MyGJcy7tIZPuaMJfG/46B+11itLGEhZgveHzXI9EssN02WECNIEm66rHA6mLVOI0eaNDSgZUkjSXgjKRNugoG6Wv7RafcQ/TOeXjCXAX7kC5vU3OuzoTH/Av8J37pzm7VqayWKLg2xiL1XdNEFwYkjhlEqYkrnVnpQVAP2QiTBOZzaALWaKBFMsPeAQFTTQZMDRQ4a5slR8oHWfAbJCTCWAwl0QsJamruUCWSJgyI3xxZ2w8MpNB758mLDis3GvT3hFjZAJGS3UMofmF8z/ILwB5t0vW6pG3u/zA8Ele8CZYmNhNYXwM3WjeUR6k1yAERi5LcO9OuoMWmbE6E2aDjBQYwiTSCctJTEU5LFezDMwpvJUIHW3ReSQEsphn6YEs7VHBY6Ub15yqsvn27DTR5RTjq/Hm1jYVgqScpbHDozXez2UfTTc4kp9j0q5wyJm/znAFhWI1CairjZDwdzmeWSgGDI0rjA1Fktd2DZdIPlk+inxI8dz8JLV6Fn/VIL+SgrXKO/u83wMylUJmMwDouH8gUc3Wm04NMgp5lj80QntMMDaxRIRBGBv4oUL2YnRy+w84Mp9j7uMDNHfFDE2v8LGxk8ibGG2ujLBEwqi1Tk6+s0d0R5gcspcYNuu88PAEz+enMStlcmfKuHVF7tkF4nch0qocg9gXaFeRNzpkpHG1GPl7xRcG+6wVOmYVVyRYQjFsNJiwKigtCbWBun6e7Rb84Q8fQa86TFhT+GdTsF6/o6K6m5l31Xh90KnzC9O/x7eHpvj5sz8OIkNBa1hYfHc2CsMg9iSxDxlzi266r4cQSMcBx0ENFuhMZqjvMLnnx17hE6WXmLbWGDYCXCHwr25ANgrFbJzlWG8CAEskZGSXopzB34IO1psh0ylWD6Zpjwp2fOwi/9/p3+VCXOS59k6ON0c4+vRe3FXBalYTpzTFvVX+9uE/4Yh/if9pdC/Z4QKG1nCnGq9XvNLZNNWDDq1xzaPDc9d5YiAiYjXxmI8LqKpD5nIPc72D2oq54RvPq3Ip1g8rStPrPJI9f8MllSRFdClF/rTAXe5cE+vfpIR5h9a4oLsv4NcO/hfusvsb9s0MzURrFhKHhbhAoiWRfuOJ7ssAQ6ySlwk+4IjX/k6AH0lV+VTqCf5ddg//9vwPoWyD3Im35+F9t5CZNGqoCFojwhjiBBlGJG/SeNXZNJUHEw7sm+O+wiw9ZRMlBkaQ9KvQ1e03XsllMD5Q5V8f/Ay7rAq7v4s3uD9G3Hf0FixhsNcygIT9039IZULwJ+0D/OKxx6iuePgLRcS7YLwmjkHsg/RiMiLCv0k+99vFERa7r/pzrp8zycZ/0Q3X32V/nY/ljvH11n4+M/t+jKCIqzRsG6+3hHfVeLWEJCNixqx1mG5TJYXZTZO7XIYgIGk23xkj9rqQcWvUoD2uuStVu+ESV0QEeeiOp/F70ZbRNhWOg1EsgOsQjhcJ8xbtIYPWhCAYijmcmWfMXCcvQ1whsBA3bGgJmpe6U3xp+SBCaKTQFJ0Oe4eXGTI2b47fG3JF9qtUhKEy3ZE0tf0QDYYAfKl9kOfq0zw7O0lYc8jPCLyqoluUhDlBbdi/5o1SIGK1OTaldwnpechclngoT3NKY023OJi+0RPZVDG/X38Px2qjeAsGZq2LaHe3XAU+gDk0SDw5SGNnitRYg7vLC0xYN/EOasGbjDLefjY8ZzqSvNibJNLz7LZ65KRLoCN6OqGq4FgwQiVJ84WVw1yqFUi0IEluboxewbUjHhm+xIRb5bHUKe5/A3tAIvuV3IKb5lneFqSBUSoifJfO/iHW99qYPU16IcZsJzitznc9mArHQWbSxAMZ3FKXA9klWonDV+oHaK2lMFodRKe3KQ5zIk5oNLJ8u7UbNxOx17q5TJVC0dMxa0nCt3tT9JTFIWeeUbOLLwQ5+c4YtI6Q5GXCkFVjMN9iMTII8zZ+PofuBe+YjJYwDNrDJq19IbtH1kjdJFXiVuIKwaDRYq+7SHN/ROI4pCZGyE4VMWsB8vwsqtvbNEV+7xjS6Mvz3SS9UGvdrx+4Bc/8LhuvBjkpOWI3+DcP/CazR0r8s9Sn8FfGMStdxNmL70iltzAMhOeRDOaoPRDwf7H331F2Zed9JvzsfeI9N6fKVSgUMtDo3Gx2M4lZEkllK1mSPbYkj61x+Gx/9rLnmzXBM9Y4jGfs8RpLtsdRlKxoZYpik91k5xwANHIBqBxvjifs/f1xC6kBdAPdCLfQ9XD1Itl176lzTp2z92+/+31/7yO7zvLl/JuXfSZvNPF3tVkmxlCYwT5xa/NvbxYyk6bx0ASdnMHagxpvW42DA4v8zOBzZGSLKauDJwzg6tt9gVb89tz9lJ8Z6v0LAcezise++zT32qev+Pxm4Hzr32DvOIsf82iNKP7Cp5/kAe8s//fMZ/kXL3+W2AmHbd9uYVTryLUyuuuTmhyhM+wxn47Reswk0hLD14hWFx0E7/2LNykym6G7e4jKDocvfNfr/ELxSYqG4tJozLkwxm8+9yjptw1G3mqjT59DheGmdOVo3zPGzBdtGG3zjw78IY+7C6SlDb1yxE2NbBj8x5nHGEtU+IXhb/IRR1NRIXNhjBfaO/ilI5+gux5j8BnJ0JEaIoig20G8i4dtWEjy1GceojWsmH08x0Mjz93GK/rgSNvCPzBOc9hm6bsi/u4nfo8Xa1M889Q9eMsWI5UcLC696zGMXBZ/5zCVXS6f3/4KfyH/LP/DzPfx+vFJUm9byLlVovVSf7wP7Q72yRi/IR8i2i/5VOzlq479deVTVZo/ae7j/3jpC+i2waP3nuIrhTfZZS9xn62u+r0bxRM2rqE4aC/yldFDvJqY4OTkHtzFMYzVCmpu/gP/DuilBa49oPm1z/wyOaPDoHFn80zT0sWzIsbMc+z+7C+xEiX5vfUHeXFhG/6JFDv/8zByaRVVa6AD/46e601DGkjXQQ4W0bEr778Io15zk2ar5/F/C9+XmydetUZEIEJBqC4qckMIPCz22mWGzDoy59Mu2MQUmKZ5c6xWDAPh2ESuRTzdYV+yl4tz2UfQmHZE5GmU9cFf2FuNsGyEbUEmRXPIoFMQGENNDgws8bHsKR5zK7jCROIiEYRcI0KmodFxsBrnDwyRLWgp+6blCt1WzvsJuy6tgk17SGEUOxTMOq4IWGkkMJdsvCWNNbOGbjSJ6nV0FGF0iwgFQoOPJNAmMgQR9Ecu201nY0dCJzxaAzadgmCft8hu66KIC3REV4esRAWskiS+HGGW27fddPxmIF0XLItuzkIPdxgvVNhlrzBsJu70qX1gZKAwumA2BAtrGeodh+fSuzA4wXw4wjm/wCvVbfhLHu6aQXKujZieQ/v+e/4tjeYAsZUEypKsdN/9XilUb9dC0funHzAM/LRJJyexMy32u/PM+bleZPh6pxbHxk9b+EnBkF2jaCjqgYtZMrFqGrrd/hCugFYKuwbddZsj1WFeTFvYVxn/11We9TDBK7VJzCUbsyk4OjzIgDNFM+5QlCdQQEXZBNpg0GiTMwwMxAULresVt73GH4pBq8qA0+CYCypmYljmzSvUlhIMTVL6uELT0SHGJeH/jo4ItKajoaqsy3K9LaF6eaxoMlJiXZIaI5EXrvdGsYRBWhjca0cErFPJHKMdWTxfiqFiFoZlIQyJfp+xEWHZCMvs2bTdagEsBMK0EFbPhk24bq/h1HkMA4RAuzbdsSxh7Mp7ZvgKR2ukZfVyzTeFeA1DnKomKBmUfO+yHxlCkJYGnoj49M4TPPG9+/BOxdi2NIixvIZqtT7QRcpEHD06QHPU5cHhaX4w9RqDRgBs3gpAOTVBY2+O6naToa/McH9ujnu9WcatdYaMJq6wL3/p9NUrRw0EUujL5xnRE/OXDkyG6P8oNPT8hMP7d9IYd1h+FP7Cp5+iGsb4f058kkbFI/uczfY3Ghjl5kVvxigCIemMpVg/YBEM+CyFaU51B3GqGrWyhvbvssirEBi5LCIRp/RQgdUvdxgvlnkkNn3Zx86FIV9r3MMzpR1kTkDqrbVel5lNhrBsoof20hhzWX4Mfv6+Z9jpLDNu9IvC+gBojTO9ylA3h3IMgpcsIsfmq8Nf5D8kv4gMwOiCVdfsONXBaPjIhdXeuHo9XcO6XRILISK6aDF41Y/pgJaOWPFTWE2B1dTQBwV9wnUo7zJp7PdJOQH/Yv5zvDEzzti3Q7xzNVhYec9jhANp1g6atMcitjlrSODMcp7iG5rEQhfd6R8vaN1oUnirS3zRYvHIJL+Q/itX/VwvmAR2TTN5rIX0Q+rH0zyTf5g/3vkQv37fAqWmR+tQFqMtyH5iib80+R0GzDpTVglXaArSvm5hl5SCKXuFiufxzQT4aRuzcvPmYB2EpI8a/NjIzzKVX+cnh14kabQv/Pz11iSH6yNMV/Ksn8hjdC+K1yATYWU6DGQa/My2Fxi1LualjpsVpkx1zWLF68ESPdH/idhZJofXWG4n6QwOEutkEZ0OvJ9ggDSQu7fTGU3iLDXg7VO3TAyeX/iLkUHa27N0MwalfZIwodAStASkBgnajdg2vsaAV7/iOCutJNMvDBOfHyD/Vgvxwlu3bIf7polXHaleF442NEKHSOvLInuuMLHQfDR1muWdSQ75E+i42zPc7vYM498vwrIIEw5+QrDDW2OfLdnMwhUhiLIe9TGT+nbFP5v8Gp90L1119bZ75XUkncnzf4N3RCGk2JyTurBM2oM2tW2S9GSJ/zb7Ks91ivzWwiPEZ0zyh5rw0qEr4hDCEPgpg05RYyd8WsqhFMYx2+qO+zbeKoTropJxmkOSz+48zr2JOUbMNpda5ZSUy6HGKKdKBfIrAXp+aVMKeWGZtIYcapOS2ESVH0y9QVEKUjcpr+9Oo9ZKmBsCyo4iMAxS+QzKsxGhQgQRotUhmltEB/619mGucXCNVQ9wYpKmf20Hko6OaCpNI3IuCOa+yBU3Tbp5zchICT80Ob42AAsu8aMLhGfOXdchorhFp6gw823yRm+bKqrZJOa6WOtNVB/tzGg/wJmvYtXcXr5+ePVzE1qDUr3nYmEZHUVklgZJpxOYrTzT6QGMisn40wF21efEaIFjgyO0nHUyskVS+qRlhMX1iVcDQV62yRkNlK1RjkCbN3GXUyviyxHLJ1K8PW5zNDNCwdz4WyF4rTLO0eUhugtxBl8Cu77xFghoDhk0RxLMD7kcLozSjV18zi0ixo3eTq0lrj/a/E4kkjEzxpgZsSe9whuJERzPwjDfn8wSUhBkYzSHLKTvYRrGB9JJ1/5FAmHb4PQaTNVHTdoDAue+MruzZWwZYkqFKRSODBl0avz53PPsMK8s1jwWdPkztZ+j5iZJLDg3uUzwcm6eeG21yJxsEis5HB7dxl93P829iTl+IvU2SdnbpjSE4IAzT6dosbItQWV/gXjGxTk2T/gBCqh0GGI0faymy9l2nuNBxJARbeS59ahph3DeI3cCYsvtvqzTEJaNnJogynosfTRB+6MNdg+sM2Q0UPTsjCI0LRVRURJDaDyhsTccBpxLrK8UikBH1FWEHxrYPiB6xtUASr+zC0mfpxCc71OfTlHaa2A+XGZbpsyv1fbz5PpuMkdM0mcCrKUKl73e0sBIxBFxj9o2g/i+Ervyq3iyfyIptwJh21QeH2f9oETvafDJ9AkmrVWSG9tl54t8nmvdy1NH9mAvWjhrtV4bxE1UpGWkUqgd43TzLkuPCXL7Vvn0yElysleseMgP8JFMmj4DRvxOn+77RvsBtNo9sah1730QAqNu9f5dFPU6X13P327DH9rcNkZz/wCdjEF5v8DPR/zQ6MmrfkWh+J3GLn536X6OTo8wfjQkttiGyp136BBSEmQjHinOcKg8QrmWu2FhrSyJ8hSpmI8rgsu2o/sNYZkExQTdvI230MZYrVz9WrXuFdCcf6e1QtcbEIZkj7sI3Vu8x2aqiHaX/Guj/HrncWKTdf7SnmcYt9cpGst473ErAh0REPFcN8c/mf5u5tcy5I9p4tM15GoFdZMibzqKSJ6qg07SOenyGyc/hTIvHtuuCbyqJlvVpE41EJ2LM4Fddokv2nTTkifmH+Hr7sXv+SMB+7Yv4BoBrhEiL9mFfDA1w4+k3sITgqS0r1vYjjgVvrNdoqw4+bXk+7KT00pjLddIAdZqA/UBx2Xpur2W0vksUSGFsg2CpEXkCFpFgyApaA1rrKk62USLzw0fZ8CqMd/NUgk95loZzpWzJN0uE846S+48U2aDYePiTntORnzP9rd5IzNG6ewYrpC3rFvnTROvqtlEvHqMmOswmD7At8KDvLFrlO89eITkJX/vBxzFvfZpGuMu/27/5+imHYaWUx+o+l93fWS1iV2Lc6aW51B2FMOZu9DyEKCuXBIzkvzrVYyldcI+LNYStkVjb476mEn7ow3+1SNfpWg0GTN79jctHeFrzXJkczooYouIolHDFSGDhk/xkuq/nnANqStJ4JvEuronXM1ehXWEQPVN0tp7I0wL4cXQuTThPQ1+6d5f4zuNvfzm3IPMniuw57kq4uhpwndEDYVhIHIZVDpOYyriv9/9FEmjTUpuvpzOG0HYNiuPSP7cdz/JPneBz3nLGznSvR2Jlo6oKHixvJ3syxaJpQhjqUy4yQoLRDbN+v0pWkOCT3z8EP9o9E/whEFCxlmJmrzU2U45jPPFxGEGNrE1nA78K3LeVLP5/vIJhUQYBp2pArOfNaDY5YcOvMFD8bPc58xztV2rSGt+Z/EBzj21jeKMJvHsCaL1ElE/jKOmSazQ4iuZ11nqpJhuDuK0BNxAtFRZAiMZkPHauGJjDOnTVCphW7QHHVoDEndVoheXQV2fQIhqtZ7zwsoq2Vc2fIA30qoGn4DCGykWPpXmxaHttJI2B+0lsu+h1wIiWiriqdo+Vp8cITevyb24THTqzE0TrgBojXrzKInDBgmg8M5q9/MpMlr1Whdf8iMpJC4Qk4LMO74XfWQ/5z4+ibJAOZpL4zhv7hvhwXvPMmLWcUV0TRu5dzJhr9Hc6RPELTLHEjD93t+5AhWhZxewltfQH7SlvTQQiTgiFqMzVaC8yyb0BO0BTeQpstvXOZBb5WPZU/xk8vhGN0JBoCOeaBd4pbmdo/4g9dkUNVvxp95+5lI5vpA6xPAlqVkFI8bfHXiaSgG+PPG3EVLcst4vN9VtQIcB+AK3FOHNW6xnk8xHCTzRICnNC7kzhhAUzDr+QIiILKKki7Ds3urwOl/CSxGGRNsWyhak7C55o4ErossuL9KyV6xzPnLRRwjHQWbSkElR3d5LFdg9sE7RaJKRIQbmhvG4ZF3F+Gb9AE8s7sGSij2ZZYp2gy+kDpGTFye3ugr5dnuc6e4A0XIMby0i8CRt++Kb2RcTz3UiM2k6D2yjNWCSS60RaINjjSFmzxSJzZvIRpvID67okiTjMdo7i7QGLexik3FrnYryeKMzwfHaINLfPAL+RhBCEMUUO51lRs0y1iVuFArFySDGoc44J9aLpNYUzpp/U5w/bgob7WplzEW4Dphmb1vLNNAxB20ZRHGbIGlRy5tU9kKY99kbXyIhLM6FIW/7Kc75U/zB4kHagcXwVJn7nbU7fGG3gOt9h6WBkU71+t0Xc0Rpl9IeB3u8zlCmxq7YMuPWOsl32A8pFC0VUNeK5XqS2KrGLW94nt7p8WNju1O7NqYZERc+plDvy/4sdCWFbJ2p5DquCAnQoEXPpeFOX+c70EGIUw7RhoXR6KKuZ87ceKeEZSIMAzlQIBjNoc83L5BQy9v4CUlrRDERKzFslXHeJeoa6AiF4pVugldaUzy1sIv4osZbCRGtzq25b1pfFHE3IuY2on9aXfk9s9wmMe8SWaAsLrOAq1lpfjH1vWTdFgW7SczwOejNstdZJCkCRkxxoUPhpaSMDm66S7dtoBzzfcfxdaTA9z9wQbG0LYK947SHHOpjBo0JhYpFWNkOcSdkX36F/YlFdtgrJKRDoCOmg4CScvm99Qd4ZXGcxnKCxIxB5Bocyw/SCm32xRbAWb3QvbCrfKYDl7NBAaN9a3cvbq5VltZo38d7Y4bxmTQL3QJ/ev9B6omT3GevXRYZfMg9x1cefIM31seovz1I5lwG3Wi+v/xDxyHKenTTBvtSSzzslHBFH7Txu06MXJbGQxM0hwyGvjLDP5v8GkNGgzETDEwkkq4Oeba9kzcaE/zJc/ez+1eahHGL5z4yQqegqXza4+Hhpy8cczr0+J/e/DLhbJyRZzSJb59E7Rilm07ewSt9H2xUzIe7R1n8uS73jUyzJ7HMye4Qzx7byc5fCzDXa+iFa0QfinnOfr/JyK4V/urEyzzq1vi9Rpr/98TjNBeS7C61+jKF5AMjBaQDvujNYwm50T6xR6Ajvrr+Cb5+fB/ukRjpV+ZQ62WiZusOnvAGQiDdXic5RgfxB5OEcYNW0SSMQXMEwmTPMu4LE4cYsOvcF5u5YBvniBhfrTzEV194DKtkkDuikSH8x597nJ/Z//t3+uruGEYiTrh/G92szfIjJuGuFvtHp/nb439CXrYpGgpHSNx3mL4HOuLtwGU+zFI7k2HXSzVktYVq3/mdC+k4yHyOMJ8g7jRJSh9LbowBN/hSt/OSvzr1HQ46c+SMgIoSCF8g/ahXlNZHrYNVq4Xzykkcy0Rfzzu7YW8kTBORTqFjDkufHkB/qUTM7kWZBRc7EP5IeoYfSb5JUgqS8uq1IwpFQwfUleYfnvkS88+NEp+DoW8voMsVosYmqiM4dZb88jpIgXiHA89QKkFYLLBuCpZjJpEj+K+ffJSdD8xyMLPAn889R076pN9R2DZprvPpyZO8nhjFT+fedwWODnx0+MHdGmQmzfQPuzzw8Ck+n1rg44njWCIiJbpIoUmKEFeAJw0sEWMubPPL69/F0coQc09MMPx8h9F6E2O5gsolWazkmB5O8sRnavx44tsXfk9J+fzLpS9zaGWY+Jy+voLR98nNV3hao2p1RBDgVPMsd1MsORn2W5dHPZIyYL+3QDN0OBQb6kVWrOuI/JzvNCUvCd8n4/gZBz8pKFiNCzm2/Y4wTYRpojNJWgMGrUHBF3IzfNL1UZhEWqNQdHVIRSlOdwY4WSsSW5KII6dx0ili27ajpWClm6CrexGDptKc9kfwVzwSC5LYSouoXMao5ZB+EhkIWpFDV4dYQt4Ur79bhTAthOvgpy0ODs/y+dzbLAYZznSLGGUTe2YVXauj3hk1lAbStlCJGGaxzWMDZ9jrLOAJm7qK0Vj3cNYlohvcXeJVCKTnIZJJLCe8rGBJoenqgLoKma7nEUsOsTWNrlRR9SsrR+8UwjR7C9J0jPaAjZ8QtAYFUUzjjwZ46TaPj57hz+WfIy5C0lJgIKhrzemwzeHqCLE5E6cEyZmex+l6++4o3LphNt4DkUrSHnRo5yTdkYD7Rhd5LDfNfXYbT1w5XgY6oqp86lpwrDvCmW4RqyoxSg10q90/edFSoqW4LE8R2GiicP2RH2UJJq01RgyfAGgpExGKXiFcHxVrAaD1DbWyFpaJTKfAsYkKKaK4RXNE8N2jp8maPfFrCEXWbJKUbXbYKwwa7+4yEOiIhdBkJUowu5YhNQvxxQi1VuqrseR6UO/iBiDWy5grMTAM7FgM7drE9gyzUEuRcdo0tUmSaCMF7/L7Zcuw5+LzQQOQNyOCbZrovM+n88e53z3HR5zeMRWSSGuqCjoaWlHEctTkbX+IN0ujzK9lyM5rnFPL6CBAtdpIy8TwNTIQdKOehIy0QqGpK8mZWo7aaoLhhr6li75bEp5UnS4iinBLES8sbKMauBudPS5eSE5KPuGdwpUBLxXuJSqkey06K9WrH3QjAifzOVoPbcNPXnxQGqOS+u4Qr1jlgdjZW3FJtwS5e4rmjgyVHSbO51d5MLvKl9JvAL3BoaUjViPJs+2dnO0U+I3nP0LquMnAMf/ynvMaZusZvt4a5bn6Tr49t5PaaoKRb0PybB1jbrVXxLRepvCGi7ce52sf3c+YXeKgO8s9Vv/KN7ltlPbOAusHLH44e4q9zgL/7O3PEh5NMXBYo8uVXheTd0ym5ugw7X1DVLdbfGzyMD+QeZWi0aaq4OnyLgrPWSQWQuRKeRNl/r435uAA65/dTnNY8tDY0QvbOZFWVFWHr7cmONEZ4vTLE0x8w8dZbaGa7fc46u1DGAYim0YnPBYfTxA+XiObaPFgbpGM1WbMLpM2mgyZVSwUp4Msv19+kIV2itePT+IsmiRmYexIE+lHCD8kSjjofi9IvEWYk+M09g/QGDXwv7vKvuIyP5Y5y0F3jhGzes0dqu90kvyf5z7PUj1J81QapyQZej1ArZUguDI9506g/ABKZcxEjGorxnyYIlAGwlYoG7DMXjradXT70RKSsoMhBG92c5z2B3DXJGJxrZdOY/RKuHqFT/07Xl7K+eCImJpg7osFOnmNmmozWijzpfyb/Jnsy1iiN24aaCyhsIQiKTSWuHrb3/OL35Nhgr9x+McoL6TJv2pQfL6MrDeJ2v0zltwMdBigmvSisp0uwnWIzw+ydirN20AwbCC50qHgre4ov/f6/diLFtuX630VIAm0SUM1qCjFa90RFoIs/2H6UUoLaWTTwK5JzBYkZxTDDUX89BqqVEZsH6d6cIrmoMT47DqfGprhB3OvAVBTHaZDk+da+1h/cYiRI4rUsZtXrHc1bs3euorQ3QirGdIoeZy1c1SGPKBx4SOetNgpoa4WCeMQJWxk3b52AYKQPZPcZJzqdotu7uKP2uMBjx04xVR8jXGzClzb7qVvEIKgGKeyw6S2J+Sf7vo6DzoL5AwDsInQ+FqzGsV5ozHByVqR1HGToRcbmMtVwvBiYZLQUG+7HG6P8cLyJJ1DGdIrgvQbS6gzM4Qbwk5Va8iTIfFwlLm1FG8OjFM0a9xjVe7MPbgOVDZBbZtJe0ixx1mgaLRpzyUZeyXCO9ckqjWumi6g0glq2ywa4/BoapoH7JCGhrrSzNYzZI+2sGbXUNdaLG1SdDJOea8g2NbhgfTMZT9rac0bzQmOVIdJngHn+WO9Lij9VKRlGGjPJUy5NLYp/s7+J5myV/i428S7ZEelHLUoKcVqlOL5pW2U15MUnzHJvVXDKNeJFpd7lbWDBYRnf2jFa5RLUJ0yqU8qfvHAH/FlbxVDnG8hfe1x8mR3iBMnR7DXDQbfUHiLLey5EmE/RdVUhGo2MRtt/K5HRXmEWiJMhTI02jR69RDRdVQ8C3BFhATmgyzT7SJWA9SG57EwZC961S8R5+vBMBC2TZCPUzvoMzpS4v8z9QTfFy9f+qEbOmSEpq4FZ/0C9WM5Cscgf6iBOnL8lgqVO4bWF8ZH7fsIP8AtRbirFo1ijAh51Ts45+fxpm3iCxpZad6Ydd2tQvdchnxt0NSKVeXwVnuc080i9cN5Bo9o3PUIb6aMaHdRSyuodvtCbYxOuVR2SdqjIX9v19P8QOLkRndPm6ZWzIY5jreGSJ/WZF5eRN9iJ5JbmhhqtEPM1TjrdoJKdLl4PY8lIvy0ojnqkGr1LBeE42AUC2BbRLkEUczqWZlYgtagRfUjHfL5i8fany7xyewJhqwqmXcUHNSVz3IkOd4dxmxpRPsDVu3dLISkPuZQu6/L+EiJUbNMXIoLnnrPdLL8fukBjpaHWHhrCKckGDjmYy5Xe3Yn9F4mbzVEhgb1V9L86uzHiC1LCicjnGoEtcZlOSda6Y0XMERHgq4yCXR/5wZ3ii7VnSCGO5SiBC3t4K5JvLkGRrlO+I4IkHAchG3Tmkyx/nBIZqjOLqfXGvKp9gjP1HazcC7PvkoF3bi1HUBuJ+b2bTT3DdAYMWF3k70Da+xyeg4e5ajFudDgpc5ufuvNB7HnbEbOBL1r77fJOIoQ5RpmEFJ4zeMf8xV0PCRTbGCZF8+17Vt0uyZBzSFx0iJb06RPtzFKtV4eYBS9q1WSIRTa0ChTXJ6CtIkRlo3MZRC2TTSYIUg5rN3r0P5og8lChUlr7RLhejnn7Y6O+jangwF+f+leEqdN3HVNfL6DuVq/MO70HUFAuBLjd1YfQqL52I7TvJkYZfELg3grRVLHq4i5ZXSn+541FZaQjFvrRJ7kd+71sX7qIdyKInGmjmh1kfNLm8YXWpgmwovhpy3GR1f57NBxJq01blSwXsrr3Tj/z+KnOb42QPoEZE52MNZqfenec1PZKA6Unkd5t4V8rMzHB+c3GgbJC572c2Gb2SjBS+VJvEVNYiFA9MHOlu50cE+4/Ev3UwihMQxFp20jFl2spqBwVJGYbWPUuohKvWevFoQ9S72RQXQ6wcp+D/lAlYP5dfY6CzhCUlchyzrkd+r38a/f+gRq2WX7TBddb9zyAuBbK17rXeILCZq4rIYp4MpOJ66IoNilti2GU45hC4n0PPztAwQpk+p2i04elKVRFkRDXf7JY7/FJ2KLF45hIS60e7PeUXBQUvByZxtv1saxGxrRbKO6dz7SJKSgNiX5mx95gilnmZ1WB09YF/KMfr/0AE88dx/enGTP7yygllbQQXgx4qo1ut3BO1vFXbbIHop6+VmNNmp1DR2GPQuUSwcVFaE6EWbHh0DSjiwC3d/+QY1hk7H7FhmK15gNcqwFSeLzGvH2NFEQXn59QiATcUQyQXmPyd/+xB9w0J1lv9VEYfC7qw/y/KFdpI6asLJOdBdFXZv7Bjj3fYJYoc7P7n2eg+4c++11IMFCJHiqtYc/WT7AyNcs0q8vw1qZqF/cBS5BhyHh8gosQ355jcIfu5BO4I9le0Jzg3QnwuiEyFYVFnrCRIfhhV0GtO7lzl4DA422NMqWaOPuiMrKmIsaKRKmHdbudWmNaHL3rvBf9v8n8oYmfQ2fyvN59U2t+Hr9IE8u72bm2CBTL3ewV5swv0RUrfXtdrkOAhIzkhfjU3ziwAn+6djXODSQ4h94X2F+LUPw9QyFUCErdVSr9a7X4QrzQivzn/vI07ywazuHz4xS/Faa2FpIvNbYPOLVtsGL0c4b/OzEi/xkcvp9t0E9z5ONfbz51G68RcHA0yuo02cvvnN3M0L23E9SCWr3+bz40L/FERJPXJ5L/3ZQ4FvV/RyeG2HqRBtrbh1VvfNeyLrVZuhln8ZcHLca4a76GM0uYm4G3e5cCGQopVHnA0IbY2iwrUhte4z1hyL+/X2/xpRV2+i8ZnNOBUwHBX719COM/meL2GINcXb+towXt1S8inaX2JoiciRvNcY47J3c8CN1LgyirogYKNRYnrAp+TaF8H46MYPahEkYh9awQqVDhKkwLMVwrsa4tU72OjvnWGiSskPGauMnBSqfQkbRnUsq3yg4E7EYYUxTNGtkZAtLSFo64A8bY5xoD/Hk9C68eUl8UfUKklpXVpXqKEK2OsgwQnR98AN0u90rXnq3B+eSn/V1py0hiFzB9tQ6ccPnXLvATCuL2dYX276eRxq9HtBjg7RGE7SGNJP2KhnZYTq0qSuXI6tDuAsmsTXVF20tbwbnjae7GQM332Q0W2XcKlE06rhCEGnFahTntdoEs+UMA9WwF5HvQ+F6gY3nUzVbCN9HqgjbsS/r1iP8ENHxodMlajSvGkHXWiMjhYg0oZK0lI8hBI6wcEWAjkf4KYPINT9ALOoOc0k/cpHPUt+VpJsWNCYUeqjL7uwKRUPjCesyq7RLqSufV7o55oMs31zaw+yZIvF5A6tS7y32+8EW690IQtx1TXfR4uRokdkhi4622JVexTFCzu4aR+gcsfUUsUIaIt3rPgVoU6JNSWtIb6QN2LhCEBchgTao+w66Y2A1FVYz3Fw7NbpnCykUVKMYFRWSkVy3V+nVyJpNgqyi2zFQSRcRi0Gn21+pRzeTjfdLxmOoHWP4+RiJbOuq+kOhmPXzHK6MoCo2RrPeW1T3gbjXUYRd7uIZArvqY643EZ0uUbV+1b+dsGyMQg6d8KhMxahOSeJDdQaNBkkhN7x9A55u7eXJ9T1U5lMMrLeRlcZtGy9uqXhVC0vkvtUmPVbkiR0HWNyb4gcHX+enUrMXPjNs2Pzzvf+F1V1Jlj6TYc7PYYmInNnAlQEZo4UnuhhCXbB22G4p4PocBQYNm0/EFrFEyNf2PQA6S/4tC5ZX7siALEwLMTFKlIsT5KIN8drFwuB4aPKPfu1HGPtWmx31LrIy15ucrxEh1L7fy+0TopdvpPT1FRRsbHEYGxW6hhAX/ne/0cnDfzf4TQ51x/jFN7+bYDnG1NI7DNulgYx7yEScc9+TxXqsxBdGznKfvUZJmfzT+e/m5HoRnsqy7dtVjEqD6CqLgU2HNBATo4SFBOU9kp/a8zI7nWUedWfJGQbuRhX5M83dPPPqPmLzBrHZNdR6qS8G1PdERWhfoaoRot25rHpca93rOKP0tQWF0tDuIJsOrUacE4EmZ/iMGgY5o8OBqXlOeEVapzw2mYFcD2kgDAMjn0XnM1T2Z6j9RI0DA0t8InuSvc4CI0b9QmegYCPvMyAiuCTd5rCf5O8e/iFqi0kKLxnse6nUE62r60RhiPb7W5ioVovCs8vkjsSZ6Q7yv8W/xI7EGj9dfJbMYIeT4wMshWm+vnqAQyfGIRSIcONZSgW4cZ9Pjb9Fwej5dWali0WXVysTzBweJnNakn51rufKsYksoHSkEH6A3VB8e203nvT5Lu8Euz9AScjn40cJPmXw7PpO5pamKLANY7FEOL9w8068j5COg0inUOMDnP6RJGJbiz+/49UrPne+o+Wfru1n+uVxMmdBLq0T9clYq30feewsnm1B0Hunlda9YsarYBRyrH1+O60hgfmxEn9p5wvsdRYZNyURmjOBZD7K8k+f+yJD3zTZseRjnJwjarVu23hxa8Vrp4Na6mAaBvZ6kjPrORZzGeCieLWEwQM2QBNiTWD+qseSiI3KaeeCLcP1YAmDrDAYMquoVEg3axPFr7db801GCIRtEeXidPMOIhYSFz6W6Nls1JVL8qxGPv06Ct67Cl5rdLf7/ioZN8ZuA92fVlkbE3PkaqbMkLNBB7/q4JYMjPMVrRsOFMK2kekUOp2gPaT44tgJ7ovPEBeSBW1wupynspRkeEkhZxZRm6wF6rUQRi/64WdtgrRin7vApLVGzjAu2B8pNEvdNM6qgbuuEa3OJose9cTp+zpnrXrfCyNUYFBRMRwRgdHbkck5TZLxJJG1CdvGXuKHq9NJ/IE4rQGDj46c47OZt3nEnWXCjKGwiLSmg09LRQRAXRk09cXF/5HuKLWlJN6sSWa6TXTk+J27rveBjiJYXceoN/GWE72FKuBmA0aMiClvBckaSdmm0onRCU2CsDcDjGcqTHhlHk6ewRUmkVY0VJeKUiw1kjjrErekUOvlTWcBRRT1Wqd3FYv1JEfjI+ywV8jJK1uVGldpMX41iobiU/FjKC35lewOgrSDrLxfF9M+ZmP+EYk4pJN08y5qrMMjE7PscRcv++iljTwWGmliq4JYSaE7fTTWan19z+/GnKrjMVpDgtaI4nPD5/iR5GFcIbCETUf5FPhSnwABAABJREFUzEdZpruD2EsWmaNVZLVJVK/f1uu9LdU6utmk8Kamvp7mieRe/mbuLeQNppkpLnqGXa9wvZS46BV9VFtpuqctvPf+yk1FxuPIgQLhYJoz3x+HyRbft/sII2YbbyOiFOlbLCI3PB+1a4OpiBkBhlAoFFEfVWML00RObSPKeAS5CCkEC0GW+LRF6qzCWG8Q0bOFCicGaA/GWPi4QTjg84UDb/JD2VcAeDtweaJ+D53nCoyeiEger/QiJ5vI7ubdEJZJZU+S8h5JZsca++0l8oa+EHE9FXRZjhI8tzhJ7u0Ib8Xv36KbW4COInSjiTRNZK3Ia+1J9rvz7LRaVJXFG8ujNGZTjJc330JGxmJ0H99Hc8SmvA+S96yzPT3LjxdeYNyskdsoQjsVhLzc2ca5boFvLO6l1PAIppPEli6+70YHtp0JsKtNrJk1+mS6vX60RjXbCD+g+HKVWjXFmWKGH3vgLxPLdLh3eIF9iSVqocuO9BqRFoTKQArNRKzEgF1jxOxV4B8Luvz8sZ9iYSFH+nWb0TfaWKUWqtPHaTbXQPs+VGt4p8vU/qjIk9kCfzR+H2bmysiYaUX83L5n+fnM21jCuGZAIyEsxo0u98Vm+KVdAQiHQZXFOH32rhhTL6ThHNhJezROfdSkuguifMBPHHiVjyVPsNdaA2IXoq3LUcj/ufJZDpeHqT03wPizDYxyf1kQXi/myDDBtiKVqRixT63y2aEzfCXzOhlpUlEh53zNoe723i7oksfIGwoxv9oLot3mgNDtEa+dLqkTNdz1GOceztCTSzcmliTyMtH6zryt98ISiuFUjUbBxY/H8MR12KfcRETMJSqkaI7GGHpwif9u+7fYay9TeEdDhVu5ey/kRjtF20QYGlNESFTftYkVpkkwkKQ17GCmuhgISmGc+LwmebYFtQ23hXSSxjaP2qTB5z/zGl/KvsF+a40J0+Ns2OLlzjiHaiMUDofEnz+NbjT7O9fzBhGmSXNYEu5q8eDAPOOmJHZJxHU5SnCoM055PcHAdANjpbq5Ot98ULTuGZA3LYyW4GwnT8GsoWjQ1Bb19TixJQOrcee7Rd0owrao7rCp7tLsf+Qsv7rjdy+Jml3Mx5sPUzxf28HxyiDLbwzirgvGn27AC29d9bibTrhuoIONVKI3j5J4S5KZGMWuj9LJ27x40GVuJMNIosq+5BKS8+lSigGrRt5okDeagOBsmGXt1UEGj2qyhyvoI6d6ha/vo235neb8joWcW2To2wIVd6hPJWjnrvRwjVzBUwO7+W/Sh4Fr58VawqBgxNhmlimOVliNsqTOWCRu6ZXcRoREWCatsQSlvSaNqZDvevAoO7xVfiL9ChNmDLh4/wKtWI1iPDmzk865JKOHQ3jxUN/NqdeLTieoT/ZyXP/21NP8WPIsljAwsVnVIWeDAq/Ut2O+mSA/rUgdrRCtrt6Rc+1vn6RLqKoOVaWJEERaoBAc8weZDXIE2qAVORSsOt8bP8qI2YfbGAN5Vh5O0BqGz+UWmDBLJEXI9ebu3gxkOoXaPkJzPM5gcY0HE+cYNSu37fdfL1prjG6E2dZEgaSjI7Y5a6w9pGmMJbAe2YnZ3kG7KGiPRZi5Jvu8RTKyhSvAEJKTQZ7/svQRDs8Ps70WoLsfvD90vyCTSZgao5v3qO8MeWzbOR5Knr0sWtLSPv966XM8f2KK5CEHo7SGbrX6zxrrDhEhwZeYHZDBJngupHFh8SnicShkaIyBs73OvtTSZX97heJUELIUJfgPyx/n+Td3YVUMssfBrYYYa/X+8J28FWgNKHSjSepcB7dkIQOb9bNDrLiDvBLfdfGzhsYeaDGcrfGx4jQ7Cy/RUTZWTRBbDXrOLVHUFw0ZPgg6DJG1JkY3IG4Z2NUrUwOUJTn27HY+vvZzjGcrfGnwMINWhU+48xSMK8VuUioeHzrDIafLyukxMtvG0c020XppUwp9oNeZcHKMMBNj9X6T6GCD3YUSD6fOMmqVSb5ju7gUdXk7SPNKa4rgZIrccfDm233VkOC6EAJzcKDnEX5fjuXHNe5QjR32ChJJXfm0tOa36vfx7489RnvVY/i0IjHXQVTv3E7ephGvq5Hgze4YEZJIC1rK4TcXHuLMQgEdSOhKzIzP5EdWGTH7LzepNZkm+mKFB4tL/Gj+Re6xA+RtFK4AFHKs3ZekOSr48ZGjfH/87IbFWJ/lvCqNbPnYVRPdtqgrzYPuDP/t575BNfRIGh086TNildlhrV7oDGOg8WQvl+355k4Ovbodb0FiLSwRbbZ8tXdBFnIsfCxLe0jzhYfe4H8a+sZGT+qLz1NVRbz0/B72/Fodo7RGNLd4XZ2GPiwE2sBoSuyaRnb6v0WwsMxe8UgyQTSSpz0YwzpQ4y/v/Q73u+cu+EwCdHTIU63dvFKb5MWX9rD711sY1TYsraHbbSL/6kUadw1aE62XMF5o4AmBZ1m9JgNCcmm+mrAsqh+bZG1Hkt96OMUv5J6nrly8JY13cg1dKm9aIXYputslXFjs2T3NLuBcJWdPCMHOF5MIz6X0+Dj/15cGGC1WGN312xSMK9+OouHw9we+TaUA373wV2keGcRd6yDrdVRnc94zmUqy/mCO5rBk5+en+ZfbfwtXCBwhMRA477DFWohs/rhyH8+tbGfk2yGx77yN7ndnjqsgTItgxzCNMZelTyr++ed+hQmzzE5LYwmL5TDibJjlP574KMX/4OGutDGmF1DV+h21Sesr8RppvZFHogg2OkzNhTHWVZw3W9t4qTxJuJEXGkQG0zMDWEsWQoOIoCts6lEM6D+hog1B0u1ScBrEhX9ZpKSqfKZDj1daUxjdm//gn28TGGU9WsOCzlDIsF3BEWbP8kIHdCILoXR/vHhaQdfHaJmYVZdvtXbiygBXhBhmE092cWVAU9kc84fwZJcJs4wjIqoqoqUanG4WcVclsTXds1S6G9goIlDxGN08dIsR29wSOePiTkNb+yxEESeDAnZFYqzVeukSW8L1MiItEaFABiAi3ffiVSbikE0T5hLUdsZpFSUT2fKGHVwXiU2gI6rKp6QMnq/s4PXFUWLLEmO9gajf/oKKO8qlxazX6ltv2ZidCURkoLUgovdcyEhvNLno96fiBtAadIS+hhjXgAhDqBnE1gdhzWHZSrIeJQh05YrmFhJJWtpYBJhWhDZNlHn1blN9iRAYmQzCdSDmopIxOgWP+oSkU1TsSS4z/I6I8/kc18O+xTF/mCOtUZ5e2sHqcppdFX/T+P9eQBoYiTgi7lEbd6lNSuKDdXZY6+RkRKAlLd3h2fYuXq5tp7WYYHSlhVFqoFvtO26P1lfitaED1iNBVTmc8AdZDLL8+6MfJZyJE5+VFA51kee3fhXsabWR7RphJkZ70KU2aTL7iRxXa4bQzzzdGeV/eP37CZY8ds7e/CRvo5BH59Ks3Rfn3u85xkPpc3widgowWQg158Ics/UMiU6E6INKfB2G6LlF5IrN0Av7+EXjB4hyIY/sPsOA02Clm6Dmu0wvF+CsR5CN+LnHv83D3jQn/SEW/QzPHt7F7icbGGt11Hrpjl7PzcJIxBHZNI3tKZyHS3xsaJaPJ45v5IP3BtZTgeAfzn9frwPOtCJaWrlrCtRuFpHWdLSF2RLY9QjR7fNIpBCEu8cp3eNRm4JPfPoQBxILfDx+nEnTv5CfuBz5/Nf6vRxpjPD6H+5n6MUu9nIJPb+Eeqcv8hYgBX7SoFPQZBJtbNE/Rat3gvNG9e5cjcJreerjCV7du52D9otkpCQhL0/Hk8jezp3QXKg13iTd6qTj0HpsJ9Upi/qkonhglXyswo9kZxiwanzCO8ml7ZMVilLUpaQMfuqFv0j2GzHMrsZtKqYaEeb04qZLxTGyafyDk7QHbMo/3OQv7X+a/c4820xBRwveDlzOBkV+8akvM/isZGq+Z4d1wUv+DnP7xKvW9AwDBJ2NQqlLTbMjNBUFC1FvtXesPcJcJ0M4Gyd9UpA52cX6zpuXRQ40EAHW8BCIITrZGK3o6vmuBhopNEIqbnVR/42yHGQIFz28RYnR6N5gKdp7IA3wYoRZj05e8N35wzzozlA0elHuknJ7farbLslQQ6Teta3m7UJ1OtDp4M23SE4nabcsFkbSKC2Yb6RpdByi5RjZ09AaMlkJknS0xUw3z8l6EatkYs7Oo9ZLffGifWCE2IgQxOlkDHbk1ngkdYaibNGzj9O0dMBSlOP42gC1pSTZSnRXFahdwfWIDa0RQiAUdJVJR9sbQt9ERCDPP/PvOK4wjN42s1a9Fssbhu93BCEJ0jatIUE03uavDz3BPsuil+7T28pUKKrK4mhzmOOVAVJnFc5r0+hu96oNTq79u8SF3ykM48I2u7jKvdaX3o8ouiiON8lCSQhBZAuimMazAiKte7nQH2Z0rwtlbDXET1iUA4+O7nl7vpNA9/yCtZIIRa/xQx/MHddEiAvPtYjFaA2YNMc03s4qf33qWxTNGpNmFU9AUl6URgpFR4dUlGQpSiBnYhRfWIMwQgQhBOHm6tZ4/j7EYrSLFq0BySNj5/jLmZNIJBKbjm4zH2Y50RnCmzHJvb6OqDYIq7W+SaW5PW4DYYhRquOECvNsjv9l73eRtVpM2D2/udOdASqhxwuL26iczWC2JLFlgdHWjJ0LcVfbvf7JHyBy4An4VOEEOafJ6wP3UEgler2u36sb1W2go02MjsBsgwhvzssvTBOjkAcvxtLnhyk9EDEyucRBZ46cDKkrWNWK/+3clznx6gSJcxJrfg5VrfXV1qI5v86ghiBlU58e5Iw9iOFDPNSYGUljHLpDAfu9BQaMOn9ybh/dN7Pkj6tef+UwvON/3w+EEBi5LCIWo/zxcZY/CuZwk7828DoH7AWKG/lo3+kk+ZWVxzi0Moz80yzjCyHeibVNFw24XmQyiUynwJBoxwbjEtERKUQYgVLodgdhWSRm4U9fOcjhqWF271rinF9AWxDEJSoVw8hme0LNNCEZp/LwIO2cJL4c4S12MCtt1Olzt3cxIA2MYh4R91g8YJF+fJl78wvkZMilUaEjfsirnW18o7SfN765h9iyYPB4tSdar2fMlAZGNo2wrN71mwb+WI61+zzCGESxXnvuK9ACGQIK0mcUmcMVZL3dy6/u845LwjQRrkNzRFDcvcr21Dqv+QXeaExgNTW6efvM1vsN3enilLs4eYN66NLVBuodPhRl1eFXqgc52hzGPOERn15H1JpEfTR3XIpRyMNAniDnUd4X63Wh2+czNFLm0YFzHHQW8ERERvaiyefb6M6Fbd70h5juDvDVMw9TXk8ycEjDagki1bPjiyL0JurYaI4ME47mKe2Is/K9XUYHKnx//o0N4dpbpL7pp/i7z/4I9pzN8BsBLK+hun7fCFe4XeI1itDVGvg+8bkcfzq9l6TXZVe2Z7FwZHWIZtPFPRRjx/NtzEoHTp67EDHQfHALF08aPO6dZJu9xgu5A72KXSGhDyJTgeqJV6NzlSjQ+0SYJjqbIszFKT0Q8fc+9YdMWqvssRQSm1Nhr23o0eNj7PgjH2u9RbS43HeRunB+AeYXMIHs+X+5EQXqfOkRKgc1maE6u+0lckaH+myKyae7OCtNVKvVV0L8/SAMA5FKotJx1g8Kfv6zT7DTWeZTsUXS0uX8K/xicwfPHt2JO2Oz/U8XiU6duWuFK4DwYqhCGmUbhAkbbV6MDMpAIX2FCCKMqo3WmsRCBNpggQKHxseZ72ZQpiaICcKEjZOIg2mgXZugkGD5IxCbrLJyPEXmuEd8ycadtW/r+yEsE3JpgoxHYyri/7fjCSbMEhl5+bB9OijyjdJ+Xjo9yY5vdLDPrqJK5evecRCGgUgm0J6Lciy0JSnvixF8tspgqs6e9Ao568p8PqUFldCjHVl8+6X92PUUzrqDsbLW3+JVCDAMcBw6ec0PjBzHEhFvd0Y5WStitqJev/e7xJ3khul2MaptrGaMdmThI6+wfqorzdeWD3B6vkhxWqPPzvWav/TreJtJ0Z5IUx8zqXy6TTFb51OFOfZ4S+x359hpmVctoF6OYjxb38Vb5VE6zxcozvUs1KK1Kxs9bBZUIU11d5zyHsHff/hrfD5+ipy8/Prf7oxReNom/1YdObvSl9d729IGdBgiul1SsyHdN5LU3QQvJnMA2BWJ2+mt3q21FqLZJrrJKxkDQU52iMxqL4ogNypPb7Pfa+9c9Ea3sB573EU4UKec88gfjt+gA+4GG1Y6xugwnZ0D+CmT2qSBn4ZtUwtMWqukZIflKGQ1ivEvFr/IyXKRxGkTa7WGbLR6fob9zvlIpOfRGDUY3bbMULzGk419BMogtmjgrNWR1Sbh3VBwISQqHiPIuAQJzXZnhVGzvOEScZFlP4W1bOGu0f85nDeC6NlDyZgLjoMeyhMlHMoTLvUJiTIhiunLUoF66QACEYLZTiI0tAY1YTZkdNs6u5wlkkabP9m3j/VCnOaYi7t/Am2AsiBIQGbXGgcKSzxd2U173cbsGMSM27OlLCwbmU4iUknWHi7QGhJkJ9aYMEvkjA6Sy62OKpHHajuB9iWhB1bSQzSacEkBifQ8mJpAeRvfvaTiPIyZrG93CBKCMAbKhvZoyCeGZxl2a2x3VskYV6YeVCKP18rjzFUyxJYM3NUGRrWN6lcBcx4he84NrkOUiNgXW+Bct8Cr1W3MrmcYb/U6U33YcoSl5yFsC7VzvOdKMyb4TGKZjPSx3pE2EiEIIgMdSsRGgVtf3y/LJPQkfkqwbaDEgcwi98TnGbVKFI0mbJSaBTqiq0Pe9BOc8If4VmkvLx6fwiiZFM8qvOUAWW3e3NS+24R0XbAs2mMJynsF4bYOo1YZV/RSOTu6zWvdDN+sH+Abs3tILYfISrMvAnxX4/aIV617UdS2IPbkEba94F5c/cKFghLtB71OJufbOt5ELGGwzZQUdZPIU2CZvS2y24gU+uI/l+RWfdFb4f6P/Cueau3k37z4A6Sfex/Hti2EbVN7aISFH/QZKKzx1yaf5X53hqLhk5Mmy1HIEX+Ap+t7OPS7+yi85VM8u4KaniG6Bff8ViAMAzUxTGfYo3yv4v/d82ucDfP89299P+2lBBNvBugjp3opJn20xfF+EYYkKHg0h22MYofvii2QENZltlgAx6sD5I5ovGUffbc0IpBGzyIqmUAPFQkzLkuPezRHFWN7l/mHU18nJTtkZHujxXKPjjboaJOOtlgNU0RIJq1VikabpNDkDIdI1/nMI79MRwumgxwzQR5bhLgiwJNdDtgrJKXgb2rJs53dyMgkY90eazuZTqImh2mNeTR/sMb3bT/EJ5PHuccOsIR9Rfej5SDN3HoG0TLoZgQyTOJWG1AuXzxmMc/c53J0ihot4NIVcphUPHjfSQ6mFtgXm2eHtYonQjJSYQlxxULpPKcCg38890W8Iy7FQwHyrVMo3+/7cUQYBiLuoZJx3EKbL8fn+CU/x0unJzHnHKxSiahPJ+xbhhDIXBaVSbL8aIrCD83yeHqJH06/yjbzymcu0oJWYIEvMQJQftDX463ybDoZSXtA85cmvs13xRYuWGDJjf/08sZ9KkryLxc+w2vTE8SOuez5Rg1ZbcFauWc11+fP91WRBjKbQSc8Vu+1+Pjn3uJAYoH77HXS0mEu7LKuHP6Pc19k7okJvCVN/PAc0cJyz6mmD7m96u28iL2RAoLrPC5aXyjKCHSERF7mfQi9/s0WEmIR4UAKo2wiKlV099a/dDLQrDQ8ZmJZKlmXQPsX7EccYTFhWuxylmgXJPnt2y7maUYK3en2BoYgRGuNcF1EfMPGY+MatdvrnNUYMhgdqLAvu8QjsbPssQxWI5gOYToY4unabl4rjeMta9z5BlRq/b3F904MA78Yoz5mIrNtckbA2RBa6x7usoFV7W6u63kvpESZvcIS04pwLsnHAmioLh2tqLRd4g2F2Qw3fyOCjV0EmUlDJoVKerS2xekmDVojCmuoxb25BR50VkhKg4RwMIQk0NEF14WObtPRLZKyQ0dbJKWPgaaloRVeLkw82SVjNLFFhCsCLBHS1CZ+pKgFLrIrESG3z6x+493XQmCbIQWrQVK2r9l33jO6eK5PJWHTGrSJHBvZHcDyLvpSdscytIY1YTEAoS+rdXMTXR5Mz/Kgd5Zd1vpGF6H3Nj3yRBdUz25M+qoXeOhjAXMeYUh0wiNKObh2F0/YdJQFVQurLqDP8heFZSNsCxFze+kdV9kBEN0AValejIC+Y9fpfFRUXOrxutFNSiQTCNsmGMvTzTu0hjT3ZubZ7/Xyq98Z6b/8wGzMv/0di4xiFp28IMyEDJlVstK94jMdHTIbOSyFaWZqWUTJxi1pjNUqutZAbVarOWkgXYdoJI+fj9EpKg4kFthmrwHQUgFH/AFOdYc4s5Ins6Dx1sJe3ncfz6V9ZZX1ftFBgNHoYjVdZto5jgeSEcO/zP/yPBYGD+08x5s/tIvE2QTDv10jWl2/5YNubLaG/WSeI8Mp/vRLS4xmnyctBclL2sOOGm2yX1rg7XsGOF/cadQNktMSs6WJlSPMRkRll0353gjOm0cLwFQIQ7NrdIa/tu0J8rJJRoYsRyH/+/Ln+Ob0boK1GKnjBk5Fk395DeaXN10lvvQ85j5jce/HepGi2dDjicoBis+ZZN+uY86sbNoWl1dFCKKYQRAX2NblV9bVAd9qD3G4PUb5XJaBszVkpbG5o0bSwEinEK5D+VOTrD4oCIs+H9tzgmG3yt7YIkNWhUmzTNFwNhapkkgrlqM2JWWitCDCYj2K83xzF+tBnOlGgZXm1ZtYhpEkUj1BIIVGCI0he+9W9VCewTc03koH3b49bWR1s4WxWCIuBPNnsvym9QByQvGwc/KqPee/kjjM3gOLLIVpnr9nB9Ugxlw9w3Ln4viXiZX52ZHDjNkljHdsenqyy157lYwET1z/lGAIje35+BmbMG68m8TpK0QySf2eIs1ByXhmGYAj9WFyb0niSyFU+8gnXAjk5BjBSJryLpfSx31M98pImJqNM/7NYexSB6PRhUsaUYhIwUYOrzBkb8fTNNCWSVRIsvTRBN2cxp/sMjKwxhcLs/x07nnSMrgiv3qzUt4bY+CLc3w2u8Ck2eDSFq/nORcK/uHMlzlTztE5nCF7BpJzwYXiPb0J09CEZSNTCSjkOPkTSUYOLvNTQyf4/uRbRAhmI4eFMMvffvlHsN/2yJ9W5F5chFabqJ/eg6twdzyZUdQrzgg0FT/GapQkKUvkrvHxA6lFju4YpOX3JkkhBVqLW1qVLmpNUmfTiNBgullgPe1giS7eJb8zKQVfGjnE26mR3mVpwXS1wJIewKpJItfArkvqk/DQPdN4po8het+PGQGmiLgvPsujzjqWkFQV1JXBW+sj6DNxUguCgVdbGNUOzC8T1Wq37HpvGbZFNNrhr40+QaANKspjrpUhOetjnJghat58n9w7ipQoS6AcMI3LF1gRmnN+gaONIcyaRNZavZSBTRx5FVIgXAcdj9EYkaT2rXF/cYH/deRPGDYvFZ8xoo1oT8+yJ2ItsliKUkQbe+KrYYrTrQJrnQSnlgsEFZcb6kagITMrSMy2em4DtynqosMQXW8gax52JclqKcXiUIZIa67SHIkJM8aE2aKrqzzqnqWrDVaiBHV1cYLOGE3us2sbRX5X41r//nIU6kLxTqQFpqnw7V4TFiFFvwfgABC2RScr6eQFeaeXYlPtxvBWI9zVTt/l+Om4S7tg0xgXfN/BN5l01674zK+nH6J5ZABtuFi2gdG5+KyKIEIYEhEptGmAEGjbQjsGnaJLfSrCGmzz+e0n+ULmCOPWOvtsibyKwIPeM6AQREqABtHvmk4IuhnBl4YOs9NZInmNNJi6sjlTzlFbTpBaF8TKEVZj4z7KnsXWNS/1TlrpvRsbLaWjVAxvZ5W/v+OP2WaWmTQ9yqrNdJBgujuAPBejcCgkfq5BeHZ2U+yg3BXiVbU7yLUKccfi9FPb+cvjP8333HuYvzHwTZJCk5b2hRQCQwg+mTiG3Kn5z51H0Z7bq8xX+pYWbulqjfjpGHY1wSvf3stPTEzyPXve5u8MfhNXCBLCwhGSx72TTNmrRAiUliyl0ryQnKLmu5TaHi3f4oHCCl8uvIkre6vrXgGYQm74V369NcFykObry/tZaSTovpxj+I0Qu+JjzZfQ7c7mi7i6LnKwSDiYIZHsMGQ0+b36vfzG2YdYP5dlz1oN1e70d9HA+0C4Lmv3GMj7qnz32AmsS7ZzWyria8sHOHVimPwZ0LV6L0qwie+BcBy6e0doDdrU9wX8le2vsstZvsx3EeCI3+blzjZOdQb52uw+Gi2XYDmGVZO9CVX1bJysBkgfMg2N1boxZSU0eIut3jvT6tw2OxwdRahuF1mqMvRSluZZl9/wHyL9UJud7hKfjy1eYRgPvbz+vBER6YCkLNPRFxenrohwbyCqejV+ozHAH63dSycyaYU266044rk0Q6dC4tM11GZ57myLTkHQGYwo2L3e7NWuS2a+jbFUJrpNEfbrQki0ZRA5gtDT3B+fYa+9eOXnJuA//dCjLLYdQt9AX+J3rjsG9moGGQiUo3tFjp5CJ0KceJtPTZxlIlbiAe8cu6xV0jICru6XfiLw+cP6vRxrDlE+l8WbN7ArfTyXbHg2KwvG7HWGzOo1c7jHzRY/NvUac6NZ3t4+xEotQWc5TvLkHqQPRqC5WqWW4UN6uo1ZaSNKVaK10mVpFPoONomRMZdoqNdOeji5wC5rnaQUhES82M3zt177M/grHkNvaBInK4hyDbUZVqDcJeJVd7tEq6vITofxP7XoFB2+EdvLD+depmg0SUqFccmk/3G3w2POG7w5PkorPoiwLEQY3tKoQVSrQa2GGY+zTe6mXbT5kx/ax88UniEvu3iGwhUmDzsR0ilfEuFY5mfTx3rH2Fj3nU8yBy7kzZ7//DOdOH+8di8nq0WWXxkitiwYe7mJeOEtAMJ+XB1eB8J1CEZytIddhlNzjBgGh+qjNF4pkF3QyLUq4SYT5NeDcB2ifU3+14N/wC57BeuSvMeOhlMzA+ReN8ic6vadR+/7QcRcKlMOjW1w3+4Z/kb2xEaO7+WRwUPdEX5n+UGOLQyS+pbH4EpE4ugaem6xN1lE0eXbfB/g5b7t78xGa9NobY3YN+t4rkMYO8Bv5e/nvoEFPjoyz9USICTyqrl8NwOF4o/W7uXFF/cgfYHZElhNGP12DXH0zKbq6a4tk05OYxY7DNs9c/lGxyE/u0K4tHyHz+5KlCV7zRTiEQ+6MxsNKi7nAeckP//giat+/1So+Gr5o5T8OGNumZzZZI+zwKNuDQvjQmCnN6e8e1HiMX+Q3zj7AOVygvhZA29ZY5c7fdteWRgGwjRRDkyYJYobrZSvxrAR42/lD/f+z0ivE9/vNwf5pV2fohVYtH0Lpa7c+mg3HfwXPJLzNvGzElGrX3wXlLrlgbF3Q7gu3YEYraLB3uQ6k6ZHSESkNa80p4g9lWR4OsA7skg4O3dHzvH9cleI1wsEAWa5hQuIsx7/ZOi7uS87z8/nniEnFY4wL4vAemZANe3g5rOolei2TPw6DDHX28QUmCc9/t7ADzMYq/NYZpqiWeNRd5YxM9YbSERPkJ4XqldbL7ZUQIBmITRZVx6/W36IJ4/tQVQssmfBLUWYldYVPn2bhvPdQDJpyns9WkOCbW6TkgqZbWTxFjTxlbuvk5QwTaTnoVNxbCckKdtYG8v+tajNi90h3m7vx16wSSxGWOUOahPmZF1BGOJWFeGawXw9zUzYSwNpapOONjjWHaYUJfjd+fuZOT6Is2aQWAiwSz6i3uxVuyu9Kba93hOte2OSL3GqiuWlFIel5o38ABWrxLihrhqBvV4CHdHQAauR5I8b9zDfzVIPXJrRlZN7qCSvHpkifUYiA43Z1pgdjay2UJvEVko4DtLzCAsJouEue4dWcWTA0SCg3bI3ha/rtTauJfKqKSUAOemzL7ZAxfYYMqskjTZDZh1XmFfNob6Urg4u6651qjtIaS6DvW4QX1TE1kJkrd2f84s0eq3REx5BXOOKEEtwRSH3ZV+55H5IAePWOvfm5mmGDu3IIrxKe85y1+PUPcO0hg3c7VncezMYgcZqKmSgic1UexHNRhNVv715pFprZKCREfjKJCRiIexyLkxxqDZCbF3hrLXR7c2XbndXiVfV7SKmZzBMk0m9k+rhcX77wXHu/cosB515xo0Q75LIVcFpcHzCBl3E7dxgG8X3ie524eQZTNNkamWY7reLnB4b5YWP7MbMd/gfH/xDfjSxcl3H6uqQc6FBRcX4g8r9vFUZ5cwbo+z87TZmpQ7rFWh3UP20DXaDnF85dycLtL9S46HhWR5JneOQX+DsTJF9T68hyrW+Ty6/UaTnoSdG6IwlyXjrZIwWcdmbXN/08/y9N36Q7pLHxDMh3rPHe92A7gLBptodUkdKeAsep6dy/PH2A7SUzXS7wGonwetHJ7FXTHJva/Y9vwBdH7WR5xttApumG0WHIVppUmfaBHGP2rY8/zb5SfYkl/mz2Rc48AHcu0rK53iQ5sn6fn7r9z5B6ozGWw2xS1dWGAut2VcuQaXWq2QPQ9AK1Wz3dUXypRjZDNFYkfIej5+87xl+JvsCz7W389XyR2HVuSven6tRNBy+P36WCN3btRMCC+M9hWugI0oqpKkkaiOP/Fsrexh+ShJf6mCfXkGVKz2brD5E2hbdvaM0h20Y6ZCWAfFrpAxci/tsn6mBJ4m4asYAAIGG9SmHjrboKIuOtjjVHeJba3uYr6YpPVkgeyKNd7YKRxu3d4ciDDHaIVbLpOq7lKIu32rt5I9WD/L6iW3sPVKBU2eJ+vRv+G7cVeL1/Hab9n3M1RoJU1Ifj3GkNYorAlxnkSIBTa3oaij5Xi/Z/H11BfgAp9ntortdjJV1XD9A6DyNMZdOEOON5gQPOrPEpSIp5IWBBiAgQmlNXSsqyqSuXE76Q6yGSd4oj3FuJUdsWfZy9Kq9ld5mn8yFbSOSCfy0yWRukYPJeeqRyyvNKYyKiajUUfVG33rRvW8sE5WwCeKSmBXgiotd1zvaotOwsWsSu9bdnIV31yKKEI02phDYpTjPVnbQCS0WGikabQd30SK2rEksdAln5u9awXEZWmE0urhllyBhcGq1QDu02BvbhiXOINHYQuEILjgwnKerAyoqRMFlIgRgNsxzqDPGW9VRvEVN6lwXe6kOK1fvpqPbHdT5CE0/RtreC8Mgck0iFyacdcYMC1+bzLczGF1xhb1UvyBUzwZSBJKlKEFOVklL+zLLvHdDIq8rQn/edu/8G9XSgkPdEdajBEoLAm1ydi3H2FqAtdpEVWuoZp97Sm94GqtAMh2mKRpNhvAv83g9n3p3NRxh4Rjv7aMxrCMUHSS9hdykVaIeuSSsIV4byGLXTOxKDHG7myJFEbITYrYVs7UsL3aHeKG2gxNrA5jrFrLZJuxszuDW3SVez6M1enkNq95kIDbBb+Y/xq8VH+ErB9/i0eQ0T1X28ubaCOsn8+w43sJaqqDqjdt+mqrRRPg+TrvDRDlPkHH5w+pj/NbEQ+zbvsCfH32WIbPKfquJKwyOByYLYZbfWXuQZ47v6iXirxsYHUHyrGbbgo+9WkKtrvesPTbBVt57snOC8j0ZynskPzZwmL3OAj//3M/gvRVj9GjYG0A73c05mb4LIhGntt2jOSzZlyiRkyFJ2ZusIi0hlIiwfyfc94uOItR6CVGtse0PLOYP7UIojedrEpHGXq8iWz6UqkQfBuEKPQ/rmUUytRapE3FaJ5M0kgn+8YEx/GKI9EJins9Ufp1/OvnbbDcv5r1+q53jPy09zkorydxyFt25KHhk08ApSewqDL1cxZhfQ7fa19ypuZOFJzcF2yJMWESuwEAREPFWY5zXFsZwSqI/XTq0wqh3ia05xGct/sHpr7ArvcpfLH6HfbaPhXHdIvbd6OqAX6/v4qnyHpQWKC2Yq2eoPTuAt6J7BUu+ZnQ1wD0yh271/1az8gOco/M452JE1jA/2/0LxPJt/syu15mw15m0V8nINkWjy7BxdWeF6yHQEadCRUW5vSCZiFgI0ygEQ26NBz91nMbjDuf+cDujLxvo2zhuqWYbeXaBeCmB/yuj/I/DP4Nd1WTLCrfUQa2Vbtu53GzuTvEKvdySeh33bJLMsQFaZYc3RsZImR1eWxmlfCZLYkZiLVdRa6U7kjOpAx8d+L3V69IyVjxOIXcPtYrNMXOIU/khAsdkymwAEQthgZPdQV5fGiNxyMFsauIrCrOl8I4tE56d2ZRt696NMBujPiHpDgccdGcpyhbGnMvws03MlRpRu725J9RroG2LbloQpCBnN4kLeSECHyFA9dqgirvt2s83MgF4/Qje6+/4MdCHEuOWE1WqUKkiTJP4GY9EMoHZGac5aOKnLfy0y9sTNqvjMbaZF+/Q8e4wb82NElSdXivoxsXnxWpAbC3AqgfI6QXCSzpy3Y1oY8N2zgJDKJTWrHQTtCsumWYvP7Av8QOsZohTMTk3n6fetfl8NsdOa2Ejf/P9iVd1yWwRaMVbzXHeXBhFa1BKEK7F2PGdNtaxOXSzeeG93DR7eSq6UICXGUzjp+K0hk1eLUzQSDpESEatEpaoUJDR+14EdHXIUphmKUyTMjokZZtK5BFpiSd9fnzgJYaMKn925Be4ZmLyLUIHPlHZh2qNbKTIxGOIThfdbIEfEDVvfarkreKuFa8XKNfIHkuQWLAptYf57fQw7joMrSnctS66WuubKKX2AxKna9hVD7vq8J/OfBblaMKEQkuNWTcwuuAtQuZkF6OrMGsdhB+i77Kcz/M0hx06B9uM5qssBFmm9QDOusBcqUH19kfLbxvlKvkjaZoVh0OfGmEhK3CFjyfgVGcId8EiMacxqu0PpZj7sHLBRgtInK7hrruEsV7f9vYpl59Z/iso76IosVcNUjNgtjXeio9xSTdB2Q4xGl1Ex7+YDnAXo7IJqttN2oOKSEtmI8kr09vIv2CROttLN+s7tIZyFUtrcmEaGcbo5Ar8z/6X+Z2hRX6g8Do/nLjS9/VqdHXAr9aneLW+jfVunJVWEqV7YsqPDMqHCyTPglCABruusRYr6FarP+/NDWAtlikcNujOWZwrbed0fDv/tRhBMiCe6jCeqWBu1BRINPtTi+xwV9jlLPGw7V9V2L7uK3619BhzrQxvzI4R1WywFYYTEbUNzJKFFvDbE/dTSDdInJN3bqdMK3SjAUGA9oNe6mIU9X1ntHfjrhev0eoqYr2EDQx/0+itfFSvnZ1Wuq+2HnXgo986hikkeSnIG70XRpxvAXvBfkNfENsXPNn6NWrwQRCC5rDkp+95kaTR4ZxfYLpdwFvRqNmFnu/m3XjdQLS2jny2QnZilNM/lOfseJa48MnINqdbRZJnNenpDqJydy5atrgG5220ul14q44UPeMfRwriQMEwLowXvY/rC9vhV3QIuiS/8W59jy6lm3Oo7VCYgy0iJNNBgdhRl4E/OAXtDlGfCrRobR3WS4hpSe5FgVEssNCZ4tWJFOrjgh9M/Ml7Fl8B1FXIfzr3URaPDWCXJPHFi76lMoIdb9YQR0/3npmNOTLa7KkiG4TnZjFm5olLQVxIhG2h907SLXq0CylmRzKcNxLQEt7aM8q2kXU+OXCKg7mXrypen2vt4vdefhB71WD4dUVsqUMUMwk9C7MZ4SyuoQ2D9YezVAcTFI/dwSCZ1r3dm7uIu168AheKOm5nrsn7Rvc84bSiV9HLjTUFuttQJuTMJh1t8mZtjDO1XM9sfpOvGq8LFfWKZE6P8oup78UyIhwj5MTsIBNrIWats+kjIlt8APRF/8gLr0IYfqjHi3dFCNho+1sO4ygtMDv0Wqf6fn+LtEvmBd1uk1iKQBi8fGw7f8X8NPI62lzVQ4eFE0USMxKnovFWowuTi4g0RrVJ6Af92y3qg3DpvEpvB8MsN3GkRCgHtIne2NLXBijT5VxjiP9SSnN6vEjMuLIg+IWFbcTPmjgljbvSxSy3kG0bo2VitANEvYUwJN5yEhka2OXu3T9n3UY+HOJ1i02LMmHcXueV5naeP7QLZ9lkYn7zuyhcL2q9xK5fdlEpr/cvhGBvpwbLq+hOd1NanGyxxZ0kCnsNTiwZYdU0UaO5qURFVGuQfPIEKcdm+BsJ5pPbrut7ItLsqy1Dd8NS7rxQPX/cdufD4d4BoCKi+UXE0gquaeLalzgKCEnRddCOBZbJmjt6VZP18XaAqJ1DB0Gv0NH3EcZG0wete5F8IfGqNTzT7AUi7rZFwR1kS7xu0dcYPpzsDjLdLGCvGbhrYLT8u64w7VroMCQ8O3OnT2OLLTY9MlAYbZPQNjlTyyEAq70JG1qoiOh8cd0NdATTXNur9MOI7nY/0C7F1Z6aqx0vqmztjt0KtsTrFv2L1ox8q8pvlL6A2dFsO9fCaPqIuf5r4bjFFlv0N+7xJSb9ASJHEqSKaAHZQ6tbBY9bbLEJ2RKvW/Q1+vUj5C6xS9qKHGyxxRbvh3BuHjk3jwTObxJvCdctttic3FivtC222GKLLbbYYosttriDbInXLbbYYosttthiiy02DVvidYsttthiiy222GKLTYO4kZZ4hUJB++tbWYcAdl6ydS96dGjiEr/Tp3HH2f3QFG+9emjrXgB1ytrCFlv3YuteXMrWvbjI1hxyka17cZGte3GROmWttb5qkPWGCrYmJyfJlrbfnLPa5JQnz2zdiw1e1N/kUfHZO30ad5xvvPKbpERu614AT+jfes0l/tDWvdi6F5eydS8usjWHXGTrXlxk615c5An9W69d62dbaQNbbLHFFltsscUWW2watqyytrh7kAbGru0EQ0k6eZvGsIGWYHQ1MoD8oTq8eQK0+tB06Npiiy222GKLu40t8brFXYOwTEoPF1i/T5DcW+Kf3/PruCLgUGecGT/P7/zKpxg/He91Vomiu69/9xZbbLHFFlt8CNgSr1tseoRlI3MZSMZpDUnUSJvJTIm8bCPRGEIRaYk2QLhOr593u32nT3uLLba4E0gDGfcQpolIJdCeC0GI6PgQRWjfhyBEtTvoYKu15xZb9CNb4nWLzY00MIYGWPn8OK1BQeZTS/z97U+yGqb4D6XHWe4meW1xnFbNJVPVRKMFZKWJaDS3Uge22OJDiJGIEx6cws9YLD9s4e9sw7pDfFZitjSJxQizERE7vUZ45tydPt0tttjiKmyJ1y02L9JAWCbac2mOCNpjIZ8tzPJ4bJanWpMcre1npZmguRzHrBkYHVCOibRMEFu1ilts8aHEtvAzFq2iSWeyy2d2neSt7AjrIofVEIjIwHElzlLsTp/p7UUIEBJh9MZVAFTPsklHaiPVSm2lW31IEObGM2AYCMMA1asV0UqDuvONlbfE6xabFnN0mO6OAarbHdIfW+ZzxRlKfpy/duaHeevMGJkXbawmjFcjjG6Iu9RErlXR7TY6DO706W+xxRZ3ABGLUZmyaI1o9mxb4ocKr/BIKs/bQyMstNO8fm4cXbExumkSp9yecLvb0weEwJycICqkKO9LsPqoQhsa2ZFIX5A9AtmjDYxGF1bWwQ9QrdbW7tXdiBAY+Rytj0zRyRpUdku6oz7OgkXubY1TiYi9epZodfWOnuaWeN1i0xIV0pT2OtS3w/++4xt8JrbEn5v+IQ4dmSD3hsHArx1G1esXPq82/tliiy0+vOiYQ2tEo7a1+ezAMb4Qa0KsiUzPshi1+DepRzlUHeHMsV0kXQf8oLfYvYsjjsIwCIYy1CdjrDwe8cT3/DNyUvJ24DIfZvm72R/FCOK4JRev40O7A90ubInXu5NMitX7LNpjET/++DP8g4E3+F/WDvIryU/gLViMn07Clnjd4kYRjoP0PETcIxzLE7kmypYoQxB6km5KIiNwqhFGV2M2Aox2cEG5iSBCLK6gGk10EPbFFsB1IwRGOoVwXapTCSoHFPZgi6ayORR4vD0/RPqYSXI+gGAruvphRpgmMp1CxGK0DgzTGLXe9fN2XRGf62A0u4izC0S12m060y1uBzKZROYytCcyRGMd9gyvMGX3JmCJACAuJPvcBQBOxHeB4yDU3Star0AAone9lpDkZAfMMlPblznTGsEpWaQLQzhVReIVCBeX7uz5bnFTkK6LsG0YKtIdy1AdsWjv7TA8WOGAN48hJFmzic4G+C0brDsvHe/8GWxxw8hUCj1apDUSZ/6TJmEhwEr4xNyAgwOL/DeDT7Mapvg3s59gsZKisxDHXfEufN9qwvDTJvLsIrrVRrVad/BqbgxhGDAySHcgwcojkr/z2d8naXRYDtK82Zwg/pLH6G9Oo9ttom73Tp/uFncQEYuhto/QKcZY+Ytt/t2Dv0yEILpGb5b/uPJxvv30QWLLccb/KIIt8XpXIYaK1O4pUtlh8GP3PMMPZ15h3AwA98JnEtLhy/FFHnFn+Wrhk4i4hwZoNEFvokX+B0ELIgQSybgJI3T5t7t+leoOi6dae/jqmY8ws5Bm9+oAbInXzY80kPkcOhVn7SMFVj8ZkC2W+b/2/QH3OyukpUGkHSbtNXaNL3OSQZRn3+mz3hKvmxHhuXTzMdp5k2jIp1Cok/ea5JwWj2VO85jTpmRVeT0/w3FrkONa0DYvFh8EDYPGZBzPGsNcb2Csl9F+gGo0+n9rTEjCdIxOwSLIROx1FokQvNUa50wzj13TqHKll4vV79eyxS1F2BadQozWgMlErsxHXQOA4Boi5GT6FE8N76ItHPyhJE5lCN3pXvAF1h/WxZA0EFL0dnu8GBgG2BYIgbZMMI2e1VQYQdcnWl7pr1xI2Ss4ibJxGqMGnQHNpLvGoOHjiSunwLoKqSsLGdEbQ+7WyKsQCNvGyGYg5tIadGjnJUayi9GT7EgkEhg0DAYNmLFXiNs+606ElmIjXr3FZkZIgc4k8QfitAcFhcEau7Kr7LLWGDZ6ukGh8bVBNzLRkeiLuXVLvG5C/IkCCx936AyH/PkHnuex+ElcGeCKgLzsYokYOWnzM9nnqadtVkaSlKLEhe/XoxjPf2yK5XaS6TdHyL85gLcc4D5zFNVs3sEre2+EbVG6x6N0ULF71wJTVo1jfpY/PrufxmKCbUsh6sMqMra4nHyW+U+ZqG1tfnzgKJFWKDTqGpnP3+WdIv7I73K4PcZX44/hzU6RmNWkzrQxKx04eebDJ2ClgZHPITyX+gPDlPaaBHGNPxQiYyHjA2WG4iWmK3nW1tI4Z1ym/r1BeG72Tp95DyEwinlIxpl/PMm+P3OMfYklvss7SU7aGOJy+bUctfm/1z/OocoIiXOg18s939fNlFp1HQjLRsZj6LFhZr43R3tA4U7V2T+wxEczZ0jLq8vS2SDPzEIec9HGaFW3agjuAkQsxtInc5Tvi9g2tcDf3P6nDJlVRszeMxDoCIXirdYEMycG8eYNZL3MnX4j7ox4PT9g3Cy7og+ZfUeQNOkMh2SGa3wxeYiHnPM/kUBvpWQJg52WoJfoWt34Z+P7OuJ7E0eoKJtf8H+S+voAQpnEbBv6XbxaJp28IDbaYFdqFU8IAgwaJQ93xcSqtz9Uz8K7csl7Jq4xGQE965Pe/9j4701+/4RAGAYq7hKOdrl/bJ4pZwXFxeuKrnKNw4bN98WXOegs8J2pncy6OdAOdsMhpsEwDDb5nbk2l4q4S8ZlaVuIhIdKxmgMGzR3BLiZDp8ZP8OwW+UnMi9xwI7xzbbBH1Qe4A+te9Cuc5VfcIcQEhFzUYkY7UHNXxn+FuNGg0HDxhLGhY+dfzbqSnKoMsLplQK5qu41Koju9DR98xGGBMchSrs0dgQMjpf53MhxPp18m6LRxL3k3lxKV1notoHZFBCq3nPTj+OFuIkx4X68vpuIME1aQ4JtUyt8bugYn4mVcIQF9FIDAiK6WrHcTWGvGzhljfDvfD3JrRWvG9sSQoiLXmHDAwQDSaKYQTdjoq7+jtwQ3kqAe3wJ3emgKtX+2rK6BXRyBlM7FziQWaRotDkvWKEXOTgVpGhqm9UwRUddWaTiyoC99iJp2eVAbomn9iXRIkbeufN5LNdCeh5idIiwkKS52+dndr6BJSL+dflBvrO2k+zLFumzAfbsOnf3X//dEZaNUciB6xAVUgQpm9qETXk/aOvKQdhoCWKrArOlyZzysdfbyOXS5ivEEAIjmYSYS+e+CZYftukMKD61+wgPJmeYNNe53uEuJyN+bPwVjueH+IPoPtyShQxtPOMmDFZ9iHRd2DlJlHLwszZ+0iCICbpZQeRCezhCxyNGRpb5eGGWAbvOPbE5MrLFoNFb8FSiOHOtDFHTuuAN2g9I26J5YJDqdgu2NxgymmSkvCLiOhO2eaM7wguNHZx4bYL4nCR5rnXR2/QuQ6RTqJEizVGXzFCFB4tz3OvNMGlW8QRIrj4XPOxN85kH3ubQxDDrcwVy7gGMxRLh/MJtvoDeAhXDQMZcMC++2yLuEQ5m0Ka8IGLDmEGYMNDXIWqF1qBBKHDWu1jTS+iu3ytwvotcJy50psxn8AsR9+bm2e6sbiSK9OjqgH9duYdvruzlxNtjjL8c4qx30ZXqtQ98m7il4lUYRk+8bqzyhGnS2p6lvNvCT0J7LATzgz8IiZMOo9UsstpCtNp3v3jNSn5u9CX2Ogvk5OXR67XI4rnmLsqhx8n6AM3wykEobbcpDtcYMds8mp4m2Cl5urkX+li8Ci9GZ1uW1pDFfTvO8P/Nv8qv1qf4d2ceZ+VMnr1Pl4jePkF4lwws7xdhW6jBHGHSoTrl0hoShA/V+caj/4pB4+Lf9/zk/XzH4ZeWvovT5QIr3ymQnLFIa735CjGERKSS6FSc5YdtfuLHv8V2Z5UD9gJJGWy8J9cpXg2Hn01PE6ROcnT7EPNnxzHbBnHz7syyEnGP+u40raKkMQb+QIiT7fCR8XOMuRX+bPZFdlu9Z+d8Vb5xITobB6ASeSw1U4i2RER9JPYsi8oOi+oDXR4bn2XQkHjiynHubJjmD0v38drSGMVXIH2sirG4RniXpQucR8Q9OiMezUHJPcUlPpk6zv3OAhPm+RxHddXdiYdtnwfHnuC5QpJf2P+zCJUkqzUsLN5eUSdkT1uYJiKTRtsXgzRBIUF5j0d0fgNAQDcj6Oau//xE1DNeSJ7xGGhkkfU2wvc3ovB3x06vsC0oZPEH4pj5No8mp9llL122sOvoiN+eeYDyq0UGj2q8Jw+jWq2rPhu3m5s2GgvTxBgcAMdGeS7Ks4hiJt2shTIFflyibGiOCDrDIcILKebr2MYHHxzmdZ7lRopYKUE2CNGLy5vPAupGEGCI3gQhNx60qurQ0ppvNe/lqycfptO20VUb4V98ELWkt1hIBjyeHWHKLJGSbbZ767yQ6eBPFLClRFdqPQeCKOqbhYAwTYKkiZ8QeKaPJQwCbdDs2oiugDC6KwaUG0IIjEIBEY+h4zHCTIx2yqI6ZREkoDOgiLIBDwwtkZQC55LilPPio2g0uTc5T8wIeGpHGj9pAmky7R2IZrv/im/eDSHQsjfOjNklRs0ySRngiZ7tz43QK1TRSDR3RVWKEEjHActCDBZQaY/Is/HTFn5KUtovCLIKM99mJNNgOF7jYHKeQbNKTkZYwqActVhVmqUozmvtSRqRy+lWkarv8vbSEOFMnOSs7HmA3mFkPI6YHCPIeTTHNIODVabiaxjX+GO+1p7kqSN7sJYtCss+st5Cd+78ddwqtCGJbImyIGYEePJikdZ7IZHkjSZyW5OyimN0k2TXxtCtDtF66bbMu0YxT7B7lCBh0hwyCeMX/65BAtpD6sJOkxYaEQ/xktefr66UQGtBOeERxnJYTU18cRCrEeLMlIjmF/tqfrwhpIG0LeRgkbUHc7QHBNuLM73xUgTAxYWAAhodB7sqsJoRRP0zz9408SqTSRoPjtEqGj2BOhAhsj67RucpuE0+njnJuL1OXPgkZQcDjSfD635h3o1DO4Z46qG9PL0wRbM+SLzro2r1vi8+ulkoFNOhzbQ/wC8f+Tgj/87GWe8gKxVE52JnGB1zUGmP5nicr4/u577YOUasMpPWGjOTOV5+/CDe0gi5I0mM+TV0s9U/XpeuQ2tA0h4SDLtVTAyqoUezGsNuiN5L9SFD2DbB/jHq4w71cUl7T5dEpsGPT73GHneRvNEgI9ukZUBSXp6HGG1shW43DX42+xr1tOaL2cPMBjn+1bZP0ckMkFiMSDzZ6J9n4L0wJJiSMKZ5xD3HiKGxNgS7dY0cvg8LwrSQhTw66bHy8QKV3cBom8/uPMSQU+Ox+CmGjBqOiHCFwhI9z1NLSGKiZ7P3pp/g2429PLO2g5kXxrDLguIbXdz5Gju6dfBL6K5PVC7f2YsFxOgQ574vT2dQ8dDDJ/ixgZfZYa1e8zn4jbMPsedftjFWFlCVKup8Y4K7FcskjPXSQjJWi4zRwrmBRdo2M+AfPfg7nL2nwD/PfR4YxVv2sV5u3ZZ5N9g9yqmftIgVW/zk7lf4iHf6ws9sEV0hxi2hsN5HeVlLm1RUjNP+IP/x3EeZL6XIfX2Y4tfb6E6HqFrrGzF3vci4h0wlqR8cwPyzy3zP4DTfl36N+2wfiXlZ2kCkNc1SjNGzEbHlDrqPdlVu3j6YbfWE67CgPRISG2gxmK7zycIpBq0qn/BOM2ZcEtpH0dooFDk/RAQafP3uERJDaCw0loCkNDa2gJaIkpK1fIJTmRxeKoHw/b4vPrqZdLRFJfLwmzaxuTqslVGlysW2hhvm/lJKjE4MhcBAbywmAkbdCk8PKLSUeKsxYkEWuSb7xutSmwZBXBB6GkeGhERUoxg0TYy26K+tyluNNJCug/BiNIo2zSFJezhibLjEWKLCfd45xs3KhcG7pQ1OBSGu6FIwDFxxcYCyhEFWGCRExEFngRGrzK+mHyFIuQRVCe9S6NVPCCnQnkuQcYk8RVJGOBvbw4YQlw3I0CtCWI4UHW1goXCFwhWQlv2bOvNBELaFyiUJ0zFagwJGW+wcWuV7socoGjXGzRaeELS0pqkkHQ11eoVMdaXpaMmTjX28uD7JmaUCyQVBbE0RO71GeObcnb68K9C2hZ/RUOiyM77KpLVGzgiQl9QHwMUdq2o9RnFugfAOdw26FQjTRCbiYJoI1wXLpD2SpJ2X+GlN1mzhigBbCCTiQvHaO/OCL8XFYI+1QtGoYae7+Ik4dt3AkjepCPs9iGIGZtpnPFvhI95pHnfrRO8ZCLvxscwCHBGwyzrB8eIQh60RlrIT4MV6olXITef/KwzZW7y4kn2ZFT6ZPMa42cIRF98NhaKjQypKIroGZlMhOyG6j/K/b554LWRpfE+DH939GgNWrRf1MVqMmL3E3oqyWY0urnrPBsN8p7qbahCj0o3RCS3Wmx7Nmnut3wCAtBTFbJ2s2+Yvjj7D98XLFAyDR9wFKlmPFw/uI3SLFF5zYL100y6vn4m0pqUcqpEHHYmo1Ikq1QuRA+m6CNdBbR9j9ZEUrRHBjxam2WPVsITAEpIfzbxM+ostzrULfG3/fuRihsGXUiR+tz+2jVXSo74zJDVSJ222OR5EPLmwi+KLEm8lQNfq732QuwQjl6Fz/ySdgsXi50Me3XuSnfFVHkucpBLF+d31h1jtJDixWqRdivXGbEMTS3X4Wwee4PHYNEVDk5YX3zVLGIwYIWnZYDhV41Qmi1PuFVpuBoTjsPrRPOUDmu37FnDfozDjeGDyC0f+LGurSVLZFsOpGg9mZ/mr+efIGX1ULX+TkAMFzn1vjtZIxP57z/ATwy8xapbZY9WoKMmvVB7iXCfHCwuT1JaSF74nfEHytIFT0ZgdjdVSbGtGOIuriI6PWlm7g1d1bXTMIhr02T60zr3eLNvMAPeStBmFoqUCfqn8EN9c3oNxPA6B/y5H3LwYYyMsfWGUTl7Q3tdhYqhEzp3h3niZYbvKl5NvMWgoktLupRNpBddo5HEeS8C4CXndppBuUMslsJsGnnF7xKsWYJg90fhSawer0SodZRHomzNeSaExUOxylnjUCShIm5/OPc9MKsvf2PXTNPcWcVfaiEoV3d1c4hXLRsdj+AnBweQc99lrZOTlUrCqfL7VGuNoZ4TYvEFsvoqsNgn7yPP4polX5dl8dvIE/3PxyGV+ipGWtHTAm36c1TB14fNH2yO8sjxOq+PQbdrorsQqm8TXxPnudFcldGFp1GY5EXKqMAjxMp6w8QzY5SwRDvq0mg7htMPmmHZvDr426CgLEUh0p3OZH6WwbUQsRpBzaYyDPxSww1mmYFxcae2zYF/2BOX0WygEr+TGacwWSdwsO7MPiHYMrFyHXflVHBmwGsUpVRJsP9fBWmuh+yDP7nYhYjEaozbtQcHBnXP8zZGvk5ddxkyHw36Nf1f/GHPrGTgVJzsHWgqUCZ2ixbGpYfY6CyRli/Q7jpuQDh6KlN0hcjWRfbFat6/ZcDVpjgjSu9d5MDeL9Y4oi0IhkSgUgY5YCnOsn86RPCdpDtucGIwhhabz/2fvv6MkyfK8TvRz7zXl5lqFVqlVaV3VVd3TWo1g9AxigIXlzbALvPdgWZbHLvDgsexBzQEGtbCImWF2hh7ZWld3VZfWWZmVOiMztPJwLUzc+/7wSFWVJbo7RURWfM7JU1mZ4Z5u5mZ2v/cnvr/CTTqG64xOJmjtCJncscKfHH6GX0j3U/ux8WmbNq81RjlZKdE+kaNwGi4Esey2ofjEzFt8Wzf7cq0tiZfqMZFaZ8iqXbFRg/6GP8TwUnWc6ekBcstsqpTotUSnfOq7wYy1+et3fZ0/lz3/pp9wkIiLdfBKSPS7RBMtFK60cU1M1u1SSUDkimtnf/keEAI0gplunnbs0NYOgb42ksYSMVIYbBFxnzOPKyxud2CHvYZV7NApJlFdF0eILWefJ5Qkdiy0A0NWjUGVeMvPtLThje4IR+rD2A2Q9Tam1d5UzhvXLvKqNbPtHEeCDqGRBEhe6kzxR0t3stpOsnIuj12/JCdVR+CtgR8a0r1+d5/d1jiN+KoTTbQriTxJNy/pjILtRrjyypqk0ChE28Jugtxqu6EfAiUEA6rBDncZUeihd45iZTOY9RrEMa0P7qdy0KI9pJm4fZ6pdIVD7jxcRd43tOGllTFWzxYYXNU3/WIVloVwHHopm5HCGvvTS7zaGOe7a3uQ5zzshWVEvYkOb350+EZh0j71XdAbCbgjO8eQ6vFMd5R/sHA7x6oDrH9viOSqIbmk8daCvni1Je01iy/su42F0Sw/XnqZjycWsIXc8PTrExtDECtkIJDR5n0sq3IZBgr0hlIs3e/SyxuG71rgo0PHudufxhaX7JBCE/N7zTGea+zi9fVhzk2XsaoWQy8ZvErAmnFoOA6Vkk8/5iQ3FnOBEBeaPm7iwf4QqN07aB0oU5+wGJpY4rb8Amd6A/w7neC15jjPLk1SrfvYb/i46zC4GJNYCi7W8alejKk3b/JRvHdkOt2v5xt0Gc0vcDA1T0G1ubwJZTXu8PnWXk52Bnn1pV0MvCRIn+/2hxHc4rzdaGSNAaNRQnIibPFEexeVOMmx5jCNyGVHco0d7gpTzioPe9V+ud7G2rA3s8yxXUMI7VHOZ5FBgO50r2vjVmKmjvd4icVkmjl3HG1tOARcq39S9u/5L+6/De75AlPOKrfbbWwhKWZb1MdSqNDGsW3YYo19eiBP7UCa1hjk1JWj4RfiDseCPE+3bue/PP0BvAWL4eMBptboB8Q2UX3vtXMbCGPmmxme707S0i49bfN7s3dR+9YQiWXDgaeW0edmr3zRm83Rucww/U2oQg6KeeypHGv3SnwvwJdXPmy6xkY1JE7VoNrh+2b6h0QyqDpId4FysUF9Vwkv6+Cdk4ggZPFhxUc/8RKHknP8VOoNstK5auOCRtPQNktzeXLHFMnF7tt+HzcK4TiIdIoga3FfcZYHkqf5+3OfZeVcntJJMOfniLfYw+OHJcomYH+Th0dn+XD6KMMqwVONPXzne7eRWJBMfWkVZhfRvR4mjPqWdbaFNz5CfccA36vtJnNnl/vdOZLSXBSvGk1ITDe2UQHIkE31sLqCgQK1Q3kqByV/+xd/i4/5s3hCIZEbNa6X1debkN9ZvJ+jr0+QPyw58Lsn0I1mv8lPKbKJOwnSFtXhxMZMd7ERfTJIYbascAXo7C4x8wmBVWrxC2OvscNd5uvrt/HF+UMsnCwz/IRgYi3EO3KaeG0djL7injfm6pZJmxWZSRONFmkNKO7PzXF/4ixlGXG5eJ2PHX5r9n7OLxUY+a4h+UcvYLTB3KruNNCPpBuBNvJtJ8z1FZvmcG+Y35h9kJVGiu7pDHZL8PxEwNDwOveWZrlt8Jt46lJpwf2psyzuzvBssIu4kEK1OxDH6O71O5/65DTDCyv9mvw47kfN47hvZfXDrllyw0NWCCo/fQefG72PO7JzjOafZlhZ7Mqu8b3JInbLIrcF7fN6QykqBwTRRJecvFK8ngkzfKl2J9+e2cPk5w3+8QVYrRBvAl/XN3PtxGu7x9rJQf6F/hGiWBFrSXs2xcCcxqvEiHrzBxqtKGwHYVuYoTKN/VlaQ4rkYI1dhVWGrCrQL7qfjSxebU/i1AReNUZ0bv1d9OV4AtIiZHdulecPlXEaLt74IDKGeKrLAX+BKWeFtLSuEK49E9I2MSux5JXeGEfaoziLFv5SjFXt3fQCbVnIE46XaA0qBuwGGdkliiWqI1GhwWyhhfWaIcCyNGm7i70Raoi0QkQCGQFBiAmC/mAH1+nXrUpJlPeJkgblR+SsNp7gYno9NDEnQsNynOHMShF/ARJrMWzSiLYRAiNBK0Nadd6SFr6cEMN0pUDynCK5FGGarYvPIkHfjFwY0BsqVWMu5iT0VlSuQqByOUTSpzJs4Y/WGc7WkUJTjZMcXhtm6XyB5JwisdLFXu+iW+1LzZ1bGJNJ0h7z6ZYEQ26NnOxgv6n0pWssKi0f3bRRXb0pavqvJcLue6uLRAKR9OmMpIjKIUOFOmWrTmzMRvmMJsbQNQYNVLVFW9t8s3aQ6TMDqIYiOSewOoYwbVHLJKhk/LdI37Kqszu5wkupcbSjULYN17lxy8TxxXvYhFF/03UtbZwsC2H1hygNeg3GnMpFN4aVTgq7qrCbZku63GhbEPsGx4s21g9FU/foGs2z7f187ex+erMpBisdaLQwV5umJftDp9TQALqQhtgg4rhvWVmpYjr9TMb1vLeuXc3rzDz7/7nBJFz6Jr4xorvUb6SJIuLmD9D5LwSqVMCkkyx8sID3Y0scyFT4M4NPMmVXKUsBuLwaZPjPyx/gxflxSocjUocX+inz9xEF5ZKVhr87+gWO/eIzhMaiHvcX9L3OEpNWB09IXHFlM8p8HHMmLPCl6h18/oW7cVYUE9/oYr9+rn8B3mRx2Nk/xPxjLsFUl0dTxxlXTXqhhVOVfd+5TVRAfqMwUpBwQnJ2B0+EgETTrxUXMYgoRhuD2TVKazx58XWdkkTtanLX8Dx3Jc9d0Zi0qgN+bfmTvF4Zwv1emuE/msa0O8SNzd0IJwzE7xhN6pfCRIez7PqvG8f05k30hQSQgdiIjYWdi+8pDO9Yh7/ZEJZNeNsUzXGX1Ycj/vNdvwnA0609vNiYpPbsALu+28WuNBDn5jFBiO50bvKnvja0d+ZY+IDAnmjwiH+S3bbBftNQgoZOUF9OkZizsOvtt3mnLYpUyFwWkUwQjBdpTLjUdkl+6s5neCxzgtudRcC5GLDoGouZqEA99vhefQ9nGiXOvjLK7j/oYdWbyI1x20KPsJbwOZfKE77pXrjfrbHHfprXR0aoZiew1jxE7TpHJHV86Zq9DmuUcF2E59IrCP5E6WlucxqkpUvXRJxaKDP8gsZf6G3JUpMgrWCox1ihii8iNIIzUf86+PeHP8Dor9u4ay3UyVl0o/HW8chSoVJJhJ9g5SPjrN1tkIHAagnsJgy+kMWeqyLWa33f3+vENbvCTK9HdGb62ryZEAjLRjg2ppAlLPh0B+AjA2fZ5y9yu7N+RbPRSpThZLVMe83HqQaYWh39A0R5tzISiRQwYSWYsC5sFC4X8ImLzSohMatxTMtYHO2Ncbw7zOH1ERJzFollg73YuK4X3fdDlFL0yhH5fIuc7GILCAMLtwMqeL8UhrwV8SY1lZABsWuIfEGcT6NiTWsgQXugHwExAnp5QTHdYjyxTlE1LzYwNXWPldjhZK3M0lKOwRVNtLC0qYd8GLs/wjR2+gM73i613bd8UdhN3n6Epeifnzf3psXGYLZg5FUoSZC1aZclfrHBnU6Hho75trZZ6yWxm2CvtJGNFnGnu6mMx39YQl8SF0KG0i1ysnfRLu1yAqMQoUQGIOJb47iBi+bz5DPEWZ/2kENrWNIrxxz059ljr5DdsL5racNKnGQtTvFaZ5z10Of1yjBLlQyJJYkzs4ZpNNFB2O87iEZA9q0q34wvbXwJebfNuhJ9v+UbwfW+ZqVC2zComuTlBb0RobsKpx6jWsHWavIT/Ya62BYk/B5Zp4MShtgYVuI000GJeN3Fn670HYuarSsjpxsjeYXjIAo5dMqnPSTwxusEPZtuwyZsKNqDLskwgx1GUFm/bt/T5irY2Lj5RDZDtHOYIO8w9yELb2+Nh4ZP8bP558nKHuk32Tp8ff0QzW8NMrBocOaWiVudt+4WtmEl7vF6UOTVzgT/5nsfxj9nYbfAahnchmH8fBPZDGBpk3gdCkFrQHHo4DR3ZOcoyIieAT2XoPxagDfXIH4ffs8iNtRbHnOdHI2MBwR8JvcqvUdtFrtpXr93mLBXxk108JyQjNdjJFmj4LT5cPYNRq11xqwOkOB4GPP7tft4uTrO2tdGGDsZkTpZId7EwhWgvi/N+sc77BhcY9yqcjVrn56JmI8Fx4JB5FUCJBeaAaOEJPINCTe86uK81RCOw9ohi/i+Bh+fPIGNoqIFT63u5NxaHuVAY18Wu5nCLWWQnRBzbu6WGOrSy0p2jq9wKLdAWm7ua/haIpNJxPAAcSHF+U+l6e3sUSyt81B5jsnEGg8lzjKoNN5GydhT3Un+0+wjnF/N4z2dIrGqsduGsa7GW6qhV9b671vIY9I+ldsNf+6R77LXW3jLSPJttgBCoNJpcF3aw4KPTpxgf2KBnIS2CflPSx/gxXMTpE8oWKmgm623DOlQuRyMDNAbTDH3IZfeUMihfWf5ycGXCY2ioT1WwzTfObibs9UU2W+OMfB7/XJR3elccxG7qcSrUApsG9JJWmMenZJk6r5Z/s6OP2RItTfmLr/Vg/FMo0jpcIi32EKvVm6J2q3rQUNLjvWGeXZ9iqHvSApPz2KarYvNKyaKNl2TW5ARfKR0nN3uImmpaEQGZ13ina1AvXnT3RBuBiLWhIFFNUjQNTYQcI/TYHzgW3SNojLiExhFJU5R1wn2Oos84Hbf1KTXjyQsRmmeXtvB6cUy46/0cJ89ge5u8qyFELTLkk/teYMDyXkKMgLeGmELMazEKRajbL8W+C3vI0EpYhu0Z3CtW0Ts2BadIc1ndxzj0cwJbKFoa8V8PUOvkiCh+iUkUUJgLB+7GWEvuVt/qIsQRAnBvuwyexLL7+r1eyshPJe4kKIznEDdVeMv7/se9ySmedANNzIs1hXZibO9Mqdny9jnXUa/sEB86uzFvzMbv4TrYhIuUTaBNdrm/1l4ZWPYx6aSDdeHW02gCwkJD+EnCDKGR9InmbAq+EJR1RHHVweQZxKk5mN0rXFVDSX8BL2BJI1xh8x9K3x67CgfTR/hYffSc7NnQn48+xIzYZH/7dwvMOhvRKy7vWs+zGFTXYVyxzitvUVag4q1+2KcQoufHzjGkGqTfodJP3cW5vjKw6PYjRze3Vms3qWbVPUMTiNGdeJ+KqTWwHQ66K3WoX5h55TwCJPgyx6eePdi6NDE/E5zjG9UDnKqWmJpuoCzppg81+43rmykDW+2q8CbEa7bL5i3+8caGosXeilO9oZw6iAaG5/9B9jNXZw4ow263d5yDRtqvUXy5SGOLUzx2+4D5AYfJy0lZRnhiwhPNAiNJKfahEZRVh3UVdKnAPNRnjNLJfSih91s94vsN3s02xistuFIdQiATyXfuOqPTUcO//v0Zzi7XGRw4cpjkskk5sAOegWPtTsEO2+f5Z7CDOktHHlVgwO075ukNWBR2LPGo5kTJGWP53qC5zs7aTddRCDojEV0dmhkw8JbtnHXLYZWy6g4Rne6P1Bj7U1lY3qg8DzCFIy4VQbtKvaGc8Sbyak2TrlNO/ap3OaTc+/ZeB9QnQh1cpZ4vdbfGG+RcgrhebRHfVqDkrFclYPuHEOqheSdh/68I9og2l0sSxHNF/jnlTvZ5y3wkcQi/mX2eheYSqzx7J0WnVKRUhhtmumM3zdSIYYHCAcz9AoGR2z9AIl0bKJdw3SGPILhkCl7laLsERpJQ0vq9QTpZYFTf+uz/0IDYDhRZulej86g4VMD57nXP8uQasFl15hEMqTaKAyxa8BS162MZFOJ19beIrMfk7hjDf793b/F7U4dX6grxpZdjR/Lvczqx1M0Q5dqL0GoL52slVqKaM7HqTkMPTNA4ryLWK1uOW82hEQU88S5FGHakJFdfBGh3mESikbTNiH/6vSHaD1ZJjlvOPD8GqLRRq9ViK9DKP+aIAQy4SESCWIPClaTrrH5Su0OTjYGSKxq4rX1H1hkiUQCSgWENojFaMuJVzO3yNjnBVE5zRP5vYx5Ve5NTrPbX70YXb3UwBTTNyG/+nVyrleCaZ/0vEBVWm9tZtqkuA3DuYUixgha5as/xo72Rjn/nQkKpzXpY5UrjPVlOsXiPX2vwzsfOcm/mvpDbMRVayS3CnqkzLkfE5THV/l/7/4GP5ms8FxP8MXaXRytD2PWHay2ZPLQLH9m7Cleak7yxOIuVhazZM5n8IMQubq+Za6BCwilEIU8cT5JkDfsdpeYsCrYb2OYX5Zt7hqdYzpVYMnN05jcyOYJcNY9xuslRLO10cW+yTdyG5iUT31C0Rk2/Fhxmke8xhV2cT/Qe0YhulZHhCGZUyX+r8GHuW10gXumfhf/Kqf2vuQZvvjIIVaWsmSmc6iTP9Q/f9MQStGdyrO+18GMdi66DGxlhOdSOdAfVrFvxyz77AiFRUNHVLQPKy6Z8xHu8ltLLsXGKPL6zgTy0XXuKq7wS6Unuc022OLKzZEtFBNWgpIK0AmNsfuuDdeDTSVeY1egkzEZv0tZtci/g/3N5eRkh4OpBZqxSz1KEJpLd9aMm+eMKNJNezQmbIzK4WsDq6ubU7i9iQtRQuF5dHaVaA/ZhAMhOdnGExq58RX2p5kZmiZkJZY0tMOR3jgLYY6VmTzleYO/HCHW65hOp98luVmPX0iE52FSPto15GSblTjDuXaBmXoWv2c2bFHeYUd8WdOfLBUwzoZ9ixREOZ/WWP/acteLqG6M1ej1O2s7XaKllc3drBTHyEYLy1J4syU+X7yNl7LjvFw4f9E6SwnNsF2laDUZtyrc5ugrBOxC3GEldjhcH8Fb6c+pF52tI1rChCCXazGSrGFz5TjLmg5Y0RZvdEZwauCtx289NtumWxT0BkMm/Qqpq0SSNjVCIBMJhGMj8jniQoravjS54Sp78yusRBm+3WnyzcYhvjW3l/VaksSCQvVgsZ5mPswhhWFnbo1OYBO76a0xTe1qCIlJuMQphzihKagmaRkg32bGoic0O/1VJIZeaFHz/I33gTBrU7m7QHI4jepEyE6EbLQxswvoINx8z4WNJhxjW8QJiBKGlOqXCF0YttEzETUd0DbwTHeSs70yfzRzO9acS2JZIHpXsUK6gNb9CGxs0JEkMleqVomgbSIaOmY62MlaJYVas1HdrV2Coi1B7F4aQQvQMQE1HUMoUe0AEUR9o5ILWVHH7qfn3yFLDEAQEtfqN/ZaEpLYFUS+JmX3UBsZiaqWrMQZrJbAqUbIdu/K6XlSIYbKRAMZWiOSXfkKe1PL5GSALTxquktDG7pG0jA2CsNOK+pvHAXX9ZmyqcRr6EvS5ToTmXWS4kpj6Xditx1Tzr1IbCDkzZ5+iuqkx3RQ4lcHP8q5pQxD3yqRPXO+X5C8aQVcv7NP5vOEB8foFh1mPxPzgYPH+FO50+yz+520FyJtDR3QNoZnuqP8wco9nKqWaD5Vxl807D7RxTl1HhMExPXmhpHzJnsIX4ZQCj1YICj6hMWIg846T3V9XjgziZp3KSx33vXzy0QCmc+hS1nmPpinWwLtGrRtMIM9PrnvVZKqRzX06cQ2T53cSeJYnvSMpvDFHvH6+g062u8fEwTEqxVErc6O39LEX/GJvEGe9Ee4cPlrW1DZZ9Ee0UwcWOS39v/GRYeO0MR8rn4HX1y8jenDI+z5dg21UkWvrt3Eo/o+EILmmOBXD/4eo1adEevKe/753gCfW72P52YmGToV4p+qYNarV/yMSfsEt7f5qX2v8cns4Rv44a8NwrIRO8YJCz6LDyaIHmwwUZjl705+lYzs8r+c/immz36CxHmb4pGYiUaEd34JgPP2IP8hfIQ7Rub5a6Nf4cupO/lS6kM3+Yh+cISSBANJmiMOqtjloLNO7k1+1pczqBz++8JTtPOKxrBDy/Sj7QpDXXu8+NgO1oIUr1VGWFxPo44Os+O/glqr9q2DNlGm5sIGPc56dAY0qtxl0KpdNiVO0tYhz/aGON4d5t9/8WMMvqDJrIWU5pYRnR7x8nto0BV9h5P+yNR+evjC+T0XCl7pTvFb5+9n8IsuydkO6vTCph8h/LZIQexJIh8cJ0LRb/48FQqmoyGcVYUzW8FsNIbLRILo9p30Cg7aEph3mUvvViLcF04S38iyCiUJMyCKPYa8BhJJTQccDkZ5pTVJ+jw4r5zGdHtXrK3SsVl5dJDV+2NGdy7yN8a/xKDqUFYWGs1LvRzPtXcx083zemWYlB3w/9nxBe5xrn9me1OJV+ivvdoIVuIErnhn78EL14gtBFnZ/7/exkSY/pQdsIXhgIiZsqZ5YnCW1+0husVB8tk0ptNFt9ubS8Bu7FSE4yBdF7IpOmWHdlkyOrbCLw48w7hVxZf2FZG0hjasaJcT3WGOrQ2wvpxm+JQmfa6NNbNKtLB4s47o+0cKjGMRJyTCjcldcJdo2Dg10R9Z+bav7Zsni2QSk0sTlHzaI4ZwKEDaGmXF7B1a4ReKz1CUHWIEoZE0wx/jtcYUVlfBZp+aYgwmDDBhgDg9jVAK27JwvI30p1QI1yHyxtGWZHU8eXEhCU3cfxB3Bji/XMBblqjFNeLVylu6Szcj0vP6DgFpwz1ulaz0LmYdLpRKzId53lgboldJYNcCRKPVj5pdhrEkuUyb25OzDKgmbIyDhQtz70NCo+nFFiLahJZKUhAnHYKs3a9BmzrBbn+JPfY6XSNZrGZInLfJTGvSx9cRrQ7x4jJCCLzKAGs1j+6gzR4r5Ji7jH6XBXdTIyWxq4g8geOGpKW6bGrcW783WyjGrMtL0YKLtbGaBg95z9HShq+n9vJ8bgffqB1Ep31Up4fodDaXeHVsZDpFN2WhkzEpv0fyLZMnDXNhnlPtAdLnIPvCAqbZ6tshvtvat5GtMkqgLI1zWedjuFFSsRilOdEdZnk9zdRMF/v86tZwrrgQFbysvERIgbAsYkcQJQxJO0KJvvdzyzi0dP8Za2wL4XsonUUkEjQHXDpFibbAXL6Z3uh+E8b0h6FoELGFq27wDScksQOuF5K0+lmoEKhEKVaCNFbbXH2KlpT0CoLMSIO7inPss3ukNmzDeiZkJixytDHMfCvL4moWLxFQjX3gfSZes6fa9L6Z541Unj8+vAvjvMuN5cZIWzNQrPPhoZPUowSPz+ym03JwvAjf63FXeZ6/NfwVklLws8XneCyb5V9++sOcGttLahqGfv808cra5ohECoEq5BGJBMGuAdZ2ebQHBc5DFSZz6/zs0AsctFdJyyvHX7ZNwD9Z/ijfOreHYDpF+SWYrMX4p1YRtUbfTWCLU42T2BWJt2aQ7eDqu3qpUPt2EgylWd/jUrk3ws72eGzqOGOJ9b5V0Eqe+XqGX539OGWvyZ8oPc1+u8WPlI7TOWBzKhrrT6XaIlwch7jhFiFdFwayxGmfykFB/v4lHh08Q1JIarrLk91BzvQG+PKLdzD4pCQ530PXG5s7C7GBymRY+4lD1HcKRu+dwxf2huiQxMSci/relf/6xAdJfC7L5FqMc3YZXau/rZm4RG9Eky49Chumy7c6I5zqDjH72hA7v9PCWm/3N7qbBGFZtEcS1Mct1ESTnyy8wExY5FdO/zxztSzet9OUX21jrbdhYQUdRf1Rwc4WK4+4wUhEv89CGT6QOM0uZ4m5vVnmH53CX06Te8VHLa1sjsY2IYjv2sPSHQkaU/DZe17ituQst7sLaBwujHs9FWb4dycepb6UYvJ8hF5bf09lY8KykdkMJpuivlvzy7c/yR53ibRUtE3AqVCxEqf5347/OPUXymRmDPb5GXS1tvnN+4VADZQRfgKj+q4jKIlO2ES+w/J9cPD+s3ygcBpfKGyhmLTaFOQMj3z8dZ7YtQujBSYaQFia4dIKI4k2loiRwhBpRTe26MUWS7U0vY4NKy7+okR15Q0LkAjLQvo+lHJ0JwN+btfrfCB1AiUEDa042h7hZK2M1X2ba0EIogRMZOoMuTWkEIQmZikOqGiHf3LkY9jfyxA7YCcNnYLDysEMcP194jeVeLXPrzAYa7SjCDM2Rr19vYSREKRsooSgssPjW3cLml0X8UyWwoohyAna6TRPHEhQGXTIyYgPJdpIumT2fpmvDdzGl1+9jaFvJBFrlb4Z+U1evIVSiFQSnU5S2+GxdpcmOd7g39/xX7jDubBTe2vzWs9ovje/A/FihqETMekvvorudrdu2uYq9LSN3RS4NQ29qz8YhVIEg2mqu1wqd8X8z499iT3uIgftGr5UrIc+51fzNFserzVHSSe7/GThJYpS81DiNAzBry2VwN5Ut8U7YwyYuF/+G0UYpcBzibIuwUTAn516mr3OIq6wWNUBL7cnOVwbIXPMovjtaUy3S7zZsg9vg/ATrN1lOHjfWX504DVcYaGEvFj7vBInOREM0TybZeQPj6AbDd4pRnZh0IN6U3QuNIbnmzt5bX2U9FmJeOb1Ted7K5Sim1N0BgxTpQqPel2+EHc5fmwUf9Zi8PkG5vnDV3kGbIvXdyMhHDSGvTbstQNeKh/nX+8ZJ0wrknMpnGYbEetNIF4lzXGP9TtjhibX+JXy4+ywFGD3bbFEvxb8fFigOZ0lNSfxFmvo9zo1TwqM7xFlPKzhNr+SO7KR7VM0TcjpcIizvQHWThTZ+a0O1lqHeHnl5p+X94KQkE4SFVIYS2JsibYkYVoRpCTJ3TX+ytjXGVENXOEiEQyqBGWl+T9Gv0Jj+NIzwxZQkBbuxc10v8ygogNqWvGH9bs43S7zpLOTsJEiSvDudbHXCqUQfoI45VEYqPPj2ZcYUW0kCbpGMdvOsdpMUgze5vkvJbFrGPbrlKwGin4UuqIdZqIC0ck0U19dJRhMUdnvApJa7N+QQ9tUq7Rpd1CVJkoprKZzVfFqbEWQc4k9QXtI0hnsn/S1w2WstqB4OsarhIQpiyghqQVJ/rz/S4xma/zc0PMccuexRcS9qWmeKO4kLqRQjUJ/t3iTbjrhushcFtJJVh8ZojkqaE9GTO1aYm92mYIMuJpovZxOzybRAKujb/pI1+uBLSJiD0JfvEVcCtdFjQyhMz7L93o0DgWMjFSwRczJ3hD/cekxVjopThwfIX3aQlugHagXPM7vLaITM7zWG+fLi7ehlz0IN09a8L0ibKfv0FDMUz2Yo12SDAwss9dZpKxaaASLscsfTd9OdS7DyFyMaXc2f4SEfqmALBWJh/LEuYgJvz8hTGPAaDT9koH4KrZIb0blsjBQojWZoeTPUrSa2G+ywqlqyVPLO5ifKTK8pjell7AJAjLneqjA4awa50O9X2RlLU3+NYW/GqPW3ka4K0W3KBgZX+O2zPzbduRvKbRGdWPstqLas/tNNTLAfxvniJ4JmYk0PaNY0z4NnWDcqnCHo65qrXXQm2PywCILQxnmTRp/zyT5423Uq6cwUXRTxVqYEDj5LoN+E29jTv2bcUSMdjWxIzG2upQu/z7XicvL1NZiwX+YeYzTi2UypyT2chPR7NzcoTFSIaRA+j6imMfYFsZ30Y4iSjsEWQutIHYE2hK0hwRh2mAs+mUz0qBdg3FjPjt6hhHVIC3f/t7vGkVVu3SNzUxYpBEnmO4WmenkaYYuq+0kncCmuZjCqisSy4LUnMarRNC5MW5HQghQCqMECTuirDokN4TzSpzmjaUheos+Q80ry6qEZSHzechnCPOa21NzlK0GK3HEfOzzj2Y+zelKkcwZELUmeixDcxKioYAR+8b0i2wq8RpXq1CrI95hV6JyWaxDE0S+Q3NnzF23n+GVV3ey83dD7EobMbOEbrexhQApyQ0N0Hq1zNJwnn/xU2l+YuI1HvBP8zPpszw5PMOp0YOkekVkEN40ixiZShLvGKIz5NH+yRq/vPd77HPnud1ZxxMSX751MMPlxMbQa7oUVjRONeinkW8xfNkjTGuCrMS4V0aPZDpF445B2gOKzMcX+e39v8GK9pkOSjzX2MHLnz9I9oxm34kG8vRMf4LbcJ7GziRHPzgCmRker+zj1GtjZE5LzFazUQNksm//1RvPs3S/gJEOvzD+Kg+4XTSCGMOx3jDh0wUmXwvxT67277ctsNER2QzdfUO0hmzKQ2s8kD7NlL0KqMuEqyE2Em0Eb18QDQyUWL+vTGNCcl9mkVFVwxfmMmsxWNE+i28MUHxdkD6zOUtudLeL9dQRckpReLpMNJgl3+kizk9jOh2i4Or1y0Ip2qMxf2vHt9npLF+sDd3KGGOwmgFuVRE3bRZjl9j0sFV81aatho54truT+SDPsdYgC+0sj5ZOs6/4EomrCN4Pe3Xu3/9fmY8sfm3yIxyvDrD41WHGZ/KYToc4jG5a2VmQERwYWuLO3OzbWjp5MkQkYqKkQrsKZdkbbi0/+GeeibKc/+4Eoy9GJM+sok+e7XuF38QMhbCtjbKpIo1DZUJf0h7oN151xmLyE+sknZAd6XVydoeHM6fY4yziiXijQbzvWaIEZKXCF+7Gn139xFa1y7HeCAthjt8/dwfVahJr2iM9DXbbkF4OyXVj7LlFTK1xsbTLxDHxjQwayH5UOed1mLQu2SaeD4vo4yny58FZbl2RpRGJBHpigO6AT3K0wadTr9Mzipk4xTcbhzj5lV3kT8Rk3lgjWlgivmeMwh0r3FmaY79zY/prNpV4vSIF+iaEZfWN65M+nbJDpyABzUIrg12X2JU2cr1J3G5jer2L65eo1fGWkxiVZLaa5FhhiN3uEr7oMuzWeHlcgciQqTbhBneYXxhPSSFHY8qnPSDZUahwuzfDuFW/2B0OfSusStyjbSAtxVttxAwIbd554d7CaCQiFoiYS4JrwyZGpJI0RxTtYRhLtGgbi5O9Ib5eOcjRlUH8JYO/FKDWG0SNBlY2Q6/o0c0JUqqHRlMPPeyGwGqbLSHo3oLrorM+vbxNXAoYLdYYttexhWIpDjgVZnipNYVTNTjVoG8dtUWOU1gWYUoRJgUFr0vRauKLiKtFmd7+TfoLkPFdunlJkDVkrC6uiHGEIDaGig44HmZ5srkPd1Xir0WoVnDFZKLNxIXnnFivYhkDvYD4bbrhhWX1szuFHCYVMWKvo43kjTDkWGcEq2sQQbj5B1RcDW2QnRC7aSO6DpU4hSdiymiudo2EwGxQ4FynyLHKIJVqCm0Ek+4qZavO/o2+gr7HuI0tFHmhkFaXO1KzSKF5PD+ELmaQNYWo1m5acF5GUAs81kP/bacjeiLE8kJi3ya2JdZG5sq8SWgKy+qnmR0H4ScQnktYShFkHRyn34DVNiEVDdNhud/IqA3E+uY2sW1EXNXoMMFIjl7RobbTIkpAr6CJfU1yqMWh0iIZq8fOxApZ1eZ2d45Jy2CjcEU/1d0zERp9RQkA9G2yXg0cVuI800GJhSBHNUww08pT63lUZnPYVYW/IEgthljtGGe5Bb0Avbb+3ks1rgcbwUApzBXRc0dExJ4h8jci8nDR5Uj4CdrDSdoDimKyTVpqalFfrB9vDuJVDInlvgC3Bst084rRVI1Jr1/r2tDRxnp9/TLBm0u8vgOqVCSaGKAx4TP3qZhkoYl1LEPvDwcYPhchzi8Qd7pvSYPqWh15MiJZK+K/OsxTtX0k7gv5ydTj/HTuBdb+ZJJXV0dpdYdwz83c2GMql9CDBVbvyiJ/boX7iwv8QukZbnMaeJc1kGg0DR3wucYhXmpM8Gj2JL+YPv+2VjC3Ii3t4lQFXkUjOv3vWDgOMpWku7NM6o8t8vMjr3OsNcTfPPNTnDg+wui3BOVKhHdmDtNoors9hOPQPjTMzJ+ImBhc5hOZvk3SfD1D6jwkFyPM20StNjWlPOsHMzSmBL9419N8NvsKk1YbSPCF5j7+6WsfJV70mToZYM+vY+o38WH6fWJ8j+awoj0s+JHcHPc4q/jy+7v2heMgLIvOSJLawZjEUJM7/fMMKS7eR7/fOMQ/feoTOEsWE9/tYJ+YwzQ3f9d0XG8iuz3MO4gIVSpS+fAO2kOSO3ee5k6nwx82x/m30x9kfqbI3rNt9OLyW1wZtgImCjHTs9iLLv7cfp5s7uVAYp4Rdf6qkeWV2OGbS/uYW83hvJJk5HhEMz3KPyv+DN2y4cGPHOFj+aPc682w97KXp6XDT6SP8Jh/gicP7mR5NktqPoW/WsHcDHFiNMnFmHNHh6lOJfjzpScoXaUKpKwa3DU2x3FvgM5AFi+dgnbnyhGgQiBzWUQ6RTBWoLrHI3YhyPYbdu4a6EfTjocJfnPtEU7Wy0RJQ22HjVNLIU7cpJ4RIVCZFCKR4PzPjDD5mbOMeU1uT83hyx5p1cUTIUXVpKxaSAxJqbGBtLRwhXNRpHZMwKlQ0DU2k1aHAXWpdvP1wOaXvvfnsM55pM9C5lyA0CBjTTIy7G81EUGEaHcxrb6Vo+n2AwSbddz2fmeBXXfPcnasQOdkEvcVkK6LSCWJdg4z8wlBcrzGL42+TEE6fKk3zr88/iGacxl2v97BOj5D594dVD9conp7xF8deo4pe5U17TMdJVANCUHY/3Ud2DLilYRHr+jRKUgGR9bYmV3j5deyZKdDvIUmutm66oPbRBFxvY6yLby1IcKUYqmbJjaGSSvkz5ae5FveQb6Q+TDvnJy/9phkgqCYoDMg+MWxwzyaOs5+u3XR/ic08caUrJiqhpOdAU5Uy0wkKmim+b4iT1sNYy7ajMQYQqOQMaiQvnE2/RQolkWUVDw8cJafybzM3299mnNrefwZi+zzM5hanXjj2pCeh/R9ugXFnRPTPJifpig7tLWh03Mo1A12K4KtFn0SfdukbkHQK2geSJ3hAdcQGoe2CTjdHUDP+vhLErvWw3S6m8ru512xFHFCEHuGvN0mK52LtlaXo5GExuJqE16F42yMD1WofJehbIOCauJetkk83yuQOG/jLxicuXWipeXreVTvzAVx/l7SsDpGd9/m5zYiKfgJ2kOS1ohhKrVGViaoxCnmF/I4SxaqXiPeguUyQF8gtNvQ6WJ1oBr6VJ23j0SGRtHsuYRtm8yqwT/XwvMsUvMWjTGHM/eWWEpnaeilK14nkQyrBCUZM5KrM1fKYrUVyZtorWd1NXbDotVx+iUzb0KjURiydpeU1yOyxEaE9a0qV7guOpmgV7BpjfTvtyip0Z5myOt7kq7FKU7WyyzUMgDEHmj77cZB3ADERue+69Ae1vy18a8yqJrstG0sFBHxxcyJ7rvmE248H0KjCc0lYVnVmvPRAG3tUlCzDFz2z6zpJGrGI3ccCq+uo187dsXH2HxV8ZexUUaoTb/Z6kL0NSt73JabRyNoJ0dxpQLbRngeUdLCHW7zwPB59rnz2EJRixM01pI4FYmqdTHtDkFG0Roz+OUWu+wVyipgJixyLiiheqK/lprr0zewZcRrb7LIwiMWQSnm7lQNV0VYbfDmG8hai+jd6jzDCH85xijFXD1Dz/SnQIxZHSbdVfSNPhNSUb13kIUPa0pjqzySPMmU1cTfWExfDwxPtfdwvD3E18/sI+zYmEhALDiSHCYubs5U5jVB9+2w7LqF6TisxjGeCGlNxmhLkT6bAuhb/3S6OOsBXzx7iOVemsff2Is37ZKZ1phmC71RGC9cl9Yn72DlTotgT4dfGXiZjOryq0sf43wzj3w5TeZEFVlr9WvYtgIbdi+kkyzclyb7mQUeyi+yz16mZySfa07wdH0XXzt8iPEnNO5aFzW3im40t0Sj1vdDz2i+XjvEMytTJJbkFRsQYTsED+xlfa9D9ZDmFw68xC5vmXHVBC7VOHZiB6sFdsvc1KY9VS4T7R5BxBp1cvaHGphh7ZikeXCA5oii82CTXeUKexJLvBG0+crSIXLPuySXYkTlKh6PWwRhWaixEXSm7+l8X/osU/Yq7ts0o41ZHf7Mzqc5P1rky8UDHL83jT9jUX7tygiRFFdObruAEoIHi9N87s4cNSdNybvRYY8NhKQ+bpG9e5U7S/NkZcjl1/OZMORkWOIr1Tv4zrfuILEoGDrW6Dcnv3nzKiQml6Y3kqJywGL8w+cpei3SdpeECvnUxiCP1zvjnDk8irsiGTwak1juYc+uEd3M0ppYQxghA8FynMYTIbGJaZsu/656Jy/Xx2lHDq3QodLyqc1kkV0BbxL7fQ9WMBY8/NgR/vbIl0hLQVEmaMQJ/EVB9nQLWWlsbrF6GcYYCENUL2ahkebVAIZUh2GVoKgMH8keZcBp8Os7x0nfvR8jBLEQtIds7h09zU+VXmCPvQ4k0EZCJNAOLH8gj3V3nuUPxDx4+3F2+qusxUkO98b4/z73o9jnXQZfijZsGKPrEpXfMuK1Pejg3V5lIt1kzK/S0xaqA3J5HdPuvKuyN1GEu9YD4bLQTBBi8JEMqgRDVhX9DrZc1wMhBdXdkr/46NfZ4y5xt9vCF5dqXI8Fw3x5+RAnFwbIfSOBW9c0RhVBDs6P5QmN5j00V29NTH9UqdW0kB2PNe3iyRB/uElLJQkzDpYQmDhGd7pY9S6d6RxPdHfhn3TJnNWkZrroerNv5L9RW7x6u8VDnznMnekZfix5nplY8sS5ncRnUgwfjeDENHEYXZlO28QIpaCQJSylqO3TfG7/rzOoLGxh09Yh36gc5OnTO8i85pD69uvE9fo7WkdtZQJjeK06yvx0idKquaJ2U9gWlX0u9Yc73LfjPH+x+BQF6XD5Qg/Q0xZW22C3NdzMyHQuTXWvj4wNxaXUD1WLH4zkWLnbojMc8UsHXuSB5GkAzkV5ziyV2PFSE2uphr6aQflWQSmigSzdgQRhKeQud4aCCrG5utvAoErwF7LThOY0P559iZP7h/iHr32S+JgPol8b+Gb7tMuRSB5OnaSzy+b3mvfATfKFFlLQGRD8jzueYcpZIf2mRuf5OM0zzd08MbuT0e9EJM5UYHmV+CoDBIQURBmPTsmiNRXxq7t+h8mrRJTPdkpkjwtS8xHpF2aJ5uZv7jPF6P5GNY6RUd8PPCfbaBo0jOaP5m5n/kwJ1ZGojsBbEez9bg1VqfcjkpeLKiUxroPO+nxveBfTA1lGVIO8NLS0S2JFY59dQm+hkiu0wUQRIohotDyO9kbBnWNYQVY6POJWGFJ1/u3oR2jsTKFCg+oaOkXJB/Mn+ESixQWno9Ao0ALtGtYPGYxl+PS9r/F3hr7JSiw5EgzxQmMH+e+5lJ+roxbXiK7jsIotI16NAt8NyLttdiZWUBi+vucO/A/tILEa4p1e6U/MqlSvEB8ymUQOlNAZn/quBJ2ipJxfxUZcUbx8oxCWhRoewmSS9Mqanc4KadnhVKhoGcVvrj7MidoAMyt5mPdw1ySpuQCrG1OfTBDkNYVE++Js4lsRow2m3UEKgepmqcQpbBFzx+A8ZxMFqrsGGFzYg6i3iJdWkPU2ueN5ess+qRlNYiVERho1PoLxHJp7c3RziuBAhzvT/brm/1i7jePtQczJFNkz4C31MHG8NRpWhOjXJiV9Wrvz1Ccs7KEmvuiXWMxHAfNRmufOT+AfTpA9F91ykdY30zMws5bDP2fhr0T96H0yCTvGiYoJGrs0hyYWuCszi/emkoOzUcxMlOP1yhDeusGthpjw5tV+RgMZ1u40GAWRN4a/Ooy3EmCtNBDtLvHi0lXLPlQmg94zTuw7tIccehlJc0Jg9jcppzrUogQvtHbybGWK2VoW9UYStb7ct0yLt0os6Spog+yG2C0b0XI4EQ4wYSpknQD7HRLaSggKssuUvco9o7M89+g+4kTMT5XOsdPtz2+HKxtjQxMTEvNq+yDfXdiNtWzf1Ci91YXj7SEUmvvdtSvKacqqxf7EPEcLw5zbnSPySyTPJ7BWs+iUT5RPECcU7QGLyBO0RgW9YszUriXSUl8xce61QHGkN8qzCxPkFmISS/208WbARBH0AhKLgv/r7CPkvA5fyi5RCxMsvjFAZlqiegarA14tQlWbmNaGt7W+UryKKEYqie7mWItTpGX3CieSLYfRmF6A6ASE9RQvNSdJyy53OmsbI34lORmQn1pnuVVExiBDQXc4ZMK+clz4Xm+B8Z0rdCMLKQyW1BxKzuEKyWKc4gtrd3J4eYTkmu6f4+tc67tlxGtsCwYSbXYk1/h48g0KMmb2sTzf2b2b6eMlRr47jLcaYL8eEq9fJl4HSqw/MEw3L6jerrFLTf7Y8PG3jFe9UUjfp3nXCM0RRW7XGo8lFliMFd9oHuSl+gRH/8sBBp9aZ2+njuisYMIQ02gi0iniD+wmMdFgf3bp1vBnfDt0TLyyhqhUcddHONkbYtJZ4e+NfZ417fLzD/0KRhXJn0hjL60QnZ9j8Ldr/SkploWQEj1YoHHHAI0Ri/RPLPDjw2/waPIEd7st/mPtAP/i2Y/gLNpMfqGNdeQsutfbGubabDSqFQuYXJqFhxWFu5b57Mhx0tKiqiMeb+/l9dYoySdTDP/WMUy3h96q9YzvkZaxMCdTjH6nhbVcJ45C1Mggsx8v0BrVfPjRw/zt4a/iCYF/WRNPSMzXWwf4ytIhlk6U2XuqgVquoW9io1ZtV4K//Zn/xl5nid94pN8cc+rwGIVXEyQXIxK1+tUbhEYHOf+ZLJ2RiE/f9yq/VPwevgzJyYgzYYZ/s/gjPFXdQfdbZQafbWOvraCnZzA30erpWmDiGFVp4IQx3nKZx2sHOOAvMGkdwX+HYkyJZKdtM261OTjxBdZGv4gShoIETyjsN9lm9fsPQhra8LXFA7SeLVE4Z26aiDPa4NQMTy/uoFVy+dHU8SvWtH027Lbmyak2/9Njg9RWE2SOZUjNJ2mMKxp7Yqxih79yx1e5yztHUoS4IiYnNQXlXnyvkJDfWHuMr548gPO6T/r5aeLVtRtr9/R2XKh37vYYeLHFWq/MoiuYTU4iA9j1bBt7ernfhNvrByjijf9eFSFR7QyqXuRsb4Ck7AFbKNL6JkwUYZpNVC2BNzfIt0p7Se3o8Wl/FSnAFTbDSvLPDv0O03tKhMYiNIqC1eQet8Llm7dP+os8dODXr3j/tJD4wuXVziRPvniAxLxi6ESFeGbuugeCtox4FRp6sUVPW3giJisd9nqLrBZSfHcwRWPMJ0y6ZHtjqGrh4us6EzmaY31rHKfcZrRQY9iuAtDUPc5FisPdXai3mzBxzQ5AICy7b0FRVrQHBTtSTXyhUBja2qEeenjrBnF+ARNG/c5f0+8gVq5L7BlGMw0G7Es3U2hiugaIBTIGsZUjKJejY4zRWG14rTlGnBLc7y7jqh65YpPWaB7VdSjv3XEp8iEExrPRjkVnsD86szNkeKw4ywP+aTwRci4SvNEaxl6ySSwJrLUmcb1+c4/1+0QmPOKRIt2SR1iK2JtfZsyp0DUxFW3xSnOCo+tDuOu6P7/8VkGAxKBEP2siERdn119M8xownos1Mkw4UqA9ZGC4x97kIsPKv+gLG5qYio5oaMVL9QlOLZbxViSy2cNsdO7fLLSCUXudnXaX+9Jnydltzg4WaQ8lQVj448NYrRzGtvqz55UEKWntyNIZjUgNNrkjOcM+u8eKNhwL8hztjXJ0ZZDGWpLBJY0zX8W02u9pTOhWwPQChKVw6vDy6ijNnMNj/gls0cXfsLu6GhKJKyQJ4TCw0cQUbwy+eDN9OzVYiX2W6ym8VYNbi29qg6eIoBPYtGLnLfFBC4UrJUNWjZFCjQVhaNdTGKVojxgSQ03G81U+kDjFIcdCYqM2vE3DDQ/Y/voSM9/JEFdcnFp/mNCm2+jrGKvWxV/x0LYgTAhUYLBWm+i1Sl/EvZdSINP3YkULQqOIjdy0VnnvGWMginDqUF/1mR4s0jQh/oYlmBKCcdUk4/aI6R+3L0P8N90zvnDeshlcijvMhCFHmiO4KwpvzSDaPfQNKLvaMuLVaWrOLJQIY0W14DBhKT6ePMVd3nk+nj/CU3t3UwmSnK4Vafcu7ZgH0sv8aOEcebvFHneJnGwzadWRJPh6Z5i/+fxPwbzHrrPXN9IiUynEYIlgNMfaBwMe2nOGHy+9svFQjQiNIogVVk/3nRO0ubKO17IIJgL+p6mvMm5VsYVFz4TMxzHTYR7VUDi1ENUK0JtwItAPhDEU3ujx5Jfv5JtT+9n/6AK3OWv8Lwe+zKkdQxxrDfLGTw8Rb3TbCWFwrABbdhnwF3gsvUTJbnBPYpqM6PGPFz7JM9NTqNMJJr/WxV5rYRZuYkf5D4iZGuXEn/FJjdb573e+xCfTh+kai1eDDF+r3843v3o3qRkYOFLbygmvK7jQW6GEvihcleh3OYcGPBETDIasH/AJU0mCbIHuQMxPPvIsD6ZPc687hxKpjXtKshL3+DeVR3mjPsSpr+9kx+Nt7PU1zPxSX7xGN69sQIWGo90xcvIkD3rTPJI4y/CdVZ6e3MXZeoFj95QRUQE12CGd6pDxepQTTXa60/yFzCmSskc19vmN+gH+3YkPIB/P4dQNpZmAoVaIPb+EXlnrR1y3+sIMfbeFag3RajH83ST1xRIv7Rrkn/4EPJI9zYf8k+y2f/h++KYJ+VztHl5vjMDLGYa+uYRotPrjlW8SVtfQqnkspdN0N7rJL9EfnbzTCvhbO79ANU5y7mCJSpRk0K4z7qyRk23GrAiNvPjzl2/w5uOYlTjBazNjFF6RpGfDzSdcNzDn58lUG31PZ0v1o7KrlYtBoPczutli8JkWmWmPp/UevlUaY9xe4zanhy8cysoiJ/sblpgQW0hs8c7yMDQx/2zlg3zpzCH0iRSTX29hrTZv2Jq6ZcSr6ml0w6aSStAyDpqQYZVgWME+e4FHEzO0jWB6IEfbXOr+LKs6B+0urrAu230n0GjO9gawTiVIzhnUevsqc8CvHcKyMEmPXs5mbHiFny6/yH5nCbnRVNDf4cl+t+NbOkEFwlL4mS4Pe1VsFBJJTERD21TiFDIUqG4MYdQXvrcIzmqbzGmHquWwGGU56KzxI4l5PpKYZyUjmClnNx68fTwRIoWmLNvstPszvld1QFVbnKqWsE4lyJwB+9gsul7ferWgQhDmPCb3LvKZ4df5ZOoIB2ybU2GXl3plTjdLZM5A7mQXuVK9ZcQrvKU5+CISgS3ATgV0iw7dokGPdhks1fn5wrPc66i+cAWU6C/QXSN5oz7EiaUy+dMa+eQr1/X+/36QESyFGdbiJJNulbxMoJJvsMtZ5lh2mC/at6ON4BODb3BbYoYpa5299qUNe9sE/HZjF6+3RmifzbD38fW+i8bCEqbXuyWb9kwYYMIAdW6eXL2NjIY4Vhmk4LQ56M2xk/5m5IcpFWtpw8n2AMcrZfxlQ3xq+qaXW8gYCCTdyCJ8c5Rwwy0hKz0e9brEpgP+6lXe5VIZzcWJdcb0Mzmxx2KUI67ZJJdinEp30/YF6Ebjmg8D0DehtPB6YMIIe2YVq+rj3lXmTG8AKTR77Hk80Y/Avt2ENuDipuiS7VjfwvO16ijRmRTZs2CdmO07Wdyg62PLiFf/bJXh7xRpjOX5e+kf45HSGT6dfo173b7JeFoaPKNR9jqBuXTBJaXGFVf6Qn674/F44wB/eOZ2Sodj/PkuXG+rGCXRCZvIkwx4bUatddIbO525KMO3F/cwv5BnV2NjTF0yicykMbk0rV152mXF3tIpbNTFY1mNY36n+jBHasMkZwT27NpGIfqtI1nkUoX8UYkK0/zDvZ/kd8prHMgsMu5VmHJW2Wcv42zMpo8RtLVF11gcDob5v2tjzHbyPHluJ0HVJXPUZuhEiLfSwbRaWyfytPF9WxNjhGNF1g56fKJ0jgf906RFRNsYvtXex3849Qjrc1l2ne3hzKxtra7Y94Aw/U1e/0EqL17nGoMvBD+z7xWeLu6g6LWY9CuMulWGVA9N4op7QmOYibK8/vok6VOK9LnNNYjAXwz4zecf4vPl2/j5nS9xjz9NQcXssfuRsvRIl4b2WA4yfLV6+8XXLffSvL40TLfjIM95eGuC0dMRcqmC6Xb71/stju50kaJO6nSC+tfKfKVY4hu37eOuoTkezJ7lZ9JH8KXCE9Z7FrKrcYejYZaXOnv5zrOHSJ+VDBx7d4ebG0GQFqQHm+zIVPBEzA/q/R0bQ5cAbQwNo1mMXY71JvlHb3yC5lKK8nOK5KlVRKNN9D64jmQE66FPy71JNmjXGqP7g2l6AQMv5/lPzkcICxF3H5hmIrnOI+mT7LWXKah+UPACoYl5spvk1e4Ec708J+oD1Hoe8/MFREuRPqUYno7wlnsbjZ/xDVtTt4x41SfPkj0/T3bPJCeHR5mdyFE62ORe9wwSiS8cEJB9l+eRRvN44wCfO34X6liK7LPniRcWia/zbkFYFrFnEbuCottixOqQ3mi6mo/yzJ8v4i7YWI0aBpDpFHqwQGc0yeLDiqAc8TP56Yv1fgBr2uU7C7tZWswxcT4iusETwm4E0eISLC6Rq++kOTrEqXKK0ztKTJTW+djAMT6RqFw0mtcYFuIOK7HgSGeM/3bybjorPsOPS1IzHeyZBaLZOYwxW2uKrpAIKQhHCqzc6VPfo/lo+gj3OQFtI2jomCfW99B+uUh+weCenCOanbvZn/qaIjYGVlzgooDd+L0vbP5m+TkoP3fF6yTOxZ+9UCOr0cyERfKvSgaeXUcsrm2aqCuAM1+j9NQAnYE8f+Tcztpgko9nj3Cvo9hlSx7yFlmNW/ydxY/w4uoY1aZPt+5irdmUXjaUKxH+sVmimXkw+uZ6cN5gTK9H3OshOx3G1puYTJL5lSJP7U4zeyDHh/Yep0CELRXyPRq2LMU2323u56nVnQw9BflnZzHV2qaohQxTgv2lZQ6mF94xcvZe6BlN1xjmowTHgmG+UTmI+naOqeMB/sllorPntsZm/xogov6wi5bui1clbv5G5YfCmIu9HaknNbtPFGlPZXmtuYtXygG1vQm6uTfY6ywxqC4NMgiJebxxgG/M72N1NY171sNZh31PNVALFUyziW71N3I3os71craMeDXaQBCi6m1S0zk67RT/ig/y9MhOBrwG+xMLeDLEEyG2eOtSFBrFYpSlFvn8/qk7UcdSpM4ZTOcG7RY8l17BppcT5Ow2nhAXHQPKVp3CcI2KnWb1rgy59D20SjbtsqRbEJhdTUZyTXa4y0gk67rLYqx4qr2fpXMFErMWbuXm1V3dCES7S2pWYzcF7W6KM1mf/3OgxBOju7Eue7DUAo9OaLO8msGZdklXBf5SF2u9jWm3t97Dd2P8Ia5Lc9SjsUtjj7bwZEjbhHyrM8KJ7jAvnR8nc97gr8aYW81ZINb9OeoxtLVD10T90pk3LdZvF0mLjaFhurSNYSbyOdyd4ksrt+NVDaLVhU1WwyfaXVILEVZXsXq4zO8t5vhWcS//Jre+YZwPrdDlxNkhrIqN6kKyLXBqhuRigFXv9TMwW9hB4IfFRBGm00EAqfkcCMWMHuIv8wuUEk0ezJ+lbDUYsdYZUM0rXis3RrTNRDkWwxzPNXbw+Nk9hCsJdqyEmFZn04yQ9hc1zx/bwfRwgdsSs0xZa4xYEamrjMW9Gm0TciZyaGiPY71dLAQ5jjUGObo0RGfVZ3Quxl3tQLuz9Z6dPyi6v84cXR+k5DbR6TPE5tYoH4B+c6NstPFWXNJn0vQqHo9H+3itPMxjI2colx4nLQVZ6aCN4VhjkJXZHM6KReq8wa1pZLW10fAZbuinGy/ut4x4RccYHRPPLTD6ewE4NjqbZDU5yak9Cf7oHo3xNNKPUOqtJzIKFdaci10XlI9GpF+YxnS7xOu1G3JT6myS6i5Fe0SzJ7FEVjoXF9t7nFX+9wO/z3yU5zcnHmS2kmOssMKDuTmG3BofSh4jJwPKUgAux8Ikf7h+D9+a3cvElyB5fAlWKpsqenStiZeWyX21BUohHKdvi2VbaCfJ5VWrCWNIGE0xWoNuDxPFmFYLHUabtlbrnRCWDcMDRIUky/dJ/tTHvsOku0pRdjgX2fwfxz9J7XiBwuuC8lfOYNod4pto83Rd0Bqra7A6gmroU9MxaWHetoP8LS9Hcyr0mA5L/N7KPbzw6m68RcXk8XXMwvKma0CJF5fwanUSSlL4bhJsC2MpApXmgmJX2nCwtwxRv9vd6L5Zu+l0IY6JN4m4ulmYKCKuVBGyRubrdTKui0gnifNJVgfL/J+P7iEsRoxOrnFPaYaetgi0hSU0GauDFIZvzu5lfS6Lf95i/Oku9nodcX6RuFbfFCUD6JjCEzNkTxVYvbPEr/3ih7mnMMPP5Z7jwHvTrizFkv+w8kGmG0VOnB/EXnRIn4WpJ9cQrRpmvYYJAqL30fVkooj0ec3qqwN8xwj+aul7N/sjXVN0s9nf2K2sMnw2iXBdotEiQT7DFz96Pwd/bJ5dzhL3OA26RvPKmQmGvqPwFwPcIzPQ6aI73Uui9SZtaraOeN3ABAHx8ipIgVz3sFyXtDtOa9gl9hSRbxFbbz2Zqifw5wVuzeDPtYnmF278Se+PViZmo7B+o3Pal4pd9jo51eb+wjmyTodDmQXu9c8yoBrssyN8cclvbSXKcLI5QK3qU17rwUql73V3C2OiiHgrTwH6ftmYSS88l3AgRXvAISxG3O1Pk5Fd1nSClSjDeiVFclnir4TEa+tbZjrY94OIYqy2wWoLZts5jgV5puwqqfcYDIkxHAuGea6xk6PLQ3jzisRqP+qqg3DTNTiaKLrk4/p+uuavNTruD2DaSJeKag1ZSeC3B0juKNMNbOa9HAaItSSIFEoakk6AEIb1hQyJeYvkgsE9X8E0Wn3/300U0da1OiqOSQ4lOL+ax5YxD6cKTFpLeKgrRuRqNCtxRMNYaCMIkJwMxjhSGWa5msJedPAXBOm5EHPmPPGtlsH5PlChwepKOoG9KcpDrinGXLIO63ZBKixANZI41TKrYZqcalHVNdpGQdPCW4tw1toXbcc2A1tOvPZPfAhConUHOl28o4KJtQLGkhhbYcRbi39ErFHNHgQhrN/4eiVZaVA4msZuKF54aIof8U9QVpq89PCERUlBVgb8XO556lmXnOxSkBGOEHgbZtltExAazRcqd3L8yR1k5wX2whxxs3VTrX22ufbIRAI5WCYazHL6Zxx2HZznlweOcZe7zNGgyD8//1HOr+fJvOBRer2LM1+/7nXbNwu9vErxaUmukOKEv4tf3jXGxw8e5Z+NfOc9RV9rOubvPvETjH5FUm7GeEtVRCfALK3275tbbXHa5qqYKEQ3NXJuieFvgfYdooxLlChiAwm94WghQQvB7lqIaraRzQ56aWVjwd9cz1nT6aDDkOQbCYq/P8j8wBT/9LMuyxPPcoc7w72X9RtVdcRfOvuzHDkzCoFEtiVWS5A9BYMNjbfcwa60EfXW+yrS+r5Hx+i1CqLRJLFS4rn1KWb9PKfcIWpxgtQZhX9kFtNqozfRGrP1xCv0FxvTLyOAS009F3i7uvWbedpNp0NisU3sJVloZ1iJk3iiTl5yZcOZc+GT2lxpYaIJjaZtDGfrRdJnIbkUYRrNWzLa9n5HbJTF9IouE/uW+Ec7P0dJhQyqBIcRnFosEy8lGJmNcc+uYpqtzZHKvA7odht9Zhq5kia3+xD10OW1wRHCkfhtxyRf7nfZ0IrUCZvk7z618XfbvC/ZiDjF9TpsRGMV79yfb7i568a7cSGCJheWyb0oSA5mOH1vnqOlEYqqyR1O3xpLo2loyRuzQ2Rec7DaBrdusFsxyRMVRL2JrjeIr+Ms+i3FRoPohe8/vkUss94O3e1Ct4vdMiy1UwRaUQ0S/cFJa4ZofvGmlghcja0pXrcgpt1BLVVJAdNPTPLfzfwZPn7gDf7G4NdJbhRHX63hZF13eb5XZDHM8YfLdzG9nid4Nc/4sTZWdfPMl97m2iAsC2FZ6B1jzHwqS3dQ8ycHT1JSIUuxw0u9NH+4dg/WkSSZBUNyptnfwHS6m+rBcj0wQUDmZAO36jOXHeAv5T7J/uQSfzL3IiXpUNEBDS35cvM2fnf2LsK4L0vaPYfs9GaWINts88NhghCxXsOJNcXHh/naqQf4Yup+/lp247o3IEJB4VVJdrqH7MWoboToRlCtYzrdTdOEdtOJY5IzbYxKUg3yfCL6ZTqVBLtnuv0G702SNr8eZE+2WPzyIE0Hzlt914WR481NJ1xhW7zeMHS7je50kGsVdkRTBMUEX/vFQ/zch59jSDVJCXNV65bFWPEHa/dyql5i8clR8sc06XNNxIvH0Nspz1sO4TgIP0FjZ4odnzzLY8VT/Gj6NQZV4qJwfWJ6J6MvhCTOrsPSyvumFtj0evDSUVylGFF385R1iGcnpvjI/UcpOH1xvxhn+M+nHsT+fA6r17830jFkX99cdljbbHMtMWFAvLoGaxWK52cpqv7GTbyphM5El4bYGLMxBHd7DbkCE0Wok7Pk5n0yJ7K0X0+hehrn1EK/RG8Tpc6vNeaF1xl65cpuv81aWrUtXm8kxmDCCFVv4wCJszn+/uSPkrQDyl7zCsunCyx0Mhw9PwwNm8KswV8OULVOv75xE15Q2/xgCNdFKAV7JmlNpFnfq7gntUrJanA6LDIXhXxu9T6+d2oXasbDqTQRrU5/9OH7iY3Ur1MJSM3YtMMk/2vpjzGWrLLQztAMXFonc4wtRsiwf3+I2CDa79/mk23eR2zcH2xEB7dXiB8MEwT9pvC6jbtqI4MI0ws2XXPnNceYLVOGuC1ebzAmDIjnFhCLih1rBfTnU8TCZ0EWuFpZjYg0+7t1iGNotDDtDjoINlXH6zY/HMKyUIU8Jp1k+kfz7P/kSR5IrfLZ7KvECH5t7iOcXCtjns2x56s1ZLOGmV8iDsJN10Byo1CvnWJ0Og2ug/7tFAsyg9CatDFkG/OY9SpcttDEnW3xus0227w3dLsNnS6i2UItrfRN/ru97XV3E7EtXm8CptfDsHGDvMtQrFt8n7cNgFKYTIo479MraT5YPElOtekam7U4xelKieZCioE5gzgx3bd32iK74+uFbrXQb2ouuXCvbDdkbbPNNj8UF5rCe/Gm84Heps+2eN1mm5uJVMhcluUPlmlMAOUuj6/uY7GVZul8AauuKByG0lyAO1dB93q3dM3VNttss80227wb2+J1m21uFkIgpEAkPOo7wd5bx1OamXqWykKW0nOKRCUm/eI80czsdsPRNttss80227AtXrfZ5uZhDEYbTKNJ6RVDaymLkRBIKFYNudNdVD3oe7hus80222yzzTbAtnjdZpubi46JK+tk/uBlskKA3Oja0/qirU283SSwzTbbbLPNNhfZFq/bbHOzMeZiE98222yzzTbbbPPOCPN9eIWWSiUTrG338gI4Rcn2uejTpYVH8mZ/jJvO3nt38tqLh7fPBdBg3dg4YvtcbJ+Ly9k+F5fYXkMusX0uLrF9Li7RYN0YY646m/f7irxOTU2Rr+y4Np9qi7M+dXb7XGzwrPkmD4qP3uyPcdP5+gv/jYwobJ8L4Bvmcy95JO/dPhfb5+Jyts/FJbbXkEtsn4tLbJ+LS3zDfO6lt/u7qyrabbbZZpttttlmm2222Yxsi9dtttlmm2222WabbbYM2+J1m2222WabbbbZZpstw7Z43WabbbbZZpttttlmy7AtXrfZZpttttlmm2222TJs+7y+nxACoVT/t5YFUmLiGOIYow1sm+Fvs80222yzzTabnG3x+j7CGh2hdccIvZyickgQ5jTJs4rc6RhvpYf10gl0u32zP+Y222yzzTbbbLPN27JdNvA+Ii7nWLnTZukhw5//ia/x9R/9Jwx9eobleyTr+xKIhHezP+I222yzzTbbbLPNO7LlIq8qlyW8bQdhxibIKEJf4K1rUmcbiHYPM7vw/okeSoXKpEApEALEZXsRoyGKQBt0p4sJg0t/J8ATEWkp2Jle5dTYAJ22C9aWuxy22Wabbd4T1tgowVQZ7SrClMIogQwNIjbIQKO6MTKIsVbq0O1hOh10p9svq4qim/3xt/khkL6PSCYhl6a9t0joSyJPom2w2wa3GmM3QqzjM+haAxOF8H1MH93SCIEq5BGJBMZzMEmPOOnQGvWIPIlRcPUZV5dILkb4z09jWi10t3dDShC3nloZGeT0z7vkJqv82OTrfDr9Gv9g5rOc/spO/EXDwDd67xvxKj0XRgbRvoORAqMuXWEi1sh2iIhj5PIa8Vrl0gsF+LJHVjp8Nv8qiTtC/tDctR153WabbW49hACgdccI5z8jIROyY2SRrNNhtZOi0XOoNxPoNRe7Lim+liSxGuIuNpHLFej1iBuN94+YuQWRhTzhRInqXh9+dpU7S/N8IHuS/c4Cv1+7ly+cOUR3Js2e3xxBnplDN1uYXu9mf+wbglAKPTFMd8inU7JojQi6A5pPfPAVHkifoWzVScvuVV+r0CgMf/H1P46zPoI9uwYrq+jutnh9C8ZWkI4Yy9a41z/LQ57i7twMRwamkJHEJNz+w+pWfNBsRFdl0kdm0piUT3tHltCXGCWu2B2JGKyuRgYGP9aIehMsCeLSz0gkngjxZYCQt+D5ej+x0YwnHAdZyINtYWwLLHX1n481xDGi0yNeXu037m2Ghj2pUMUCwnU2Ggn7GQTT6YL+wed9m1j3j9HoW/PZsM27s/G1C2kYTDQY9moU3Tad2GbWyzGj8wS2TWvYIko4RIksbtbDqnaQ52JMr7dxDb3/rh+ZTCJSyYv/L6TEpHxw7Pf2Br0AViuYILxhkTkAYTsIJdGlLM2JBK0RwSMbwvWRxFl2WQmWUyc4WS7zWtchzDh4vo8IwltWvArXRfr9704kfUzCpbEjRbsk6RYF3UGNGOjygcxJHvLOUZCSlHSv+l4SgRKKg6Ulzkzsx3cHsPMpVDdE9AJMt9d/frfa/WfwNYxobx3xKgTCsjG2QjoxKauHEprYaD6YOsbZh4q8MDdB8EIWZzH91lT5LYBMpRCuQ/v+nSx8wCLMa/bsn2NXsoqrIhzZT21pI+hpi5VuilqQYO7zY4x9PqaTda4QuBrNfJTnaH0YGlZf0GyzJZGpFDKXJZwocfrHEoQDIeXBGlPZNaB/TQBIYdBGMNvIUW2mEEeG2fFbCVhbR9ebN/2eUcUCiz+zm+YkWE2B1Qa3asgfayM7P1jqVhiDqrUwzTam20U3m+9LAfK+ZeO79k9XGHm8RGsowauJEdolhw8WT3Kff4YX2jv5mnWA2EjSB7tYUtOOHHqxxfHDo+z5DQe1UkMvraC7V49C3bJIRfDQflZvuyRgoiSoB9Y5WF56T2/x0swY5d8dIDnXxTq9QLy0fL0+7UWEZaHGhtHZJOc/nWPXp87wcGqZny88y5Dq4QtBxwTc7izzV8e+ym/7D/LEgfvJWUP4xyW60bjun/FmIPbsoHooR2tI0nqwTT7TZjQ9zX6vSdlpMOWtUlRN7vfmyUqFzdsEQACNAaP5s4NP8M9+JUG951ELbaLYpjZdJj0t8dYMhddqqHq7f/+0WtfkOLaQeJUgBUYKpDC4KkJh0BjGrTofyx+lHiRYT07i2BYikJjwZn/oa4hUCNdBJBK0hizU/ga7ihX+xuSXOGi38IWNLS5dZD0TMhNp5uM0vzz6F9Apj9hTffF6WfS1GvusdpLIrrw1FvSNFOGF+l8hLx3srRw1EY6NSft0BlwS+6t8YvQMP1N4nse8two+jeG5nuCV7iS/Gn0UnfVR7S6i1b7p94xwHZqT4O2v0mp4dOsO4YoiUXGx2u8xyvPm94wNDhvdqVIgur33TxT2slr4y++Ft8Po/mJ05R9u0XMkrjxe0WiROucDPvW2QytyKFhNbrfbNLx5XkmM4cqYj+aOMmTV8ESILWL+cvgL9EpFvG6EWK/B+0G8blw3QgqE49Aasmnu0JgLpzQb8g8PfomfS9Xe09v9am6K//jMZ1CBS3r+BpWnCYlOJgjzHu3xiP95/EsMqTZjlouFT113qep+78fdKuJYcoZv5O+nW7RI+LdoCZ0QRDmP5pikNa75s7c9w33+WcqqQU4GpKUgLy8cewJN/1lw4b+XIzf6/TWG2506f33iy3S1jUbSNTa/lvowp9UIUUKRnvGwjUGsO/B+E68XUqLaVjhuSNrq4on+SluQcIc7x6upCZ71phCO0w9X3wJI30cODaDTCVbvytEaEXT2d/nju19lh7vCuGriCQv1pge1RFJUMZomsWswrk2npAj3txkr1sipNvNRj988+wDBN0sMzsaYZvMmHeUPiVSoVBJcFz05SK+UoJtXtIf6BfmRD0bA4PMRyWfP3jo1bJcV2ncODrNyh0NnWPOTE8d4LH2cSasO+MDGDpl+mgdgRLVR3jQP7zjDsz9+CH8xzfDXXDh55mYdTR9LEWZiDuYr+OWAhApZ6qY5fahEFL59BOCdMEYQ11JYzSwyAKslcOow+GwdtbiOrtVvuSiLsCxQCnPnXpbvTxP50C0ZtGsups8v/qwGGQhEBP6CILl8KaWruobkyQpUav1mjE3eTyAsC+G6iFQSM1xCexbaVWglaRYt2oOK9pDhA7tP80j2NAfdOWIM32vs5YmX9yN7km9at2Esw/23n+YvDn+bu4tzfPEnSngLBaZ+D3i9frMP87piTU3QvG2IXk5S3SsIcpr0RI0PDs0iNy6enN3mdmeBC8+Xd+OhxGn+4DPzzCznGQ8GcafPX8cj6CNsi95IisaojV1oMaTapKWgpgPWYsFfPPmLTJ8eJD3U4IOjZ2jFDt79a6zs94EC+ZXy5svUXFjrlOqXsQTBe/Jo70ehR9AZn8X7fewfWeXuXIWHkycZt+r4wuAJgS1+MAMqV0jGVZNQCWIj0Ah+evglnk+u88zcJGvVLP6KTa7WgvX1H+jfeDNbRrwiBcKx0Y7EtUPydvuieM1Kj6wD+/xFvueJfi2H+sEWus2GSHj0Jgt0SjYrj0bcu/8sHyqc5Jeyx/CEBfRTOfJNrmdKCLLCAQKMq9GOolsQfHjXSQ6l5kjLDjNxivVjBfZ97jym3Saub03xKmwLkc1gfI/1A2nqOwTdsZD7D55kyKvzYPoMtoj4X60/zq7TOUSjDc0WmE1Q4/nDICTks8T5FGsHHOwPrnGgsMqfKjzNPlshSQCXhOvlvx+zEoxYmj898D2Cj1i8Oj9K+HoWefKmHMklpESmQ27LzvPB1DEe9fq7dL27v/O//Dq/EA24FAG4FB24/M9iDG8EDtNhibU4xflekWdXplhvDJMHVBzfeuLVcRCOzcptKXJ/bI4DuSX+Uvlb7LRtYmOuOFddE3Mq9FiO0/zjM59k9vgAF0JsVksyEufxpehveza7eHWcfm1mMUdtf4YgKYiSgtiFIGcIBkIy5Sb/j8HHuc+N6ZqInoFXqmOUnld4VU1iqQsGnv9zO2gNfY8PZo9x4EPzfHttH2vP7cB5/WYf5fUlGCuw8IgiGu3xTx/5HT7tryORFze+F1DivQlXgIc8xTcP/R6H94T82af/Xwxc6w99FYRl0R6waI0JRgp1hpXTL5WLY46HAyx/e5T9f1Rh9YE8X3zsNgqlBn9j/1fIyTZ/+fSfJ/9yDllv9cXrJkEohUinwHWg3uj3AcQa8x7EazhaoD3sUr+jx2/f9puUZY+ysrCFc/Hn3qwj3iu+cPCsK6Ozu7PT/FLmLP8uvZd/ce5TRElF5vh7v2beja0jXgF0P2pgjCC+rHjzfNTh+e4431g7gN0y0Av6acEtjEynkZk00WiR5bs9ekXDyPgKt2fmmXRWUAgaOuDVIENDJy6+LifbjFgNKrHH71bv43SzhFVXNMc9umXDjsQq43YFR8RoIxGRwHR7/Uj1m9OFmwkhkK4Lto3MZTG+h057BDmXOKFoDSgiX9Cc0pjBLqOlGndlZilYTYasKrGR/ZKJjUalrYxwXdRAGZNKULu9SHNY0tgb81BxmXF/nUrsc4oWx4JBZsICy0GG850CUmjKTpOU1eOj6SM87EJoLNa7PkHPQkSbILrQ6eIeT/Bfzf28MDbB6wNv4MseOdXGkyEj1jo5GRCbSwupEv3v8+3+TCOo634qLKfaeF5II+/xzb3DxE6akjGwsHgDD/Iac6GR0+nfG3gu7X0DdEoWldsMD+fn2ecvkpMaC0VIQPeyjZsGsrKHFJo7CvM0Ji/VNjZbHutLPlGyQPqYgpWVm3CA78BGL4Qa70eVuoM+7UGbIC1oThjihMa4GmyDkwwYzTaZylQoyC4WHjYGBBzILHLi4CRuRVE0LnYjBgmNOIEtYkbtdUYSNRaTEi+d7j8zb7GeCpXJIPwE62Me7Giza6DCiLWOK76/cp3YaObiNg2tWImTLEZZ4g1RdKI7hN28sc8Zc3mZnI54or2bl5uTOFWQjRZ2Owc9RRBZeCKkqFoEOU1nMoe3YCGWljeNVZqwLXQ5R5x0sKRARBEE4bs2QhljkL0Iq2Wj1mz+qHYPu70lPumfISvlxU2+jcIWCo2mayK0MTSMpqUlS3GKY71hbBGzy1kmJzsMqpCS6usPibxiU9zWIQ2jmevlcdcl7rpBdK9dXdrWEq9GI4wh1pLQKGIEYPhS8xC/+vJHkLMeu87X0fUGJtjaDxYxMkjjQIHKPouP/dxz/EjmGDvtVcoywhMSW9gcDyX/4OxnWaylL75usrDOJwaO8lx1B8d+fT/5EwHJ2wRLDxqyuyp8Mn2YQRWwFDusxGlkCLpe75+vzZIauQrCcZDlEsb3qN5ZojksaU1oCvvXGEo1+KWBVxi318ipNkkR4YmY7EaNX9cYVmMbBP0OyDDc3EL9XVCFPNWHx2iXJXyiwp/e9Rwj9jp7nCVaxuFwd5zlMMP/fexezNkk/rygeKSHUYKjEzZBVvDij03w+3u+wHKU5txaHlZcZLfx5ozyDSdaWmHHvzfgJ6g8NM6/uX2CyDfIUg/XC3hg9Dz7k9+/0PRlgC0ippxV7vErPJQ4i/PpiGO1QVbNBMUXr8PB3CAud5noHBymU7Jo/EyD/3H/40w5qxx01vCEICUcImLm45jFOIlCY4sYT8QMqZhxEfPXB79Jo3wpazUT5fgHxc8wt5wjcnNkj6rN4UoBFx02ZC7L0oeHaewE+0CdP73325StBnucRTwRYYv+vW6j8YTGE1BSCZSQ+MIhNpq/Uv4uH/nJo3yrdpAv/8FDpGYUyu2yGGUZtyvc6SxSTfk8Wb6PzNgQYrVKvNmE/A+DVJiJETpjaZbvFfzbB36DPXaNQXX1LvN3omMCvtLay+utUV5aHWduvnDJ6aGj2Hn+5pX0nQoz/MsTP0J1Mc3U6YB4bgGvMohVt+lmHDKyy7gVUty5zuIDJfLHs2RPOptHvPoJqvszdIqS/HFFIoyg1YZu750ziXGMWqmR6EYUXs/zX91HSI412H/nr3PACWjomJ6BtNTkhSI2htU4pmUsjvZGmQkLfHN5PyfeGMNYmgN759idXuFHc6/w4cTVa8BnYsmxYJinl3dQOBqTnGlDpXrNzsWWEa9CCLAstJK4dkRadbFFDEja2kG3LJyOQIQxJo77dSBbmDiboDFi0RnUPJI+yYPuIrYQKCQVrTkc2rzUmeLcUhG97mAsA9IwqzQzmQJLnTROw2DXe2jbxRQDRjJ1cjLAE4KWcViLU8hQ9CORm0y4CsvqNwx4LsLzEMkE4UieyLdojkjaQwaGu9xdnmXcW+de7xwl1d/VKcATkoz0iIhpRD3qxkVEQBRvfVcFz6VdknQGDXcUV7jPP4M2kqpOsBjleKE+xUI7Q7jok14Q+Esad7GJsRVOIYO2odpNsBp3WAjz9GoebmPj3rnZx6ZjosUlEILUaJ5OMUGUFHQDj47v8JozzHrv+0s9SaHJOx3Sdhdf9vC9GgUZMeWt0opcltzJ63Qw15kLEdd0GpFNExfTNIdtOmXBbYMLfCZ1/KJo7ZmI2TikrS1e601yPighMdgyIqs63OtNU5ABOSkZtC8tC75YYyxVpdrxiN3N1cQiHAeVz2EKWTqDgmA44PbyEh9KHsMTMUnRFxwNbdM1FlJo2sagMLRNB1tAQVokhENJOtzjrLKWPM/n/QeJXZBSo00/UNIwFo04gTC8pRHsVkBIQVjyaYxa6HLAPrvGmJWirQNqpkPPaLpvWiNaWhIi6RpF11yKzjZ0jieruzlTKzG/lMNZsC+KV9UVqNbNKz3pGptWx0G2FVa3h4mifsZJ9zO6ADaCpBNQ9Q2xswm/a9P/JS7/Ot4lGGN0PyMtlcKta9wVRdNLcqQ3ihQzVOIcLe1SVE0GVZOeUZwOR2hoj/kgz1qYpBm4EAmQglhL9NtMLghNTIxhOizyfHMny+tpxmoRqtGF4H0YeRVJHwaKtAdtHhqc5iczLzOoNOCRVW2cXI+w0Z80tdmjiO+KECw/kOa+P/UqB5ILPOTN4UvFq0GCmbDIr578KL1vl3BqhonzIaoT0Bxz6RYk7eEcXwwOYYwgfMiwek+Kwv4Vfnz0GAcS8xSkpGU0v7d+H0eqw3irbDqhLywLNTqMSflUb8tTOSgJcprBvSsUE23uSK8w7NSwRYwrQ9ajJH9/9rM0QxcpDFIYHiue4n/IH6ahI36nfjeHG6P4CwK9XsWE0Za+PsLhHOHHajw80o9CTgclPrd0H4ePTGBXFYWjBqeh2dEMkb2YMG1TuStPLyup3hHhFjoU7ZC/t/QxvnZyP8PfUPjLPcTC2s0+tEsYg31ijpG1HMZW6ISNUZIgk6Xi5L6/t5KCcwOSICv4yn0H+JGH/jVdIzjcGONIZahfarTVuNCs53nUHxhn+R5JUIq5+9ApdiTX+In8S2Slomc0C3HAi71R/u7hH6W9kiR1yiI9o9EWxI4gyAk6D7SYHKjwp0af5ufTCxf/mRBBNUjQabskNpl7i9w1yfkfLdEpG2574DSfKr+OJ0NOBkOc6A7x+2fvoNXwsKY9vDWBUaBtCJOGeGeXTLrNL+16lj+eOQL0+wQ8GRJ7hsiXuF5ISnV5vTPGf5p7hDPLRcbOhjC7iL7FPEBFIsHMx10++omX+8b0ymU9bvPVdj/q9nx1irPVIheWiiCyaC6ksBoKb1WQWLl0DwkNTlNj9TQ72zHWZQ1PItKI2SU2Sex+y6EbTfLPLZDzHES1ga7V35uLjo6J16uIRpP0EQu7nqU17PD/6/4Exo+RNQurIwizGqvYJepZ2LMOMhD0dnUZGawylKzzqQ8fJas67HPnyak2I6oHXCpbDE3MqVCwHKf5m4d/EvWdLKVFTeL4LKZWv6YNn1tHvNo2cdIl9AX7/EX22peKjH3Zw3NDGp65ZQYUtIcN/3j0G2Rlgtj4dEzAYpTlRHeItdMF9n9+CWoN9MbkrOyd+7DHkyAsqoUEeJr0eJ201+Njw8f5dPo1CqqLK2wqOuBUo8y5lTz5G1x/9K4IAUqh00miYoL6lCRxV4XbCqv8rbEvMmnFuMLCFoqzUZdXeiOshmmOLg3RabgIZRDCkLJ7hLlX6Ro41hrixHoZp2E2fbf0eyFM23xk4ig/X3iW6bDMSpTm5HKZwqsKf0WTfuIM8eoqKpdDpJLoPYO0B216RcPo1Cr7csssdDK8vDqKmE2QPbKOXF0nrm+uLup4aRku84MUXGhP/D6RivT+XfSG05wbTNJ6QKIRLHXTVJsJ8sEmuwfeC0L2xzkmEzTGFO7t69xZWubvjn2enfaFKJhFW/eoaocT3WHC4xny52HwmSr6laN9s/JUEjM6wNlcgdM9ixPFYbhMvMZG0Ils4lAi4811nqK8T/NAj9Hhdf67kSf4pF/j5Z7kmc4u3mgM0Tmew18TDLzYwzu9gnFsTMIhKPksthPUiy6vDozzmdQRbAxJKVAYjGWIHXBUjCcCVoIUJ+cHEIsuzkpj090n1wJhWcQ7OvyLkac2/kTRMj3e6I5wvDnIK7OjxPOXMh6qJyidgEQlJnWySnz0xNu+t3mb328JNlng1fR6RGfP/cCvNb0eammFRBBiN7OEySRxQpFY0TjNmHZJ0RpJ4nYgfyJC9Qzzjst6KsGB/BJ/If8iWdnXXv3mrgQSgabfBBoazXKcZSYs0plOs+d7dWS1Rby4fM1rxLeMeH3fYUAbQ2w0GkNoNCe6w7y4PoFTE/3azSC86MtoLVVJhjEizhAmLXpFw85dFR7IT3OPP82g6lDRDn/UHeTl9iTHn5kiexpyJ1o3vf5TlctQyBIMZ1i9wyNMQq+kiZOa8vgKnx47ii1ifr9+D11t8+r6KMvNFLWaDysuVluQnINkF4KMIE7Aa4kRuuOatlFMNwqsVVIMdbZ2uYC1c4r2nhKrtzsc9OcpyC5f6w7xanWMYCbJ6IkedqWD2RDoIpsmLmXo5S1iD6Kk4Y7iPB/InOTz8Z3MVHOojkC2OuhWux+RvgWRjs3SY0UqD4bcuessRWU4E7qcWBjAnPfx1rfQcW80KMlcltUPT9CYEoQH2vzs5BEm3DU0gvmox1PdSc72yjy3PsWRmWFYdRl6WeMvBsjVGhr6DZCFHL2BJMFkj4NT8xxIzAMwH/V4vjfKK61JZl8eIXcG0tPtm/6sgI3GomyGyoTH7TunuTs3w6neEOeCMv/l7IPUXy1i1wWDp2PsRow7U8XUGmBZyJaN2wkoOwXCtOLZ2u18cvQAOBrLi/oZWT+mtSdmZ7ZG1zicqA3gv5YgsWRQ6w220NUCgPQ85PAgJuESlpOESYvEbAP9+smL9csmCEi87PNQ5hdotF16VQ8RSNxVhepCumLwqpekp4w0icUuqtlDVN6b1+tWQQpBzu1wLhcT+uqWKxMx3R7UG1jGUDyiiBMKbQu0fcEjve/MMfsxgXEMUzvneaB0jrv9c/hCXeFIcMGB4lTY48vN21gKM7y6PspaO0nqnESt1Dama137WPu2eN3ExBtDGABCDMeaQ5xYLJNYF5h2tz++bsNoPZqdgzlBsj2FtgeoRYqHC2f4H/KHkUiUcDnT9fi9lXs4vDDC5Fd7WE+8tjmM+wcKNHdnWTtk8amffoZ7UufY4yxSlD3SUpCVDk93Xf7G8Z9iZS1N8pUEmemY0mIP+/RZTBiim31LJblrkmAwxXQpRft+6BrFYjWDWHaxW1s7WdXeU2L+gzbxVId7EtOUleFkc4DX54bJnJHYzx3vR5aNAanQuRSdYZ9uXhKmDDoV8dHsUT7pL/N0fTedjoPXAdNo3nJWUZcjEgmqj3Y5/OF/jURiC481ncT8/9n77yjLrus+F/3W2nmfnOpU7KrOGUA3ACIQIAhmMSubshxk2bIsS7YsD1vj3utnD1t+tuXxrq/9nGU/WaJlK0dmMYABgcip0TlUV44nh312Wu+PU52QQaC7q4r1cfQgWXXq1F67zl7rt+aa8zenXLKnwFrsbJiIkNA0pGNDPsPSAwE/dOQZ7k2d5QPuIoGKmYs0zocZfnfhTk7OD6CdSDL+SA+z3kaemSJqtAjXBItwHYJSis6gwaHtk/y14YfZaywBBhfDNH+0fDsvLQ0y9EhE6qkZ4kaT+GbPFYDIZwlG8jS3Sf7RyDc5bK7wK/Mf5rnlEfyvFtnx6y9edk9RcT8AcM0cJwTW2UlsKchkM/0IdsolyLu0R2xWf6jDkdEZxt0KvdhgdiXLxCMdjLkq8dLKzRv494hIJujuLOJndGq7NbxiTPHZLNlTOqq3Jl57PYa/1aR1Mc/YnIfxwqm+h6hSay4/r9y0qFgRq3hdfCbeSTQEZaeBkfUIE8lNY7t5idjz+o02KlXk1Cy6aRDfspvusNOPNAvwCxG/cN/XeCBxkrLmk5cmmhBIruQ291vD9oXscX+Q3zx7F62mjViwMVqCwVMB4fTcdSvw3DDiVaUStMdcugOClOze7Mu57hgtwdc6o4wZqxwye0hgwl1lvpjm4qhL584JzJqPcWER1b1yP8JyhtoOjc5ozJBRxRAangrpxDFnehO8MDdMMJdAb7bWRwWlEChdEpn9nLRWZFGLXKaDAhXZoxa5rEZJnmpMsHSugFnRSMzFOIs99EqbuN2BIOjnOQsJYYSI1WV/lAhBHAtEJBA3P2j0tghdDb8QUcy0sdesoGJEf6wxryi8E50eZs2iU9QIEwoj6ZOQPSSSdmQSdXS0Hhu/gO01EJaFNlQmKqZJpjyS0mYmbHHML/DV+iHsFYG7HCLb3vrPwbtUnJXLEe0cojtoky422esuUNBaBCrmYmjwe7V3Md3J8eK5Ucx5g8Sswlz1kK1uX9BdWkiEQGVSNCccWqOSO9wqJa1BQvY/C7NhjmOLQ7QXEpTrIarThWCdJb0CBhEGfdP8tO2xrANRv2j3NRdNpUBF/X1/t18prXJJvJJFtyApZVrsSiyz7Ce50C4QrtpozTqq091QFoz66AjBWJFO3mR1v0GYBG84wM55eFMphBCXN20qVmj1Ls6SgVHpEHc662N9eLuofg7upfbYtghIOD61hEW3aJIZHaE5YBDmQ/LpNu7a/DhoNShlW1QSSTANkOvIZePtIrU1hxIDmcuiEg71PQmaYxI/owjLPbL5NjusJfLSJyW1a7p3BiqiHvt0FEyHaRbCDH+ycoTW+QxGU2Kvgt5RmBXvup7UbBjx2t1ZYPZBcIbr7DSvf1/km4pSpC/E/KOnPs14eZX/767fZbtu8DP5x/hM9gk+X76FPzlwCxfncox+fpzETOeyl938u13u/uHnOZic5X5nErBYiSJmoyR/PH+E5FeSJBdCtJnldXP8FVs6fkqiBLywOsxsJ0sv0gljyeR0Cee8ib2i2PN4A63aRLXaqDXLq8uFE0q9an5SrCRRJJEhfVG7URGCdlly+8EzHE7PkZchIC5Pyq8gjogvzqDPm5hDB0mO19lXXGJQaxCjmGlnMZYMrKra8L63r4VWKrLwoRE6w4L7hp4nUjGfb+3l37zwfqI5l50Pt9FPTm2IPGhhmkjLItg7woUftGGwx9/d/SifSJymo2AmNPid6l184Y/vwZ1X7D7RxZhdQnW9fmQ9ii7bB17qvtXek2fpB3qMDNT4ZO4ZDpk9DPr5bI81dqF9K8PwXIR1YZmw3lgXKQMAhBHSjxARxEgMIbg9MUlG7/LZwggilURq2pvrjBRF4Ad4Q0nm3y1Qg11+fvxR7nXO89dP/iQrT5cpnAUxt0xcq28o8br6wBj1T7cZzi3yiyNPMGJUycoOtgj5werPM2yaV1rdxhHx5DTGnIkKgk0hXJVSyBBkAEHcjxDmtQ63lWc5ZxdZPjREZI2xfETw3ltOsi+xwLDWwxAO70+9xIhZ5V9OfwyyaTQ/IGq1N4WAlbaFSCRgIM/qkRzdgsT84Ao/t+MxClqLMWOVhAgY1UPstfqSq2mpgG91x7joF/ndC0epn8+RnJTseaiKbHTWfGdDVKt9XaPyG0a8RrZAZH0Kyf7D1zdE6hNfysFQ3Pwj8HcIsxnBnM20lmVhe5Ky1qAoTcqa4J7EGeqDDt8Wu2iXy8iwX+2nJHRLivszp9hjLpKQgkD1hetxb4SZWobiYoS92EWto/7cQoGIQOvBSjVFy7PwfZ0okpjzBqmLCmclRE7OEdZqr2/GbBsErk5sKiT9yGvU0zC7Ahmsk8X3bSDFtWM3ZYTUImKLvkF92+hHopXqdxvSdUJbUEq2GbQbSKHwVESzZ2E0BboX948GNxFC1xGOQ5xN0S0LvMGQktmkq3ymegXCRRd3SaKvNIneoVaF1xuhaWAaBCkDhjy2l1fZbS2Q1ywqQcjpYIBTzTKJWUVqyse4uNxPJboaqSE0gcykEbZNp6gxMrDM/twCg3pzrWNfn0ZoYVcVdiVEdbz1tWhHESKIkAEshSnqxioprcuQUSNMxahyHtns9iOLvk/sB695/cJxEAkXP6MTFQKK2Ta2DOgonUozgbMocKphfxOwQQTdpc2Jl5fcOXqRw6lZPpU8R1FL0IoDOipCmK+SBrBW0LNpiGM0X6F50OmZVGKfQJkMWE3aCZOZ4gDtlkaU99nmVCjqTXoK6rFHWuhMGMtoiQDlWkjXQXS9N+xktREQjg25NEHRpT0o6RUVdw9M85HECVJSkJM2fWmoX25WEKxZpTVjyXKc4NnOONOdHNWFNMkZSXI2QlycI2y0bthcsWHEqxICoSkMLUJ7WYaar3T8QEcEm8NpACBxfJGJbpHK3gT/d/nD3Fs4zw+kXuCQCTv0Fp/MPMtBd5bP/ug9rHT6VaBSwIfKU9xpT5GQMcuRRjM2+PvHf4zm00WSU4rk8XlUo0ncXiepF0ohJxcoNjLEKRvvRQelmWtH/2DWOuirbYTX6+98X+fvK02DldtzrN4Rs3PfLCkpmO3lSL5kMfBMD+vCyrqJNr9llKL4YpdTf7iXJ3fv5MGPHOeo6XFP9hxSxDwW7+CiuROzocicD9B6MdU9Fp1hQbS3zd8b+w6Dep1ObPB8lGDpfIGJJ3tYy53+cfImQhzYxcodOdrDgj0fOMe7cpMUjSafbw/xuclDDD0CzpL3jhpmX29kJk08kKMxrvPxvc/y3vRJDpirgMV/Xn4vX3ziNpxZjbHn62iLNeLKtaL8UgpFnHSZf0+e+t6Y7PYKf3Pi24wZqwxrEVcHBNYzcb2BCAJyZxP8q2MfYU9pmZ8Y+i7vdc9y7r7H+JOhW+gulyk+Mdyvhn9pmXhy+hU94IVh0r5vN6sHddoTIe/bf4perPMrz3+UXt2m8IRO6Yl+NCnaIKJO6DpyxzhRPkFzZ8xPlh5jRG+Qkiat2ONXlu/mkcUduCesDSPGv1dUr0fq2DKJmQRT6Rz/sPQJxtwq70md5EPpgNvSM1y8K48hYjqRycnuEMc7w+gy5j2pkxw1V9g1uMzK7dtILKZwn4w3RWOK3m3bmbvPojcQcfSW0+xMrvCxzHPkpcQQ13q3Biria50yT7cneHR5B1MnBtE7AntZoHcU22YinNk6stnpa4obKO43jHhF9E+FXx55AvrdtkKJDNdy/zYB4dQs+uwCRf8Ap+8vI4XiiDvJIZqUNIuSFrPfnOHgjj+krYzLgj6veYxqBj0VMhebTIV5KmfzbP+mh7HaIZqeW3dtDaPl5cttJ1/NCulNPw6aRntUcODgFPcXzmILjVqUIDUdY704Rdxuv1OXfFMwzi8w5JeQfoqFD2QwrIDd5gJxWuKP6zwjR2nXbERsoHegejhmePcy7ymf5cPuLFKIy17B1rKGc3IG1e0Sh+svl/Ht0BtMUj2okCNtfmnsK9xh+nypU+Tp9gSthSRjxyqwWiNurJ+e5W+IbRFmbXo5wSeyz3Kf7XHpaXl2dYTCU5LEYoA8N0NYe2X1t9B14mwSP+9QuyXkU3c+w9HEJB9PzKxFXM1X/Mx6Je50oNPBnhskOJvmxa6BVzbYaST5xeJj/Fj2Sf64cZT/3XwPvQUddy6JmNEhDK/JfBCGTn1Cx7+txf7yCh/MvcSx7ihPntlP4QIUn20QP39iQy0pQtcJi0m6gzai1OM+u40r+ydzzdjnkcUdzJ8YoDQbb6gUiO8FFYbEkzMITZLad4SnpseolR1+Ov8IO3WH99onAHikJ/mj6h1UfJfJRoFYCW5xpxnQOuxKrTA1Oo7SdBLu+mrS8b3SGjbRb6txsLjEr4z92VXWesY1TgLQLxo/4Q3z2Mp2pk6VGX0oxqyHmIstRLeHqtaIavWbUjOwccTr63CmW0aeTuDOK2Srs6Emm9dExagI9OUmiSfKnBmY4F/c/lGeGDrF7e4F3udU0BDktYCU6ouPSx+7SuxzNkjzj89+itnlLNnjAnOhiWh2CDfzhCUlkako2S0y2vrPY3yrqG633+JvJcHnV28lVi+S0rocsGcwciEZo8tiN83xzCBhoLFvbIG78pMccmYwhMRTEZUoyXKYQvPoW5hs8DbKlxC6jty7E38gweLtJmO3zLIns8Sg1qaj4L9MP8D5F0bInxCIeot4gxXfxAkHL28SJtXljWo99mnHikozQakSYdb8V9idaeUB4tESXsll6YhBrxCzZ/cMtyWmKOgtZkKwRY+y1s9tmwl7LEQuZ2olnJUQc6UD6zTqqFUaFF9I4c04/JPep/kPQ3UOFhZ4IHsKQ0QM3brA6k6Xi8kMqYNHSF/sYT53AWFbBDsG6WYNGvsi3jU2w0wzyz966tPEFZPyMUVi3kdbaWy4kxqRcFm4J0HzgM8Hdp3GEBr1uMsJ3+S0P87cqQEGnob0+e6mzXW/mkvPePpCF++xJOcLCX6w8jOk3StpcyvVFPFiX5jGVgxmzIXhEiSX2eEs84XtPpFpMJB0N4WPvJJgGyGu7qO9SjDwamKlaEY2rZ6F1pEYDR+90UM0O6hu96ae2m0K8fpidZjBJwLshQ5qAx0Fvi5rFbHxxRlGf6+NyqaYrg7y2X15Tuwb5P7xz+FKg/JVNh4SyUrUZTqy+FrzIPUvDzH+ko99foHo/NRlW63NTGzBhLPKoFF/xS5yoxPV6lBvkBrM8sjZnayMJvmZ0W/zoN3gLuscn0mfJVaKYIciUgpb9I+B+lZpGs04ZCHIMO3lMdoQvUH+8EZCWBarR/NU90PhyCK/ufd/kZEatjCZC3tcfHyUvb+xhGi2CReX11cO5xshBFHaojMgCTIxtggIVMRCpLEQpvCqNu5MG1nvEL/sKDgeLbF4T4b2iOKjH3qC96ZPMqZXKGk+y5HJSb9MQvZwxSoZKTkZFHmqvYOF+Rz7J+swv7xuC9rC6Tmyf7KKcGzK3x3Gz2d45MEi+vti9iQW+B/7/ieWgP+0414eX51g5tERdswVCHMus+9x8coxd992ir8z9DV+ZvknGfushrXUQk7OETebG3KjL1JJEh9Y5BuHPosrDAxhshJG/Fn9CM/VRil/FzJ/9GzfkWGTpw0AEEeoOEJ78gQjL7mITApvR4nIvtJwYaIdoq/WiNIWlf0uvYLOyQODUDjOUWeS9x44xXdTEwQ5B003Xt/JYgMQ65CyeqT1HsabMAmsBQ6Ndt/+ylztIOtt4tUKcbd7U9eP9S9epYaQgtASpJJdCnYbY83zKFBRP6E41LG9GOmFGyqa8mZQQYhqdxBSYjaKaHWdas8lQr1CnEkEEVCLXGqBi1lXmMtdRKuzoR+2t4ISoIkYLzZYjHyWgjQyXMt1izdBTF4ptGYPfSrPiWCYP7DuoJE/RkFvMag1MERMQoQYAlAxAQqDGFcY/W5j3SFO1AfRO2pTCFdhWWjFAiqTpDUqiMa6bE9XkMBKFPGkN8wJbxhnWUC92bdGWi9V82+B0NXp5QQqEWKs2aR1YoNm7IBUhCkLXQi0sAxhRJxNoRyD2t4ErTFFVPbZaS9T0ho82d3OhV4JQ0S40ievt9hrrJIBVsMkk90CoqP1q4Z9f921j75MHBF7PUQUoVVaWGFMYjbLt87v4kSuTGqbR0lvYsmQvZklzo8OULmzSJAQdMb7bZJbocWf1Y/QXEwyvNpFqzaJu92NK+yEwNZDilri8pcsAQNmgyGnweygJHNgF9IPEd1eX8R2PAjDvj3WOo2yv11UEBK32kgpMFdclHWVX2nHRzTaiCjCqdiAZLKR51zYxVN5JpxVzqWL+NkSyUKu73e8Tjd0bwarEXNxrkCrZ/HFxH7GjCttwdPSI691SIiQsqYjhWDYqlPONpkesqkezmBXkySkRFTrN/Uzs+7Fq3RshGPTKUs+PX6M/fYcJa2/+NRjn1osaXoWbq9vebIZFuRriCOiVhsZRSTnIiJLZ2Zb9hWpEZcMg5ux5Lw/wJlGieRsgDg9SeRvrpzGN8NFv8hCmOE7y7uwav2Ja7N0kFIXptn5GwFx0uHEnft5anQ/vaGQHdsXyVmdvpWW3ialdXFlj216hVvMiLnI5fMnD6NN2ozMbI7PhDZQYvl9Y3TLgrEPXuQfjH8ZgLNBmq81D/K7X7mPxIxg8PF+K+V+R7oNNkcISWvExLulw/6hJbLSJ0JjIcpw0S+iuyGV/Q4ysBBRitiAypGI4liNkdQSH89dpKg3udO5QKA0fvXhjzL4kEZ9h0S/s8q2bI2j45OUtIhn2hM8enE79rwGzfaVphfrlThC+THR7DxiUWd4tUH8cJrucIH/595P4hcjPnT0Rf5i8THef99x5u7KYcmACWMZTxn80pM/xuSf7WD0fIQ8N0vU2TypNJcoaw4/njrG+xIn+ec/bPHcXSOEq0mcWQ29DdnzIUYzxDq3RDg9c7Mv9/oQRygV94v9vB5CXgn8qCgiDkKEaZBudkhlkpw6OMC/Lbyf/e48n8k+SV5v82v7P4YMt+GeXiY+P3nzxvI2yT61gFUt0inn+X+OfowocUVNOMUOhwbnGXcr/GzhO4zqFn85+wQ/kH6e8xMDPHvPOE+sjLPw+8PkTuf7NnoXp2/KONa3eBUCYej9vss2bLeWGTNWMRDExHQU1GOLINCRYYwII9RmiK69BiJSyFARx6/u7dlvJSvwlIEfa2i9mLi7zmxurhdCIDQJQmGICC82WAmSVD2HjB/3hesGjLi9GnGnA2fOIyyLXPYgWs+iFRhcTORZdvsRl4LVZsyuMmA0GNCaQISnDKKGgVMV6O1NIuQtA68g6JYUd+SneI/tMxN2OR4UmfcyJGYFmQshWq1DLCRCA6S4Ek3cIKk0sQGO45M2PSSXWkdLAqVh2QFe3r3chCM2YXj7Cp8ceZGyUWe3uYCGIlAas2EOe84g9/wKkVmgcsCm4dh0YotAtVjpJfEbFuk2GycYoNRlm6e43YZpSFTHSA2N0u3o1A87FGSX3XaLoWTj8o8tRTWirk5qKsJZ8NY2uBtcuCqFH+nU4y620LGEgSE0hvQkmdjnA4UTZAyPF9NDLGp59LqG0dEwXYmxkkQu232Pzo0aeX49lHrdsakwWLNhC7CqBU7VByibDcqaZNxcJkgpehkNx3m1suKNg1qt4iiF3s7RLSYIkleEvOcnOKkP0MpYzGaTZGSbvKZR1hQ79BnutKcZNav8p8ERrLqJUU0iFqwrjUFu4HyxvsUrgKaBYRBZsM+cZ1TvYgmTSCme9MZ4srWd3ryLvriAWq32Pf02EdJ1EcNl4lySuQd08rcs89HhU1hC0lMBlTjEUwKNvq+pp0x2WwvsSI1yYnCI3MQYqlLt50tuUoSuIzNpyGeJCgH3JU7xnDfOi41hag2XXBBtGJHyVlBBiHV2ieJSguxZB+9Fk1i3mHaznE/AqR+c5z/u+W1SMkITG3vCfU1Mg15e9T06jX6L2xiIlMTRAnp5aHc1gmQJY28BvRNh1Lz+ZrfT62941ypm1y0qJnPBZ/G7WR7f61IZNilrcNiaZ8xYJbOvw+PDO4jWGlZYMuL+zCn2WfMsRyle9MZ4ujnBNx47jL0oGXzGR9RbIAqU8g0m0qt4yuB8qPPdyQkKj+ukZoINfYQcV2qUnkzgFxM8vnMHv26/m3tTZ/lkonrZdN1AYKd7tAdTGG0TW278Hvaq67H0wk5+zPhRPjn0PD+buXi5hacldO53zrLHXGA2m+PsSJlGaHPu7hK1nsO5p4bIncyRmuqhP/bShv77f08oRewHyE6X9PmYqeQIXzhk8VO5J7BFQG8gotHWScw6G7qaIu56iNUqhtdjKCgRm1fqZsKkQS+TZr6U42888JeZKFb4+OCLfCBxAlsoMlLwQOIUL3xslDP3lTj/5BDF54/gLPmYz1/ou9f0ejdkrV3/4lVqoGtElmJU71LW+rYfPRVwtlfmmcoY1qrWX4AajTd4s42HMA3CUhqvbJHYX+Wf7flTRvQGBho9FbIcmbSVibaWSGCIiBGtzjanwrNZQTiQRu/5sJ4X57eLpiGSCaK0g5v2OGB4TAYdVrpJgo6BCLqbzogfgDi6fMwnAOeqb2m5HKfvm2DPwSsWSJHayFPuq6MMjTCpcNIeKekRX5VQY8mAIBnj5SVeXgASs66RXNCQvsKsW8heiOb11vfzoRTWXIPisSyha9KMbTTRY1w3GQduNSf5qczkq/7o4z2PqV6BpxdH2falEPf4AsrrXY4wjiTrbHOqeMpgIUrDvE3hWBut0ibewMfncbMJL5zEymaw7z/I4yMT5IwOH0+scrWfbdLp0c6kCBISR3u5g/gGxA9IXYCz5igPmR5/PXMebU1qaUKy33TZTwysQupKrmM97vJj2o9y1hkl1i2KT+rff+IV+ukFXo/krE/oWCyXMjQPamgixsh6eMUEQcp4VUvHjYIKfFTg95+RhcVrGlMaa/+y28e5mBrhzIjDI3aHA/YMg1qLYamzX0r+0+i36Yz4fFr8BebiYdIXLAbOJfqR6xsUuV//4vX7FJlIIFNJorEB5u9P0C0pHhycZlBvYoiYlTjipJ/j/774YZbbCbZlamxLVNjrLvA+9xSjZoXWBGh+gkIvgtm5mz2k64Z0bPyxAt2yRS6xjCV0znplLp4fwJnVka3a+u9d/w4hLAtteJComCaR8JAIeiqkpQKmgxHcaZ3cmRB9ubkp7ono9HDnJN0wye/l7qAZ2xgiwhARjhaQ2l2jPWIhpEJKRa1rUGsYiFAiezoiAqOZxmjvwFmOyR6vI9oeam5xXRVlCM/HaIQ4ywa/tvAAz2Qucpd7lmGtQ0oKUvLKJiVQEd/yspzpDfKlhUOcOTmCPa9RXqj2rW2yKeKkQ2dQcDg9x3ZrCS82WIrT6C2JttJEtDrrt1DrTaAV8gSHxmkXTYI9Xd5TPks9dPgH8/eS1j3elThHQmrszS/x/O06K04Gd34PRrWLmpzZsJ7Qqtfrp8n0dF7o7OboUplcosu7y+fJ61fGdMSZ5EHHuxyFtoXO/aWz9A7qzHlDFLePoVcbRCur33ciVkUR5lKLjCZo7DB5sTcMwGCuyXws8TM2ltQ25WneJVSrQ+5MhF2RPKH2cGpigN2FZX5k4CkGtCaHzCauMHh36TxfvNWmruUpfdcFrwfdG9O9c0u8rlNkPkcwVmD1kMuRHzzGB3LHudOeYlzXWYxCzgdp/qR6O0t/vI3kbMSpwwWenxhjameeT20/wWF7muzhFZYLWexqEvfZmz2i64dIJKjuc+gMCe7JLmEJnRcbwxQf10gsBFBZx1G1dxiZStK8pUy7rDGeuwBARwXMhTrPt8coPRfgfOPFzVPEV2tSeLFAL6dxIRzj34+UGCzVua98nqLR5P9z6PfJyi4pGZASigAIXrbe+EoSIPln0x/n3O/uIbEQkfH8dSVeVbOFsaCRSek88d29fLe4nalDeT6YOcaEXiV1VVC9GYf8j/n7eHZyjMRzDvs+t4hod/tCBIj2jdLYbtPeEfAjmadxRcRXO3s41RnEXqXfjeoG56+9owiBGi0z+TEbNdrl52/9Jj+VOcEvznyIR796iMhRPHlknL2ZRT4z8F3+zdgqvzz0ER7vHMZdcCi3OhtWvMadDtZDL2DrOiXTBNMg3DnEH3/8HoLcle3qkYMXuHfH5y6LV0sY/FL+BX429zSf0f4CtRdGSCy4mJ63YbqLvWPEEfHp8xjnNLJjR3movo8xu8p7ymep5BM8WjpK2tA3td1YtLJC8otNUqZJ4flxOiMZjh3Is/CeNLszy/zdwa+x1xD8/cLj/Gz+MX7C+ksEX8xgtruIZhN1A5aXLfG6TonzKeo7XdqjcDA5zx5zkYSM6amQM0GOrzYO8eTiNpzlGGeph95xwZd4kY4GJETIQKJFPe0QOi5C1zf2gvR66BpBQhCkFCmjv+vrhCZmW2G0QtikE8w1SA1pGpBN0xzR6Qwphpy+aJ+LNL7aPsBzq6NYzZDYuzE74xtCGGLWfYQycRYMuspmrqvzUKSRsT2q+QQDZoO81iKrdTBFhC0CDBGSlx62iBnUICkNDqbnebG8GxFJ0vY66zgVhmvR1wBnwcD3LB7K7GbJSzFgN9lmVZBrFVv10OW56VG0GRt3IYZKjbjTN6UXpkl3wKQ5LkiW2qRkX9AsBWnmvQxaT23oBVm6LiKRoFd0ico9thVrAJwNNM7USrjzgsgRnCkNsNJx2esucJ9dZciq4w1GCKUR51LISuqa9IqNxKXiNdYEuJFwScwl6LXXlnsBx3JD/Gl5hEG9xoReJyUFSWFQ1BLsTi/zrYkxIsuidNaF1cpNHM3NQYX9dUP3FLOdLJYMGbMrpDSP79ggTLPvSrGBn5XXRan+OuEHaJUWji5xiy7Tc3m6gcFcMcO4XsMSOkmpMeA2WSqW0LppZL0BN2CN2RKv6xEhWLw3y56fPMXe5CKfTD1PQVMsRxpzsck/P/dx6l8awlmOyT25gGp3MA7vvOYtUjLi/sJZsmaXF0sHyGUzqJ5P3GptOgGrbIv2qMKYaLHTXiZG0fIt7JUAY7W96axvXg0tl4GBAs39eTKfnuMnhl/kfYkTgM5vrt7L5790F+6cIDUzu+G6Br0ecbOJfnwS3TAZPZ1A2SaxZRA7LqGb5uvDo4QO+BlB6ELoKsJciHRCdg8vMeQ2+MHC03zYrfPuxGmefc8YJ+fKBC9mkGdv9uiuEDVaiK6H0WoztpDtR9QyDkv2dhal4HnjSuhVxIpd1R6yvYqoty4XownLQuayzD0I//B9f8pua4GiNLkQRjy0tIeLiwXK1Y09N4jtY9QP5qjulfzNo1/liDPJf5l7L7924j7kU2m2fXUBgODxNH42y7/7i+9j8PY6I1aVH373Ezy5Ms7y8hC5jIU5uXLTbIDeSeK5BYa/oFDGleW+/VyBf/ncj+MVY47efYbb0jN8OPUit1vwiwNf57a/PMUfzh3Fv1BCblb7rDeBVQ156ewI8+UU/+feU+w2l/j/FT6AzGZQ3S6R72+69fQa4gg1t4i+UmFgpUj6QpbG9gK/X7yTfPkhhrUeZc3haGaaX79vF+58htHWjakh2BKv6wyh66BpeEXBXyt/hxG9wZjeX5iascFsmGNuNcPYyQBrpUu8vApBgHxZmN4AhowqdcfhORuEYWzeXaKuESUiSskOruwRqAg/0rC7fSPuzda44tUQhkGUtPEyko+XT/OZ9POkpEaI4FyrRPocJBYCVGv9HIW/E6gwvOIUsLx8+esCsFwXe2KUOGHhFW2ClEYvLeiWDIKUznm9QDNrMZfOAXUG9SZ35y7QDQ0ie2B9VRTHEaoX9Y9wq1WgP0btNV6u4NqcZqkhTRNlm5gDHX46M7X2DY22Eqy0EsQ1E727ge3khCDM2LQHJV454p7EGQ4YbVa6SXrTSYqzinhqFhWEGIsJzFyGcGmEU94Qeb3Fe9P9XvdfLA5jV0yMpc3Ryz72POILF6/5WjKMEKpEc1TnzO4SKb1HLeEAEXuMBDvTM/Rigz90P7Shi5PeLpofI5smrZRNSnYZ02IiS6FsExEEICSozb2+xJ0OdEAGIU7HAznEbCdDLXIpyX5KSV5vERUCPN9E2cYbvOM7w5Z4XUfIRILOgwdpjmlwa4OdRpWUFEgM6rHPv5j+NC+eHyH9vIVzbgHR6hB5vb6/6cswhCCteeSMNrEBmAYEmyTP8WUoTSDciILTYTHI8G0vxdJKmvxKDVWtbehj0DeNbdHLW/gZQV5vkxCSs4HGQpTi+NwgEyc76MsN1AbN5fteUL6PWFpFMwzcqgOmQewYREkTP2VQqSVZzid4PLvjNav1Nwsy4RLtHsUrOxTSKwBUY4+5UOfh9n68l7IUzoI7XX9FA5R1jxBIx0FYFouHXMwPL/NgYZ4JvUVHwfRkkfJTkL7Qgahvmxd3PaQUlJ4e5deDB0nvqfJvDv4+tycm+eIdB5gbTYLIk57PoPzgprfCfKdRlSruaYns5ZicyvB4pHFX5jzvd+a4ELR4sjfCQ6t70L3NLczeKlII4mREbyyHuWIiVquo7wcfdVhrWa8QkcILDWqxi6f6gYNKmERfNnGWBcK7MTpjS7yuI4Rjs3xER93S5OM7XmJIMy8n1HcUvHh6jNIjOplzXeILU5dFmdBeGSHQELiiR0bronT6dlK6vjl3ilKi2wElu8VqkOCpznaoGVBZ5/6d7yDKMvEzOkECMlobS+hMh3meam8nWnTQT58m+j7LXVNhSLSy+oqvSyCRyyHDXbTLOmduKyHHJGwK/4VXR9g27TGX9qDGuNMmJqYZK84FJZ5rjpI5DYXnaoiFV96vjYBwbITr0twBn93/OwzrXYY0hwuhhz1rkH9qCVFvEq7l/avAJ2pE5J+p4i6lmCaHfSjggDXPZ3Y/zcmhQV44f4BMMgndbv/fJiKq1aFWx4kmcOaG6cgkUzsKwBxzkcs36/s5vTLA8JZ4fQVaIqA7YCMjB12TN6Q4aV0Qx/28+VjRizSakUOwdj5VDV3MqsCqKETvxqTpbWjxGigNP9Iud5bZqMhEAjE0QDiQpjsacM/wDIfdaTQhqMYe3+kOccI7iD1rkJzpYay2iV5uYyMBPUaXMZoQeCpmOihwqjOI3gE6XZS3Mfu6v1UiJUFtfMPxN4NMJBC2RWdnjuUjgnDEY8SoEhDxncYevja9F3tRwiZpjfuOoet0ixqdQcHwmpibDPJ8Ye4gc7N5drc314okEg717Rqd0ZidyX56xcmgyP9auIuX5ocYXI2Q9TbqBtncvJMI3YBiniCfIEhHZGQPCSxGXabDDHoXRMdD9V6Wn6hiZLONtajhzmX4t/MfZNytUDYa3Jqe5vHyfnq7yxjLHUSjtSGLt14LmUggsxmCoSy9vELL9S43+QAuN7zY4pWYZoifFFiOji7XVXLRdUVmMwQ7BmmOWowl64wZq6RECBgUjRZeKUaGEnWDOpBtWPEaoWiFFk3P6ud7bmBPQlkqsHp3mfaQ5AeOPsP/q/w1UlLHEjZnAo1fPfNhlhczjD8ZYD38EnEUX9vyVUpiHYQZ4+o+EmgqeKK5nWOVIexl1bfJ2axuA9+vSA05UCTKJlm80+BnP/Fl9tpzHDYbdGLF588ewnk4Selc0O96ssVlRMKhvkvS2+Fxa7ZfkPKd5l5q3x6kOK8wFpY3VWFbVEgR31Pn0xMn+ET2OQC+Wj/ES9/ehTsvSJycJ5qZ25D54cI06OzM0RzVSQ7VGdMlnlI808vybHcCq6aIK1XUy+3hlCKcnkPMLTLo7OdFex+Pj4b80/f9ER9JXOT3Dx5lvloic94kc9HaXOK1VKCzr0xzVMfZVefwwDz7rPmbfVnrHg1BJtGlUUpjtjRs7bWyzjcf8WCBpTsStEcVP1U4wV12A3utc+Nee57C3lWWk1mijPMG7/TOsO7Fq9AkStfgZRvBWCmW/STtpk2yy4buoKRMg15G4mcUw1aNouYg1wbcjB2q9QRaVcdo9a61ORICoRsIyyJICBIpj4zh4SlFLTY5XR9gYSXDYCvevHmfQqB0iWlGpHQPXcYESkNs3I/Dm0ZIQZxwCHI2fibmkD3NmF6/vHnxWyaF5RizHmzozd07iTBMZDJBlEvRy8Xkci0yWpdm7LPYS2FVFE4l6pttbwaEACGJTZ1CssFed4G81gE02qGF3hYYbYXoBRt3jpCSyJaECYFthEgkngo54w9yul1G661ZH73aqVMcoeIIrdHDXnEJExqB0kkKg4Tp03AUkSUQYn1GImUigXBdhK6BZfZTIhotlO+j/OAVgltYFkLXiUoZmmM6nUHBSLrJmFslK/ufC08Z1AMHv6cjos1/UvdW0YRC6bDuGhYK0beKM3REKoVKuZe/ThjB0ipxs/mqQSxhWYhLqYXmtQVXIuGiTIPWRJLOkCIa8Bk06thCJ1ARnvJZCsdotG1kR0OE8Q3pVLe+xauQqKRLnE0QWdfeDk/FPHZhB9mHbTIX/A1thxRnXBq7Y4zhNtut/pFeSEQvDjnnjyEvOCSmQV/tXlNMIS0LOTxIWEzRvsXj3x/+IwwizodJvt48yPLXRhg5GZI8sbIps/mEYSJsi17W4rbBc/xQ7mkebe/mTGcA6YlNL9iErtPak6G2S8PdXmOfWcUVgkoMk0EOZ9Ik98gUqtMhCjfXMfj3ipwYpXZ0gOaY5MG7XuBHi0/iK42HvTJPzW5j21NNtNkVokr1Zl/qO4J0HEQqSbtgcbQ4zQfd0ySkwFOKZmhhtMHoqA3tRCI0iZeVdEuKkUQLTQjOBmn+88n30JlPsn12bX14nQCHWK5QetZA7ya50CvRSZ7D0kIiGyITkOtQvApBeHQPy0cc/BR0R0JEJCg9IUlPepizVcILFy+PW+g6csc2gmKSmfc5fPATTzJhr3KXe5a89BjW+02mz/QGeeriNsS0g+xUN14B3/cp0nUJ7txLd8Bk4R649fZz6DJGCsV0M4v6jb3kvjOFaraIGo3LP3f5c1FI4OdM2gNaPw1RQaxD7UBMcluDbdlpPl08xbBR5Q5rAbA45hu81JvgP59+D/k/TJBY6CEn52+I3ljX4lVIAYZOZOsoXV1jCxMBYcMkNRNiLvcNuDcqkaWhcj6D2SZZrZ9/FylFQEQrsjHrArsa9xOhr4oACNMkyiTw8zYDxSofctrMhF1e9Ae40CmQuRCTen4BVandvMFdR4QmEZZJbEm2ORV2GQ2elCF130Zu3I/Dm0fT8DKS7kDM9nSTjNTQEHRiwXKUxqxD+H3s0fhqxGmH1oikMxLzvtwJ3u90eKyn8Ux3gm7DRpufI5xfuNmX+Y4hdB3hOoSuZJtVYVR36CifQMV4oYEMFDJQGzudSEgiCyJH4er9IMZqlKS9lMCZ19CbnTccn2q10ZZqOAM2jdAmBqRQxLpCaetTuApN6zec2B6j8j5Htk/TCU2m58YxOiZaJ4GYNS+vjcKyCHMu3bKJN+7zj8vfpKgl6CsV9/Jbr4Qp4qqFUxeIzdKJD66snUL2tQVcaYF8KSq/gZ+Dyw1IRiVjB+f4rR1fwBI6mpA80Qv46yN/l2zCAT+49l7oOmHWxRuw6JQk7ZG1qLICZcDug7P8zNi3GTNWOWSotSJyh5iYpSjFOW+A2nKSoWNVmFsibjZf7zLfMda3eNV12rty1Hbq2MMNjHV6dPN2iU2NTLbNzvTK2tEN9FRIW8U0IxuxJsSC4Qy6u48oYRKkDLpFneU7QZR6/M1t/f6vi5HDI609nKyUSdZCVL25afMdZalIb9cA9e0GQ2YdDfja4n7OvDRC/gIbOhr/ukgNmXCR2QyNnTB8eJEHSmcw0LgQRvyL2Y9xcmWA1MJWzOQS0rYRpklrLEHzkE+p3C84iIl5uHWAL8wdxJwzXpkXudEZGqB6W5HabknZqBMTczbQmAzKHJ8vs+1kD3OpTdxs3ewrfUepRS7Wkoa7oNBavTeMBAnbIs4k8JMajhZgIJDrNPdIJhKER/fQHTCZv1/w7ruOU7aa3JaYIlAav/NBmLkzy1zDhvqRyylUSipE3sdxW3xq/BSuuHI8HKmYF/2Ac0GJ3z9/hPIjAmepB5sk8KGVB1DlPH4pwdJRi9AF6YMMwV5RpKZ9jIaPPDF5w8TXO4VMJJClAsFQjvn7FAO7lvjk8AtoQhCjQMXYIqIzqGgeKqK3cxiNYcKUQWObQZAQNHfEaCWPVLLLnkwduXbwr8uIDxWPs89cJCUjNHGlGCtQEV+o3srXTu0jcdZE1FvE3e4Ny5tf1+IVw6AxrtM4GHDn4DyGWG9JJu8MkSUZydQ5mJwjK3uAToCiHmu0IuuyeO2ULShbeDlBd0DQHQ75pw/+Ee9zJ8lKHTBYilI8Xx1hZSVFvtojqm6O489XIy6kqe6xaI0pxszV/nHhXIni05L0xd7GzeF7A4TWF69xLkm03ePnt3+DncYymhBMhjmefGkHzpRBYnZzNSR4OwjHQSRcWoMa7953mlvT04xpLQKl80x9jPkzJTJzAjZRUQ6AP5Rm9ZAgGOtR0hpESnHGL/NkazvRnIv5wua0UKtHLvaKIDkfINpvbHMlDIMwZRMkBCnNwxBy3YpX4bosH3Fobo95913H+W/bvo6Ohra2Pv6l1Oe4lHUYv+zQX65ZG0kEmrjSAjkk4rneGN+q7aVzKsvIV04RVapEGzgSeQ2FLM3dGWq7Nd79Q89ye+oiU70ClSDBNy7spvNsCnfRZGA6seHEq0gmCEbyNCZs7rvzOP90+IukpAD6f98YhUGMGvSo7nbQPA2jY9AtCuS7aoxk6vztoWd5t3OOjIzISxNNiMt/e00I+lLxWrkYqJgn5sdJPuOQvhgRV2s3tPX4+havlxBq3U4k7wQyiKl5DvN+Bk/1kyMMBK6I2O0s8qf7QrqDV5ImwmSMyPiU8i22GRVsITgeaCyEKX5v+V2cOj2CPacjG41Nmet6iTBp0h0QhPkAV/Sjy3GgYXQVshdt2pxXmUnRPTRKp2xQLiwxoldZjRJ8vu3w57WDOFMGqSmFXutu6r//m0XoOvHEMJ3xBK1x2JdcoKzXOR4UiXzJCzMjpM5pJOcj1CaxFLtUmNPJG/iDIflCk4Ts0VIBX6ke4jvnd5Kclpsn0qz6/2LVX3Q7sYneVeidqF+s8hpcisjHgwXqOx3aI4Ki3hcvvVBH88W6c7MRlklnWJHcXudwavYa4QqgCXlVit3rV8PX4y6PeVmmgmH+x+Q9LEzlyU3S/1xsFuEKxAmLbkHipxVJrYctfFKaR6wEY4Ua5/aa+DmT5OwodimLrDSJ6w16rkZsxZhmiLZePTnDEK3tY7ZNztWLPJof56A5x/4rexMSMmbH8ApngzL4EuELyAS8a2CBcbfChLFMRkYkhLzsLS9Ff/MTqIgIRT2OWIgsKpHL4+2dzHg5mmezlGci7KXeDU/d3BjidZOjeRHzKxmeM0Z5f/o40MKVBq6EH0+d5M4Pn8dTV454TCJsEWKJiGFdECj4rdV7eWh6N/5LGXZ/oYNeqaBmNrf1SXfQQt3S5GBphRG9H1USHQ17JUBveMSb1NNWjZaZ/JROYrTBL4x/l1tNn1+r7eK/n7yX3nSS3V9pIM/N9tv6bYEwTebvz9C5t8UdY9P8xcxT1GODf7PwQU5WyqS+6VL+k7PQ9Yg2wz0TAi2fQ6US1HZqfOLIM+x2lsjKHnOhznceOcj2P/Ywlpf6naM2OipGKBAK/FinowKqgYtdiTEXmq/dVU4IZLFAnE2xemuGlQd9BgbqHLankUgavoVRFxideF252aiUy9gds/za7v9NXko04b7xD70GpwKdXz72QzQWUgx9U3LgsVlUu0PU2lxpJN6ATX2vQpV7pPV+dDCjdbBkwN8Y+zYTO1Z4tLObf5f6EPZ8nuKxDKmTVTpFHS3jkXO7JMT6PJWJW23k7DIJ4MxLA/yb4P38he1Ps8c4cbnOsKxZ/Jddv01th0mEIFYSQ0TkpY8hICEkljDXoqzX0lERzVjxdG+EL1Vu4WR1gOa3yiRmFTtPtdBOT/W70N3g9MQNKV57KqAZS0QgkEGMiKIbYs1wvZBhTNy0WUwmmfSLzBmrpKQgI20y0uaICTEBngqJr5pEPRVzNjBZjrI8tzpKayFJdkFgzFdR9SZqk+a6XiLWBUmnR9bsIlEEgAgF0u9HW9Q6ipa8EwhdR5gmYcZCL3XZXVhmUK8RoZj3M3SXXdwlibbaJNzE6SJvGqmhZdKITAqvqNhVXmF3cokYqMUOp6sDLC9kGF2OiRaXbvbVvmMITUPl0gSlBL2cYoezzJi5iiFi2krHaErMmQqq1d6Qvq6vIFZIH7SuoB2YBKp/UhckJGHOxehm0K6eC2TfPgxdJxrK45VsumVBodhkNFWjHVtcDD3qbQezBXo37ncXWkfoIsYSvCKVLlIx1bhLRylsIbCEJFaKtuonEFQig4a6krf4WPsAjYUU9pxOYqZDeHH6Bo/kBqGAWBD7Gidag1RDl3itEUNW6zCm9dhnzZMot2mLBK1VHb2TwSsK3IRH3u4gRUyg4n5E3qNf6LgeiCLo9RCdHmZVUllOMz2UJyYmRiDX/rNNdxi9nEYS0/cf7X8WIqX6r1cgUfRUyHKs8JTGcpSmFiV4srWDF5aHqKykKM/EpKZ76Is1wpvUxXLDidd67PGoV+KEN4I7o+Gcnke1u8QbeBLWF2oMPDqCl8/xr2sf4bcG7+JTo8/zt7MnLofwAxXxVC/JOb+MLXwS0ufR5i7+7Ot34SwIUtMRu+Z7GJUa8dIKKgg3x8L0JoiVoBLbdFSI1hHoNQ/R2Xidgt4IOTFGd2eBygGTH9n7MO9NnSBA41vdAp87e4jRrwrspQ5qdUu4AugjQ8x9ahvtYcWeeyf5e2N/zqRf4t+vvJenlrcR/lGJnWd7WBcWN1VDAum6TH+0iHe0w53jJ/lg4gTuWuK8pwy0LsTLq2vep+tkAX4bxL0ehWMtEks2k+UBpndZ3JaY4ps/tptztQTWiVEScyOXX68kRI4gsqB9pMud289xu13j1sQU9SjBv53+IPONNOa30gx/YxXRaBOuo85jotXl/NNj/JD3U/zExJP8Qvb85bSBatzl/5r/AM8sjbE9u8qd2UmW/DSPL09QabtEz2VITV35m+ueYtdsD63VRs4sbdo0I/dCjSErj9I0pr6yh4sa9NKCyBF87pZbqNz5EEnN4+/sf4hgn8aJ24eZ6WS5NbnK/anTpGSXhAi5GGqsTubY+UQXY6VDvA78oFUUEXc6yKUVhh/O0D1l8JXEfv5u6SFSMiIjzcu5zi/nkqvRXKioxDYaCiliXvR28O9OPUiz6iIaBnpH4CwKcmcCcu0Ia2oB1e7c1ELPDSNeL+2SPKU47w9wul3ud07ZBJOwarbInOvgVEz8jMWsV+TZ1DaC7DE0+jlcnoqY9Esc7wzjSp+M3uXp1W0MfjcmdaICCytE1eqmnXxejxhBO7YIhI4MRN9SLAg2XSvcOOPSGjHoDCremzrBfXabb3spzvgD+EsuqWMrUG9+f6cLCHF5LlDpBPV9EYWJKj9Yfpb32D61qMPzlRFmZ/PsfbaBevqlTSVcEQIsi/b2iL9+6DFudS+yXdeIEVTikEBpaD7Er3WUvgFRQYg+X8FtueiVIrXIpaQ1+Okdj7AYZPgsdxE59pXX6xAmI5Qd8dO3PMY/Kp6kE/vUY59n/CLnlh4gmnEZPRsQvXTqJo7s1VG+T2JGsGoWeCa/jTB7hktHj81Y8eTCNurncjSGbaRQLLTTTF8oYVQ1Jr7eQTzy3CvfEzb32rFSI3lGQ/R81MIyRBFifIQw5xK4CZ7bN8rB5DyfyTzLkOYQZ84TqAhDaEgkPRUwHSqWoiRGVWKeW0J1u6j14J+tFCoMiVttrDMLmPMu8w8UqMUmEp+kUK9qU3xJuAYqZjlOsBBm0FBoIuZ4Z5juqSypRYG9qrAaMe5sB/HsKVTgr4s5c32L1yjCqsWYiwZzoxli1a/A/25tB6dWBrAbqt9FZINHGFXXw5ivoddtBkSG3nnJC5P7uW1895XOYjEYdQ29I1ASlKawKoLhc1Wo1Dd9isCrEdqCsXSVMaeKpwxqsYveAap14pf3Md/ACF0HTaO1PcnKuyKKozUG9SYBim839/Lo8g7sBQ3RaBG32psuXeL10HI5wv3bCF2dXt4gcAR6T2G0Y5qjGtv3zXJP8QLnvAH+iTfAl6f34z1RIL+s0FaX1sUk/HaRto1IJqBcZPldebyiYPe+KY66kwzrdUByPoR/MftJTq0MkJzdXJs6VIxqNCEIyJ4q8gtPf4ZytsmPjz3FXnueD+w5yeRQ4fLLDS0iafRwtL7w+I3GAN+p7eE7kzsIajbZF3TclRj3Yn1dCjrValM41sNdNHh68RD7xvdd/p4IBJlTGoNLMV42wbH8PrQelJdijG6MMVfdFJ/5t4rqdJCrGioI+haKsUJU6hiez8CzJk/Hh3i0cIAv33qAXekVPpF/lnvtZSIUrjBZjkL+4/L7OVYdIjkDqtVad0VtKopQzRaEIdljJf7iwE8zmG3yseEXGTMq3GVPM6xbPOzZfL1xkEboMNPJ0gwszk8OoK+s1dUIMFqC8vEIsx5itAJkN0DWWoTrSGutb/Eax9irEYkZneVdSQIUtdjmpaVB2nMpstVoU/Sbjjsd4skpAOwTEkcKskIitGtD/a8oGogVcbi+HqAbSWjD4cwcI2aVTmyxEGYwWhCtrN7sS3vnEAJhmgjToLZT4y/f8y3223OM64pAxTy2sp2p02WKM4q4Vr+hViXrAZHLsHRHAq+o8Md7FAotlhou8bKNLHX5VxNf4jarxt+Z+gSPn95O8rjFxBdWEI020fLKzb78dwSRTMBAgdqhHPqPLfH+gYt8OvsMt5otDCHRhOCkX+apx/aQmpSkztU3dI3AK1Cq3zGo2aT4VB69m2V5b5JgVOOwNccHhmZIjZiv+DFPhfz7yhF+c/oepl4cYuILAUaljZycI242idbRQn01cbuN/s3nSEtB+tXWiSgGFZOCfm4vXD6FWk/i40YSt9uvOG2IFpdACOzpWbZ9Q0dsG2H6kyNMDw0Rv1tw2/CXcYmRQrAYOXzxxEHMSYuRsz5RvbH+1t2rnoPyo3mayxkq4yn+53scJnJVSqMNhnWPrzcO8jsv3AEtA3tBw2jB3oeb8MKL175ftFY3spYvHa/9jvXCuhavKooxaz7usqR1PsEvjn6cZS+JdyZDYkVg1DfRQn3pQ6GiK80+1sGJxLpDCPTyACqVwCsIRswqadllOshzoVtC662fh+udQrgOwnGIHNhmrpLVOsyE/aKj2dUM9ryGXQv7i9b3G3GM3lVoXYFuhYxnKkSxoNo0QAn+rHqUx8wmT14YxzlvkZiLEc0Oqt3Z0F35rkbYNkHWwU8LdqRq7HPmyWsdDCFZjELOBSm+Xd+HsyhJLETIprcuI4pvG6WQzS7uUoIgYfLrZ+7hG7l9ZM0OSf2VQY5epPPYzATeQoLUlMRc7SLr7b7R+nr3iI631ol3hLUjdxVF6M02ybkYGUgeKu6hHtiYMiJleJxvFrHO27hzCqPeW1fuE69g7Tlwlhwi02L5TJYX00l+pfcJdqZX+M7kDqxzNrrXb9BgdBSy1ibaYKe361u8Bj7aC2dJn7bIPJWk8nvD6FHEnuYcBGHfFPdmX+QWNxRpWTTvHqe2U0ccrfORxGnmQof/MfNuLiznKVc21ydC6AYMFPDzLt5gyHvdszRjg883b+Gl1hDWM0mGHumgL9aJ1kP+1Q1GtdpkzvmYTYPu3T6fKT/BF41b+FbTJWoafONPbsdowcSxHvbpKVS3S1Rv9lON4s0h4eJCmsYOh+Y4fLz4PB90J3GlhiF0vtzezX89fR+tqTS7v9VEOzdL3No8+a4vJ5qZx1qtMnDMhsdyBEaeJVFg6TX620x0ffDbiHaXuN4gCsL1kce4xY1FKaLlFXJ/HpA3DNSXk7SdAVpCUJGghzE7atMor4dqttb9yUU0M4++UiF3wiT/3SRK11COzawxzq5OF9GqQBz3Ux/iaEPOCetavMJaYUG7DasVmFxzvLjZF7XFzUNK/KSkl1OUEl3yUmdBxKx0XIK6hdbbhJ8OIUATiFAwHaZZCDM8Xd/GhVoBe0WhLzWgufEmn3eEMMRo+kSOZNUzWY2SVH2HqKehtSXJWYVdjbAuVginZ2721V4XlKER2v3q+QG9SV6zCFSEp0ImvSLNhRTOooa+3CDchN20rkYFPlHgQ6MBb8L+bHNsX7Z4J1BheCXl7GUW6RtNd6jA76dUNoGXpdFtls/8uhevW2xxDUIQWoLQVSTN/jHHQpihdiZPZlJiLzbW/a74raDCAOaWMCsWO/5wmF869jeREZhNhd1TpE6twuJKvwhhPR9lXSfidhc5uUBiyWbos4P82uCnMFuKiVqI7vUwllqIbg+1SXq0vxkCFfGMbzPpF/mTk7cy+hWBvbxlobbFFltsHrbE6xYbCylROihLYWr9PWQtcnGWJKnpCFnvbJqdJdA/zlprOKDNL1B66Npvb6qxfg+owCdaXgbAujiN9bLvf1/cn5dtWiIUk36R59vbYMYh/cRF4lqdaB15lW6xxRZbvB22xOsWGwrl+2TP+Gg9k7PzO7jl4s9B1WTspRBnrg2NzdXWcIst3ghttUn2rIXRMfk5969CMkBUTbSOoPiiQrXba17YG+ngc4stttjitdkSr1tsKFSvh/Ht58lrGgVNQ+g6Sql+In0UEW0t0Ft8nxFenEafmSOjaWQ/ZyKE6FdDx3E/j2+DVRFvscUWW7wRW+J1iw2HCkMIw02V27rFFt8za3Y/hOH3ZbOSLbbY4vsP8Vb8yorFovJXtyJbAGZBsnUv+ni0sUnc7Mu46ey5fQcvPP3i1r0AmlSVgSm27sXWvbiarXtxha015Apb9+IKW/fiCk2qSin1qkZ3bynyOjExQa6y/Z25qg1OdeLC1r1Y43H1de4S77/Zl3HT+epTv09a5LfuBfA19QfP2CRu37oXW/fiarbuxRW21pArbN2LK2zdiyt8Tf3BM6/1vdewbt5iiy222GKLLbbYYov1x5Z43WKLLbbYYosttthiw7AlXrfYYosttthiiy222DBsidcttthiiy222GKLLTYMW+J1iy222GKLLbbYYosNw/r1eRWi/1+aBkJe2x1GSJDiyv+PFagYFSuIvy8aQm6xxRZbbLHFFlvcPKSGMPoyUmha/2txX6upMOz7T18n1pV4Fbre/+c4UMyhHJPOeJpuXkOGChlCbICXk8QmRCbEJtgrkDkfYDYC9JNTRJXqK/p9b7HFFltsscUWW2zx9rik1bz3Hmb1gEGQAm8oBKGQXQ3ZEww/HGF//snrpsXWlXhF0xC2hUgn6Y1kCVI6S0d0vJEAEUqkJ4icmOxIjYLbZchtMGA3+drFvawkMzhLOgOzSahUb/ZItthiiy222GKLLTYXQlzWaiuHDQofnOP2whS/PPAdXKHxjG8zHRT45+0fZ/xL2nWLvt408Xopwipsm3hiED9j4md1vKwkdAReSRHZILa1GMs18SONrm/gmAEH8wvkzTZFo0VG67AymOS7t5h0Fy3SF0vYSqGqdaJG42YN77oibRuRTCAMA5VNoSyD9niSbkF70+8hIpCRIn2+i356BtXziVutrYj1FltsseERhonMZhCmgUo4KNMgLDh0yhaxBpElQEH2TAdjagXV7hDValvz3xbXoBULxGODRAmD1phN6Ai0nkLvKYxmhDPTRHR7xAtLxJ3Ozb7cG4LQNGQ2A6kEXkFxe2GKw4kZLNEvodKI0bj+HcJunni1LMTQAGEhycWPukQ7u+wbnuMHy8+S1TqMGavY4kr+aqAkntKxRUhZ8zGFwFeKQMGHE6eIR+BzrUP898WPUnQGcU8bsFnFazZDNDZAkDap7TLpZQXlD87wL3f8yRv+rIbCR2MhzFCLEvzqlz7J7t8eRtbaiMkeKvCv/wC22GKLLa4jMuEQ7homTBk0Rwz8rKCxL+AHjj7HsFXjiDtJoHT+/ud/krE/H8aZbyOazeuao7fFxiPaNcL0+5N4QxF/5f5v84HUMR7v7OKl1jCPTG3H+XYBZyUm90j4/SNeTRM1VKRXdNB3tvjlge9gCYkrTHoqIEIS3QAvgJsnXh2boJzGK5oEuZhCusOIW6OkN0hLD1tEaCgWoiTN2MGLDRqxgylCZrUWpohoxxaeMhgzVjlsdBgzKvhZRaeo48xYN2to7yxC9BOhNQ3p2KDrxIMFWttc/JSkPSzwszF3FKa4+w2GrK3tjAIVsaLPUosl/7rcoz3qYts6RqWGaneI/WCr8G2LLTYDa/OH0HVEwgX9ypQvDAPlWP1jQF27XCQLQM+HegvCkLjVRoUB0nEQroOwLFTCAU1CECJihWo0iVYrNy9yKQQIiZZMINIp4nyK9piDnxS0hwR+VpEdbPLu9BlG9CpHrDY9FSPLHs0xh9hKkuxth+CV4lV4PqrVQgUhyg9QUdQvIN6K0q5LhGEiMykQEuV5KN+HKPqeNiZhwsArR9iDbe5LnuJuCwxxiozWYbaYYbKUgliStc3rMJL1idB1enkHr2iQSdTJSfsVr4mUQFznx+Omidd4YojzP2ShCj6FfIus0+VUrcwLqz9AGGl4gU4YavQWXIy6RG8LrKpCSUFkg5Igw/6/2q0B/+i+z9GJLRIHqiyXkljNNO7zN2t07xzSspCDAyjXprkvR3tA0twBA7csMuh0+HTuAmWjzt3OBeD11Wt0lWNDRpq4MuKvHn6MP07fwuyFHBOf34G11EG7OE9U3cob3mKLjY50XWQuS1xIs3RHliB9RaB2ygprTwPX8hlMNnD1K6cuT1/cRvKRIZzVmNwTC8RzC0RH9lA54NAeFiTvXCFp9ZivpvE7JvnvDFH6nRdQvd6Nj14KgUwmEaZB6/5dLNylEeQiduyaY8xpsSuxzJBZY6e5xAFzFVsIbGFioPgHR/6ch7fvYrad5dxqFhWLV7y9mnYZ/G6MWQuxL6ygGs3+Jt/zbuw4t3hTyPERFt8/SGwIcqd9rIUWcrlGOL/wpt9D6DpoGo1xk0+++0nuTF7ggFEHXHbrAYOJs2jDMf/tLou5uTylZ1OIM9dvTOuCtQ2iKOSYv9eiO+HzY0Nnr3lJhKIZ29SjBMT0HaCuEzdNvIYpE3tbk+2FCmEsUUpQ6Tg0qy4EEtnuV6xlpgTuSoxV8bHnmiAEUcJE6RLpR4ggInRzXLizRErz2J5bZd4M6KUGcIXY+LtjwyBOukQZm9awRntUYe+u8zcmHmbMWOUOq0VSWIBFzJsfqyE0DDQeTB4ns6PL/5TvolssIH0ba+Em7iLFKxePN/+zEnGVhZqKXhY93uifhXcC2c+LvnSf1JrN3Ia7N5c+Jy/7m7+ctz2+q37PVW+6Me6XEAjbQqVc/IJLa5vAz195JrLjNf7+3q8xZqxyq9klI53L3/vV9G7+2+wHiGxJOpNAVh26ZYvmBMTbO/yr/X/ImN7gq+19nO+W+OLk3QwYOsoPbsJAQZgGwrZpDWo4+2vsy1X5a8MPM6ZXGNODq6JDV8YoBXwkcZq7nfPMhRlODg0RqFfWDfxe6nZaU0VsS2BWEsgg7EdoN5t4XRMnwGs+U5efJ1ifz4AQxBmX5jjEVoxZN5C+i9n1++N7s9csJELT8FOCT2Sf5bDZICP7waG0tEkDB6xZbi9O44c6sZ3kzVecbFCERBg6yrXxhiLGxlbZY1+7IYiVwotNOrGJuM5przdNvJpzDYxvDXAhkUHvggzA9BSDHYWIQfMVMoyxVntorR6i0+sfY0mBXjf6R1ZhBFGE0czSiizyesElWzgAAQAASURBVJv78ueoZxz+uFhGum7/mGcD5nFesqJgfITpj+Xxigp3d5Xbikvclp7hNmualAwweHtCc0zvoDnneaawjSe3lYh1C3PGfYdG8dbQSiWCA6OE9lubBpQUxJYgMgT1nRrdcow7L8kfD5FB/wkSCqy5FmJxFXo9omZzfU6+14FL0TeVSVI/lKeXEXTKgl4+JjEjGf5OE1lro+YWidvtm325r43U0AeK4DqEA2m6ZZteWqOxXRC5ilhXqKtmNL0lyJ1Q2LWIxPElwgsX3/SvEobZn6j3bqe1M0loCfy0QESQP+VhzDeg2iBaXr4OA/3eEbqOME3E9jGCokt1u011H4TZiL17LjLi1i+/dl9ynsPWLCkRYmBeczJzT+IMz987ynwnzalDRURrD/ZQm4MDi+xLLTKh10lJwW32RQb1On+aehfoOkKTqPDGBg2EbqBGy/SKLo2d8Je2P8+4tcJeY4mUjHHFay9zGalhiwhbVMjKDhGvFG3ahOIPP34bq40E1f0ZrNUspec99MdeQgXhhk6xEoaJzGcRjk13zwDtQYNeRtAdUCgDYkOhJOgdgdYVOMuK/HEPvdlDTM4S1epv/Euu6wAE0rLAMBBDAwTlNJUDNvnblim6bU6PlFhqWJQeKVOYniPu9d7aZ1NCSnq4QkN+n/d00ifGaNxapjWisWf/RT4x+AK32VOARivuMR1JjvdG+MfPfJJ4xmX4eHitP/87fT3X7Z3fADUzz/CXVX83tLhM1GitfeOVg43f4MNmtHbQDi0sJ+B+9wwGMb+Tfw/CsUFKVBhsOKFyKUetO5oi+cASHxs6yw9mnuaI1b8/Eh3Qka8y2b4VhjSHIQ3uSp/nW8MHUEIjn3hlDssNoZhl6YhDkHwTrxVwKdCsNAiSitiJ+eF7H+OfDDzG/7lwP1/+8zvQO2sGyhHkkxlScYxotKHVBrVxF523gkgkiAZzdIcSzL03JjvS4K/vfIKfzr7E37r4Uc5W9pGcs7AbLVjH4lVoGnExR1B0qe2yqO+GeNjjl+/4CrfZFxnTeuS1fnQkUoqHvDQ//52/iDljsq2VR75Z8boWsRSWSW1/isW7FSoVMDJUpeMbLDkF8o6Oc1HCysr6mVuEWHNxsWntzlAf12nc4vNzdz3EuLnC/fbs5ftzCYkBGK94q3usiLsm/hyAaP+V8WlrkWi5FsG81fTZa8wTJSNYy82/0QhDpzucpDWqY+1o8HfyT5GU/dOo10MiSAqLpICChO26glc5vbrDOsXPZk8yH/n8820/wLGVISp+gcFnLGJA9TbuPCIMHVXKE2ZsFu8w8Q502T28xM+NPcSgXmeH7mMLjcd7CZ7vjvM7F29n2SrhLlnkVhtw08WrXHMtsujsyFPdY9DYE/ErOx/isDVLZ5uBpwx+uvUzFP/YRLxF43wlICFCHLFJamjeBv5IjoW7JPFIl3869hA/4DZhLd5ci2OO90b4dmMvyW+7DDzVQpuvEF7HufHm+bxGEaLdBSD2et/T7lWmUgjbxk8LRu0qWa3D+aBII7LR2wLCEKJo/Swur8WlogrLQoyPEGYdulkTL6fRmJC8uzDPfmeOvOYhuSIs30i4xsREShEQEagYY60i8NWQQvE2dfCbQ4h+ZEjX+9FA2yQspekVLNpDGo19IcJ97clFvCwLXCmB1BSW7WObAfuceSxhcMCd4ys72/T8/sOlYsGybdMpFrBreZKTeWQnQK7WUN0ucddD9XrXdejXFakhzTURsiYgLuUfquEii/dk8IpQ3LbC3vwSK0GS32rs4fmFYYqrEWa1B6915Cs1tFIB4dioevOG50NruRzxzhHClEl1j4WXF3QHY+yRFmO5GhPGMgXZIyV1LNG/BxExI1qdidEVps08zVGLwmAZ5XlE9carzwlCIHQDmXAIbt2BVzCpHBBkJ6pkHI/92UUqvstz+QJeXsNavUmbvJdxKdoq8zk6h4bx0xqVAxJvKGB8bIUd5jKDeg1NCDwVcirQmQ4KeMqgGdlIoShoLWzps89YYZveF6aXIk0vP0HuKJ+5UFGPLb7VPsxFr4A9a/Q/Py9P1bme4zZMZDoJuQy1XQbN7TGHiysY4nuLkEnEq6ZeSSRSQEoKDiTnAHh0uEC8dxxZ7xBfmN5wp3taIQ+DJYKcQ+WAg58RdPf02DO8xK25WUb0Glnp4woTQ2gMai2a1hKHC/N8Y18Or6DjLgxgSYGqN25aBFZIgUi4qIRDc0ynfiCkOFpjzFglJUJsLSJQPspQ/Q/y9/jZ2ALChE5YCijlW2S1a50VKrHJk63tHKsMYdVU/yTvOqfV3LyCLc9DLS4Br5Kb+GaQGmK4TDCYojWm+HDqRQwR8V+WHuREtYw7r/pVsjdwMv1eEZqGTKWgkGXqE0Xau31GRlf5wZEXGTKq3O9MkpXy8sL8ZvFUSKBiliNBJXbIS48dRnxTjz+EaV72iKvfOoCXl6zeHvHuW04z4a7ygdRLZGX3Dd9HCkWsrqyqhoiRKEqaAmx+JHWa++86S6D6Y40QvHjXKGe9Mo+tbOfc88OYVcnAMymcuTbaYuUtJfSvN6Rj9++rrqGs/gZFLFeIqlVWbs/y6b/xTW51p9hrLGGKmL997sf53RfuJX1GknzqPHG1RvQa4l3aFr1DY7QHDbKn2/BU7YZuCOOdI5z5iSRi0OMH932X96ePk5JdsrKHLSKKmoYtLCTymqPvXYbiv+7530xuz/K3ln8aZ2UMe6GNeKn9qtEXoRvIZAI1Vubcj5ns3DfHXxs4ySdTz2OKGEvAxdDlr+zeRj10sep239vwJkfwpesi8lmatw5S/6kmRwdneDB7goPWHFnpU9Q0YqVoKsVyBP9h4f08PjVB0DWgboCmMEpdkq7HX9v5GD+TmXzd3zcXKv6wcZSTrUGe+PZ+0mdh9GSH+AZbTcl0knDvGJ0hG+PDK/yz3V9nnzn/lufJN0tGmvyVzAu0U8/zV95VZKo3RGoqSWG5QlTdWOI13DvG7AMJuoMxn7zvSe5OnmPCWKGsdbEFpKSOpC9cAcZ1wbC2xIGhr/CjH3qSx9q7+D31ALnyCJmTyZsWgRW6TlTO4hccVu/1+e0Hfo285jGqGRjCuRzAUWa8JVzfJl5e4869Z7g9M8WI1uLq/PEXe6N87vRh4jmHnefaxJMz11173dQOW29nohOaRpRzaQ9ahJmIlPTxlMb5ZoH5lQyDbbVmabLOo66sRU6SCaKUi1dUlIbq3DNwgQ8nj5GRAWXtyiTyZomJ6akYTynmojSTfokJc5kxvX3ZTPhmIB0bijnCrEO7rOGVIDvU4EP5Y4wYfQsb+3Vy1F5NeMfEcNXXY2Iy0iYjr31NSl5gwlghVoKpoTyebdEa0oEEjlJovo/yA+J2Z8PlsYlkgmgghzIkkdtfvK1uD6pVQkfwQPIkB8wmEvAULLcTOAsSZyUmbrVfv3JaCCJbEiQEkaUhr7Ngu1TpKy0LLIvOgIMc9NhRXuG96RO8x26u/c0FHSU4G2h4SrvsLagRY4gIDYktFKaIUKKfG/16BYHCtqCQxS8msAY63Fs8zx3ueXYZFjExnTjAEBEq7ue+voX6yOvDperfTJpgKEdnQOPW8iwPZk9wuz3NuN6/P4tRTCfWmQwHWArTHFseIpx30bsCsy6IDehaFk0F9fCN893rscXp9gDn6gWcBUFqJsBYbRPdyECBEAjXpTto0x7U2J9b5k57iqwE3mTpTIyipwI8FaGtHTtJIbCF/qrzjESSkzYZGTORXmWmPIDR0sA03lox0I3k0mmCY4OhI2wbTIPaqEN3KMIod7k7eY477WkkoAloKsFcIIkQXCoWH9ZDitKkrEWkxCq+0vitzP34aUHs3MTxS4nSJLEhMF2fI1aMfnVRHlr/VHFLt37PXMr/DxzBsFNnyKhiXTWNxsRUwiRB1cKpSrS2T3QDTiLWV3vYN8NagrZIpZh6IIn57lXeOzBHW+k83N7LwtdHGT4ZkTq+QrQeJ5NXQRYLNO4coV2WbD86wy9s+zojeo1xPUIK7S0LV+hHXY/7KRbCDP9t+n7Ony8zsX2J39z7vxjSrk9k4s0Q7dnG5CeT+MWIW/ef41BmjiPuRW6z5nAFb7sA7fUoSUHKaJDNPsm+o3Mshhm+vn8fS60kU5NZkpM5EvMx+W9OEldrG8Pvdk3AdG4fZ+qjEuVGJLJdokhS+N0REtMzKAlZ2SVSis+1d3HaG6T1fIHxb7fRV9vE3TeOdMeGIDYFyri+q4AwTOT4CHHKZfVQmtoeCMZ8/s6t3+SANcsBs4omLGbCiDNBgS9Vb+XPv3YUa1WgeyADRZAQBCmIHEVQ9hFSMfAEJI7Nozod4tcSWTvHmPpIlu5gzGd2P8EPZ56mJEPA4WLo8/nmYZ6qj5P+rkP58SbaQpXwOhYkvC5CoGWzCNdh6YNjVD/QZaw0x0+WHmPCqLEcOUx7Dn9WPcLXzu4laJq4kwZGC1IzEcWFLiJWiDDGKzlM5zREGrTXKRG+JPS+07mFRx89gL0kGXq6i3l+EdW8cd35hGEibIv2oSFqf6nJ4YF5/mr5YcqaxHgLNd+BivhKZ4An2jtIaR4ZrUteb/GAc5Gy5rzmz0kkP1F6nKH7Gvx+5ij8eRbZbH3P6W/Xi0udGCkXWbkzj5cXNA/3GB9ZZWfqOD+ansKVfZHxXW+cb9f3cLo+wFwlQzSVQPP7RY9CQfkDM/yHXb9DQsbkpc6gXkcM9Gg1bZIz1htkF2+xYZEacvcEvaEUzR1wNDHJPmuexFoArBX3aKuYhys7GXhMIznXg6XKDbm0DSheZb+y0LbobIv4+V0Pk9U6dGKL890S2bMR6SemiW92IvlbQDkW7bKkMwSfKp67KhH69Sfi17PGClTMUpTiol9kcr5A8rTBRbtAe7d8s4GJ64Kft9H3Nzg8sMjfG/lz7rAuTfZvbvqLuVSwJi//79d63aXoyaXXudLABfIa7Dfn8dQ0dzoXWAgzfDZ1DyecESLLIJdwEO1OP7n/JmmTN8ulBhbtQZ1Dhy+wza3yrtQ5mrHDfx/8BAn6nsiWiIiAk90hXqiO4M4J9FPTKK/3xsc7UvYdHTRQb8fK7E2NRxJnXPyCQ2OHIHnbCgeLC3wqeYxh/UoRTi02Od8r89TyGMMPh7jna4hGG9XpQjFHMJjBzxhU91jEJqQnO0TzC697GuPnHdq7fcpDNd6TPMl+40oxUy02eaaxjRMrZdKTIbxwuh9pvGmm/BLhOqiEQ2ub4G8cfoRd1iJHrRquMJgMLM75Azy1NIZ+PEGiAqVn+5sVllb7ectSQ5gG7vYxNL/4inzylxOsneRc6JZITkpSsxHm1Arh7NwNGnQfYegI06Bb1PnpPY/y0eRLlLXXzud/LQIiTnlDPFMZI6H7lOwWZavBUWuakvb66VVHrQrj+qM8MTRO7CSRuo6Q/rqaL4RpIhwHv+hS3wV+OeDn7vwmv5g7ffk1K1GXb3THmfHzPL8ywuJsDnvWoPRihNGOsZY7EMOpPQPUd1howsMQGgkR4iY82imLyN4Ka25WhBSEOZf2kIGfj9hmVBjUelhrz5qnYuqxxlwrQ+Z8F2NmlbjZvCHXtmHEq9B1hGUhyyVW7huiMyAY3zPLAXuWL9dv4Z+d+xjeXIJdMx6q2bppfoNvBWFZSMcmGMxQ362Qgx7braU3/LnHehp/Wj1KK7JY9pLESrI3vch2a5nd1gL3WF0WI8mvz9zH5Eoesbh+9sWRJRjMNNmZXCElfV5NSTdjn99uHOBEZ4hWaOJFxjX5rfKqRfbqr1/NpdcUrTY/ln+CXUaDhJC48krUWUMwpjfIyi4/MPASZafJt+1ddHcVsV0LOTV/861gXgvZ77jm372PxjaTlXdF/NXSSyRkj2bsMO9nCZKg7d2FnwNNKBYjkz87c5hoKsHIVIjqen2rn3V0QiES/Yhra0ygDjb55LZjtCKLX57+FK3A4sJKgV7bRHU09KaGsyjIXaxApd4fj+8jqhIzijEqFpqXROkSY65K+GoiXQj08THCgQyrBy1u3XWOW7MzjOl1wKKjfDpxxJca7+KJb+/HnRO4UxVUFN3UfHppW7RvGaE1ohPs7nLEmSSrdajHiosx/NOzn2D+TInEtEbpeIjRCjHma6hOF7UWaddyGdTQAO3taay9dT4yfoI73POv+vtiYv5H/RC/N3WUpfMFJk75WEsd1CWXmBuIMI1+mowNea1FVvKmI66BipiPfP6gcYSznQG+9uxBUqd1YhNOOhC6ij/ddZjBdJMfHnqGH0qdvtz68mosIcnKCEcPiKVcV8VA0rYRpon3rt0s3W7RKyhGbptnW6pCSW/ygh/xZ40j/MmFW+h0LOJFu2+DtSgYqCr0boRZD1G6pLE7hZ8QlMorlLQuq7HFd5tDPNOewH8+R+l0TGKyddMzaLa4PghdpzFhs3IblLZVKWstXCEIiOjEAb+6/F7+/MI+1LE0+aUFVKN1w/LeN454NU1kOoU3UaD6Ax3u2DbFjw08yVHT41/XR0j9WYryYoB+do6o0bjZl/umkK6LyKZpD1sMHlji9uI0+6x53ihB5+vNg/zRU7cjOxrWikTE8PyuMQaHq9xXPs/R0iPMhhlOvzRK6ryGKfuWH+uByJLcklnkiHuRrAx5NfFajxX/c/JdrJzLo3Ulevd7v/hePqL0QBM79QKjeperM/osYbBN74vZPcYZfipzin9itPnGzrtJ2WlS1dbNt4J5NS65UyQTzN9rYd+5yo+MnuYn06epRBG/Xb+dqW6OIKVo7cvTK0YYKKbDPPrzSQZfCEmcWiFah724hetSOQT5A8v86Pgz/K3sS/z3+j7++Ot34ywKRp72sCZX+h7PQYAKAuJ6g/jqCdPzYLV/dGWc6D9L4Ws1FhCS3kSRyn6L+qGAXxr7CvuMNsm1op9OHLEYGXx9YS87fr+BPDez1i71BneRevllOzarhw3aBz0+uPsk99pNPBVxPrQ43huh+p1B9ny5jrbaJJrtR5xffg9EOkVrV5raDp2f3PUkv5B7ac0K65XzT6QU/+vCHfC5AmPzEfYTZ17bteF6Y1mopEvoCAb05qu2p3w1AhUR0E83+Y2Td9Obdxn/coz91aeQCQeRSqHSCaq35FguZvnNj5rcu/8cWRlivywS6woTV4Ok0aOurR/hihCIZALhOCzdbnHPDz3P/sQ8P5J+gZSQPN7L8WhnN7/1wrsY+QODgUqAOTWLanf6m79eD61YIBot0SvY1HZLvHLERwemGNJMzgRJfmf+XZxdKDHyqI/zxDlUt4taRxvgLd5BNI3Gdsme2ye5r3COYV1gC4Nm7FOJ4c+O3cLQ5w3c+Q5qeu6Gdp1bn+J1LclcGGt2Sq5NVEjSKdk0tulsH1jkQGqektYXqUmjx2xaoPk61ugAetJFNZrEjVY/OrKO8pAuIwRqrExjd4b6TsntmRV2OMukRMDVR+gx8WXXgLOBzUKU4aGFPTjTBnoHrKpCRhAbJotekS+0HQKlcbZZwp3RcBdiYl2gNOhUTJ7pjREwy5gWr3kh3ljMRsRDU7uYKuZoDDjss+YY01prR8J9DAF5p8NKJgUdC3sFRKSQIW+5SMZoavzuqaN8t7Cd4USdAavJfmeOTyUmrxl/P69YQ5cxSq4dj79O56abhtSQCRcxOkiYT9AdCjlaXGTIrLMSRZwMinxx7iCLlTRGV+CnJMqK0AT4SkPrgdEOEa/Sw/01iWNE3L//4jq2+wNAk0TpkD25ZcbNFSxh0Ips7FWBu6QwKt1+fmUU9wXka0VALy2mLy8su8oOS40PE6YsVg/aNHfE5IYaFGT3ckFjTwU82RvgG40DTM/l2d+s9S3V1oODiRAoCUJTa04bEo2YQGl4sYHmg2z1wOu9wuf6UgOUOJOgU9Lo5RQ5vf2qufWBipiJAiqRTbWaZGSt26Hyb6J3djFHa1eG7oDClW/e3m4mCniuN8zDjT0EFxMk5yXWSgcV+MRdgRR980F3KYkW6MxeLPAfCw9SMlvsd+ZIyS67jRWyMsaVGq4wSek9lvIW7kABGUU3pFDl9RC6gRoZoFd08QZi9ifmKeoNzgdpfKXxG4vv5vhyGfOcg73URm94qFb78qmFCkPQdYK0hZfX6Q6HpIaa7HIX0YSgEdvMN9IEdQu97d+cdsDfA8KKoJRHs0yildUNcc03E2nbiNEhonwSbzDiYGaecWsFDdGfE0Kd2SgDNRNn2UeveajoxubMrEvxKnQDrZAD16Fy1yCtUUl7W8S2vYscTlX4m+VvskPvYAhBhGRvcpHHD+2i2dRojmXQ2xkKxz3Ml6bXbzclIVm4P0/207M8mF3gZ0rfoiRDMvLK8dSlCueFCBajFP/vyY9xbnqA5AsWE19ZRXR70OmiophCMUuctAlSFk8WbkfzFdtOLEK92W8RaRqIuMy/2/0+DhYW+Pny17nlJnSBdV+ap/DZYeYLaf7l/SOMDVf40dFn+OnMmcsG6K4QfHrwOY6lRvnS6hGKz3XRWz5ypY4K3lo6iNB11BcTKCvNxYFBTmd1/uAeuO3T/46DN7EL7vfC5e5J24aZ+XCBblnxA3c+yz8Y+BoXwzRfbB3kS0sH8X+nzLZpn/qEojkmcfNNDMCLDcy6wlxsoVpvoRmBUmjdGKOtkNfZkF1ZJmMTK/zD4S9fLpY61ylRfD7APV999YYmb+HZlpaFyKSJt5U58xMJ3IkG946c4v3Z44zoVcZ1gSE0mrFPRyl+9dxHqH9zkMGpGJYrKN9ff3PJGgGKZuxQj1z0NlBrEHe6116vEMhsBpFMUN+VYvVIRGKwzYTx6p3C6rHP/6rdxYv1YdzjNulnZlDtLpF3kzyRpUb11hwL7wsZG1t+hWXP6/GnzVv4r8+/BzFjs+NPOhhTy8S1+lqjgR5RECJabax6A8s0sKoTPP30bXh5wf/eFiHSPp848CJ3J89xwJpnvwHbnAqPHzZI5ooUHgvhJp/6yWSCuffkaOyLuO3wOX4k/QLngzT/af5BzlULiD8tMPpYBdGaJl7pp7/EfnBNy+M4n6K6x6Q9Cp+5+7v8hdwTDGoREpuz3iDNM1mSCxJjtUrU7a7b5+FqCvkWtaMlnKUs1lPdDXM6e7OQgwNMf2qI9kjMB9/1PL9U/A62kFjCYjHq8sXm7RxrDpM5IzGfOdvf+Nzgjdv6Eq9S63ueJhPExRxR2qIzKOkMx7gjLR4sn2bcWmG30aUgXXoqJCCiqLcwcx6+ZdCVRj9/Z9XEXM6vz25KUut7Z2bhvQNn2GvPr0VCr0zCMTGBiqjFMS/6I/3Cq8UC+pxJYiGGhWXidudyuzut10M6NrZjY664iCDqv6bTQbouODZGu8Rqx2Y5kcRTOjfD60e12iQmmxgtl/puk1kjy4n8EIvJl7AFuFIjBgaNOp5roMx+m2DR9Ykr1e+toncWEAJnZBirmKG2K7s2/itc8gOMVb+6VigF1zvK+BYRjoNMp/CLLt2yIhrqscddYFi3OBNonOgMMVXNUZoPsKaqMFHGzyhytk8EeMpEBqyZyb+FXXIco/VidE8h/RB1PatSpMA1fEoyxJX9SGCkBJofI7we8VtsxykME2Q/zQIhkOkUcSlLd9DBHG1z78gFPpR9ifudeQwElrAIVHTZG3mxkqY4HeMuButLuCqFCCH2NbqRcVUhY4wUMbEJwnX6TQPa2jX3TCQTRMU0Xk5i5NuU003S8trjvivzj+REc5AzqyWsqkLVm/1mHjejMmmtEUcvIygONtidWb7GsudqAhXRUgG+UjRjSU9pPFvfBnM27oLAmKu8stAsjlDxWvRUCKyZHBkymE0DJTX8nM3UeI4JO8OEsQJAXm/Tyyu0niROOf3Ncqxu3mmfJvEzYBS77EyuUJQm54Fz1QKVhQzbJ32il0697lsoQyNMCMJkzEF3loNGf5cfo2hFFkZDYtUVorc+OlcqvW+VpWmv/pmUCNK2R6UgkYGOZbxM9kitXwQoBEh52YZNWCaRDfL7KaN37WRKJRy6pX4dzv7EPEN6kkjFa/ZycKFb5GIzh9FSN20jsK7Eq14uEY0UaYwnmP2Awsx73DpyioOpebZbS9xizZKSAcm15HlDaGgIPpA4gXtLj05ssRIm6UQm3zqyixPzGdIvFRj5jfYN7wr0Wly2Asq4eEMRdyTOM6g1sF7mbXopp+Q3Kvfyp79/H+68YmQxxKx30Zeb/by7q4pt4k4H4fuoThfRbEEUEXc6/SNO00Ak+jlirt0ja3YxRMTNML+LW23kzCL2qsN4OICfNvjGnUd47NYJxrI1fqj8DCW9wbBeZYexwu/suIOFuwdwll3yUqDXmv0cx3c4X7Me+6xGgtluFqOlMJpRv0PbemBtU9e7aw8Ld1t4QxEfedez7HEXGDMqPOZZ/NvpD3Lu4XGcZYG12gDToHpQ8eH7n2OXs8RM6HCmW8boKkS3d22O6BsQ+wHWqTnMWReq9etrQRdGTFezfLUzwS3WLAdN2OZUef6wRSo3TPo5HTE9108XeIMxyEQCtWeCKGnilUx6aUl7WOAd6JLN1Pi5HY9zq3ORMa1FUpiXI/+Lkc//cfGHObk4QPIxl/xTS4hW5zWbONwMlNcjey5CBiZP5LYxPRhjC8Vuo99p8LMP3MXZ0jD5lxS5r5xGdT3ibhdpWay8Z4Tl2xXJ8Rq/sPtRxsxVdhgeXNW9by7s8ag3zuPNHRz7yl6yp2PSpxtXGr/cYNEiDBM5MUqccanvVfzyzoeZMJZJyVcv1DoWCP7F1A8xVc/SOJXHWRQ4y4qJqR56o0dcqb3+L1QKFpex212sKYv0uQTdQYcXRkfImV3GjAq3W1UeSJxi6oN5XqiOsNweoyT2oC3XbrgDwyWEruNnFDuLFbZZ/bzvh9t7UF8osP18gHNygTd68iPXxCsqVN4ntdYw5pKzzflOkcLxCHfWQ9VvfvRSmAatMYfWiKScee0q9wcHTvPZ+3K0L7ikj+WRXe9yIEQfGaK3a4DI0vBTksgUtMYkXjGmfGiBgvb9I161gRLxaInarhS5wys8MHSWO53zgCQkohn7vOQP8LVj+3EmTYYv3rgc15ezrsSrSiXoDrnUd2h86l1P8L70cW6zlhjRLpXZXNuHWyKQaOwxNPYYVyaLGMW3My/wzPgE/4kHGXUdWC/iVZPEuSReyUZk/P8/e/8dp9mV3veB33Nuvm9+K72VuzrnRiMPMAETNEMMOcMgkhIpkVpRsmTZ0kqWZMmm7ZVlyyuv15ZsSStRXK8kkmaQOOSIkyNmMMAAGMRuoBsdq7tyfnN+773n7B9vdQIaoYHuripMfefTn+7Bm24495znPOH3sMMskpIRxht6J7e0pqQcXiqMMfbVIurkmauv3WxPr6/0bL5JwrQwTbRrE1kC1wqJmW3sNwj73y100CFaL6YxlpbxTZN+eZRlI8Nrg3F2xtfY4y2z0y+w07K67QjHeokcSXIqhqk0otmE92i7vpXUU11pCsqjErgY7W54XIebw1svDANhSGojNub9RR7sW+bv9H+HEdPh2ZbD+U6O84v9DL6isEshst5GWwbGYJP/sv87lJXFfJRirRPH6KhuvuKt5G2q6K51HxORoll3ON0cIWeWOUSLXqtKY1ADBvHLPmLZ7npB38F4Fa5Dc9CnnTaojkraWY2zp8w/PvwVhs0iB63Wet7zjWHnsrJ4bXYI+4JH5nyH6PzkpvAwXY8OQ7ylrsE5l/cpKJc+o8mIYZGWAZ/bcYpnYjtZaQ2R9f3u/W61wbKoTAjuvfcCj2Qu8aups+uV9DcWPRWUzYn6GC+vjdJ3IiT29IVuG+UNyukUlknUE6fV62IMNPmZ+AV8YVyV7HkjC2GGk5dGsBZtxp7o4J6YQrc76FbXa/xuNm9RqXxDwWZ8fBT16SHmcylKKR9Fnn2WwX/b/wyvpGL81bG/SmI2htcOYGGDRPuFQHmKsXiRrNlNr5lu9tD/QgX90ul3NFwBlC0JEwov1sYVwVXDVaHIt2LEZhqYMytEt5J6dKcwTdppQatP0+PW31Le7Lg/xfTOHp6I9qISLtK2EEGIVhEqFacy5hB60M4KQk8j91d5eHiWD6Un8d+DzvpWRcR8Wjmfek7ysYEpPpd+hXGzQaR9Ah3R0JqFIIM7Y5O+oLBX6je1R+4Gm8p4RSlEqDFacL7Sjy87PFfbDUAtcih0YlQCl6lihk7nzYdu2yG7s2v0uTUOxBY56M4zMFSi/KFR/IU+zHOzVw2njULEfAoH4tRGBGO5FVIyIibkmx66F9s5/iR/nAuzA+xvlt7HDwp0T5rGeJL6sOCjfVMci82QNQI2+vZrpSEM8Wfq9DoJGvM2X67cj04HTB3t5SdSrwJgDDVoKR/1fgTyhSQY66W016c5HOHLgOs3QueCHr5XPcD5xX7GljpYy5U73pv53SBME2NkEJX0qY4LPjN6gf3eIinZTZw/38nxQmWCqNntgKJMi2ZfD6EnGO5dICEFq0pyqT3AXD2N0VTo1rpE1vVIAyObRjgO2nfRno1oBZAvojtBt6L4LniidbVO8sUhvpB/mBNHR7B3fA0DzcCxZfI7Y1zuTeKuHekWj0VvbxyEvqC2I0LHQuKZBiPxOsey8+yyVknLDtYboh3LUZNTnR6ere/GmvRIn1e4yw3UJjNcAYgirOUyshOSeD3FX+/7Zfb1rvA/jXyJAcPkwfglfKPDbx9KsvT4KG5RkTpdhDAijGl8s4Mj35w/fqURwQvNvfzJ+SNESz678s0NL8wRnktpb4zqqGCifwHnDXNmWwcEWrEUwWyY4uvFI3gXHWKLGmd1vZI+DNe9xrcv5UHSbYyQNRqEO1qs1j36SGOf26C2wYaBzHR4NHWBauTyG6X9PLcwzmgzeHsjQxoYB3bTGk6wcq/NngMz7EstM2qWkbjUdJuGiqi2HTKNoKunvAkKF4Vl0ewXRCPdNIm3YodZ5NHUBdq7DJ7704dwioeQAYgImv2aYLSNYSkS8SZpO+C+3lkOx+bZay+9ZZOg19vDfO38IZj36ClVtm5ygRAYPVlEzKd8fIClRwTkmtwfv0zOqF9tSPCjdozfWnmUE8vDpCYViakGonR3NF1vxqYyXkXUza2z6prLaz1U2i6Lqyl0xcaoSpySwC5phl6qIYtv1hdUmTiXPrSH0/2a4mM+f378ND81cop/89GP4S3GGC/1XpXQ2SiE75M/phk4tMxPD52kz3Buult8onyA7798gPiUiai/cwekt/5BSWswTnGfRXNXm7/Q8wy7TYkl3l2Rwx1FRd115ORZEq+bpBJxckN9tPtj/PFfuIf2ARMpFI/uuMwPmSBy3nuFlZCC8k6P1QcjhneukRAhV4xXheLFxgRfnz6AuOTjXJjphv02gdEiTJP2jh5qQzbR/jq/3v8kKWlj4lFRLU7Uxnh+cQxRN+gkul2waqOaKBnyeP9FMtKjoUxerY2wUEoyXAluKiItLBOd6yNIu7T6HFoZiVtSJM5IZK2Jehdh+tuBKhYZ/qMpdMxj8ldG+Y/pe9njLfM7B34bS8Azx7r534EyCfTbe0RSZoMHvEukZfvqJtESEksYyJsU+UyHPr+3+hAnl4fpfyUk8aMZ1GbwLt0EHYaEl6cRMwZDah/F1QwvH8xw4Rd6GDMbfNor8Clvjf5jFf5t6kMsLGbQMotTCgmTEVm7QUI2r7ZFvUJVhRSUwROF/XjPxokvKqzZPOEGy6oJ3yd/VNN3aIXHc6duaOGqUFRVSEPDC60dPFXex5OXdzH8UoA3XYLFFaL6nbuPljDokx0+sfc8L6eHKdV6Gfiugd6IvFfTYKi3xC/G5/jfC0f4nXMPEl2MIxrzb/sxaVsUjmdYOw59B5f5l7v/gAHDxFmPCJZVxFLkUGm49FTLhJul4MmxaY4EfGT3JA/GLiG5eWRtr2Wz25rnM/4lXv6F56krh0B355CcWWbcLOIKRUIKLCExEOvzRFfH42a8WJ0g8UOf+EKEsVJ8V17tzYgwDHSuj/ZAjOUHJH/38S+x017hXqdESrpXr+m3Kkd47slDeIuC7I+WUJdnbq6dfZfYVMYrnQCr2sEtmhSnY8zHPew1A6smMOvglDV2VWGsVdClNz88RqSILfqI0GCqnGU67Bon1kCz67nzN0F5uezKVrlmiCtu9HwEOuJiqFiNYry0Noo3b+Kt6PfdcEEb18nqoLDExrWHvSkqQrcjtBDIso9tGJjTSb7l7L/2lnkfq9pEtDvdop13y5V2wp5HOyWxsg2G4mUs0b3eBdWhoQUvl0apzSRJrAh0e/MU5mitMZohds0kqNmcDWLkjDrjpo0UgiGnxGCyQrPfotqIoWyFzLXIxJuM2XkAXBGQNJskvDaN4TjJfbuvfb9lonyLyDOpjLkEceikBJ2kprNi4C35mEIg7lJ+m46irhRWGOIvDfDdmb1MZXvYYy+RNhoYaLJGHcsMicmbh7CryqUQxnFFQF1dScdpE4iImNRk3jD+r3gbT7f38MLcOO0ln/5ip+tt7mys9NHbojU6DDGqDbw1n9aKxVeK99DSpzloLzNkGOTMEvsz3cYnpb0DWDWb+ECJYadIj1m7agBe0UB9od3PS40JXlscIr2icPNBN9S+0UiB8jR9fp200bhhwx9pzXJksRLFrxquejqGXaojas1bmy/ejkhh1iQLlSTLvSlg9upLlhD02VV6/QaLG9kTRggMqXCEScpskPBbrGY8GvsHcFMxZLXZLdi8gmmg4j4qblPZITFGauzPrJCSAkdYSAQKzYUgxYuNnTRLLoQb6wCC7qZexmOodBwjETDmFUkbb71BuZJimJAmO80CbW3QQaK0JGu06JMCS5hXz/nd0FYmRltjtNSm8EK/ZwyDMOPRGLAIMyE77DWGzQruuse5ptu0tWK2kcFZE3h5hWhuvETapjJeo5U1RKVKYsol8XoKTAM6ASKMuqLkYYgOo251280GS6NB6gdN0jGfi4OD/IueT9Jr1/g7R7/D02O7mfnmvk3dg7mgOvz3Mz/La3PDeC/5jH+7gKw0Nm+Xp9uMarfRSyuItQK7fmsAHbuWhyeaa10PSrv95pD32yBsGzEyiErHqOxR/PkDL3HAXSAmJDUd8LX6Xs41crz2zG52f6mBWWxsqtbCutPBODtNYsolPbKLXx/9OQ5lF/lvct9m0PD41fSLfD55gtIOl9V7k1giJG00cEXADrMDeAwYTR5JXCRutvntn3yY5Qf7rn5/mArpGymRcZs8lp1jxC6SMJokZIvfnP0o+foo8QWbWKV+d2SAtCaq1RHNFoPfXqZ1Ls303l3814+nGE2W2RVfpceqc9ib5QFn5WqR1fW80O7h5do4zcjm6WgPSgt6nRoZq8Ehb47P+ss41xmws6FiNkzzby4/Qt/vengLDYxLC11Jrs3U7/Mt0MtrxFod7HIvT/j38bX+43z2kVf4a33fZ5eV5+/lvkl1wOLCzhwtZXW1lc0GvhBYwiXQEWuqQyGy+Aevf57Oc1lSs4rsM/PoSu2utXt8WwwDkexwNDXPqJW/4aWGDvh2/SivlMd48Qf72flHVWRlBb24QnRF5/Y2oJtNUueh1szwTHonf6fn1NXXLCHZ6y0RZAxm/bEN1YjWumtwfsS/QGxXm9ODw3y19xDNSgz/YgZv5drGPIgLKvtCzFSHx/e+wM9nX6BPNvDFlaiUpq0D/vXip3nx5G7SZ4xuysAGI3uyBHuGqI25HB2Z5POplxky2nBDG5o34wiLcTNaV+eIgAiJdTU14N0argBtZWC2uh3J7rbG6e1E2DaFgy7Fo4oDe+c5ZudJSfvqNTkXmFzq9PPi7Cijr7SxV+uoTVCst6mMVx2sa4VVq7B6c93BtyUMiZZXEI6DUxxistyLnQm5x52mGI8xdZ0n764jBMK20baFtjSOEWKJ6A15WzBdzqCWXWKLCjGziLoNk68Mu7I6OpQ0tElDd3CFifkuWyreNbTu5ta123Dh5m0qbxVhmqh0jHaPi04HHPLmGDaLWEJSVyEz7R4ma324awJzchGardu22N0WtCYqVxC1Ol5+goWVNFJoZnt9XNEkISQpUzNOE8NuIZHryhUGVwqRXAE9Ro0xO08uVyLvxa5+/Wimyk8OnWLQKvKAO0NufUhIIXguM8+3/DFCV4JxF4v71iWL9OIKXrWOskaZXkrRDroLatu3GLKLBKzcVPkgH8aZa6RphDallkekJHkvRsppkjKaRP614jOFoqwcpoI+1kpx9lysIBZXUJXa5mxuchN0s4lSCtNzSE57mE3JmUMDzGbSjJoldloWEslx+/rW09fSJgIiViOb+TBNaSXB4GVFbLGNWl69qx1z3g4tBYapSJmNqxGrK4aGAlY6SZabCdxVASfP35lmAVGEW1KEvsFKPU5ZdW5oHevLNimzidrIVVVrQmUQ6Ii0DNlvL+LLNqVRn/lGijOdEbRx7QA7SU1uR57xZJGPJc9xzG5iIDGEuCq/FmjFbDWNu2Dg5tWGe9ygO69HvkngCzJ2kx7Zvpqb+XZIxJuUfd4rSne7Wwqtt8Qm96YIsa5QIbD7GuyM50lI8+o1CokoRPFuqlbVwc7XkYUq0SaISG0q4/W2EUUkpyOWXs6xujvOn86+uNFHhDk+SuXeQWpDBocPX+LXhp5mn7WCxKWpO6xGIReCrhZfYlbirXW63Xzeb+95rXDPLzNYTiODJP9g509zNDXPr2SeY6/1BuP1yqbzLSrytyKyr4fJzycId7X42f0nucdZICE0lnAoKPji5FHalxMMXuqGq9/39b4TaI2OItKvFjA6Gep9Of78Pf8pRjIgm66R9Rok7Ra9Tp0Rp8ivpl9i0Ljmgej6FwQJo8nHcxco9V57LWvVGbSKGELzVHM3gTaYafew2EryzOWdDCwqvLXOhoSOdauNiiJiZ5YZ/+IAQSzObCbJlCv4buY+/oesAvHme+XkDWIL3Q2b2dJYGpZyvcyk4dw9/fziva/irw/9SGt+r/Aw37h4APu0jyx2q6g31QbmHdBRBO02YjVP9mWTZMpjwR7hr038KvcdvMz/b+LLVw2s62nrgJIKOdXp4e+d+jmqiwn6njNIv7KKqDcJ32e60m1HaAy6f673kElACo28yVi4nah6k8RrK8RmfKZ7+vhV7xc5lpnn7/T+EF8Y68e1wXNHpFgpJvh6o5ceo8aAUWOvtUK653kaWYdXsuPMNTNXr5UUirjRRgrNd8sH+UrhGA8lL/FLyYsYCBaiiKUoxtJUD+MvB7grjU2RSqMbTZylGnEzwfOLY/x7/z4+HD/Ho86dNyKvFK91lEHoCELPxDI2mSPoXSAsG5lNr3esC/hL+1/guD91Q4FaS4f8Uf5+nry0m/gFC7laQpXKtxT9vFN8II1XrTT+Yov0OZ+1mE/rno3P8Yx6EuQPGjSHQ/6LgRf5nF/hijxNoBUFZTMfZDCLJv6ywi62b48outaEs3MwO0dP4l5OXxpmLRfjk8nT7LWuLU7G+i77FqImWwKV9Enet8Zf3/U97nNnmTCvpSJUlUFrNkHmrMCfq6M2c7cYrVHnLxG/ZJLM9eMWBmknXSpjHmuZCO1HOMk2w9kyn028yuAb5tJIS2KyzaOJ80T6zR6KhnI418ix3E5yvthHvhDHmHVx893Wf2yAIXMlEqOmZnCmZnCEIJXNIDwPlU0Q9Pg3lT6z18qI2WV0p7sBBEgd2UtzJM5MJkX7+LX3BkScyI9gnImTnFbdDcwm0nN9V6znvl6RdpKOQ845RHXB4RV/lPYOhX+T57qlI8rK4PXWMMGJDLnzivSrRaJzF+/+ObxLpNg4D5cOOkQXL4M0yO68n/P9I+R3xPgr2aeJGxJjA4/tKkoRVG1eaYxz1J9h3KzQY2gO2S0kbT7nv4a6zvgvqibfaYwwG2T5xtIhpleytMdNfj5xvtsFMopxqdOPu2QSOzWDbjQ2hddNN5vIfAXHtaitxng+u4MRO8+jzso7f/h90taKgjLoRCbKAmUJhLz7spPvF2GZkIwTZDx6h8r8avpFEkIica7KowVacaqQQ1z0ic8pVLF02zXW3ysfSOP1jdgiwpEBkS2Rvn+th/MGod6gLrCqNE/UD/BKeQx/QZCYaWHkq3emevEtbLPoyjFtUtvtVjEyGRjqp7o7xUjiEmNWAV90w8A11WYpghOtfXiLktTlNkahdmfF928DWmmIFLreJDbXwvVN7LpFJy5pDBo0J6Dkud1CBDTPtruGyQ+Ke3lucgIdvM0EGwmMqoEMBGZVEK+Bl1c4SzVEowWZFGYmha5Uidbyb/09dxjdaoPSSCGwQ3XTKIGoNVBXnnGtEIaB8iw6CQPtdJ++K8V6a5HF/Eqa3sua2GKwKUKi7wdhmkjPpZGzqY4J0un6W6o5z4UmX6se5Qdru4nNaeIzLWS5xiYwwd4SdZONV0trThaHmZztp7ewMSHcboe+jTdgdKNJ+oTF7zce5fcyD9DTU6PHr/PxvvP0mtWr8/xKkGS2lWG5meS1mSFUw0S4EdK6du0aKuJkc5wzjUHsCuhGY3MU7wE6UuhGE6NYJ3k6wanyTiZ39/Dy2Hl2uat8KnaGtHzncRAB59aL0VrKohY5SKF5PPkq9zsNLGG8Kb2upTV1bdLj1Hl9AkLPJHYuBot36GTvEDKZoLa/l3rOYCw5v54D3x0fZdXi6dYAF9p7Wb7Qy8CZ7vywGTyuV/jgG68CLBHiyw6BJ5CpZLdLzN0uQlB0DcOb2EdTQZo/mjnO8nKKna+1MZ473ZWguBPGlIZIyZtPtFd+bpMbce+KoX5WHs5SGxN8PnuJg3YVZz0csqo0zzR38WRhLz2nQ6ynTxFtoofyLbnSvnJtDVkqI6XAXm972vzoQeaSFhXXp6Ut2rrF7659mO9d2oN9Is6BP5hDv5Ps05WiA626BQhRhOp0EI5DeHwPzQGHxKTflZvbiDGiNapeh0YDyhXEWxTFvKk9p5AESZtmr0TG2xgC2jrk9U6GS51+7EmP3qcXoNEk3CSL83tCGgjHQcTjlCck0ZEaD+Vmri5Ib+REe5Q/uHQvtdkke09U4eT5DZW+eUe0IKL753rvYVVJzk0NknzVJjHb7t7/u3I83Q7S3WPS68e1saGrqFQi9zuvMWhbMNBLezBBcbiH3/joIG7q2thurXr4syZuQbPnxQqyVmX28/00j3e9agooKcmThT2cXR0gvqKIiuVNkweugw5RKUA0Goz8xwAd9ynck+HrBx4gGGvjPBCwy15+V9/1b5c/wg9f3YtoS8y6AAmLH0uyc/hr+CIiI2+U1asryWqUYMJf4+zxZRYWMwy8EEecvxNneodY139fetCgMxTwy9lJUvJaVHIuNPlXM49xeaWHwacFya+8ig7Cbk3SJuEDa7xqKbqJ8+vzttICoUArBWrjfQvqOis2wKATGtCR3d7xd2mAqA+Km/V6pIGQgjDp0hwQdHqjrrQSAqU1Nd3mUpDl24WDnFoaZLgabM0w8foY0evnq2xBlArJxJs0lMNCVOd0YRA1G8Nf0qjVfNfwew8I00To9fTSzbCx0Rp09M4ONmlgxGMI36PRZ9LIaVLJBhbQ0opz7SHONAaxqqDrDWi2tnThhXQdZDaDyibopDUj2TIjTvGqlmtwnWi+QlFXDmFoIEKB6IQb1j3rvXL9/CXtiMjl/TUyuVXEhooK3Bytr6pDGNLAEQJlJnDmbTqVa8u9vyaJLWishkJbBlHKI0hoMskGabvJaiSZCjOcWRmguRCnp6w2jeF6Fa27BlWlhugE+KsJ2imbunT4o+F7GfDfXUX8C7NjePMmsgNWHZQBF0p9vN7Xw5BZJiVvzLG2hSImOqSMJimnxaoboqXYOhl30kDaFlHCodMXkemrMmB1FXYUikBH5FWMuVKKcM3FrkSbJlXgej6wxmvkGgRxgXYiAm3SUA5WQ6EKpW6BwzYfSGTMR/gehb0+fY8tcDCzxAPeFI4wWYw6LEU+//vMp1j9gzF6lyPs8zNbVlwaITCScYTnUdxn8rcf/SpZs8ZUp5ena3spPpljz5cLyFKVsPneq8Z1pDALdTylkeX6pg4rX4+RStK5Z4Jmn83KZzr8yrEfcdSbJSFNzgWS3zz/KPXZBCMXw2vzwmYwzm8RYZoI20YO9FF8cJBmn2Tn/TP8w4k/oc9o4gjvqhxWoKGjJQpBOfQxDIU29JYu0kxIxQMT05x0hqkU4/QZd7BBgBDdzaIp0KbCNDbvWqJKZUSjgbfssnMqg7auLfeiEyAaLcKhLLOfSdDKRTxy/Ax/LfcE82GGL1aO8+TqHhJ/nGDsVBmxlN+wNqBvi4q6xnqtjvtywND5GNp3Cb7ex4LZ/66+Ykc9wCgtg9aIMEK7NlPJAX49+Bk+OjzJPxx4ivh17dsHDZusrBExxwlvlHkvhTY3QdOfd4kRjyGyaco7fD53/0v8XOYl9lkVwKOqOixHkqdr+9Avpxi4rPBmypvy3n8gjVchBcqSRC4I64rch4GM9Ma4vYUAo9uc4C0T0O7w7wvDQBkCDH3DhNvN1dK0lYWIut7prbiAA93zdGyE79FOCz7WO809sRmyMsQQDlVlsRolmS+nyJ1pYS2WNoVe3fvCccBz6SQ1n4qdAeCLleNcqvd2Pa6nzr5/Y1MrRKuDUTdgM6oxvBW2RbPXotEvGR/M84upF0nICIlNSXnU1mL4iwZOqbmpwmG3ijBNhOeikj7NPkljQHM0M899DoC33pM8YDWyaelrU35bm92qc8mWNl5tIRj3C+SzMZbjiTvrDhUShOzO5ZbCMSKMTRrBuio9Wa/DW+SpG8kYrQGf3h0FPpV9nYcdeEpX+WbjCHOFNKOXmqiTZ+7ykd8aV/LUo7X81fO81WX2euNMui7eci+F1QRTqR6CfnVDIbMjulJSCdkiZraxzWhrFTrbFtpz6MQFDyUu8agbcEU6r6U1eeWx3EnirWn8pQBR3XxeV/iAGq8YBoUDFtmPL/JoZoms8eZWsnftUHp7EMkEhb1xzOMl7utdYb99dzK7hWmCYcDB3dR3xFk7YvCJA69yJDHHLqsIeLzSlrzQ3MnvTj9A34sQW2gjV4pbxrt2PcK0aN2zg+Jeh8rRDo8lz7DDLJKQXd3Db9aO8NWFw7QupLCWVyBf2hSyL+8VYRiooT5aOZ9Ob0RMKhZCj68tHGJhJc1I4fbsl3UUoYulbiHUJgwfvSXJOGv3SMKxJp/vv0ifoagqeLVj8IPafuLnLbJnQqyFzelZeNfsm6BwJEVtWOJ/dJUHMqv8ROpVAF7tRDxZ38/p2hBPnNqPqJuMHVjiU7mzLLWTZPwmlZiPNje+2Oi9YiGYcFapJx1mMiMYQzl0tUZUKN3eULc0MFLJbg/43ZKfP/4Sh/x5sluw0vwK2jKQmQ6702v0md2N/JO1/XzvxUN48wZmfnlrPxvvAa01/qqiedlmMttDMLE5NyfvFZFM0BxO0s4KYvLGlLlzQYovFu7nqbmd9E6HuJdWN1XTnuv5QBqvQghq44rf3PMFXBHiiA16/IRAJBMEg2mqo5Jf2HmC+2OXGDebcJPe6rf7tzEMpONQ2RVn9ZhE7KvyVwe+x06zQ0I6KBSn26N8c/UgK5d62P/CGnpu8X2FmDcSYUjKu2xK93U4tnuWB5w8mfUk9Ibu8EJpnLkL/aSmBawWiIrFDT7i94lh0OnzqI6aWKlux6SKcplfyOLM2jiF29QJR+st2eVNxT2MfVUenzjLx+NnyEiXkmpxtjPIa+UhUpci4icX0Fvc+94cibN6LzhjFf7Fwd/juH3NmLrQGeCrS4e5vNDLyFcN3NUWl34uxwmvu6HPunUWvOTWNl6FZNTOE2iTr6UUUU8CaUhEtYZu3765X0iBSMZRiRit0Q7/oP/Z9U5tDg29NTfB2jJIxJvsiy/TI7spQa9Vhsi+IokvBVDeBN3V7jZRhLvWIT7rsjrhs8nUjt83Ku7S7LfoJPWbWtRPdfr40fI49fkEozNFwqmZDTrKd2ZjjFchMLIZ1MRQt9Dg8gLRbahglrEYeu8O2j0u5kCDrNFiNkzybH0PT67uwWzcZX+i1tBoYhZtvFWP7y3vZTWTYLj3B/TeYU1j6TiIXeOEaY/CPgPjQIWjgwv0yPYNIsSBNggio1teGkVX5YW2EtJ1kUM5okyM6gTs3bHE/ZlpHCFRKApRm5KSTBZ68ecMvLXN0SXm/XBFEqmes6jugGyqTkHRrZ5ftIjPasxKa0t60N8362ky2pKYZogju/e6rQNe7wzwhaX7OLswwHgpRDebW9L7LkwTOTGGSsco7LPwJ0rs610hLTu0tcETzSxnWsN8ef4IS6f78Vcl3nIdo9JGBjdunLdCxoCIFEHD4nKzj33OInDNqJJIckYFHEiNlVn8SBZvJU5PGKELpfVmL+//HgvPo7mnn0bOItlTvqE7otKahSDD5UYvRouuDMEmxswNEI32U9wfZ1f2AhPOCmc7g5ztwKvzQwwthrirrW4R448bQhIkTFo9AivW2ZBMv9uONDB6soiYR/FAmrV7BGKsTtboSuNNhx0KkcvX1w5TOt1DYkEg6hvfBvjtuPvG65X8y7FBpj6XRBuaHV8ZRpSr3YKJ9xLmEQKERPb3MvV4isaOgJ/f+xrjps33GwP825MfQs677F4p3/XFPFxZQ+SLZFIe088PMj3Yy4c+fJFD9p0VU5bpFMsPZ6kPCyY+PsU/3/kf8AVkDefqpKtQREg6ar3iuL0FK+/pnmvh4Rz1Qcnehy/zGzv/kJiQpKRPTbW4FPpMBX1UJtNMPNfCWts8eoXvCWkgPA+RSlI8CDsfnOFQapGpIM0z5V30vaJIvpaHlY3TY91IhGkhYx4d38K1WiSMFhGCkgr5auEYF364g8SiwJlevC2b5o1A+j5rjw5Q3gWxY3n++wNfJmeWGTIMqirkH198nNXX+0idF+x9uoCoN1ErawjHwWxmN/rwb50wwihYvLw6wl5/CeVfMx4tYXDAithnlfjHh77Id0cP8vWpg7jFAfzLDnJxhaj0/o1XmUyw+KhDuK/BL4yfxrjO6m9pxenaMCdWh7C3gLOyvX+Y2U86dEY6/De5Z7jXWeHX5z/LM5d34r/k479wAVWpbIqGBHcbYUga/Sa1iYiJ3hLuVtjdvQPStgj3DtPIOSx+TPH3H/sqO+w19pgBgZZ8v7GHl6rjvPLCbvb8QQWjVCNauvMNH94Pd914FbaN9FzaGZf2QAimoj7skcyPQKXWza+44gF8J6SBMAxkPIZIJ+mMZWkORmRyFQbtMg0VsNhJw6qDW+gaZ3eddW1O2QoxmgLakkDfObercJxuI4aeNM1+QWsw5EByibE3VENekcRYCxKs1WKYDQFbzRu5vmnBdWhlJa1ezVisyIDhXZU2aemIE61xTteHcYoSq9RC1ptEW8y7fD3CMpHpFCqTIEhF7E6s4ciQU61RZqpZrGqEqNRQW3AjcjsQroNIJQljBgmnTcpoEmiTgjJZbCZxVwVuXiGa7a1nuK7L3IhkgmavoDMQcChdYIdVwBURBaVZihxWiwm8ZYm/GsFaEb3ealrYFlpqbBmhEHSiLdLWMgyxy4KVtSTn+3IsxE8Rk4KUtJHI9WiSwahZ4r7YFGeyOZYGk4gohScEhmWjWy1UrXbr91waSM9Fx306GcVgtru+wLVmFwuRw8VKL4W1BH21zdvr/kodRCdt0smF9PZV6TeqxIRkrRVH5R3ssu42JPgxnT8AlAna0jjGFlsT3wrDoNVnUxsycHqrHHTn6ZMNHGESEFGOPPLtrh1gFCroSm1TNSS4GXfdeDWGcnRGsqwdc/hzDz/FmJPnn/c8xsJCH5lXBxj4wRqi1iRaWnn7UI8QXTd4Ikb53gEWPgZGT5tfO/wk9/uXaWmLbzaG+ZPpIww9pfEXa7C0dvdOdIOQO0YpPNBLbVgy8ZnLfKbvdR7xL8B1XUIUirLqUFear84dQjyVpndOoZubO0zwRqTjIOIxOiNZSvd22D2+zEeT54B1DUitONlJ8r9977MkLhoMnWghpuZRna3dScno6yX/0REaA5JjByf5K31P8hurj/H7LzyEO28xMbNKVChu+snnTiGGBigd66W0S/KrA2f4VOwMJ9vDvNiY4PSFEfY9WcZYK29op7D3ipFKonaPUMt5hA9V+U/3P8cxb4ZRQzEbGfxu6T5OVwaJPe8z+HSl2zluPV9ZJuPdHPyEZk98hWLgs9BMbfAZvTtUucLot6q0X3H51ifuofmoxcH4An8h9erVvHaAERNScpbESJN/9sufYqGSpH22B3+xl/SFAO8Hr6M7wS2lEZj9vXT2DVEbdujft8qfH/sR93pTSCTnwoDfyn+U0+VB8t8YZsepDt7MGtFmlGOUBsZAPzoZY+2wyd9+5KvscZbYbbVoac35hQGyJySpqY3tQLkZ0BKwFLbchPfxPSATceY/Kjly3ySf7D3LfquOI7qbvrYKWWqnmKumsaoCXa6gavXNp+v7Bu668ap9l3bWotWjeTx5kn1Wk5mJHk5kRrhQ2kFPxscUApE30eFNPKXr3WKEYSBiHlEqRm3IYM/BGQ6nF/jTyZfZaVk82fQ51R6hVIwxcLmKXMoTbeJKabEuWaNNgTDNN3cJevsPg5Bdcf5sjOqopDkc8fmBk/xc/ALuulfiCpHW1JWmoGwKpTgDsxH+Sge9Af3r3xeWhfA8wrhFb3+Zh3qmGLXyqPXkEAWshj3ELhv0vtrGmcoTbsHCozeiPYdGTtIYVBxOLXDAsqiFNt6Mhb+oEZX6j7fXJOHS6Je0exT73EXGTZNnmg6XG72YBRM5tUC4RYv1hGPT6nVp9BkcGFji84mTpKUiLj2CMOJ0ZZDz+T7iiwo5OY9qt9HtNsKyEbaN9l2Uq8iYdVrKAraG81m12hiT88QWPGK7xzm1bxCAVvLkDe/zhY1vwL32Gn9x5IdMd3r5reghql4cq2rie25X3P5WUtQ8l0a/TaNPciy9yj3uDDmjDXgUIp9TpSEur/SQmwzxTsygG81NeVGFYaDjPmHGp9Wn+PnEaXoNj0BbLKoOUcUithxhlVqwGY3vu4WUaAnC0JgfEOMVy8IYavBrQ0+xy8rfsOGL0DSVTaNjIQO6m7stsHm5+2kDpSr+jIk3nuJ0e4S0nOTB2CS73WV+/2GDC+lhnJUYA8+nsMsdZDtEBBFhyqPdY6FMQeBLIguqO6DTHzIwusKfHnqZHqPGQpRgOjT59dd/hvrJLD2XQa4uoaqb1w2+wyzymZGzXMr28qNf3I336IOkLyjSL68gWp1uW8+bTSa2BT0ZlO9QOJqkNiZo5SIGdy1xJFHiqDO7brh2q+0DrWhpzXTo899c/EVmlzMkf+SRPFdAVptbLr9J9mRo7OuntMviwf5ZPho/y5DRABwuBiE/bO7iG6uHiC8onMUqurpxkmm3AyOZRKSSNHb1UDvWYmSgSC1y+M3yDn54cRcjJ0OcfHvLn+d7QgiM/j5IxFg5lqD9WIX9vXl2WmsEaJ4p7+bJS7uJLYktMTG/CWkgLJPO7kGmPyeI5Sr8ZN9r9BialobLYYsvVR7kte/vIT4HyfOVbjHa+rkavVnWPjVBIyfYuWeOh71JvhkeYbLQS1Bwka3a5i7u06rbBS0I6TvZotDp4amdPfx/PlXluD/NQ+4sI9elRvnS4KCzyJBVpLXHYnK4l6ezuwn9fTglRfpcDVluwGr+LZU0zMEcOpuicDTD8mcCenqLfCZ7miGzSWLdifKjxi5mnhwjuaCJXSqia/VN5wSQsRhifJgw7THzyRitPS0+tvc0vjQ4H3T4B7Of40K+j+wJg9jkGqJS39xtgu8U0kDGfGQyQX0UHtxzmUfTk1fX0K2IdF1kT5ZwMEPcb5OULdw3qC8ZCAbsCoOJKjPxDDKZACFQzdam9r7edeNV5QvIRhN/X4LJVj+77GUedlfpkTUe2vUfeG10kC+tHefl8CDeqolV15htTT1nUB3XKFchMi0cN+CX97zML6VfICE0vYZHUbX4Wn2C880c7ed62PUfFhG1BuHK2qa+CSMm/ErmORppk7O9g6yGCf6Ppz6Nt5bBrHYwVw24yYSoYx7NiQytjEHxM03+78e+x5BVZL+9jC8i+gwTR1g0dIe2Vle9rS83J1h+eoihUxHx8wXU6XOoTegpeCeingSlXTbVHZpPpl/nY17XcAW4EPTxH5fu4dz8ADvn2zC31H0YtzAiEScczlIZM/mpgyf4cPI83ywc4QuFe3HOecSev9jVt9xi6R+3A2EY0Juh0x+jdEDzf9zzBUbNEjvNbjHNa/lBrPM+sUW1Jb1KwjKRjkN5zOVvfuwbfDZ+mgFD4guXmbDJpSDL06u7GP9GE/P1aVStfkO7V51JsvqQomdHkV8efp77HHiq0aaUj2PnDURnkxv0WqNaLWi1MJ89zcBLNskP7+frew4w359mNJdnxLw2h/nC5oAFEPGQ0/XO/p+py/xm8sMsr8RBxIktOridAG5mvAqB6s9Qn0iQPyr4nx/5Avc4C+vX/JqR/EpllNFv1zEvzHUdJJsw4iHiMeo709RzBoc/c45/t+PrGEJg4nC2k+bks3tIXIa+FytEZy5s9OFuGMLoGq86FScY7vCf5r7PgFHDua671lZDuA5Rf4ZWv0fKq5CQLZw31J9ZQjJol9iRyDOZGEUn4witEe32Zk3dBjYibSBS0OngFEP+5MIRzgzk+PODz/KwO4/CYNgsciQxz7P7J2gN2simRIaCIBMS66/jWAF9sTpJu8U+d5G0hLqCM0HApWCAP1h4gJlCBn9ZI2oNdGtz9CsXUYTZAqMhWQ0TlNVlXGHgCAsDQUJG2LrDqJUnIZvkxvMsfmgAo+1gVePcLHoR2YJWL4Qxzb6hZXY6Xa2+lIywhSBC09Adnm5lONkYZ7qV5XRhkJVigvSMxltuI6v1LWm4AgRpl9q4huEmPW9oRDHb6eH8wgBy3sWoVbakBNgbUZkk1R0+zb7u7FMI45wu5FheTJNZ09Bub9rowh1HSJRrEvoGytX0yDppGRJh0NKaWtPBLoNVV6C23jgw+vsIh7PUByV9ZpWE6D6zbR3wXGucP1q+l0tT/exfN6CutMA2kklEb5b6eAq7v8G+7Appo0FRtbjc7MNetPCXRbd4bYtwZYw7+RatM2l+mI8x6JYh/RI5o/Gm4tQrqgQ77FWO9C9y2c2ycnSA6piDNzGCWxx6848IqA0atPo0YmedYbOILzQNFdGgyZfre3misJ8fndrFgXIZ3e5s2k2R8D0qYyaNQc24X8ASxnrzit08sbYPf0EQW46QleaPXUOCN2EYaFMiLUWfUScht95ccQNKI6IIEWkiJYkQb4qwRGgCbdBRJiKiOz9ucqk32AjjNeigwwD/1AK5fzfM4sAE/+vPJ/jLO3/IIWeOY3aHfdYJHv/IawT6WmW+JSJ8EWIIjSs0EkhIA1+4XAgEf1h8kBP5EYpfH6JnOiJxNk+0lt80/cpFs4O7polsyfl6jov+eYbMJoOGhSMs+gyDSGsGjBYRTfYf/G0W9iaIEATaJLpJ/zkDjS/b2EQMGE2yhoGBwBIOgY4oqZCyMvhfL3+G2RNDxGcEg0+VSJVL6NIMut3ecqkC11OesHnssVc5FJ9nj1XmitcV4KnibpJPucSXIoyFPGFzc+ah3Qr1XUmWHtXIngZtZXKqPkLh1T5yJzWJqQaqvrXbnL4vpCBMODSzJiTajJhNstKmrbvPQHPNp2cqwltqdjfQWwkhqB8eZPlBi2Bvk0P2Ailp09ABVa35V5c/Rv0rOYaXIsTCatfzvj7W9cQwK/enqe6AXzvwHI8nXqOhLF7vJHh6foLBZ0LclRY6v4VygFWEbkfI05fYs9pLOJDiC7/6AOcODfDZvtf4i6mpGzRYr/Bht8iRka9QV5Lp3RnqyqEU+TSU013U9bXPSKHIGjXSRoOcWeagFRFhcDEwWIqS/M9PfI7dv9viQKmMnppDtdqbNroX9iWpfrjB4eFFHkueQaH4jZWP84NvH8VbEQz9oIRcLmz9VtnvFynANNCWget12G2ZSOyryjVbER1FiEYbs+lTCU0CbRDdZBlsKJtyx0WGIIIQHYbduptNzMY0KdAaXa/jLdQRkc/0WoKX+sYByBnn8QXsNruVcFeKbwKtCDQEQFVBhGA5MGhpwdP1fby8Nsr8apr+ZYW32EKUa5sqt00EIXZd0akb5Ns+K1GClGxfraOSyPWW3N3/MGHChHklVeDmBsm1h0oAfrfCfp2IkIXIYSHMMJ9P4S8K4gsRXJgmrNfvxCneHYTASCTAc2lnBIfi8+x3FvHXtfgaKqClFeW2h9kE2dbdTmOeh+5s0SradW3kICYxelok4k2akUUxsrDKAm+1g1lubs4K57tI5EhCH0y7G3kAqGpFXsWRTYldCRDNAL0FPfCRKwkSCs9v44gIQ1hUI01ZWZSbLn5FYzYUwnUxUkmwbIRp0BiM08gJOn0hE84KfTLkZJjiQjtHreyRK3aQpfqWfC5Uo4FeWMIMQtzlcS729/KCM8E97gy+DIiJEEtAQkgcYeIKE9+wUYYiZxQJ0HS07vZn0bzJI+UIcIXAEhJLmLRUh6lggEudPpwVA/PCQld+a5MarsJxkJ5LM+PQlymyL7lMTHSoqg6z9TT+gsBfjZDFKqpS3ZLNOu4UUipMbp7rGhJ1JdKiFEutJLWmQzrcpIae1oggRHYiIiWIkG8a50rrrmRmM47REhBGmzaKcD0b1h5W1erI6UX8fIzBrwzzo5eO850dx/iN3UV2pAv8vZFvMGI2aWhBSxtc6PTzSmOcmWaGZy/vJKxauPMW7hpYdY1XiNjRiHAvL6Er1a7UwyZCreZJvQjeSJYT94/yZec4P5F5jd3WnfF4TIeCv33uzzC/mKHnGZu+ZwvIap1oE+Zk3QrS98n/9CGKByB9bJVPxM6SlSG+sAl0xJfrYzxX3c1sMY3MCULfRDnDWNUc7qU1wsvTG30Kt4YQGOk0wvcoT0j+4uFnKYY+31/YQ6EUI3cxwjs93y1m2YQL6N1CmCaVcYviYcX+3CoWgjXV4ffLxzldGyQ5KXFfn0c3m6gtMDHfgJBoA5StsYzusTdUwDfr+3i9MUSraUNO0MpY1AfGQKwXs/YoYkNVPj12njGnwAPOPAD/z8nPsngyR/YcWJcvd/Njt2LTDq3RnQ6qWGLku300T8V4OXeUXx0+QphQpMbK9Mbr/GTuNR72JhkwmoyYHpKuMesACK46SCJuNEAMBBJJQEQhanMhjPOPznyW8lyKwTMKXa12jf7N+twd2cPKPQkqu+FvjL3II/4FznYGebm5g3Pnhtn/TAlZqqFW8937vwU3dbcd1d3FhKFBRbW640RcM5MUmpMdeL09xh8v38vZZybwlgXW8vKmTLlQrTas5jFdh1bHoaEcOvJG1aW6Vnzl0iH0KymyZyJUqdzN3d6s43qdDTNedRgSFYuIapXUSYf4tI9Vi1PUGU4NuUwN9OLLRUrKpaUszrUGebEwxlwpjXXaJ5HX9JxqYJ2bh6CDqtXRShNu0guu6nVUvY6tNaIwzMVKL6uJBIr8TUNc7+u3UKxGMeZnevAvW2TONlGnzm7uauJ3ibBMKjsFffcu8anBc+w0wVkvoGhrxfnWIK+sDdNuWphxjTYEIjKw4hJ71XuHb9+ECIlwHbTv0skofip5kpdbY/xJ7Qg67+CtdggXlzb6KDccYRh0UgKzr8lorIgUgnokOVvPcbYwgLemtvR10lKAoTGkxhCaALjc7uNMOYeKBEFcQ0zQzgqUpYkfLvCx3AwPJi7zufgkjpC4wmE1ajO3lKH/VU1itk20VtjaqSZaoxoNrNPT2JMOiYEszcEYzT6TfDtNKRPntViRUauAJSIGdIQljKstsiUCQ8irTUsUb/agBTqioWEhyFCeTZG4YOAvNrtNQDZrKpIQtPo8yrtBjDf4iH+evZbguabPieoIzoq59aNwdwihNVFkUNcKCG8wXgGWwhRnmkNMrvWQnAR/Ldy8rVRVhGo0MBstgsCnpS0CJIGOrnaIa2hBYzXGwGWFv9jq5sxvgUjMhhmvV9BKQ7GC2e6QMSV2zaOd8vnvpv8sytXrCcQCsyGwK2A3NMnpAKsaYi+UUI1GtyOX2rxdTa5H1xtkTgsWakN86dFj/HT8HL408IX9nr8zJOLplsvJ5jhn6oO8vDJMsRCn5wWT+HyAtVTelLvC94Rp0hoI+fzwaxzzZm4w/CWSD8Uv4A93mOvNcGGoj7lCmugHCfw1hQi23lWQrkPrwDD1IYsopvhi+V6ezU9gnYyTWtLYy9UPzr19H2itkR0IWxb1sJv7vBAleGpyN2LOZWy109VD7r55A4/09uALg0fj5xm0S5xP5rgw1IfS3fOzZMRDPVMccBfYYa3hC4PlKOTLtQOcqQ/inndJXaxh5GsfjFQTra/KgknDwO+EOEUXs+kRxCyeXjzCE30HcLMt9vSv0ufU+Ej6fDeX1c4zZsZv+rWvdiIudAZ4tTHKdxb2kS/G6XlZkpxqY88XCTfhOBKmidwxikr5rB21GDy+yL70ChGCi6Hity4/TP5cD30X1JYwUO4mOgjR1SoSME+M8Tn3L/OR4Un+x9wPiK8rDigUT1QO8rULBxGTMdIX21iFxqaXJ9TVKsnvjvJfTv8KyumqNl1BdAQDzwvS5+sYa5UtI5O24cYrKiJaXe3m9c0ukJCCBNBrGAgh0NdPEOsJxFcqaUOtttxCpKo1+p8pkDnjcWZwiNUJkywhrqHeswc20BFfKx3j27P7aEymGHhOs6MY4p2ZRuULRJtMd/D9IEyT+GCNv5G50lv8WjK9IQQfdyt8zF0XLh+EP66N8P9+/hexahGitfU8TMJxKOx3qOxViFjI1+cPsjyTZffTTezZPGp163WJulMYbY1uGtQCB6U1s0EPzimPzIUIZ6GCMoz1Te7WmJzfDkdYfMYvg18mSp1HDd64cZdIDCHW5xSLpcjmty4+TGkxydirIeKlsyitNn1o8N1yRUZLVatXNymJFw2EadI7NkyU9qmN+0zu3snrWc3MvRn2JVfwe37EmMkN3lfozqkvNCf4xuphXpsdIvW0Sy6vSD8/Rzi70F17NiHCtmnu6qE2bNE+1uCf7f0DHBHR0CZnOwOUT/Qy/r0O7kKV6MdVmeStUBFRqYyoNxn+QS+VmTRf/tg9/N2f+B7x9fTXQEc8szSB83Kc5OUI++WLRNXqprdDolKZ3n/7wlW76o3oMERHESFs+nO5wsYbr1fQ3UXl6pwQhjcJ4HwAiCJErYEpBN7lLL8+9bP4ZoeE2UaKWztjKboXq6NMnrq0C+Y9YnMCb7WFWW6jG01UJ9gSHulbQQh9NewH13LWoGvAGhisRm2mQ5/XGqNYVY1ZDW6qlbtpWS/SEq5DOwtGrkEUGiwvp7BXDcxqDV1vbonE+ruCUpgtMCsG5U63e0yfWaExHqKliYiyxA0Do1wjnF/cWkabVjilEG/eJp+I01DdafvKZvf6Qs+2Dgi04lxgsRIlWA2TzHWynK4OUplM469KnEJjXYXlgzUvXOWK0sL6gmxW6xiA51uEnsSqCy7GBrmU7OX0QI4D6WWida/1FcUBpQUvLo1SWYnjLFrEl0LsUrj5c8sNg07SoJUVJOJNUjIgQDAfpLnc7seqCuxiqxvm/qDe//eJjiLMUhN/1cSfsvnb0z9Dj9NNr+gok/z5HvoWFG4+7Ba5bRFjT4fhB8qu2jzG648JOgyJFpYRhmTit2pEX05TFYKK8T7kOBTsbdURrSK02t1itSgi2qRVsHeDZ1rD/MupjzM938PO8x3MS4uoTR7auR5hWshUAtWfITpS4+8f/Rb/r5OfJvOki78SIeZXUcXi1SjEjzs6DIkthYSuyfx4igDNI06B3/r0bzIb9PCPXv0sa6ezZM6mSX2p0E032ipojXtyhvH5DPP1HlYeiXOINzfcaOuAhShiNfL4H6c+x/m5Acx5h/Q5sKuKvedKXV3nQgn14zIvaE20ugaFItbiCj2nXYRpMBTzupqejscla9ebP6dguBMy3MkjOgG60lWvieqbe9wI26I6ZlA70OGx/gWyhsFcCE9W9vNqaZjEtEKcudz1um4Ro+uuoyL05DTurM2O1xPUv9ZP7cr6rGB/uVsUTifY8gXQW5lt43UD0EEHHYCanYPZ2/OdPyZL0TvS0iFtrbjc7md2JYO5YmNVquhGc0sJ+AvbgnSSMO3iOi16zBpRYOCtKZx8B91qbeesvQGjFWHVTcKWRT4S9Bma/VadnFGnJ1FnKRYndMS13NcthK7WEGGIl8/wSnMHPcbpN72npW1mgx6WwhSXVnowFxziM5C+0MSotmB6nrBW+7EzWq56nNptqFbf9ee25JwqBJEDlh+QMFsorSkplwu1fhZKSXpramtt3DaIK2koVCowN3/Da9uz7uZg23jd5gNDoCO+Uh/hR9WdfPm1o4x8ycRdbSKnl1HN5pbyUoodI0x/vodOWhPmDf7uCz9P4gWPxGvdlsc/ji1g35Yowio0iJmCyiWHf7D7c8TMDu3IpBK4rL44QO6EIjbX3HS9598NqtVGRBHZ51f5wj/5FH/g/6k3vUco3RUZj2BoOcQuNTHKLeRaER0EqA9Ao45t3gUatBYstZI81erli/n7uPyVnSTnFLGzK1vTKN9mmzewbbxus6W5Pt810IpXG6M8uzSBf8Eh8d1TRJXKlpysg16f4GiddKJJ4WIW+7JNejIgujTzY5sK8nZopTFqLWzbxFu1OTE7gmEqwsAg6hj0TELyTAlRrm2ZatobWO8qFZ2fJHt+8t1/jDeL72/zwUcD5bbHxXaOV1cHGXihhXNuYbuL1jYfGLaN1222FLrRRDyZYX/tL/PGzHOtBOaCg5MX9FwMt3THGGuxQuyHA7TcGL3LGrsW4c3VuhXi27wZrdCVKoZSZM47aCOGluAqkIEmfbGFKHXTR7YLVbb5oKKbLXpeD6lWfOZSY/zLzCjessBeXOnKiW2h1Klttnk7to3XbbYUUaXC0L8+gTBvPnS7VdQaHYSoLSy+Hl2cIjczD1J2z0npbmeo7bDvzdGaKF+AfAFrboHcD28cHzoMux7X7eu3zQcYVa/jf+0EMUOClGAYP/bFu9t8MNk2XrfZcvxYFByoCNXaXmxuieslkraL2bb5MeVKQfA223yQEfoWPBG9vb26k98OuQHYPZLta9GlRR2X2EYfxoaz976dvPrSa9vXAqhS1Ba22L4W29fieravxTW215BrbF+La2xfi2tUKWqt9U27N92S53XHjh1kChO356i2OMUdl7evxTo/0t/lIfHJjT6MDefbL/4hSZHdvhbAd/QXXnaJ3bd9LbavxfVsX4trbK8h19i+FtfYvhbX+I7+wstv9dp760e6zTbbbLPNNttss802G8C28brNNttss80222yzzZZhu2Brm2222Wabba5HGoh7D1DdGcdoK+xyiNEIMC7MERWLG31022zzY8+28brNNttss8021yEsk/nHkuQen2WhlKR9OYGTdxmv9cG28brNNhvOtvG6zTbbbLPNNoB0XcTOMcKMT31UcU9mDksOcqbs0QkttL29ZG6zzWZg+0ncZpttttlmG0DsHOPCf+vz+X2v8pcTk9znzPNCbJTfkw9x1u8njNvbhSLbbLMJ2DZet/lgIg2kba3/+7rlRim01tdax253XNpmm22kgbBMwozPT+47xf82eEWhJ85qtEaPU8dxQrTpbuhhbnMHkAbCMECK7t/XoxQ6Ut3209uNTzYV28brNh8oZCKB8D1ax8ZY+LBF6EGUiMDQEAhEIElMSYa+W0AWa6jVNVSrtdGHvc0222wg4t4DzD+WpD6q+LX45A2v/VHpfl78oyPEFhTO5Xm2TZgPAEJgJBLguQT7h1k74hHEoTESod1rnQ2tFYvkJLglReqHU4RLyxt40Ntcz7bxus0HByGQMR+djLN2xObP/PSTHPVm+Yi3SI/0mI8aLIQef/f8L1C/1Itvm8hqFbaN1222+bGmujNO7vFZ7snM8YA7C8Svvvaj1R2MfWGe8PL0tuH6AUKsrxWF/S7Rp4rs71nlH45+mf2Wc/U9/7I0wT996ZOYcw7Js2nYNl43DRtvvAqBkUoiXBdVb6Cq1dv69TIWQ/b3AqBLFXSzud37/IOGEEjfR7gO9eNjlCcsqvsC9rpLjFp5HNFNG/CFoM9ocrRngSfuzeEPJciVslAqb/AJ3EaEQNg2wrZh1yitXIzQl7STkqtN9jTElkPc1RayVEddntn6z4M0MIdy6FScTn+M2pCN0dHEFtrIRoCcWyFaXX1P3yuMbkhZ+B4AutnqXq8o2vrX7ccZaSCP7qMxGmftqOBnsrMc8uZISEGkFS+0NSdaY8wtZjnQWdzoo71lZCKBTKdAa3S7A1JAb4Yo4bz5zUojOxEiiCAIEe0OCIG2TJAS0Wh11852B1Wrbbl0K2HZCNdBplM0DuYI4gaNfkmQENT2BHwiN8ve2DJZGWEISU21aOiIPrPCwbFFzlv91HemiLUnIF/6QMmlCctG37efxpBHZAsCT4BYf/Emt1loMFsaGWriU3Xk7AqEYXdejKJuSt5dGB8bbrwK00KPDBL0eFjzJbjND4bs76X44CBCQ/Ksh8xXUJUq+jYbydtsHMK2kX09qHScmcclP/vocxyJzfEZfwZfWFjCBiAlXRJS8Vd6n2TkZ4t8b3UvrQv9WBcvb/AZ3D6EYSCTSUjFmX48jXigzMH+JX4t9zS+bAPQUhb/1es/x9KJLKmLcXqW14gqlQ0+8veHtC3qx4YoT1iU7unwNx7+Fheb/XzjmXvwlnyGnzQR78F4lbaFcB1EPE40mEULMFcr6EYTXatvG69bGOm5zDyepuexRX6m/zJ/q+dpUtLGER4hEf9y+ZM89do+kqctdKO50Yd7y4jBfmp7exCRxi530FKwetynMXST9VWDXRGYdbDqGreoQEA7KVEGxJdC3JXuZldcbm65cS/jMUQmRfVIP6t/vsmBgSV+ou80D7qXSciAlBRYQhIXPpFWLEQRs2GSPfYyv7HzD3kit4P/afIXSKdzZF91P1ByaTIe4+JPxzj86EWOpBb4ePwMlgiJkCj95vLEinJ5rrabuVaa5791mNHvWBi1DsZqCR0EqEIJHXTu+HFvnPEqDaTrIGIxmsNxGv0WMSuLu77Li5ZX39cFkK6LcB3CviT1IYkWYFUTuLaJAbfdw7sVEJaNTMbBNLshE8tEBCEEIbrVJsoXQEXv/EWbBGGaCMdBJhN0xnto9diY/U0eiF9mh7WGLywMIaipNhEaVxg4wiIl2+x2lzjrDzBj5Tb6NG4LwnGuep9Vf4Yw6dLqUxzvW+aB9BQfckv460Z8W7c42LvMD3NJGhWL3p4MhhSoLWiMCdNEplOIeIz6gEljUJMdqPDh2Dl6zQrf6ttPO3CJPPPWJzshkOkUqjdDmHKpD3eLdeKAUTQQSkO9frtPaZs7jLBsjP5edDpBa0Bxb+8sR/1ZsoaDiUFNtymriMlyL86ihVvQEG2defEqWiPUtT8AMtSImzziQglEuP561P1bG92/QYAGLUB7NsbIELQ7RIUiut2+u+d0KwiBkU4jHBs1kKU5GKcyZrKnf5X70zPsdxYYMAIKymCynSTAINAmkZashqOUI5/D3iyH7Sq77BU6AyG1uoW3Fie2kuuumaXSlvNCX0UIpOMg4jGCVMSx1DzH/Sk+5LYxMVBEKII3fayqqtgiYsrp5anBfVR2uDhVC8+S3ShXu01UiUCrO3ptNsx4NbJpgv2jtPod5j8f8uCecyzUUlyuxAkv9bPn/2ujpmbRUXTrF0AI2L+T6kSCtSMGj3z2VRwj5JvnDsBqnKEfxPD/4+LWHXTvEbljhPyHBmj1COr3NxnqLTG/kkEsOyQuSwb//TmitfxGH+a7xsgN0NnVT2XcpfGzZY7nJvnPs6/xYW8WVwgs4VJWLb7TGGE1TPKIf4GjNhgCDDSG0NfCI1scuWucwvEsnaSgshOiVMgnjp7i1/p/QFa2sDBRqO57kfz13Hf5VPZ1/s+xD7PQHCa2nCP13Bzh3PwGn8mtYQwPsvypEZr9AuOhIj81eo5749PsMQNcMcfHd13g9ewAjZf6Sd7C9wrLRlgmxccmWPqwxsi2+fDO0zQjixPf2U/mXIzUhRisrf3YzSNbHbljhMlfGaA92uGnj77If9LzFFkZYeJTUS2+XB/jbHOIwrM5Jr5YQFYaRI3GRh/2LaMXlolV62itoROAFORWUmj/JmkDcC1lIIyg3emqtJhG92/RnSjr+/pY/MUMRlsw/sUC+tTZu3lKt4SMxyl9Zh/lCUlzX5uP7z/DmFfg8eRJXBHxzdohfqs2yPcv7iHxvIfZ1NhVDRqq45JWr6b/6DIPHfodDlqCf/zRL3DpoX7+zeFHcO7ZSeqSIvW101vWEWYkEqg9o9T7feyeFiN2gbTRINIaKTSBvvmGzRUGh+08e6w87kcDXr53nBP5ES6cHcBdk4x8x8G8MIduNFF38LnZGONVCITn0ep3qOUM7t01ya8Pf42FMMVUp5ffdD6MjnsgJPAedrxCEqRd6jlJayTgPxt4goQMaEYWp9KDNM70EDMtdBj8eCw8QoCQqJRPdVTQykX8hcM/4qeTr/D7/Q/xRGYvpbAH4dx8Utus6JhHo9+mNiz4T/Y+w59JnCIhTRzhXX1PQ2sutgeYbWXY6SxzmCrR+i2XN0vo2Uqs31chBWHGpzYiaWc0sT0lhlNlPpN9jeN2yJXHPLpurB+1I47ac1wePMfvjw6gTINkzOt+5xZ6JnTMozYmaA8G/PToBX4l+yxZIyAuPbK6yd7YEs3I4pw78O6/VIiubI5pUs9JJvbPcU9mjr/f/xT5SPDZkZ008zb+ko0pJLzFJL/N5kTFPfS+Op+euMDPpF/mkH1tvmhpxfnWIKcqQ8QWNOrVs+tbvq2HqtdRb4wM5Atv/QFxk538+lxgJJOIRJwgLhF7a7TbJlHK3Zx7f9GVvBK+R3VU0tjd4VMHzvIvRr6/7lGUlFWH2VaWE6tD2Bc8Br+/vklZXAal8T98mOIeh8WBNK2DmhEzxp9NFGnHV5jc1ccTrf0YHZu07yGaTbTSd9zTeNtxHDo9Hq0eg5jXJmE0cUXX03rF0aFuMvolkj6jayv8YnyOn4/P8LXkAP8k+lMsJ9J00jaW63Y3THeQu268moM51ECW0t4kC5+KSPRXeLz3FH0yJGbl6TOqfClxDGX1dBPM3yMi0sgQUIJAG7iiw4dSkww6ZX7/oQcR6j7iiyHeD85u2Z3Tu0GYJtHDhynu86jugMGHFhhLFNjnLlLXFt9b2EP9uV6yM3pr5HVdJ3FSPtrDwic1iVyRI+4svjSwRFenby1qciGM82z9OP/me4/hLUmee2gHU3ufxhIRMbmJw13vgHRd5FAOFXdZuz9DbUTQGgzJ7Vhmh9fgkewlBqwy++1leAdJ9Q/FLvLSw2NczmdZ6vSRmsjgXS6iJqfeW9TjLhPFHcI9DY4ML/FI4gIDRnfCLKoWz7SG+VcvfQxz3mFs6tbut1g3YCMXxuJFhp3Stjj9zZAGQq4XTMb8a/9da1SpvKlk6IyeLAz0Ut6T4PjIeX4yc5KdVoXrlQXOBUl+7wePkDpv0P9abeMO9m4hDYxkHBwHNdpPu9dDBgqjFXVDwJOz3Xx4z0XHfdopyc6+POW2S+RmNr5o5jqk7yN8j2j3MHOPxWlnNAPHlvhk3ww73DW+00zwemuY3790P+WKj3POw1/S5GY6yJUiutVCB92cCme6QG8zSW00xuudDIoiA+tpJZ/rOUHinhYvDI9xoX8XVmU3qUsKpxThTxaIzk++w5FuLEZvD/RlaY6nmXvMJOwP+PmR8+y1VsgaAYa4dSfWXmuFPz32Cj+M7WY+txNvPoEMQ7iDtRR3d+wJgRrIUt6XJH9E8Hc//A0e9ibZaYYk5bWJb0e8wEWzr7tYvEfPhlDd3B0RCSIErhB80j9P3btE4x6b72T2UX09ye6XYx9c41V0vUdr9/gEnyjz0OAs/2j4aySEZDo0WInirM5m2PXDFla+cUdd/LcNIRGpJDoZo7TH4Fc/9CR73SWO2BV8cU1AfDmyeLa+h68vHmL8ayHeiRlm9G6+ELuX0XiRD6cvbuBJvD9EzKczmqHRb1P/bJW/efB7DFlF9lhruELRZ5g4wkJh3OBtvRkPOUUO7vxDTgz387eqv0Szz2FAZPCm5wA2fQ5smLB5eMckv9j3PPc4K/QbPkXVZDmSvFDbSeaHDtkzLezLK7cmcyQlGAaRDTu8PENWEUtIblp++2OMMAyEIRHJBKonec17pxQiCDaVDJ1IJantTFMZl3y251U+H2twveEKcLY9yOi3NO7XftT1pH3AEZaJSKfQMY/iwQSVCYHRAqsKTlnRs5qAahXhOkQJl05K8EB2moVWmgtOz6YyXoXvQTZN/lCMx3/xWT6ZfJ1jdp5+w+f7LYuvlY7xvfk9GF/MMrYQ4J+dJZxdAK0I3zBPhpem4LIgcfhhXm8P48qAlGySkhY/E6vxOf95Fvu+z8ndvbzeGuZfPvdx3FmbnMpgX9jk0atsmsbONMW9Fsc/fI5HMpM85p9jt6WR2O/pK3dbmon0KfY4y/x3fbsIMx529c46w+7e2FuXnGnlYpR3STpDHUatPFnZwRLdw5gKG5wNejlVGMTvhHDFFX+raIVZahJbsqiUTFajJDmjgSUgLUKGnSKDqQqX4glwHYRpbgkv0y0hja4EWcyn1QvHBhY5kpjHF4IAzRP1A5yuDeEsm1iFKrLaJNoCRQnCMmnv7qcy5tAYC9nlLDNq5bHWA1htHdDSES+1dvHF2WMsz2bYW25Ds0VsXjN9NseU38eJnmGqRZ89xTtfFXm7kL6PSMRRI32sHvVo9Wn2962yw14ja9SISbWe62u885etYwmJjyZnlhkfXmPGyFIqeniLOzEqDaLZhbtSOfp+MYS66hm9GLh8vXqUp5Z24eUVZrGJvlUjSojuZtvSZM06CaM7ESsEBBKj1ZUW+kBznVcV2+oWefou2jJQvo02JJ2EhbIErYxBK3tNYkd2IPcUbx+mvhtcJ8VY39/Hyv0mrdEOw9aN1eIn2m3+pHKcr88fJFHqbKnC1feDdByCoQydtE1lpyDY06TVkdA0sEoGbmEIrydJdF3e66ZKt7pOGrBzZJz8QZfyvohD/jxp2eCp1jClKMZXVo7y2qVhrGWb4cUQZ62Jrjfe/j5rjdnUvFjeQSNyKHmz9Bg1lsI0pcgnYTQZMwvscZYZHc2z4KUplD0GC4eR5Qbq8uzmmTuFQHoewrZo7ciwdsSiMRJxILHEDnsNX4bAu1833shCFPFCa4zvl/ZjlzRGpQOtOxvdvDvGqxBdZQHHYe2wxZ7PTHIsPccDzgpZw0EiCYn44+oxfufigzTPp9lTXuoaU+/FoNQadXEKb8Ym1XeYVxrj+KLNEbtI1nB4xL+AlYv4V2sZVNJH+j6q0dj0XqZbQboOeixHu9dHHajxv4x+CV8IUtLlTBDwG699BDHpk3sxhHOXibaI9q30feY+7jD8yDw/2XeRn4hN4wsDZz3UsRyFrEYevzP7MOEX+xhdiTCnlglrdXq/N0P21STalCjHZqjTRk7Ov5es6g1B5vpp7u6lsM9m/589y6PpSR7xLzBuBlhCYmAi1//3brFEN9XioBXxr/f+HoVdLv95+peY9XtJzCTJFIpEpU0yAb9Lvli+jz98+iH8eYOx15ZR03Oo4NbGtrBMhGURubDPWaDf6IaQ69rEqBpdo7jWQX1QvXPr7ZWF66DHh4jiDrVRl/qgJIhDcygENyKXKzDg1zicWuDD8fPI9Ry519vD/G7zcbKvbuxpCMNA7ximmYsx+6cM/ulP/Tt2WAV2mxKu8zL98+VP8sJ/OEpsUWFfnvmxaUYgUklW74nRGNQceew8/3D0ywRa0tImLzR38k96Po07nyF9QZG6uPmUNYRhYGQz6ESMy5+3+Wef+zfkjAq7rYi1KOJvvP4Z8pNZek4KDvxgCdFsoypVCAKid5GT6a2F/PD0Hl5IjjGQPohnBlxa7iVac+jdVeD3D/9bDtsBx/b/DlVt8l8N/RznR8dIXEow+O9Lm6YAWhgGMtdPlIqx+IjNn/qpF9jjrfCp2Bl6DH1VC/298v3GHv6XVz4Niy4T51rI2SXUHU5DvCvGqzAMZCqJjvt0Mppj6Tn2ukv40kAiKasWDa05WxukupggVhCIdvC+wja63Ua325gtTSOyaemubJKJQVq2GbKKxLw2UczFSsQRnc6mN96k64JlIQwJpgmRWpc3ekPhmRAI26Ld69MYsMgmSwwbPiERRdViIcwSFlySKwK72EG125vf6ywNZMxHpJN0ehT3Zmc57M0RFxaWMFAoAh0xFaY42x5iIZ8itxLhrrS7XjcVoYolRLuDkALDNCGKtlQVsfYc2mmTTgqOJ2d5xL/AkNG5KoEFYNys6OIdkEgcIRk3DYaMgIl0gRO9PVjV9XG2GVmP5ChLYskIi4hAQ1uHLLaSOKsG7ppG1Ju3LOcjDAPheehEDOUqkrKFJRQNFVGKkt2wal0hOpt7vrgVhGmCYXS9WKaJcGx03AfHpjkSp5MwqA1JmjlNmIhIDlZJuG3uX88nvNeb4iGnaww0VIAtIn77vUUgby+GQZB2afSZ0NviI+4aGeNaitpiWGNVmbxeHCAxp/CX27fupd/KmAZBEoKMYm98hf2Wg0KjUHSYxkwEhL6JsjZlaRbCNFH9GYKshxxo8WmvDhjUVEheOeQLcfxFSXwhILo0c8sedbMRYRZcOoFgMZKYVoRadvGXJavxFM/tHmeXtUKfEZKWIbsTq1wY7KfR9NAjA5iOg8oXNj732zAI+5M0B1xaAyEPJS4xbBbpMzS+sG54q0TeoEzzVkgkCAVaorRAK4FQAr1e7Krfw1p0K9yVlUmmUyz/5ATVcRh6cIE/nXqJtAzxhUdNtfnN4r28XB7l5DN72PX1NlaxisoX7phBNWJCQs7z8OA0z957L/EBl+SLEjU7d0d+73YgLJvovv3URlzaaUGzT+CUYPCJNVhe6xqx7XZ34bFt9MggU5+zSO8q8GvjzwPwSlvyb9c+xcm1YXpekmRfr2HOF96U77MZMQcHKH5kjPqAZO+BaX4m/dJ6KohHWwcsRyHzUZy/9eqfITyRJnNZkzg5j67VUfX1kG+zhVjfoAgh0Fp3u4FsEVrDCdaOCoKxFoe9WUbNAOcWUgTeLY/3nkI9JDjh7WTI8975AxuA0ZNFD/RQGzQZ8wr0GHWWI4+FSPD87DiDzwc4a82ul+UWkb5P9aExqkMmPRNr7LRaLEUGf1w7wIuVHaQugv/aPLq69ToN3QzhOMjxEVTCpbIzTm3IoJOB1lgHywvYObDAmFdlwKnSb1fwZYecWcaVHXJGBV+E9Bgaicti1ORrtX28VN3RlR3aYKTjsHKfS+O+Bp/YdQFHXFvyyqrJL5/7c8y9MkTyIgy8vATVOqryY1CotY6KedR3BeycWOae2DQAEoHEINAGYdkmnhdYjc0Zn5K9PZz/5TTJg3n+2sSLSATngxa/U3yYE6URMk879P+oiFwrE76HVBB7Ns/wDwYIfEkr46EsQf90iD9bJnjO458/8Qu005Lqh5qMD+Q5klngv7/vy5w+MMxXDx+isjrM7v9rAPnkK3fg7N89RibNmV/yefj+c/xC+hKPuNO4Anxh3+Dw6MbtBFwxTN+CN77vE7HzuPcHPFvZxdOF42TTO0icL8Hpc3fsnO6O59V1qU6AdaDCJwfOccCyriYGt7TiRGWE1xaGSE6C+fSrqDvsAY0Lh7gBu70VvjugEaEk4bvv/MENRFgmjZxDZULS6lOYozXKKz69J3zssotodT3NCIlwHMKUS8+ePH955w950L0MWMyHGV5cHqWwmGJipoMxufhmKZVNio77Xb2+wYjPZWc4bLex1sdQhCavHJbCFI3LSUafD/AW60RzCzd601WEbncnsI1fVm8RIegkDDoDIQO9FXJGhfgbdsy3A4nkkDNP1Cc53TcI1ub0vIqYR6fXp5MUZMw6vgiZjWKUlE+76OJdKkC5imq+h9CV05Xwq41pjqfzZKTLUhRwrpHjQqkPfy0knF+4/Sd1N7l+wXIcomyMTtqhssOgtjMkNlDnV3edYMzO8wn/IiOmt75YdVFXnyAD6EY+FIqSMjlVH+FcqR+ztcFPmRBgWzRymo/snOTR1IUb8sEbKmLqcj+jz0T4803U9PzmyVG8S2jHINbT4J7MHMPmjXnAkZbIlsSsgwyu3Uu1iQSytO+SPJjnfzrwJ+yx8hgizqryeakwxqXlXsYmO6iTZ96z3JkulPDPm2jHxuvziWyJf2GN8NIUBpACzNwA0/FdXGr2cyi9yC/GVyj7M3w6eYrv1Q7w7e98hMRGSxB6LmMHlvidHd9d96y/vaLAFcP0ZlJZ116/xrhpM56YZ4+9xLdHjlKrGHgrXle15Q6d9x1dmaTvI7MZgrFewrEWj41c4rA3h0QQElFVHaZDj5enx7DPeCTmg65e2jZXEY7TzenJJFm9RxK/Z41Bv8mOeIHnrHHCeAx7vf80gNw7wcrDWeojgs/mXuWQM8fZTo4n6hn+eO4eWs/00rOicRfy6EbjqjTIZsUY6EcPZCnvT6PurXLPwBIfil/Awri6Y1yLIv5j6SFOVYaIz0j86QKiUif8AIwl4ThwZA+tfo+VByQfOXyG/bFlBozOTSVNru2Iu//v7XbPb/V+V4QkZRPf7RAMpLAaA0TF0qbopnMldaZy7yALHxU4IxXucWdwheLblcO8sDaON2shKrVuNOIWxoAwTYTnQTZFbRys3VWOJrtNGxbCFE8v7KS4lGR3ZXM/M9djpFPQ1wOmgbZNtGVQnYjR6DMIfeikNMqCMB0h3Ij+/hWOpdfodWr0W12Zm2da493vesNC1tIW0+1eiqHPxWof08UM9YqLc8nFLsPQZGnDNFLNkWHyHxul2S/JHVniM5lT7LGXkZic6TT4r6d/lov5XjKvmMQuFZHlOuEWKFi9XRjpFPT3UtkRZ3fPFA8lJskZDcCnrUMaOmAhzGGXJV5BYTa7d9Ipav7D+XtpNy12b2AuvIzFkH09NMfSDCfnGTeLTAYZvt/o4YvLx5l9YozUssaZXXlfNQ2q3UYWy0jLwm53us9R+Ub5J1Vv0HciwF+0+Er7XtbuibMztsbnUy/zYGyS337sUZq9H6LndAvjByc3phiwEzA9O8Q/zh2k16ySs8qkZYPDdpWEvJbf0zVW5XX/vsbFIOS55gSBNpBCY6C4z51mryWursV9RpP7j13k9cEci16K4fahbvHa1Nxt3xjeUeNVxGIEY71Uxz2OjU/yl/p+wJDRBnwCHbEaCc53BrDPegw+28aZLRF9UAsg3iPScYiGe2nmfLL3r/BbB3+bQEsiBJZ8jFfjx7ptXo3ugKvtSdH5XIkjvSv8cvY5DljwpfI4X5s6SOd0il1/sgb5EqpU3hTGyDuhB7IUj6Qp7hf8P45+jT/lz+ALA+s6r+Nq5PGN2QMUF5OMXwiIzlz4QIRzodt/feV4gvIe2PPANP9k5Ov4wsISNw/nSwTGleR7fW0iesvvv8n7fdkhbTRI+01aA0lkqxfZ7hBt9HhZb24ifI/VYwb/+LO/y5hZ4KgdUdOCp5Z2kX+tj95J9Z6MbWHbyFSSoDcOE3V+bvdJPhS7gEQwE/RQupwhtiAxK7UtI1wvshnqe3uIbEkQE4SuIP9oh0f3neP+1BR/JnEKX17zRlrrFcfLUYfXOv2shkmeKB5gtR2/ocpcIWiHJpPLvUQVm/glk57TAYOlAPP1M6haHRXeWZHytyMY7aX8M3UeGJnm1/qf5iNuiLGeG/5ye5QL39hF9lxE4tQK0YVL3fv5AZkz3g0im6G+J0tlh8HP957jE97Cde2jQ5YjyVwni1MAf7mD7HRHvJePaL6UINEGM//+DMP3g0zEaU/0Uh21eSC5xF7L5Tv1If797H0sne5n3+/NE83Ov28FHd1uX5v3rkQr3jBOVLWK/a2XcSwTr3CMl4r7eXF3nT/38I/Y5xb5mx/9FiePj/L8nxxh9IcGegOMV91u41+0+S3vYXozVfakV5nw84ynf4Qv3jDu1x0eb5RZfK09xP819xCdyEAAlhERjUh2W5dAd9eQIcPgX49/mfqY4nHxV1grpogvenhLq1vDeJWu2+2xPtbP2lGfZk7w4fgaadnBXR8AC1HEH1Xu40R5BHdNY5VaiEbrtk8gMtTMNjNMO30csVfouW4tH7DKdAYDwEIlNlnawJUuIckEjRGf+oDBeKxCWsJqBLNhmpVWHKOlEa0O2jSRsRjthMFQssJELI8rIhpa8VppiOalJIkF0S1gaba2TK9ubRgoS6AtiMn2uuHaXWBrqs2q0pxo7aW4kMKbM7FLjQ/WImSaNPoFYqzGgeTSuuH61nmuCv0+BE+6uEKTlg36vBqT/UPIwCe26kOx+M4fvlOs9+FWO4bo9Hm0B8L1goMmCpO60hSrPk5RYNeirszerf6E46CyCdoZm3SiyISzSo9sABblyMMpSpyiRjQ3b2j5Ss47u8fo9MUo5yyqYxJtQuh1vazDg0WOJObZ4yyRXe+UsxC2qWqT55o7ONfIsdqJM1PN0ggs1vIJdHN9VF1x0mtAiW5hXEMQm1c4qy2MagvdbG5Y+F26LiIeo5G1GcoscyQxT59RxxAeZdVkLYo40zyCm9e4K21EvfnBmi/eJVEqRmXMpNmv6TOrXbWS9bX5Umjylco9fH9lD25BYVbaiFAhQoVdtvCWDYyORtxhKaS3Q2eSFPY51EdgxO7OSy9Xx1i40EdiRqJrd0A96O3GiYrQHYWTbxOf9SnFfH7U2sF+e5GsUeNIfJ6nU4cxerPoeoOoVr+7HtgwxFvTdOY81oCJZIFId7VBrvewXinQaumQhVDT0CazYZalIMV38geYutwPQKK/RtproXR3zFz/HZaQxABTqq7v5A5lmdx+41UI5OAAQS7N0odifPiXXua++BSP+RcZMZ2rF+fb9f38u289hr8oGXq+jDhzmegOhLDtasTLM6OU2h73epcZu+6MH3Gn+fuPfJ2nS3uYfnkf/ou3/effM9JxEDGfYLSXhUcNGGrxyd6zZKTLibbLf8zfx6vzQ+xcahCtrGL09UJ/D7URwV8afIX9zgISzVxocu7EGHt+r4osN4iWVrpFSltkwtaWJHQhcjS+aONc53E9Fzh8vXqUb84fYPQbED+zAiv5LSN99W4QMR/j/hL/7p7fok+2Afst85CuEOiuR/VK1fDb0fU4df8drl+5rDRJWG0+kT3LCw/spDZqMrGcgbn5939C7wUhEKaFzKSZ/nSKxoE2nzpwmsN2GwOTqgqZjeJEMzEGXw3w5qqo97A5E+kk5f1pqiOSx4cu8NPxyauVuNPNXjJnFYmpBhRKt/kEbw/CNJHxGCKb4ez/Lc2HHj7LmFfgqD+LJSJc2cEiYtiskJURrpCYuKxEDX63fD+vVwd56Xv7Gf5BgAwUdivCDRW99RrcbG7WGhGEEKlud6JmCx1FXfWSDUIODtDc1Uv+gMXfGn6ez8UnSa2HRc90bL5UPs5Xpw8xcLqJ8eok0XvJif4AUN0dp/XJKgf61jjizOML+2r60B+V7ucPv/Uo/pJg+OU19NQcGAYYEnvNoW8uhogUanXjZKCq+7MM/dkpHsle4rPx04Q4fP/kfg788zVEtU60ERttrTFOXiR3KU5seZx/OvFJDvUt8asDz/ATsWn+9cSHaR4axs63kOcu39WmQKrepO/ZIukLPnOf8FDj4gZt7DdSiCK+VD3OpWYvT1zcB3MesTnB7leatHssZn8qRnq0hXyj1/b639QCQ3HHCkzuiOdVew5B0qKd0Xw6fYp7nSV6pb3eV1h35Ww6abxlSWxBYRRqhHfoRhrtiKDksOAlWY2StHUBSxhIBGkpucedoZzwueTsvyO//14RroNIJuhkbKLeDsM9ZXJmGYBCFOdStYeg4iCbFaIgRCd8OgNxgpRmzMrTI5uUlcNKlMAuSeTMCrTbW8dwFQKERNkGoS9QboQtbjRIKsplrpmhWPUZX2mjF5bRG+gNuO0IAYZBb7zOcVsCHgr1pnCOQt0gaSIFVw3X69+rUFRVSADUlaStDSyh8EUbS0BCGlgYV6Wz+swqsZ4G9SBGGLcxLbvbzOMuh72EYSDX21O2ejVjQ3kOxBbxhU1Dd/Pmz7aHsCtd6TdZa70n/VXt2rTSgk4KBu0SGekREtHUHUqBh12NMCqtO96z+1YRlt2dLxwbMimCvgTmcINf6n+OYaPMhKUwEFfHSFtrAgR1rSiFDabDJCfKI1wq9hCfAe/V2a7XqhOgo4io2doyov0q5tHqteikNKNWnn4jdvW1kvKZaWapNxxE1B0fwvPevWNIqe51UXpDnoPbSehKhjNldsbXSIjwhs5Kq50E7prAW1WISp2o0ehKHxkGohMgOgFaqw1Vagk9wSPZS3wsfoaUFAQ6wqgaqEvTGyp5qep1VL2Ou5xjdjnOOaOPTr9Bj/RIxlq0enxkpLGM268S806IKOo2VtECzwhwxJuvk0KhNJSVxenaIFOVHtSSS2JOkJiLsGfziCgDWPhWB/sm33GFSEncTjf6jbr9iVZ3wPMqaQ8mKOy36Qx3GDULZKV5NdR5PuhwtjPAdxf30nM6wJ+uoIul234YV7AnVxj/0hC14TS/mfoojPyAfdYKe61umoAlIuQ7FLVsBOGhCZYf9KmNKn7pnh9xT2yaHdYac2GHP1h6kKXvjtC7pBGFMtJ1mP9MH+FHyjw6fIGDdp7VyOYfzfwUF1d6SU8qdLXafai3iOFqpNMI12HpoIf6cJnjvSsMmVXgWnrHVNDHKyvDBMseRqXcDVdukXSId0JYNjKdIsrGcYy39iKUVYeGBkuABVhCkBDiBmO2q4GrmI0k/3z5M1ys9DI11Y87bxHEFXqgTTLZ5B8e/BKf8kpXP7ffXuZX9jzPS/1jXDi9j4HaXszlEuFdlpSTmQydQ6PUB20Gjizztya+wx5rFYnD060Mf+OZX8ZYcBh5IcC8tNgVx76VcS4NhGXSGk1R+FCHXK7EEXcWgBfbBs809vPi3ChjhQ6iXENtFnm19Q0e9+xj9Z447Yygtq+Dl2rxV/c/wxF7DQtQWtLQEdOhR0W5/KC2n/O1fi6XelibS2PUJMlJgVPWpM5UuvnwWl9LLdpCRlp1X4rFT4XkhouMmmXgmqbrhXaO52fGiCo2Sw+bWIcO39J3GwHE5ztYlQ7mYoFwoyIRtwFlQo9bp9+q8kYJ12ZkYdbBamhYNwS7xnp3TFwp8t3IuTayBPvcRcbNBquRpKwsjPbmUUEwLy0y8Yej1EZ6+Op/dozPx57lQ7nLfOUjGWLTLmPnE3e1Lb1MJZj56T6ah5oc33GeP9P7PFmjRkLeeM2Wo5DJIMPXysd44ZuHic1pxmYD3KU6stpEreYR/SnGx9b4z0a/xx5rjZvVVURo6isxxl7KdzdAdyAac9uNVyEF7bRJc0ATzzTIyg6euDaBLEVxTjVHWC0k2TtdQU/NoZp3TsA3XFjCK5bwJka5+Mk+TvWMkDVq7EUhhcBAY6DRm2fcA3RlsQ4GDAwX+XOZH7HXspkLOxSUzcV8L72vhbhrLXS9gbAtKvtC/tWxLzBklhk0PBZCODOXw7zs4i91Nl4k+VYQEuF76LhPs1/w+PgZ9vlLpN/wjBTDGOWyj1WRiHbnjkus3U2EZSLiPlHMImbc/LwUioaGkrJxRYQrIhw0vta8YU4iQrMaxXhuYZz6QoLeFyW9Lxdp5WIU93o0ci4Xd+VuMF4HDMVPJV5lxC7wP+T20sz5+K0Q5u6u7IuIedSGbepDks8OXOJzfgXWpV7OtYZIvOySuhzin10mXF659e83DIRp0k6bHNk5xYOZKUbNCgqXyc4AzxZ20i54GNUKul5HR5tksyskQgoaQx6FwxpzoM7fPfo9Djnz7LMq9BoegY7Wq8dhJsyyHKR5dm2C6eUexKzLwGsap6yInc9DsXt+W2quuB4haPRJ7ts3yZHkAj3GjWN0sZMizHvIjqA2fuv30GgLlGnjFQzi9dg7f2ATow1IWU0SRutNOfId1c1pNdqqu4mB7vOuo/fTN+i2og3ImSX6DIeFCObDDDLYPIt4tLyCtbxC38Q45/9cP4zA4dg8L+0eZVH1gXN3O3gI16VxoMV/ce8THHFnud+5Eum+8e6XlM2FTo7XikP0nQiJn16D1TxRqXw1AU1o2Jde5jN+mUibb5maZlQN1PlLd8wTfkc8r/VBA/dgkQdys8RkN/euptq0tOJPih/na+cOY53zELU1VOf9ddJ6R7RCdwJkFKGUpKUsAm2wnu3XDZvKNoEvusLnzdZdzUW5HmGayJ3jRNkYhYMGx/ddYk9iFYDFqMl/qBznlcoorckk3mIF2QxgJEcUd7AyLUbNEiXl8KV6micr+3BPe6QnFe5CdUvlgQrLJBrM0ur3aOUi7o1PM2rlr7awuzKWTlZGsC67OAVBazyD1XOUxqBH641W7jpGoJEhOKUIbzLfbRW4lt9Ui7VMJJDJBOFoL4sPxGkOaH4lM33De7pGa0RJwb9Y/Tgvr43iWQExs8NYrMDf7PseY+Y1NYJTHYuvV+/jpeIY0Utpeuc0qckWslDF9iysukWnKWipG3VjLSFJyYi0UUdbdLvsGHd5gRAClfSpjkuaQ9HV4oyKalFQiovN/qvFN/q9bIKFQO4cozWaorhX8nhmiuP+FL7QNHSHb+SPcOKVXSQvS2S5hmq1N4d3XxqY/b3ouE9pl8muw7PsTKxxyJlnyKzirj8rz7Y9/qjwAFO1LGcuDiOrBu7q/5+9/w6TLEvv88D3nGvjho/ISO/Ku+6u9m5MD2YGYzAYOIIgCIAwJB+sJJISl9pdipJWWu6KK4mkxF1CS9FBAAlw4AFiDAaYHj897X15l5VZ6V1k+LhxzTn7R2RWVnVV26mqzKrKd556eqoiMvLeG/ee853v/L7fJ0lXIVFWpC61MZoBVOtd3eo2t867HsKyEUf20ulJUD2geapwjt3OIt5bChsfT53n+D2DBPEH27L1I4uZ0RwrDYtiT5HecDei5RMvLm377owbbFjNxa4gY/qkjfYH6sq3XfB1xDF/Fydbg5hNtp/Vpt9h8sIo/3n+EcpBkrzbZs5RaOMHa8f6ftGdAHvS5d9mn+Tz48d5wHnxsrPIlXyh/Dh/8v1HSMwbjExVoda4RoonK02efv4+Pr5/gL82+gK/mLl4zedYQpM5UGb5rz9Cai7G+86pG55pvvGZV0NSH1f80yNfYsQsk5XdApNlpSnHCf78/CEKX3NJLgSocuXmV6VqjQ4DRCdERYKOMonXbR0MBK6IusFrWkBvEVGuwlYFr4kEtft6qI0ZuI+s8s/H/wQDKCuDc2GWL1x4mOa5HD2va8Spi5BO0Xx0nGafwd6+KfZbNl9re/y7+Sc5OTPAru+1MF8+fdtlJIVtUx9LUhszyI+t8GnvEmlpI9eLlcpKsaocji/3UzymEBrW9jtESYf2/W0eHp+65jOVFqz6SWq+y8JEnqFvl3CXAyzfh+0UvBZyhEMFVo567P7L53g4d4kfz7zOlX3YQ61YjiWTUZ4vvXY/+VdNaglB5MEbw2N8+pPHGDU3m08829rHb7/5KMasy54vV9CnLkAcE8UxpmngDCcIsgYdffVwYGFQkAYlo46yNLEt0OYtHHTXt8WjfAL/UJtdA6sccLrNAZaV5mTQz6lKH+mZDtbkIqr+/jsjCcOgfrjI0oMS41CNn8m+wrBh0dGSuop5YWKcsa/GOCsN1PLKtlnoCMskHuqhU/Ko3xPw5X2/Q1Ya63ZHm9KaP6sc5S++dz/eguTgn5URs4vdQCsML0sDlNLdBMLtICm6DjKZYPHRLLW9cOiBSX4xexpP2FjiageZz3p1Pr7nP/5AvyvUiqZW/FDqb5NYLZFY9DHWKrdH8CoEIpXsFgInocdqUDAaWNuo6cD7paVinq/t4djqAHZ1+92/ut2m+LLBn1cehvEmP7T7HKdT/Zd92W/Zcfg+PcdiarU8f2Ee4r8svoDx1u054Itn7uPQ/zyNWqug/E7XuvQt44JeWGbP72fwe0v8m1/5EL/y4OQ1n2Ng8t8c/Cpf6z/C1964h8PHcts/eAVQFgyaa+RkgKS7dbUQJ5kL84RVB285wl7rQHjjCx+EaXa306xur+7Lx+S5SFNjiRhDbPbtdQQUzQatAU31ngLp8zYsLd/abVHLRmbTkM/SGDRoDiuO5srkpElLx8xGGabDIn7HQkYQOwIxNkScTVDZ07U7eTy1ikQwGxY4u1iCBQezXkV1Ol3/ykRis2d5rLq6tm3aTUYYkk5W4pc0g8kmrjCu0nBWlM1ClMUyYtpFiTYFjWFNnFaM9Za5L32tFk0hWHLTVMIEL/s2lT0Z3KxLaSGLqNa3vABDmCbCNIkG8lT2eTRG4GB6kb3uAml59XGVleKbzSOcag1gL5h4S4rYFoSeAGHyhyuPsJw7Q6wlMZKvLh7BmHFJLAhkrUV0pf5I6241qObyom6Dlg5ZjCWnOyMYLYHVjBGd+JZ1JzP7elG9eSqjLqXiMrvTqyRlh46OeMkf5Y8WH2RyusSBRrcQ8YNmRGNbECU1GTfAFRpLGJRVQFmZqKaFXW4ja23UdpELbKDY/P5gvSjr6i5YGdNHZSOCpoVK2ZheAl2pbpsg/IZgmvg9AjHS5EB6cT1wvTarZK3b7LVUwKkQ6urt7RGlUOSkv97GXJCXict+yCkdk0r6dLIJzJaFsQXFNx8IISGXISqkCNOaPqtKzmh15XNCEuoYhSKITWQEIuYDWc7dSgwhyFktso7PkrkNg3ClMX2N2ZREwIi7hpsI4BZlXi/HFrkMzT6DVr9mNFVHXpFtj7VmMQ6oKouobqHrjXfcfRZCdAupHYFldIuC35q9j7WmqWyqYQJukpzjxgevUqLdmMNWjCUcJIKGDvlW/X6O1QZJnbfwXjqH9v0bbqkiTBOZz3cDtEwSldzsQNTuT5BM1slbTVzRDZodYVIyBA/aK/yVTz/Dq4+OMP2VcYaOW7c0sDN6CjQfHKHZa6I/vsav7H6NJ5LncITFdKT4s+pRJhtFgqaNJaC2C5qDJTpFxceeeJNHMhf5iHcecPhm+SCpp1MkF2LEQtfKxOgtEfdmCTMOrV4bI9BkXpzevi0uHYfKARh/eIbP9J24aiIKdcyJzjDHWiMMZWpc+GGLjOfzS6OvsM9ZoN+oUTKu/92FGgItOdfTw3d2HeSllTHq1V4yjVbXVP0WCuivQhrIYgHhJZh+KsXAp6Z5PLvAz+Reos8IL1v9bPD99jj/63c+TWLWZORZH/v4dLdJhWGgSjleL9/Li9l7Lwc1yXnN7mM1ZN1HLbx3TehEZPPryx/lRHmA7HlInitDpXZrFnZCUP3wOHMfESRHq/yT/V9izFzDFoqZWPA/nvgMmd9Ls3s5RJ6fQdXrHyx4FZIgLaDkM5SuYgEdHXIyyDMZlnAXTIyzl9B+B72FpvvXEMfIpo9dNZB1j5NBkUGzyl4zwhGbw/pnM2/gPhryreX9zK2NkZ5OkH0jAWcvbOHB31hE0oOHqvzGA7/FiNnCEql3fP/ZUPO3T/8cy2vpt/9MYE//Mg/mpznizfKT6+4WG+zKr3J8fx5lWSRevvFtmm8G0rZoHClR3W0iD9T5SGKCHsMgtd6pr6E6VJSi7HtYTYXZjC4XbG1XUsLiY5lTjDpl/mVudKsP5xp0HGM3VNfxx475q9mXOd43SNXuvyW//3Js0WeS/rF5/ttd32DcWsFAXHaiaeiQ36k+xMuVURIz1rvuIoikR/mQQ2NE80R+qat5fUviIyTmO5WDvHBsL6kJ86a4AN2cDluGJiHsyyvVWGtqkUs1SGD4dNuSblygd9PbrBclYBiId1nhCtuCXBrl2ET5BGFm8/TaBYOU28GTAZaI2RAqmxhkpc0PpU+yy1nmfy6McU21y83GdWgXTfyS4EhpkU+mTjBotpF4KAT10KUZ2QipUZZGJTWBpUn0tPjx4qs84iyRld3r3Yps7LrGakQIy8JIp7vG6yWPIC3xCwKz3e35vV0RUhJlYg5klhixyte87mubZuyQs1scKMUMexU+nzrOqJlAIQi1SYymo7s+dhuZ240guGgsUzQapMwOXyn0k86lEVEMWxS8CikQroP2XDpFzWf7TrDbWWLYjEhL53IL141+8uU4RWLeJDWjsedqxMvLlz/L8H1y5z2CTPdchYbEQgc5OY/2O6h3GUSuXEH72mK1k6Tadkn7XVNyfQtsooRlI2yLVo8kPVbhaN8s99irlAyHiTBkWXk0lz1GTlSQ9SZxo/mBtm03LKaihCCRDMjYXf1fjKYcp5gN8hg+xLXGtqy4F1E3E260Bec6/cQI+o31Beu640S/0eEx7wLlfJKJnlHMtiSd3GYNWT4oQiBsG+06DOZqfMiVwLWBa0eH+DpCaU2I5mw4yMJCDnPp7YtmtIQJWcSUCkdGhMlNhw2JIGV1iJKaKCFB3iaZV8OgkzFolzT9mQY9hkFWbmrjfa2oaxM/MnEDjQzjm1uP8gMSahNFQMmoE9omyu6OpdvtkGWou3+kYsCwKdgtKje7dkB24yWd8miVTFp9go/3XuRHk6uAINaSkJhQKyoKzrV6Obdawmrw7rZWtkWQhagYUbK7Uq23Fm0prVn009irBk5F35RF0E1tD7uBJw0eSV0kY/r85gN9mH/1PhKriszrC/BORRbrmaQoZdMacKiPGm8N8K9CWeD3KJSnsPM+pWz18ms9js/PD77A/c4MJUMBmw+tIQT9RgNsUPat3yaJcynWDkHY3+HR7CRjZpu07H41fYbi50rPUSkkOd/bx0qYwhIxjozos6rca3cD143A7JcGnuWf/bLHbD1JeKm73Rv0RiSKbdprCRKXDJw10OY2HnANA5kKuSc5w5C5dpVkwBIGH0pcYL+9QKANfG2RkT4F2d32eq6T4Jg/wrH6MC8tjODZIT879jKHnVn2WWsMmwk8YTBmtvho6jS/+8MPUd3fw+D38rhfXtkS3Z9wHILRHtp9Nnq4zYeTZyjKzrpxuNxs4brevrURuyQWNenpANG4entHNZp4Z5ZIXLE4Ec12t6PLu0gjuqbVm9d6t9ngF/uf5ZXMLv5w91MklntxZmyoVG7adZLJJMFjB2n1Waw9GvL393+X3fYSOWlSjjv8w9kf4/XZIXLHLMRit9jug2REjUyGziP7aPVa1B9t8/cOfpc99hIpYbGiAv5w6SFOLfXhLW7PbVMdx+iVMrLeZPB7Hv9743P4AzGfeewNjiRn+Yh3jr2mJi0ke60aP5Q+xfcf3M38aJbUfJLEa1t9Bj845vAQlceHaAwafDL3/HXf01A+/8vqgzy7spv5epr6cgpzzWToRYW7+vYLOS0EQTbBSnKMf/f4KD/zoy+TvbUF4jccYZnUdgtKDy7wif4zVxXshDrmTJjhmD/C8nyWgxdqyJU14ub2bOJgNTVfqR6lkj7HPmuZw/Yisbs9n9WtwNg7jj+ep7Lbov2JBmPFMp9In7jqPTMR/E7lcc42enn9mf3kTkP2/Lt3JtMpD/VAnV/e/wpPpU5f9z0xmpOXBtj99Q7Wandn80ZzS4JXC4N99iI5o8ULu8Y5FQzjXTJJzmSQ1Xc4BNOgNZzCLxhU9wis+ypYxttPvp4d8nDpEkPOGk8lT/OQfb0AzbnmXyTdqmpooKyupuNWPgZx0iIe9tk9sMo97jS9xqa1WF4m+JgbAhVIVq7z095mb3rgs94KTx7+98zFNr+75zFm2zmeyE3wYOIiv7n8Eb5VuQ+jLW65YPx9IQS2G623r/S5sgBFItlv2ey3QiAENhY/Dh0dcswf4dsrBzgxO4B9zGMtqfluah8UIWe0GAYcYdFnWNiixi8deoE3h4c4NXuQfiFB3/oMm7BM/JJNs9+gr1DjHktjicT6+YrL3+9GANuKbdw1hbPYQLeunlx0p0M0eekDHYd8y13fZyT4rFdn1HyV3+79CO1eC6uWeJufvjGIhEtlr019HB7aN8mvZCcxMQCbOR3z8uQYzvEE2Qsh8Wr5A2dEhZegstemMQJP7LnI38xOrC8UTJoq4sxKL/5UmuLaNs0+aU1cqwHgvQTjUwVqh3J8Z2APK31Jxu1lxsw1PGmRwcCwV/krI6/wem6EN4r3cnO/xVuDKqRZvcegMxBywFu47nt8HfP0/EHmT/WSWJAMXYhxygHOaxPv2oVpY2aK7Sco/8gdkK02Tfy+iJ8YfoOj7iUsYXQLcuhmzi6FBY43BzHWLMTsItFWtoN+F8xOt+25ZwQczi0yZtooayd4BUAIwt40a/ttqvsU/7cj3+R+9xK7LZ8rC38X4hTfXtjH/EqW/lc1uWen0Y0G8bsEr8qz+ejYef6rnjeItX7bHo7GgoP5vZduWsH4jQ9elcKomHyllWLIrHCPLTCEoCA7WKLKh4sXUPsF06UcE+kMhv/2uiMtIcjHaC8kV2rwxOAkpnj7ySpldDjizVI0GuutNL23fS90CxpCHbMYB/xPiz/Ma8vDZM7LW+7jaK21cU8WmVoc5B9Gn+c/Fje1qLaMyJstPKPDk945dpstPNnVKSk0VeUTas2yMqkol1AnqKsCldijGXcD9XPtXspRkteXh/AWBIkljehsz2Kt94NC4euIuoo5E2ZZiHr5jXNP0DyXI7EsyF6ICT3J6+k9HCsN0bjH5YHi5upTAn1WlZGEx4lr1zQ3HZlOIwZ6iUpplo8adEY7PFW6OvBUdCvBDSGJtUKh6bEa1MYNIEeu3YEbNMmod6o6vkXzgrAs2iVBNOyzK9ndAl9VbV7v5HitfQBjwiV/NiYx33zbLlrCcZCeh3AdVCmHdixi1yR2JEHOpNlrEGagdcgnl2/yWPYiEklDdVhWmpf8MdoTGXJnBImF7V/YpH0fWW3gzbpUX8jyeiHD8b0D7C2t8PGe0/xq9iwAjgxJmp2b1mv8VhPlXNT+JkcGljjoXK3ff7ET8vfP/zRz5SzyRIrCjMZdi/Hm2xj1Dvrd6i2EwNgzTtifpT4mSIqQ6yU+bgeE42D0FFGlHEY2ZMxeoWg02ZDOdXREVQV8r3qA707uIbEoNhtUvPWzTBOR6C59VLO1ZXIasxFzfqFErCWfSh9jzIyJkwpjZAjdaP1AC9s7AbPewVt08HsMFsMsFdsj0FcnOnKyzb7cMrEWdNK96ITTLaIX7+zjLRs+Xz9zkP8c+Fz+DT6euFbaZyAQIy1an3sQd6mD8ca5G25BesODV601iQXJr136BI8Uptjd8zwZ6TK87ju5u/AGv5p/lVBrWg9D/C4jqYXGWO8e5Ap5VZXc9d9vrOu93j23EOqYqgo4Gfbwra/fT/8LMcWLZdStLsyYnmf0S4I441A+08d3ejbF3MqBTiFGezEXj5b4mcKLDJp1PFPT0SEzkUlFJXihtYfzrV6UFigEsRZEykAheLM8RLXtUruQY+Rk2G1uUN2i4qQbiK8jynHMRJTl3y19iAvVHuTTefZ/cxnRaKNWywgvQXZiBL/H5o9TR/n7VwSvrjA44sySNtp8OfHELddLyVKRtQdLNAYl93/yNL/c933GzDXgrcbP3YzrRsvX3c4Srfva+D0u3nwOOXFjjifW8rqG08GGlEBz82UVrkN7V8AnD5zhQ+lzmBhMhC7/duGjnFzqp/+FGO+bx7t+pG9zLDKVhP4SQT7B6j0JgqygU9BE2ZjB8WX+x71foWTUKcgAV0BamkhsykrxvdZevlE+RO9LkH/mErpWv6Yd73ZD1euoZgu5uMzICRcSLu37R1kY2MWvfXKAn3vqRLcq22iSMX30NlYMvR9avTb/9QN/wo8nJ0lJhysN13+v/Bjyf+phz/HpblvsMOp2h4oVSqt3L0oxDGpHe1l6WOIeWqNg3L7Bq0wl6ezrp9VnM9I7z/3OHDkJEpOI7hw4F9t8Z2IviReS5M5Hb9v6VTgOspjvPnthiPK3JkC013zsk1nOV20mh0s87CxgZgJaB3pxllvIen3Ljm3L0Rq5WCYTazrZPJPtIgN2hd1vqR8pGQGfLbzJaGKYP+rpQ2USGO+lpqFcpefpHp45+QCLn8nw8T1/es1bpBD8+IE3+dOfvQ/jVJLdF9PbP3hFadyy5vylXiIlOZl9nUGjRZ9h4wiThLBJ3KSV/0Ym0leaupK0rvCttISi34jx1u1STAw6OmIqSnCu04+zJkgs+shq823T4DcLHQTIagMRRnhLDiLaHIRjF0RsEKYklaAbkMe628t5OY54unmUab/AsbVBFqvdLLa+ol2Y1tBp2tA2SC5J7Gob2fBvD1/Cd6GuYuZij3Odfl5bGKaxnGRwWUG52m020W4jAemHGL5J+BZz8lArFuIsU0EPMrh1BtfCcZCOQ9STpj4safcr9ia727w52b37rgyYQkJi9OX+9GnZplSssxRLWoMuubERdKNJvFZ9d7/Ode9UYRggBSqbpNln4Jc0BbN51e9t6JDpyOKYP4rVEFitW2OVJUxN0uxcdgXxtcVyO4XftjH8GOV3kK6DzKQ2W6RKgUh6aMciLCZp9zt0MpLGGESpGJEPSKd87inMc9ReXdeJJ66ylmpqk4udEnPNLFZDoWv1G+6IctNQMVrFxGGAaPtYtQHstIHqGMRaEwPlKEU5TPIOm1e3FVoKCkaDvHHtDltb2ViVbgOB94UQXVtBL0GrJImGOozn13CvSJooNCt+CndFdr1Ft/tYKg1i1yByBTkzxBMaZ71GItQxy8pkNsoRVh0Kywq7Gl67+7heACQ8jzifRiiFWKtumUe29COcCkQpg0rsIZHks01qYz2krCTeWWt7+HdLSexI4oTAMW/dg6djhQgjRAyh2pz3JJKODgm1ohxbnGoPcabRh9kC0Ykheg/HGMcYHY3ZFrQj6/LnwmYDHV93bUkTiYC2611lW3qjuPGZ1yik9+lpim9kWX54kL//kz/NkcI8/2np29x7kwXvVeXz5eYuLnZKPL+yi0vl/OV5PJno8Nf3PMcjiQkGjQ4DhsdEZPIvFn+IEyv95M7HGKenutXYtzjTojod9NIywjBIVWqk7c0LpdMerbEsftFg7oEsBaO7ellRAX/auIdf/6NPk7qkSS1EjGwUILwlCBOxj4gUotWB5VV0GN3Ulry3ijNhlj8pP8z3ZneT+UKaofMNjIVV4nKla5ukNRgGsWcTpg1c6+pJpqIUvzn3IU4t9JGdu1X74gI5OkQ4mGXx4QRHfvI096Vn+ZH0m/QbYImrH0mFYjpSVJVDn9Gmz7A5bFX5f+z/EpPjPfxj+WnW9o1QOBOT+cZZdLvdDbiudw8LgUylult/qSQ64bD8UI7ev3SJ+/KzfDx5ChAoFKFWPOv38U8ufIqF5SwDbyhSxxa6Gftb/HxUlMdcOYtacZBRgEy4sG+M2t40yhAos+vVWjkEatCnVKjzcOkUGbPNHneJtNEmI31cEdJnNCgYzrqO9mrOBb18ZeoIlbkM+1Y73SK37ah3fY9oAYhuQepybPD11UOcWeklU719z+lmIxMJ9KFd+D0JKk92+LUnv8CQUSUvNzWvCsWpc0Mc+qOVbt/2rbLYe48I0yBIS4KMoMdtUDKcy8FGRUV8vXEfxxpDZE+YFL89iW61id+y+2hkM4hUkmioQPlwEhlCT7UJ67rrW85SmdIrLs5agslP9SCzU/xf9n2NL/7SA3z/zf0cfvPGm+J/EIRp0ug3aIwpHsqt3tpuZlKA6HoWGygMNBJBS8csxAZfrh/l3337o10t+KstuDjd1bu+l/F9Y2yR3SLfjfPqKMWxIMNClGO+k72pp3fjM69aE03PwPQMudxDXFzMAXApn2fYXMYS8nIG6Z3Y2L68Ms9jrGdJQq24Xv5nMZacaA1xsVlkYrEHPb854JSTCSaHethnL1CU3SCvrlwma0XW1lLkKyFxpXrNZ94StEZ3Ot0zektq3chlcZMO2kjQiQ1cERNqSTm2mGiXyF7Q5E/UkDPLb5tlWPegv+1565b2apxislmgVk4yeKqKOn6at+ZAhGkSeQZhQmKbV7/qa8lsPUuw6mK11C0LVLTn0Mlb+D2an+h5jaPOLP0GV/lzApetTBbjNEtxGilWyMkQSwjusVfpN2qMDawy2eqjvWKQdexuRj0Ir1t4JgwD4dgIx0FnkkQZl3av4LP9x7uLOjMCLHwd09Ka6aDI/EIeY8EmseSjVtfedjvxZhJogzgykBEoWyLTKfxigsaAgTboBq8OuPsqPDl0kYfSU/xI8iyuEOud2bpyiK6ZtnVN4Lohx1iO0lQrHlbFwGiHqO2gmZNG1yqQ9Z2B99gJSxsCbQiE7L431JKlVppWwyEf3gmjwQ1iI5hYt2QUXoJOMUG7ZDLYu8TnPB9wiLUi1DEdHVJREeaaeVP7tt9QDANlCZQNCSO86v4PNcwHWeZbGZyKfnvvb9NEJxyipEUnJzA6oK1bUu99XbTvYy1WSWRtykEShe7KIXpbnBzsQycTCMvuOpFspexHdjsfqkxE1vK7uyD65gewwpAoqzs+WkKtO8l08bWmolym/TzJGUlqRmEu1Yib79ERQEiU0XV3MqW6KiCP0cyGeS4FPax2koSRsd7s4sbPrTf17nMnVuj/swH8VB//1eAvEyY1athn98AKSTOgL1HDEteeVDnwOF/pwQ9N2i2HOJK4XkBvpkG17VKdymK2rg1+RQhuWSA70LOmcCqbk0+7ZPLs+C5GnTI5o8U4cCksMD1dxJ63MOv1bRngiXSatUMpWv2CB3LL5CT8cX0vv33pMWYvFdl70ceYXflArTFvJ9aUz6udAk21qTv73YVHOXFyBG/GRDbbV6tEXReZyxKP9DL9SQtrvMFfH37j8utdvbPD6mqKxKyJU71FQZmQaFMSWwJlaUpmjaKhr+kINBOH/EXjMJN+kf946ihiwUEOt3h4ZBopNEoL/Nhkfi0DUhO5Al3MIR27222qc23gJT2PztFx2j0Wq/cJ9J4mhwcu8KR3jn6jgyMMFIovN3fxZyv38urUKL1ft0gsh9iTy8R+5wN3sfpBOGIv8JcOv8bsrhwvDY8SVEZxCz5jxQVMqZBC4xohT+YvcNCZZ9CskpYGSmumooC6svhm8xDH6kM8lr3IL2TOXjZmV2i+1XZ5sbWH37vwID3fdPCWIuTC6i2XD70VmU7jP3mAdo+J3VRYtRhrzUecuvCOHbKE61A+nGDtPsXh8TksBL42KTc9dNXG8Lf6zLYJQmAOD6EKaaKcS6vPoV0QVJ7sMNi7xN8cfwaAmajBC/4gx9vD/OZLT+LO2Aw/H27Js/CBMCRhQhAlusHrlYQIVoIU5baH+XaLGiEQtoVyLbQhMAIwAo3Ywo5z2u+gy2s4i0memdrN/5pc5J7ENIetFX545Axf/Jkn8eaK9H1nmfjM+S07TmFZNEcUTxy4wKBb4autHo6XB8jcTPmVEHQODrH8gEttX8RHcme535kmLbte4S/5g/zB8sO8PDnG8ImQxKU6rLyPot98hsWnYu49MMlf6X/pKqnZVGTxj974EdTFJIklQXZB4S0GqNqNz4Lf1OA1mrxEZm4BIbom7Fg2tad2M/XgMHFC82YhQJrXfoVx3SI1YWI2u0Go1VK0Sg6LQxnsChz4ehmxsHztL9S6a6Iex90J/IpVcXL3OKc+UeBSb4EDjgd0WIky2PMWyVmQdZ/tOBTpVIL6qKA9GLE/2fWhfK0xytJrfWTnBPbkPNHC4lYf5k2nrjQvt3axEnZNyJUWHJ8bIHPOJLGkrvELFokEupClOexx8JFJ/tPhb3HQWgESqPX/NXUCsWbjLWms2i3MKEqJMgXK6lZ8psS1DSPmojRPrxxiYrVI/tsuhRMtVu5P8twDe8G44pnRgNQoB6JcAkMIxLJx3YFReAmqu20aw4KjT53h/xj/yhXNGxLrcoGY71f38dKJ3aTOWxSePk+8uHRNRvtWstcy+bvFZ4iBzlC3yDMnIS/dqzSrm3RlNw06TEdpFqIcX5q9j+lLPZT3Jfmp1Ck8Q683flC82NrDl2fuITiZZfQbl4gXl4m2QTct4SVYudemuSvGXjFxV0xScyaZC/Y76vmEaVIfh/vuneRjPWewhMTXFu2mjVmXGJ2tP7ftgDAM4t4srZEkjX6D+m6I+7tSgW7GtctibPOt6iFeWBxj9xc05ree29ps3vtFSmJXELsaR179JIdastbxaPo2+egdzsk00LaJlmLddJ8tvQY6DIgrAeZKmnh6mC9m78UbCfhMosWPZV/l9Y8MM7HYQ+5CFvPMlh0mWBZWf4uf73uOiU4f36vvZ7GcIRvfeN/TywhJfcSh/oDP3qFlHnMnGTNNDGGjULzZHuHlqVGMCZfkiRmiqen39fEq6/HJoyf534a/vW6VtbmImY0KWK+l6H/ex7lUJro4Be9gp/WDcPPz/nGMFrK7lRkrvPkOubMJYkcQZNzrNh0w25CcjzF9jVWPMPwIw3cw2wZWUyOrjbfVbOooAqUvF98Iy0ZmUsSFFI4X0mvXSMrtX4Rh5PNQzNHck8ff5zPYV8GTAcdDwRsrQ2QugLccodvb00T6RiOBrNGmGiX4xsx+1lbSuJM2makYZy1Eb0zmGwU8xRyN/TlqowZHk2WGjCreepzTUiFzseB0ZxB3UZKaCTHKzW1RVT4VRUxFef6sch/HTo5irxj0zEWY5SaZSzaxY13X6ig1E2OWm4iWT/yWjJAwza5UIJ+hOSjojHbYm1y+SqvU0gHP+TkuhUW+O7mH9FmL1IyCW12wpBTUTE5X+7jXm0ElujIaV0hiNPb6uXvCQCKIiCnHHXwNy8qhrlymwyKn2oMsddK8NDdKu2ljTLtklgRnkn34u7oSFLm+fboUpClXk1gNAVG0qZfeYoRt0xpUDO5ZZjGfoVZ0iF2DTH8JwzJRtcbVbaylgXSdrjYxqzicmWfcXkEiqasEes3GXRYYzTsjeDUCzZvtUcat1xkz9VXdovrsGq8dSJMx7r3m51TCpD7sEHmCVp8gyCnibES+r8ZwtsqQUQUcZqIGi7HN7649xldevQ9n0aRnZQ21De6N94P2XJojmnjIZ9Tp2s9tSGVmowwnZgfQswmctXdYwCsNWiOURsR0t4K3wXXQfofUlGRB9vKd5D5+On0CgwQPFS6RMEMm7t9Dj/Ew7lSF+OyFW3fM0kAmXHQqQTLRod+o8XK0m5eXR1ErDqJTuXm/WyvcSow55zBl55kay+OKVQqGgStMeq0apXydxYJD1JfD7ASoSvUdd3OuOb3r7Jhv/n4Qunu/3MzrfXODV60vZz91GHQLRl4+Rc8xZ11MLK/filXprrZOa1AKrTWuYeAaBihF1PbfXp/4loslMynU6ADNkSTDhTmOupfoN1q8mwfsVqNH+li7N8faQcF/99h/5COJCb7d2ssfVR5h9XiJ/V+5iKrViW+w/cR2JSkFI/Yq1ThB57ki+77dxFxdQ88vQRgSrwdZwjAQpklnrMD8kwZqsM0ncyfYbwmM9a3iZaX5Xmsf31g5SM/xiMR3TqC2QMv5VhSK77T28cXFo5w6N8Se34+wF9ZgYQVVr5OYnsN79vp2PToIuoV/Sl/jbygSCWQxT3sog3l/hZ/fdYxPvqXbykoc87/NfJyz872kvusx8NUZdLPdbY16K+kEJOYNzqQGeCMzQpjumqln1gtmNlrkbmRc6yrg1aCH1SjFi/U9XGrlOTE9gHsygbuqGXm+glxZ7O7IRBHT5iHKT9j0aY0puq4OE40e1GyCxIruLoK2g9aV7q7L3qMz/Jt9v8vrnV6Ot0f4nQsP0TxdJDHnIifnu36W6wjLRBbyxH05koN1fjb/IgUZYYkES1GG9EWD/OkQc7m2pZn0G4XVjPna/CHqscvP55/nvisKgu9JzPCbH1WUj1zbLjboifg7H/oaT3rncEWEI2JsoXAE2EKQly6xVrzgD/Kt6iG+8up9HPy1OmJhGXUbWgyGPR6DD87zucFjfMw7CziEOqalQ477B/Be8sifCXEnVt7+vlAKESlkqLqygVDDFsoGLh9Wrcbg15eJ8h6vJHbz6kAPJaPO3+15jtW84B/82E9y8uF+Mt8s0XNh8pZplKXrIEtFgt4Uw9l57rEF/6JdYOF4L5lL8p07i94AvKkavU6W1XaKFw7tgSTcI1ZxDZN73Wk+M5jmq/owlYMlUikb94yBeju98zbl1iqu1wuT4g+QzfnA8bvSCN390/VA3cadpTYQgjjp4BckYTZmxFqlICWXgiKvl4exKwJVrd1w37Rtg9aEgclsmCcnu5llCeRki6zRRpusL366Ztpaa6TjgJTIfA6dTNDst4h7A3oLdQpGA0sYhDrGJ2A6yvBCbTfnyz301qMtv44b2U+lu0WEa34C2TCwyg1YqaBa3ZZ9OoquKei7LutFPjKXRSQ9VDZJuzdJfdRmKLvAXneRnGxjCMlc1OGNoJ9znf2cmetDLbgkVhS6XFlfQN7aCUrHCqeiCZYsXlkZ4cuZEknZtc2yRExSBFhCUVc2FeWxHPXzamOMcpDkTLmXaj2BnHXx5jWJcoyYXSJa6WabEN1Ck663dHdEUSgqfgK7KrGa6pY3KHkvSKDXqHPAnWckV2F+NEfkpkgZQxiFXPdNQqATNn7Rwy+a9KbnKciIUMP5sMMFvxerrrFrYXcX7A7AaEVMLuZ5USo+kT7BffbmeRWNBsneJk37Wr/vXLHR7cDo2PCW4r2ODjkVhpRjj29UD/PCwijOoolYXCXeuI9uM7QU5Jw2fWYVd90nbUUFnAuzHGsM4axpnHIH/LeZl7WGOEYEEdKPsZoKI9gmFmFxjKjUMWOFs+zxdPUeDibmGU+fJSe7uw9+bDJdGsMY6Ee3Wl1LwZu0QBWmibBtZCFPMFakMegwYLeItWbRT+OuSJw1jX4vllQfFK0RrQ5OOcJqGKxFHjXlsiFpzogOA3aF/mSdC329CGXhLKQQK07XD/kt10am0wjXRdgW2BaN/gQZc+vdirauXPAWoep15ERMkmEmVnO80TdKWrYZ36ZnLiwbYZlUxhPUHuow0N8VUp8JHX7rtcfJvOrQeybo3mR3KDoMkVMu/6r4UX5s6BiH8idIS5vDdp2CcYYvPPkw50s9ZM969D3nICKFNiXKMZl/OEltjyI9VuW/OfAtRqxVDltNwGUmDpmOMvyz6U8x/R93kVpQOBdmtjQLZQmFZMMrT7MUZFheS2NXJbLSIK5UuxWz7xVpXLa1Wfz0CGv3aGSvzyNjEzyUqPD53GuMmw3SotsK9X+Y/wxv/Pq9eMsx4ysBRruOsVghbrW2ZPtcVar0P71Ab9qj/f0e/nH/zxG5giALsaMJ+iOsVICe9khfBBmA3dDISJOux+RaEUazhlFpgN8hXs+UCdNEmCbaBAN9ecEQo5mdLrL7+x3slSb67SbwLUD4AWcnBvjvk5/hqdxpPu5N0j/2Zb72q/ey0Mnw5uoglUYSy4pwzJiE5TOemaVgt/ip/MsUpM1v18f5txMfYvlSnv3HmxjnZroWYHcA1qlL7P2XIzRGBvid//PjfGr0e5dfO2o3+Kf3/SE1dW1b15xssde6fvDwWkfyc9/7P2FPumQuavJTHXpX11Bb5URzk/jtykP8m1c+jD1js+uNGnJy7h138eK1CqLZwlyyyE4nII6Jy1vfPlZHEXF5DVGrM/rnKb5/8RG+cgjk5/+U+90pfiz7Gp/Lvs4/eOovcVGMkprV9HzlPPHydWpmbgDGQD/RQJ7VQykan68zWljiw7nzvBkYnDg3zMGvriGrzZvubKTnl3CqDdLF3Vxq5hl38/j2PADDZoTnnWNoqMxv/UTIhbUelpwivbFCVOtEi0uXx31h2XSeOMDaPhu/BP5Yh1yhxmeyb97U438vbNMQ7saho4i4VsOstQj9AithirpKoGgRIxAaxNZLd7oIgbBMhG0RZAR9fRV2ZcrEWrKk0pgLNvkzAYmZ+jW6xjuKOMauCRZWskwXC0DXBDkvXSw6PNY7xbNKUmn1EBQTyFAR25LYldR3KUYPLfDh3gv8VGpivfOO282wKZvpsMjF1QJ9xzu4c/WtnZTecuMZQtBRJnHHwAmAIHzfVi9dI/FEt9BvDMbvmePDpQv8veLLeKK7r6rWOwWFOubkWh99X9sU7WvY0mBehwHx+YsAJCfzpHIZVDqBP5Ai8gwqeyyCvEnhlKbw4jKiE6BbPkQRqtFEh8F1z2EjI6JlN3jt+tlqQq0wagbu5DK62UJtp+cqijEqJsdWBziSmqNkOPQZmsedY7R1wLOFNJNhiZzRJCdb5IwWh62YhLDXNY2CSb+H5Ut5vGkTc7FKtFp+9997mxCvlhHPlsmPj3Kh2kOoYyQCQ0jyhsdnvA5w/cVIrLv2VxtsaEAnw14SZ1x6jkUkz6wSn72w5a4TPyj6Ot6i51q9JC44ePMaY2mN6F1aTOvOe2ipu0VsHJt5dobSSg4teznziX6GrDJH7RX6jAQf7r3A7+4roA2HUspDrHVDn8uNaTbuhfe7WL/Sas0w0JkknZJLc0jwc/tf5gFvklCbXIoKmKsm+vQE0S24jqrZhFYLqzFOM3RoxQ4hcr3JjY0nNJ5Ygb5nOZkd4jf7Pk1USGIqhVizL7cHFq5Ds8+ivkshh9p8ft9Jxt1Vxs2uLhy4bEUYakWoze60prjpiY87Pni9jFJo32C2neMNaxS4xHdW9pOehNRchGhs/Ra8dByiB/fTGnAoH435OyOvAfCN+hGmWgVSU5CYKEOtcVubp78buhOQOxcjgwTfTe3mYunbZGVAyXBwhMkPZ48z6pR5PruL10ZHugX3IsYwFU8MTfNE7gIHnbmrfFN9HfHryx/n62cP4pxK4M4udztxbWWmTYt1KctmV619iSXGh1eYkkUWPr+LxOoY2Zfn3nNFqNHbw9Knx2j1CTIPrPBTg6+xz17AQFBVPq92cixEWV5u7OJMtY+VN3vJ+xdu5ll+YDaKEWXbJ9EOwLZw1pJEnoE734JypSunCMLu8/12gac0YO847aEUzSGFJyNaSnAs9JgIdmGvSXS92S1O20bPlW40Kb2maSyX+JcPfITq4QQ9ZoN9zgKelGSkz0PuJBWV6HoehyX+YK2PZuyw5KdohA5nzg5Ret7AWwnRN8GuZjugm21WntnH0fov8RN73uQf9r52jfXclVyKGvzL1SeZ8XOX/+3ESj9rEwWcsmTgxQ7ubA3KlZt/8DcRI5+HnjzVAYsjyTKjVvly0eqyn8Jb1Hgr8bYNSt8vutVGAMVjHl/73cf5UvExikeXeKR0CYAfu/cNJnb1cGx4BKM+QGKx2yHNLSuScx2MRgfOX+oGfu+ATCYRCReRThGVMkRpm5X7HPyCJuiJcYptBvJLDNtlFsIc/+TYDxNNJ+l7RV0OCm82xuH9NPfkWLnX5CeLUxz1pijICIkNSBCKpJDsNsukPZ+vf+IS5w70ojtFZKv3sk5TS0iPVXi0tMC4t8rjqfMUjQYF2Q2EWS/c+m47yz+f/gTnF3voOxdjT6+ib3Ji6O4JXrVGdCSrfpITcoBylOTsQonRiQ72zPbYFtrwZ6zug3uPXORXcyd5I7D57yZ+gqmlAsNTEfG5G9TIfhuj/Q6Zk2W8hSQXRrNcOFJkyKyQkzGOsPhUosknE2f4W/kzxOPXZi83G2B0J7CNVeF3JveS/5ZLeiZAT81uudYVNvSXmxxw5vhob4pTiQavGKNUVhy8+QLiPQavKp9h5cmQvbsW+eXhZ/nJ5Pz6K5K6ivh2/RDnmyVeOruLxEWb4oRCt7anY4Xy/U1LqIXufwwhMAC93vL0vSAMg/ZYmtVDFuZQA09ofK15rrmPN2rDOGXQ9XpXU7wNKqg3UI0mhefmyaUTzMYF/tC+n2KqxRO9F+mzanw2dZy9lsObQZtznX5Otgb5s7NHiOsW5pqJ2RL0n1MUnpnudl6rblE3pJuMrtcZ+laL9qkkf/BTD/Lfll5+x+B1MkrxB6ceJF7elBQUjgkO/uHJboGiVtvCeeQHReQytMfytPok4+4qg2YdT3avy5qfILkQ4y776M7WF6veCFSr1a0JWC0z+LLEKBWZ/mt7+dKhPB8/cppfG/4mTr+J2tttI///XPwYzy3sYn4qT+54gsSKQ3bOg3cJXoXnQT5D0Jumsi9Bu1dw+PNn+Lm+FzhgLbHXclhTPieDNM8295H4bpqBb64gylWiW6ETFoLmnhzzHzJgvMEPpU9ywKpSMhwMIdcX6BJPWuyWsJuQPznwx6gD6qrmUQp1VVty2KzPMNl4drpZ12ca+7nwzBjJeUH6+ALR5KWbfpp3T/DaCUhOG5y1Bjnr9mG5EWLCw6pUEc329jCcNk06eYHq8xn2KgAsxxkm54vIORertj2DjBuNjmNEo40pJclpj3868WkO5Jb4W73fZNj08YR1eXK6nlnFlTRUhxc6eSaDHoL5JKn5CGfV39rvWynkut1MU9u0VAtLdFeyRaPJLmcZiaY6kGA+lWbx0Ty5wqPAugXJO1AfNhkcXuS+3Cw5o0lDhzSVpqxsTgdjfHnqCPWlFN6kRXJWk1wIb1k24IbwAYIKYUj8nEG7T9OXbWALQaA15ShJJUggI42O1eYW4jZBxzG61UZqTWomx+rJDHNemj/oyWM6EV/rPcSQV2WyUWC+kqFdd3AvOiTaYNc0hq/xFkN0u43uBNvu/G4UOlZYa+1u04HTHj8z+OPY8u2DhKlqHvO0R7Ky+W+pubC7C7NNnCZuBHExTW3c7t73VhVXaKoqpqxbVFsJ+loxsh3elO5HW4rWoLvPTnpaoU2b77j7+CeJMgN2hYfcSSxhMOKWaZds3hCaZZGnUTPoZPZiN/a8/WcLCJKCOCEI0uD3KVQ24L7MLIPmGnNxmjNhgnOd/Xxt8TAz5RzFhRhRa27aOd4CnHJAaipBXST5oz2PsN9bYLe9RNFo0G+0GDDsqzpjdZMCxrqwoPvvETHXOpB3UeutZi//Xa9LMNXNtce6krsmeI3XKox8ZYU446KNbpcjs1qFc1PEna3pHPRWhGXR3BXx40fe5PHUBXwd81prjMwLCbIXQ+zp1TvC4uZdUTHx/AIsGQz/OTTOl3ju4ACDP1fhU+lj7DZb9BjXVhFfj6nI4P91/nPMzecZeA68Z85ctpXaEnTXcsYIFEbHYCHK0m80KUmFIyR7rZgR8yKBN8Ffzb1ERdl8bfe9XGz1oK5ryH81vU6dn8m9SJ8RUFUGE6HLhbCXlxq7eGFpDO8PswyebmCsLqErte61uNO9gg2D2rhkz4OX+EjpPJ4wqKuI6Vae+VoGp6W3vo3k9VAx8fIqQgpylSr57yYut+nEMun09XM+OYRVjxhbayOCWneSjKLugiRW6CAg3rAW3G7nd4PQYYA6P4lpGOw+l0b9Xhr/HVa1fVGEqF+4yllC+/778rm8HajtSbH2lM9of5n7nRkK0uSFTpJznX6aS0ns5RpyrUF8h7hPvBXVaJD7i1PkXZfmA6P8/v0fw+9TPPHoaQ6n5vlw6gy/kHmDVj/UD1sESMpxikC/fdbeEAoDjSWiy+4nrogZNDSOMPkflo/wR2fvJ57xGHhGM7wSYJ+fIl5euXUxhtYYr52l/0yC4qFRntYP8NVCRGGgSl+qwWd7T/CL2dNwvfMU3azsRjvtt+Ut74u3wMXprgledRjBagWzboMhQXa91uJOZ/v0pzYMhBsz6pSxRMxcbDDTzuOsKZzVzraqhL7Z6CiCKEKsVvBsk042wwur4zgiou5NMmJWcEWM85Y5KtRdrXiMINSSNzsjzC/lsBZs3HJIXNv6rVMRxhi+xmwJzvoD2CJmt7VCTgZ4QnQ7bgkoAH1GhJ86zX43i7peR4+3kDNajJkhaekwE0nOBn0ca43w6soIi0tZxhdCjJllVL3xrtquOwYpUY6mz6uRN7vnHCMIlEEYGzia7RvYqRit6FYnV6rdok7TQtgWbqsH7bmIRgu9Vu0Wp7bb2/dcbiK600GzvnV8F3QcfC9EriCXazKSWsMTMRKb2TDPuXYfsiURfrgldni3DK3Xq/qrJOYKpHpyyFhybGmAWuhSMBu4iUlcEZOVIYaAcTN4z2FYqDV13Z1nzoQOvrZ4pTxKNO/hLUiSl6oYq3VUrX7LY4wNCYW1UiCxlCAITMoyQ7PtcCo1wGLqJJ6ISUsD48qkiN7UsQJXdc/aYENCoFC0VIivFc3IQQbd7mviFu3w3DXBKypGVaoIw9isEIzjbZFxvYwQ2F7AYXeWZxr7+ReXPsbE+X4OnGkgJ+dR9VtsGL8NiNcqyE5Asd6iuTbEF7Mj/MY9gniwQzbbYl+xa3kSxCaRlqy2PZodmyAwCdoWYs1m6Lua5HQDY2Z56zPXWsPMAl61Qb8a5N8nf4gwFzM4vsJIusLne964QqcKFgb7zAbjZoN4PTB/JywBnrBpqZB/Pv85nju7G+eSQ+n1mN2VEOf0bLebyh2abXk7lAUFu0VattcH32303L8fdDdLrOMYllYQlokKukGIvoVbdjtsc4SgkxN8augcBxPzJKWgqgJ+a/YJzp8boHhKwHK56yG9nebAm4S4tEBPvY1Kufhvpqm4af5N7y6CjMDv1YjRJslEwKGeRQr2e6uFOFPr5fxUH6JhkL5g4FS63tJ7VtsYjQ5idgnld962G+gtYXaRoa8Z6ISF3+MSJT2efuQBFp5IczC9yN8oPEuf8cHCwFhrXupkebm1m29d2kv2gurKlOq3Jily9wSvbK7Oty1SYNsR/UaNxU6GiekS7pyJsVjZNFq/y7jc1GJtDff8RTzXxWodpbLXpV5yeGPURghNFBloJdBVG6MhMXxBsg7OmibzyizR1PTWB67rxLUa1Gq4CYdCbx9+3mSOHtZ6PA6kFlHJ2asE8ldKJN51O2f9Z3ylOLXSh3fOIX82JvXVN1C+v22uwa1GC3BkhCvvgKB9XdN312TOd/hAxC4c8WYZt1awEDS15tJKnuSkSXJh01rubiBeW4N1OzD7TUAI0v196EyKxqECy40U9bTm9dAklXhvO5zL81myb9q4ZUXxe9NXOcJsl1x2XKvB8RoIgVfIIxIJ/NwoJ8YHaEU2P5Oz6DPee1QUs+6DpSUhMZNhieP1QVplj77lEHulectait9Vweu2RYiuR5xlYgiNFBpLxkhTdWUp71aVdBeho4jUhRpmM0mQMfDPJYH1nQ4NVltjBAoZasy2wmyE6Fvd4vS9UqmRPZsimbaRoU0nn+HZ/G7i4svvW0H0XT/Nn5QfpBomWGhmqPkO/qsFchcV3nxnW3aOumXEMelJ+IM3HuLCnh4+Pv6n+NpgtpGluZYg397WS9oddviBWIiynA36udQpIk+lKL0e4s7Ut5en8Ragmy2IYpITJiLKECUE/vk0gZ15Tz9fqmnS0x2serB955gr0G0f4pjc+Q5hMsWFoST/Ov0U96cu8Xhigt3XiQZDrfjjxm5erO9iupnn0lqeOJYIodFa4C8nsMsGhWlwZ1cQteYH6qD6QdgJXrcDQiJsGywTKbuCcFPESEOj38eq6G5ARxH6zdPYxySOFKTf7n1X6G7ibVpBHK+swmoZ23HonxshynmcP1iCA+//s56uHuHp5+/DqklS092uU4U5H3upiag2iO7iiUoHAcVTPkbg8ooapz6qaSmL1UoKc9nCbN4B2dgddngb5sI8f7F4mJlKltJrEfbXXkXdwQV87wmtN+sfVlZwj0uEFKTF+0gb6K5Dib4drNW0XtfBgv36BYYnszQP9/EXg4c4N1CiONJgt7l0zY/5WvH7cw9z7sQQ3pxBz7EQudFnVmmsho9sBMh6k3h2/pZqe3eC122AkAJhmiAlYSxZjpNE2kAaCi3Z1Oju0GXDCuVOSCZqjY4iZL2FCTgTJf7O/k9jXSGal1d04lL6+vfCdyb2kpoysBqa5EKM2Yyx1vyuDZzv37lFGe8BrTRmxcdbskhctPm/XvoJ6oELFz2S8wK7endsne5wF6E13oLm1859jCAyaSykMKsGzmr7jrIDuyHcSfPJe0AHITTbOOUO1oUU52sD/JPOp/hyYRFJd+e32zxH0I4tzp4dJD1lkFjSOMs+Irxibmp1EH4H3fJvuRXfTvC6HTAMSLhoy6DVdHipvYty4OE4IS2LneD1DkdHEfHiMmJFsvs3fZa+OML70g0o2O83EbWlbhFiJ+j+N4qIw6hbkLHdMwM3ExXDuSmSUxapN9I0v9SL1Jp91VnoBKhafdto1HbY4UbR82fn4eUC6AiCZUQUo1bXdu71uxzVboPfQbZa7JkvoC0T7TrMW6PdN2zMParrK36osYxod1vw6rZ/1Vyi4hiU7s4xt3hRtBO8bie0Jq5bvFEbYaaeo91yMALu7sDjLkGHAToENTUNU+//53dyKe/MxpYZlSqs11XsTOI73MnEy8uwvLzVh7HDduOKgs93K/rczpHHTvC6DdBBgK7WEFHE7j/wuPCdgxiBZqitsCst1PLd6TSwww477LDDDjvs8FZ2gtftgNaX+7ib3yjz1lrHnQzRDjvssMMOO+ywQ5db39Nrhx122GGHHXbYYYcdPiA7wesOO+ywww477LDDDrcNO8HrDjvssMMOO+ywww63DUK/j0r2np4eHazuKDAB7KJk51p08Wniktzqw9hy9j+0mzdfObZzLYA6a9rCFjvXYudaXMnOtdhkZw7ZZOdabLJzLTaps6a11tdNsr6vgq3x8XHy5V035qhuc9bGL+5ci3Ve0N/gMfGJrT6MLefpl/+AjCjsXAvg6/oPX3VJPrRzLXauxZXsXItNduaQTXauxSY712KTr+s/fPXtXtuRDeywww477LDDDjvscNuwY5W1ww53GkIgTAu5d4ygL02nYNEYMJChJjsRYFcDjJllovmFrT7SHXbYYYcddnjf7ASvO+xwhyEMA5lwWX2kh9X7NNkDZf6/R36fiaCXf/itnyA5mWbgWRO5E7zusMMOO+xwG3LbBK/CshGug3BsyGXAMBCNFrrZRAdht/3jDjvc5QjTROayiHQKvyBQpQ578qvca7UwWAA3Rtkm2hRbfag77LDDDjvs8IG4bYJXo69EsKuX1oDD/IdApyOyr/VSOBPgLDQQJ8+jo2irD3OHHbYUmc3QfmgX7R6T2tEOnz18kkfTE1hCEiNB7wStO+ywww473N5s/+BVCBASnUzQ7rVp9kt69y0xmlnjtZX9uGsmRieBaZroOIb3Yf21w+2NME2E2b2FdRShlQYVb/FRbTGmSZAx6GQlXsZnv7dAv1lFbtRmCr0Tv+5w9yHWb3rxDjXKet2eaGcO2WH9fhGGgbDt7r+p7v2hgnBnntkGbO/gVRqYY8PEhRTzj2Xxf6hOX7bOXx5+hX6zSvKjAafu6WPqzRLjwQHMchM9PbcjIbjDkek0wrFpfHgPs09JzIZg4NkId6mFnFkmXlza6kPcMnS9QfbEGslcgsnhDH+QfJAP903wmPMsSQH5YoM13yDImCS2+mB32OFmIwRGLofwEuiUR1RIwnUWbzJUiHaI6ATo2YWdOeRuRgjMoUFUIU3lnhyLH9JoQ2PWDGQHhr8dYH7jla0+yruebR28CsMg7M/RHHapHA35w4d/nUEjICttLGHwae9p4mHNX3F/msrxEZKeibO6BjsDz52LEAgvAekkSw+Y/PqP/Uueae7nd5sfJ3shRbbuw10cvKpWC06exfA8MoePMlfo4ZjjE/ZoPBExmq3Q7tiEXnIneN3hzkdIRCaFyiYJSknqwzbXszw3fY1Ti7EaEVa5sjOH3M0ISVzK0R5OsviE5ukf/V/ISsE324Ocag/xxysfo/8bW32QO2zP4FV2q6VlOkX5gEdlP/SNrJKTAa6QGOspfYkkJibWEqOjkYGCeKczxd2AUN2tPSkUvVaN5q6Q2Lbw5tPIs1t8cFvJuk2WSLiEaYFTaDOQqCGBqnI4Od+HvpTEXbsN9eHSwBzoQycTqLRLlHGIEgbtook2ILEaYzZjwrRBJ2MglMZqaYxAkZhtIpcr6FabuFK567aGhWkiiwWEZYFtoS2TqJCkPeASW4LIFWgDZAQy0jjVmMRUHeF3YGkV1WptW1mWsGzk3jGivIc2JMrajE61hGqfRZAW+EWBPxij5bXnIH2JVTexqxYDnWHMRAJVraHq9Vt5KtsCYdnIVBKRTdM80kcna6BMgboiWrBamvz3Z4imZ7buQG8SQgpUwqSTlWgnxhLgCoMhc43QNWn3aeQ9B5HNNmpppStZC4Jt+WzcyWzL4FXaFrJUJO7JsPxUwH/2yLe5151hwOhmXDdQKJTWtEILu64w652doq27CKEh1Ab77QV+/rHnOdvoZfLSfvLPbPWRbR3CMJDZNCKTptWv+ejoRR7JXMQVBpeiAvbrKXreCEmcX+F2U21J16F1zyCNQYvmsKA9HpDrqfNfHPgmBaPBP5v8YSZmetg9ssDfHH6Wapzk6ZVDLDTSrHyvROk1D3ehiajX77pxQnoe4b5BwoxFJ2sQJgWVA/DgE2cZ88p8KH2OklHjQtDLTFDkTy4dZe3pHhIrisKrJnJ2EdXpoDudrT6Va5CpJAtP9VDbp4kTChLxZYkrUtNXWmZ3qsqD2Wl+PPM6lrg2wbEQJzndGeS7a/s5Fh8mf9bBO2vDXRi8ymwaPdRLfU+G8G+u8pMjbzBmrzBorV1+z1eq9/P8f/co7h0YvCIkQd6m1SexMi0k4AiLo3bAmDmFc6jK3CcKpOYVuZcFutlClSvoMNjqI7+r2FbBq7BshG0h8zk64z34PRb5YoV73RlGzAqGuPZwYzRhbJDwY0QnRKudzOsdTxxDHCNi8LVFUgQM22U6nskFh83ijLtwJSxsG/p6CHo8olzEcGKNnNGiriLKUQqrAXY1QPi30UC7sROTSdPqs2gOCdpDEaX+Kvvzy3wkMUFBSr5TmMaPTB4sTPOhxCR1ZVHPu1xwSnxroEh9xQKSJGYy3Qmn07nj7xFhmgjHQRRytAZdOllBJyeIPGCwzeO5i+x2lviwu0iPkWTQmGTOXuJCT4nvDhZRjiQ5n8FRGlmuEq+sbNk1E6bZlQEYEqRE2BYikUAXsrT7BWKgTSoRkHI7SNE9RkNoDuUXGHHXeNCbZL/VTYCE+uqlW1o0cMUU1UyCF/oPYbZN7EoGYz7Zzaxtw6D9ZiFcl07Ro12QHM4v8eHkGUbMFgPGptBozpvi+85jW3iUNxctu5lmw9i81x1hkZaaoWyVC4NZZCTJJhxEECIMiQ638IDvQrZV8GoMD+Dv7qG62yb8XIUDPVP8ld6XeNAp4wi5WTG9TqgVvtbUWy49M2voxRVU29+io9/hlqA1qlpHNJrYlRHeaI0xaHcDtAG7SpQQGOk0OghQ/t13L4ihfi78bIFwtMNP3fMKP5t9ibJy+U57hO+u7SexojCXaujm7aPpM4oFwsPDtPocWj9Z5Vf2vUDJrNNvVikYDXoMAwuDXyo+y6ezx+g36/QYBgUZ85OZ12ilTfZ/fJFjjwzx/Tf3Myb34K74GGemiGu1rT69m4ox0E9nTy/1UYfmT9Q43LvAmFdmwK4ybK/ykDOLJ8ATNrFWlAyTtGzzn/V9kwc/P8W5dh9/uvcBnPle+l/Mk/hGN2t9qzPXwjQxBvrRnovyHJRn0e5zWLnHIMgrPvT4cX68+DquDEiKzYWZFIqc9EmKiKwUWCJJqGPm4zb+FbYbroB9Zkgx/Qb8KJxt9vPdp+9jxDmAtdyCMxN3TWYtHOlh/kMO7aGID+fOs89q4wgDxWZiqGu7t4UHeYuRCBQaV5j838e/xOv9Y/z/Tj5FayJDYt5ANBpwF843W8n2CV6FQGU8Wn0WjWHB39n/DD+cPE1JClLSve6PxGhCDVFoQLVxV+qT7kZ0GKBDMDqa1TBJ2vDJ2S2yRgtlAbbVzQ7dhYOJTrrEe9o8OT7JD2dPsNdyOBGETIcF5lsZrKZCNNuo4PaZiIXr0C51bfI+MXqWv5vfFDV3p9PuMHbAMjhgtYCutEgKyd719W4p+xqfTR/jb9fztHr7Edol4Ti39Dy2Au25XYvBQcFnx0/yE7lXGDNb9F3Oom1m0xQaR1g4wuI+G+6zJ7mUPMXpvX2cT/bSnHTx1m2Dbrn+1TDQaY844xKmLMKMSX3IIDzQprdQ46d7XuZzXuOaH1NowFr/A6GOaemAcmzR1Nbl9/UbLTKGS0bCr+aOs5J+g2+MHqDVa5OMNObdklkTgiht0R6MSPU1GLVWSYnudYqv+L7ju8hvb0OoKBFIDB534HFniu8PzDKV2o+dsDAN4x0/447lCgs6ITfvCa1013ruJo4RWx68CtPEGB0mziZZ+FCWxpMtRnvL3O9OUZDgXEcqsMMOV2KJiBGzTE62CNMaCjlkvYlqNO74beENjFwWego0xlIMFpc5mpkmLds0VIdvtw7zb098iGjWY+9iE9XodqXb7kjXRSQ9gt0lFh4XMNDmweTkB/qstJBYMuKjfef5Dx8pUpuz2DXfg6zX72jfxvqRIos/4TPcU+ETmZOMmC3S8r1PtFkp+MsDr3A6N8AfLz9GcukAzrKPfPPcLdnZkJ6HLORRPVmmP5mjNaRQ2YhEpkkh1eJH+s4zYFc5aC8DCc6GPseCAebCPC9Xx2mE1y5QmpHN7FqWMDAR6/KCR8em+P+MfIWsdHGFSUFqHt49xUsf20P2ZILB44k7ezEsDYw9Y0S9GVbutTl0cJIj2XlGzApg0NIhLa3xtaCibM76AxjB3TG2bowMaj3VLK/ntXY3IQ2MbAbh2IS7+mkPuLR6JLU93QJJpywwfeh5s4P9/OmbJrvZ8shQmCadsQLNAZvqwx3+j8f+PX1GgxFT4ojrZ1x32OFKXBkyYoYEOiBMa+JCEkPrriG5vjODkrci0mn80QKNAYPHC/M8krhITnZoasXzld1Yr6XIzmvM+TWi22SHQiQ9RDZDfdjh8COTPJ6/yEPuNGC/789KSQcPxY9mXoeH4Rvz+/G/nydxKYHQGt25M++Tyh6DLzzxbxg3uxaD8n0apGWlyy9mZumkJ3n93mFml0dIXzIpnrs1wZzwEsQDBZojHvZTK/yN3S/ySGKCR52rAwlDJAE4F/bwxZUHuFAtsnSqhNm6NtAwfIG3qDF8Lnu+fv8j+6gOabKyq200pcEv9D3HmFfmD3mEIffOztILw6Azmmdtv039UMDfGvkm4+Yag+uaz5bWlGOLVeUxHRaZaPYgojs/eN3IfagrNBIb/1/dpUGssExELoNKJ1i916NyUJPbt8oX7/1NklLxG2uPcqI+wCnrAKMnUl2Hl5vgxrDlwSuWRavPpjYmyRUalIwmaamwhIVCMRd1qCqLghHSI20MIZBIFIozYYLTnUGimr3ZHeVuYb3zmDAMhCGRA32obPLyy1oItCXRpiTI2QTpzWyL0GB0FDLUuMs+xnIV3faJl1dvqwyUjGA5SLHspAm0xgBUOqI5lCAJiEkDfRudzwdBOA7CtgnGSyw/4NAcVuxNLJGWPtNRjhPK5cxKL8k5jbcUof3bp/BEWBYq5aJMQcVPMNfJcSEsYollKsqmHKeu+3OV2GM5ylAya3zcmyF/hewoKzvsdRc5mexnKdWDl0oi7sCCnI3uc8oEG4X1ASdahWI57lBXkvlqhsSyxl2Lb53mtbfI0sMpWv2CR3sW2G0vUZA+CotQx1RURF1Jvtk6wKTfw3NLu5idKSBrJpkJieFfO2EagSaxGiFDjbIEyhIIXxIj1nWd3bHSEKpb+HUHxyjCsjGKeXQ6SfmAQ/VIzNBwmZJRxxMxcl3rejrI84Y/yunGAC/MjdFcTLJ/tb3Vh3/T2dgV39C8bnDHZl+l0Q1ObRtZyKFti7AvQ5i10OsXQ1kCPyeJXage0CTHq9xXmicnFa6QHHDnMYTi5eG9tO4fxVlpI4+fv+E7NVsevAovweq9gvwDS/zo8HGGTXCFg0TS0SHfae/m9eYoDyYn+UxyCgeJK0x8HfF75Sf5xtR+UhMm3AbboDeMjRvMMBBeApFIsPKRQdYObr5FS4jTCm0rHjk0wS/0PXf5tZZyeL6xhwU/w4uv7KP3xSTeQojzXBPVbG7BCX0wTF9zrlLCkTGt9JuUpGBouMzSQ30UEh75N807u8hCCIxCHp1JMf9kgk//zPMc8Bb4TPIsnhB8sbaXb8wfoP1GnsFvTaMqVeLbqFBLZ1J0+lPEDsytZgliA4XglLvK6WY/Zysl1HW0d8trafSCC70d/vUT/56Pupv3wIgpKSUv0uxx+PXevaT68xhRdGfp5YXodqFzHZQDllBI8cEm25YKebnTz0Snl865DCMvVpHVJnH71gQu1SN5HvilYzyZPc9HvAsMGgYxgroKWIwlr3fGONUe5Pe+9mFyp8Fbjjkw30K2Q8RqBR1eZ15QGh1FCCEQxTwq42Gv5fC1Qaw1MXdPIkRmUrTuH6XVa2L+yAq/e+Q/kJMBfYbEwEQiCYn54tqD/MW5Q5hnPcb+tIpRnkctLt9FV2ozgN0IXOUdWLEmXQeZSaMLWdbuK+DnBZUnOjy1/3T3dTSmjMlZbVwZcl9imoP2ImkZk11PLn7am+WpxDRTjxX5euoQybMZRqczN3ynZsuDVwBlQdbxyRptXGESa01Ztakoydl2P2drvfRadWJv8vIqWGlNOUjSbjhkfNB3urZRCKTnIWwb4djgOmjLRGUSxAmL5qAgHNjMHglD46U6eE7AJ4un+LHkZtDSUhVKZo3JoMSrpRH8fBKrZeLeZqJzI9Cs1D3mExlCLZECCokWs7mY0DM2l813KkJebnkZ5DRPps8zYq0igbrSnGv0Mr+SJVUWqEr19gvQtEbEGqMDas1hORa8KQdZ8NJMVfOsraavuxMlKxbusqRt2TSVA2wGr5YwsIRBWrbXjdclxm12378rQiJSSVQ+ReTq9Un2gz8LtdilHCUxfIGsNtGNVrcg4xagTMGAW2XIWiPWgoqKqCqDikowHRb5fm0f52olvDlBZqqDvdpGLqyiOwFRtfbOO0nSwOwpEHt2t9ATLjfAuVsQloWfN/CLggO5VR6wJeCiUJcLtJTW1CKHqG3iVUFOzhGtrb3zB9/OyG7DDm2AlIo7bHTYRAiEYYCQ3aYUjg1egjibJMy7NAcknbxmbGCVT+ePA133DgNNWraxRcyYWWPQdNgIJSXyskSrYDcx3Qhl2Yib8FxtffAax9gVwcWlIhdyJWJ9jrOh5h/PfZ5L9TyzU0WsVZPqgy6/kHsFA3HZMmvFT0LFxmxquFP9XYXopvA9j8ZH91EbM+kUwO+PEImI4f41Cm6LH8vMs8fdbItqCEVa+lgi4oi9BGxusVrC4F67xrhZ5enRw7ywthdlmaRvs+rr1FSLxjNpTu1KcmGoyC6zwkeK54gOSSZWxhDW1t/eNxPpOtSOlljbZ+AcrHCvM0+oJX/aOMREu8RLzxxk8HlFcqZ+W8kFNtALy7iNFs5Ugtz5LLFjEGRLLNi9pJqKfDO6rl1P5MWEKQCDSuwBt1nQ/gMiXYfVjw5TOSAo3rdM0dC4wrrGavC9EKOpqwTlMInZAr261vXHvUVyHG8p5AtvPsKXMvdgmzFCaGpNl07Txly2Kb6hcaqKoYur3UxrJyButUDpdz1GaVusPtnPygPQf2SRfiPGxMYQkvgukaHpTIqVowIx1uTx3MWtPpxtgRCCTsag3acYTTcvL2g2ta56PQt7my50Nrowuk5XGpDymP9YkfpuhXI12otwkgEfGj3DcGKNR5MXOGytAGBcllF0xTXe2xR/xlrz8uoo9jGPzJRC3wR9/NbP7rornG81bMqBR0jMQpzj9fkh2ise3iUTd1WzOJ4hvmKiitH4kYXhC4yQO7eqXMhuttVLUB8xqR6MSPY3+ezIBcbcVX4x+xoDZjcwffsB17vqNYmgKBPkpeZAapE3SkMEy2mEeXutMY3VOtmJBLFjUok9DFHlgDNPNe9xJjMKd1pG7a0YBq0eSWs04mhhlZIULCvFmVY/p6r9ZCYg89IMutkijm4/WY2q1y9ni8V5MIXATiS6Ws536PbkjI3g7+3F6nPw9Xso7rrDxg5hWzSHJBys82Bp5roe2e8VBXSURTu2MAKIG81bqos36wHmbIp6ZT01qgVWTZCqCVIzivxXTxFXqh+sW5xh0ByUFA4u80TvRTxhYIjN6xRreV1Zyp2Edi3i/oD7BhfY7Sy97fuUvot8XaUkckGnIjJON+hSbzn5t/79dmKjTkY4NiqdJComqB6IuefoFBnLZ8CtMmBX+enMm/QZGwkt55oxRL2LaGS5kSQ5p3FXI3R44zXyWx686rZP8USAU7F4cf4ID+3dTVyzyZ4wSdU1biXCbMSsHXZZVg6W6FCQH2wg3vZsSANcB5FOobJJwnyClf0OQU4QPNTgieFpxr1V7k9O0WvUScvuVxhrhULTUB0W4qsrIS2hsNAkpSAv3TtGbK5SLu0egyCrceXtF5x9UKTrIvtKxIUMtb2a/fvneKIwgSUkc5HHn58/hJr1GJ6J0LX6dftubxR6CcdGpNez8n4HHcXoZhPV2obaWK3RYdT1GI3fPlxpHezj0mdNrME6R5yZK+53yfmww0v+KF9cvp/kQow1v4auX+sPejsi02nYNURQ9GjsCfnk2ASPpiew3mbjs6E6LCuNgabPMHGEdd33bSXmYoW+lzxie3PMMv0Ys6Wwy/4H2lGQrosYHkDlUzRHYz4zcJ6HkpNXtR6PiPn95Uf5/pv7yZ40b8udi3dCOA4ynSLMJ7C9gKLTJC3bVz0rISHTkWJZeTx7bjel71mkZ7Zni+AbgbBsjN4edDZFdb/m40dO80imu6i5smBrTflUFCw0M9i1GLPavi2sBzeQ4yO09/bQKpms3gdxLuKRQ+f5eOE0nuyQMXxysoX3A271+22b/GqMvdZ5x/H6g7Llwatqt3GfOUXCtunNZ4mLaUSnhphfhU4HLBNMk8Qje5mL8iTFMjl5h27pCInMZdGeS2coR2PYpjEsyX1sgYcL8/zV4gs86viXHRckAmPdTkyhu5XBSvNGZ5hAbw7EGcPHEx16jQZZWyHvEBVPnHRo9wrCfExG3sEejG9BJD06u0q0e22yB8r8l2N/wZBZwxImk2EP1hsp8udivHPlt+0gJZ3uAklnkvgDGRBgVTsIP0IsC9iOwSu8pwK8tf02//Wn/5iDzhxH7QBDuJd3Hs6FPXxh7jHOTvexf7JFNDV9x2ReZTZD+Z4crT7JvQcn+Fu936RghFji+vZYFaU4GfTjipC0LG/L4DW6NENydv6qf9vQ22qtPlCtg0h63cm716Rn1wp/rfAcBRlh4l1+T6hjnruwi+GvCRIL23Qx9wMgPQ+KefyCTS5VZ8CtkpY+xsY9oBWhVpwLezjf6Sf1pkvhCy+j4xh1hzq4CNchHizi97r0HF7h14a/iSEE5ro130YAuxxLLoRFlutJRlZ9xFrt9mn6IgT+7iLzT5oEYx3+xYf+Aw87Zdz1WoArG1EY4v1bEm6gUIQti8RCC1lpouIbH7NtefCK1t1Vi9bQbCENiQhCVKvVrQiNY4QRIePuNk58h2QNgct2V0YqCf0ldMKmPp6mkzHwewTtkibsCflQYZ5DyXlKRhNHXK1LjbUiIuY7bY/j/ghnWn28sTJErCRCaAypGEjWGEzUuC81zS7rAqkrMgy+sohCAzPmtpvEhdaIGFDcWffF27Fhj5ZKUh9xaPUJ9mSq9BoNQi05E8acag9i18CuxYgo7lomrctOhGWhC1mUa9LJuQQZkyAlafcKtAC7ZmN0IHfexQzCbovdVmv73hfS6G6BuU73PHOZ9Y5Smn6rQk52rlmoleMUc7UM1CyIOneUF7D2XOqjkna/YndqhawMr5s9WVM+daX5Xns3f7z4IJ4Z0Cy9zB5rmUEzuspabMvR+obbcgnbpl00aJcEo8kGaRHhCoEhJKGOWYzbLMY2qm5hVyKMRueWFajdKkTSI+hN4+clA8kGo84qSREB1uVdvLpWvNYa51htEKuu72znFrpyG7/o0uoxyTs+1nrGdYONBNFCnOJMZ4B2w0H4re7O1ja7P6Tndcd804SEi7ZMolKaMGWyeo9NMO4z3LfGoFkle8XzvtEkq6UDLobQ1CYt5eBri6UozaWgh5Th88PJUwwaGkvIq3YsWjrgfGgwGxUwKiay7iPanZtiZbr1wSvr7T6jEBEEUKmuW5l00/A6CLoZyQBCbRBqSfzBFE7bDmFaCNtC7Rth5pNZOkXN6IOzfLTnIsN2mXF7hbRsM2K2cIW43KZvA4Wmo0OW44i/9+Yvw4tZknOa/LEaIo7RtomyDC7d08uJcfjO4T388INnSV3xrVfCBFHdwm3dfo4NohNjNjVGSxLqbXEr31SEYSAch3C4yNIPhYwMrfKz/S+y19I842f5k/KDfH9mNz0TIYnzK9D2kbksFHJ0hnN0CiZLD0rCYkSqt8lIrsKQV+Vjua4Nylm/n+UgzdeffoBxNYpZbiImLm3LSetyUJ5Mogd7iFIOyw94NIc0uftWGDErFGSMIczLkzHAidYQ7TM50gsC2QnRroMOglvnW3oTCQcy9H1yhs8PvMnHvDP0GfY11fOhjnneL/Fme5R/f/JR8l9JEnnw3396gAcHpvnpnpf5rHeHFritV1frXJryEUE82uYjxfMMm4nLQUpV+fxp4xCnmoMkp0zcC/Polo+6CdueW0ncn2f5gQSNMcV/0vs6P5I8T1puPisKxXTk8YXTDxNfSjI8ffs/H++GSKdYPWzRGlI8mVsArizO6o4foY55obmXr8wdwZpxkKtzRGvVbeePLob66YzmCTImzX5JkBFYT5b5yNAF9iWWeDBxkbQMGDOvP+cvxop/tfIxZlo55hpZ6m2H9kyawjGB3yOY/ssF/lrhOfqMkMIVtSUrccw/mv4xTi32kzsp0NNzqJs0vm6fGX9jhX29k9QxaIg/YNHBdkUmXEQmTbuYoD2gkL0+n+g9w49m3qAkI3qN7jaWInHZuqSjI0JiOloRaE1ZmcxFRZpLSQYmFalpH46fQ8UxRiaF4bq4Q+O0+g2CwLwsse7oiI6OWAs8jIaB2eam6FJuJkIpZAhiPSt/pyNME5FwCdMW+Z4a9xXm6DerSCQLUZZTa/00Vz0G6iG0fXAdSCcJe9O0+i38giQa9unrqXGksMC96Rn2OQs85VYAOG/PsRBn+GrpXoKcjYwUYpv2dN/Q7Ol0Er8/SZg2aA1ooqEOu3PdLJJ1TZXw5upfC9B293qi1O0ZvG5knq1uQ4J2zuLB/ByPJy4waEZYomt51NKbi4+Wijnf6efVygjRUoLMxTZhxqK84jHh9bCQy6GoXlOcIdFo2V1A6Zvcs/xmIWwbmUoSZxOE+ZhSvsGAtba+Xaro6JCq0pxqDnKi0o9d0+hmC90J7rgmOMoxCVMQJxUls0bBcNab/3QTImUVMR2OEJRdUssCq74NB4EbjDaN7jXJxGTNTR/jtxZnrYZJyvUkRkt0fYS3UeB6uTlJLkmz3yJIC1oDEGQVPzp0gV8oPktJdtbtrQxCHV8eH5TWxGhCrZmOspyq9jNfzdCsuoimSWJRkijHKEtSixIEyKvSiN2mITYX14p0Fj2KVYVqt2/aWLF9gte7CGHZCMuk/cR+lh+waY3E/OTjL3LAW+DxxAQjhsJZ15u0dcBUpGlqk4UoRyX2ONEe5vXyMGt+guW5HLJuMPg8ZF9bQtSbRFGI9Dzi/aN0elzmfgh+9LGXOJqcpscwaOuAb7YLTAS9vPz6XsaejnFWGujG7dOgAEC0OiTKCr9k0FQfXJ9zuyD7SgTjPVT2Wnx25BSfyhwnRvBcJ8E/P/tDyC8WGC4rrKU62BbLT3UbV0R9AUd2TVFwmjySmaLPqtBr1Ne72cVY61KUYTMgK1fZu3uB6SeGSU+mKE1427Knuz60i4UH07R7Bc4jZYayVZ7ILDDqlDngzFGQEus6VfZ/Kfcy1qdinlvZxVJzkFwhgTuxjJq8tEVn8sEQpokxOozKeDR2p6nsNmjuivnb6XOMmW080R3az4Qx32vtp6MsfGWxFnn80TOPUnxNMjYfYV9YwMqlyZwosbjWx7fTB/iR5FmSouvXKIGC2aDHaRAmwegrodtt4m2YbXpb1uU23LuPhUfSNIfhcw+/ykezp3nEmQVSzMYtXu308/36Pr729IOkJ6H0egNVb3QX9bdhsH5dpIGQgsg1iJIakYiwxdXf41+0evkXlz7G1GKR/u9KMhfqmLOr3IbLu/eHZRIUFOlSgwGrAnCNbCBGc6rWTziZIrekr59s2yKE4yAO7CIseMx+zKX0xDy9bpvx5CpFq8kn08cZMTqX7a2qKuBYkKGuEkwHRcpRkrlOlqlGgcmVAolvp8ktxfQ0FaYfsnKvQfnnG4zkK/zl4ouMmwHOumRgOe5wMsjz/eZ+ghcKDJ+MSJ2tXKWhvdHsBK+3GiG6NhW2RX3EIjja5J7BRf6L0ncZMjze2rc91IqFOE0lTnLGH2ApTPPy8iizkz2YVYOeM+BUFZk3l4nPTWz+GtvG703Q7DcY2z/HPxt4Yf0VhzXV5pQ/xLH6EMkpg8QLZ9GdTte/8TZCBCF2LcJsGXeFbECnPFp9Du0SfCh9lkcdn+c6Cc51+qlM5zj47QVEY72wxEtQ2w27H5nmyZ4J/m7xFbxrBPhX/z0rXdJScV9ulondPTQ7CXqt7VfEA+D3Jagc1Dijdf7Vfb/F0WvWLtf3NX3AUTzQ+wpfTU3w90f/GlbTwl7xrnnftscwiPNJOiWPtX0Gwf1N9vSWOWgvXs6iAcxFWV6ujdOOLVqRTcVPUHhDUvryebTvE9XrGEFAeqaAjAym6nlaWmCg8FAYCDzZIWu0iV2NTnsIQFRrt08ycr2NdrvfY+3emPRgnV/seYZHHYsN/+uKMjneHubl1VFKr2uyry/Dcpn4NhsT3w0hRTczZ0liGwxLYYmrA7BT/iATZ/tJzJrk31xFnb1IdJvtyn0QtGGgkjGlVJOccW2B3kYgu9JK4q4KnKpC34RCpA+KsG06vUla/RbqUIN/tv/3KMjgLfKhzZoZX2smgxKLYZbTzT6W2mnmahnqSymceYv+Z8pwcRbtd9BhgLHvCf7ukae535lmzIzx5OagW1eSc0E/J2oDZC8o0i/NoGo3V350W834xvq2n3E7GwRfgYghCg2Wmin+vLmfjGzzbH0vc+0srcimFdo0A5u1apK4YyBrJoYvsCuCniWN2dak5joYzRBqXbsfmU4jewqEAzkWHjcIhwM+13segNm4xbPtEc53+vh3xx9HLbkMXIzRnU7Xh+02yy6obJLaqE27T5M27tw+29LzEKZJ9XCO+ac06aE1howqHR3zZ5WjPLu0i8SM0Q1cXYf6/f20CwZqf5OP957hnsQ0FgYdHXIy7Br3T4Yl5oMcjdhhJUiRtdr8XOE59pkhoTa2p6ejNDB7e9Apj8oei9LBJQ4VFinKDlcOyn/S6OU3Zj5E1mnzC33PMW6V6Te67Qs3KBk19O4Wq4aHu5rGPWV3Lbhuk2yiTLgsPZChuhfEeIOndl1gr7dEQUaEGp7xU1wIevmdS4+w/EofMhSIGGQIA+fb6PWCWADtd0hNNbGaCaaWcpzeU2LIrJCV3YKMPdYyrggJ+0Ia+/O4Sx5Gee22kFoI00TuGScspVi51+TQoUmOZOfpNzrA5sJsMizwraX9TM0V2bUaQrV+51lCXdE2uD5i0nfvIgdzS/QbDa4MBXxlITsSIwCiuPtc3DYrlfePUSxAf4nagSwjo0t8ovcMu+0lWJdRbAStCo3SmqZv465prMY7W/ZtB+rapB4p6srmi9UHudDoIVAm7cii6rssL2ShI7HXDMymwGxDsa5xKzGyXEeFYVeWZFtECbEuMQmxxIZFZ1cffSwY4LcmH2NxPsfu5RDdbHbrlW4it1XwCmCguzZRQiOEBtHVr92OrUBlBLptsFpJ8UdzDxIog5nXBvHmBFZD49Q0iY4iv9xBdgKM1Xp3a3+9ElxrDXGMVvqyFZAs5Ggd6KU6bvLIx0/xK33fY59VBTxOBkX+1aWPMr2cp/AXCbIX2tgzZaKbqEu5mYRFj+o+iIY79Bp3aJGJNBDpFCLpsXJU8v/+5O8ybq2wy1LUleJrlw4SvZ6jeDYmXqsgd48y9yEDa7zBf3Lo+/xq7iSSbkXoYhzwrca9nG/18vLCCJWlNKJl4JQlYVox8Okq/dnXiPT2tFITlkk02ovfm6B6OOIf7/9T+s06PW9pRvEbMx+i/NsjzBUFv/0T8PHCaZ70LpC9IhE7aLT4mUOvcnxwkKlLe0i4DgQBurO9J6MNRDLJ6hMhf+ORZ3jAm+RJp4wlJI5IUFU+f7DyCM/PjiGfy7L3ty+gW+31IER3XSSuCDxVswmvnsJNelgfvofXjo7jJ2bZay3gCZt7bMVea5Xx0WWWDg+RTkkKp51ta6d2JcK2qd1TpLLPwHhsjX+95/cpGQ6OSF31vuPtkcvZRmdmiXhp+bYcE98RIRHZNCqXoroH/ujgFxg0Ylxx9fPTji3MVjeQEcH20nTeFPpLlB/IU90j+ftj3+enU5euqqC/UvMao2k3HIqLMU65032mthu6e+vGCJrKZTLo4WKnl99/7lHSF0yMNlgtjdXS7JtpY7RC5GIZVV23VVTdjHK0XjRv5HKIpEfkwbi5xoDRtd5TKEJiQq14tr6P6gu9FOY1zqUF4kr1pp/mbRe8bqC0ptFxsOoCq30bFRBo3Q06wwh3Lcads4g8k7PNAYgFmVlBclFhNRRWI0J24m7VdxCiq3VUo3n9DJEQIAQqnaQ+ZNLuF+xJLjNo1KkrgxMq4JnGUSYvlTCXLbyVCKvcQjdvz8AVQAuBliCNzeMPtUlHmbxL84/bBiEFIuGi0gkiTzNirZKWATMRzEZ5GqseuWUwfYXRUyToSRH3BOwprNFj1ojRLMcBc7HHhWCcr8zdw2IlTbjgkViRiAiMTreHvK+sbV0SKYRAmRJlCzAUCkmoJXUVUCfm5U4/E51ezk33MboYIWOTk0v92DJmxF7lgLW5wHEFjDqrdNImZ4t7YGwIo94kmp7b1pO1dF1kqYdoqICXa7PXWWTIqJKSDg3V4WSomA4HeGlhhM5kmp4FharV371wQsXoIMBdFTw9f5C1ksfHEnN4otuv3MLAlvF6z/fbI1HQdaSw8POSdq9ib7pOTppIJEtxs7ttGqVYiLJ8Y+kAiTkTb0kj/M5tOya+E8IwiEtZWoMJokJETkaXpUSx1tS1T0trZv0cVk1g17rz1J1OlHFpDko6vTEls0ZC2FcFrBtuAx0d0tIa3TaxqxGyEWwvC7U4xmqEOK5BtJTg98qPUYsSnK/1sNr08KZNkvMK09cYbYXZjjFXm4hO0B0j3rIY3Sj+0mMDtAaS+H0KV8QoFFUV4GvNuTDLhaCP5xfHSSxqvGXVtca6Bdx2wWuMQKHwtWJlPsvwiRhvpnVT2o/dLHQQoMOI5PMX2HU6A1KibavrW9podbu5xHFXDK7WMyXr3YV4m0pfYVoIy6SxP0v9U012lVb5VPoYg6bgN6qH+NrSYU6dHmbXH8U4K1XE/Aq63rjpqf1bSaw1ldhjJUghA7HtvPc+EIZBOJDH73PQPQG7zRaLscV/WHucE9UBcq/a9H+3TJRPUH1ihOq4wWfveZXP5V8nLX0uhpIv1x/g9yceoL6UYuAbBmOX2hjNCrLhE/Zlqe1JoE1JqA1sIZDbUjPQRTkGYUJALDjdGWDJSLNgNlgIc/yjb/44hVcl49Mh7htTeD15gkyRl/ozJD/V4ZND3738OVlp8yPJs1QTF/jGI/u5FBfJXMyR+3Llckva7YgYGWT+E320+wU/Mv48TyWmLxdgHAs9/sHZn2JhOUvP11yGX1lFVBvveWdFhxH9zzWoLvfyxcdL/PUffYb8dl7NvAPCNLsdx4o5Koc0Dz16jo8XTuMIizXl86XGHi52Svz+6QfgYpLMBIx/fwVRb3WzrncgwnVYeCxN5f6ARw5evMoDWKF4uVPgpD/ESxfHGH09wFlqo2+ybnE7UN+VIPvxBZ4szLPPWgUSlwPWTcmAYjGOmI4yuAsm9uvnunK7bdR2W7XbyBMXSTo248EuvnH+cay6JneuzWA7xCjPQtvv6nRVV/Kg/c5mbHEFwjSR2Qwik+bi53Nkn1zkp/svUJCSlgp5qVNkOijyv5/9KK3TOdJT0P/1Bag2bknWFW6H4HXdm+/KlFCMJgZEW+KUQ4xGB3U7aXK0Bh0Tr6zCyuoP/nlCIJMJRDJJuyDZ17fMfdlZCtLHQDLp9zCxXMSdN0lcWESvrl1uAnFbI+jeF0IjRff797VFPXQQt9Ht8E4IwyBKmnQyBrbbxpMGcSy42CwyU82SrCjkyhoUEzR7DfwezSGvOwhXlM2q8rjY6qE+n8adN8meqcCFabTfIQoDLD2GHE0g4q6PMkBHmajQQMbb0/tXaBCBYKJdYsnIkDXbzAdZklMGxWN1zJU68WoZQwiSCznQBpP1IuW4gysknrSwhEGfkSAtA0azFd7sy+OsdYspty1CoD2Hdp/A748Yd1fpMTa7Z1Vij/mlHMacQ+aST3z6wtsudq+LVphLNTKGpLrXI7xd7ef+/+z9d5hcSXqfib4Rx6fPrMryDt40gG60t+MNZ+jJoURSFCUu90orUVd+5feR7q7M6vJqtXK8lKi7XFIkRTMz5NCNn+mZ6Wkz7eGBAgrlXValt8dE3D+y4NobNJBA1/s83Q10ZWWec/KciF988X2/T4iuB3A6SZSJE2VC7kotMmVvAN1ClXm/j/ONPNFyjOwFSM366Lklola7pyPv7xghulHoHOSHK+yOFzAQlwt5Aq2ZD/o4Xh9Fl2yczQZGuX7rdI56J2y5UPgJwQN9yxyJL5AUr/2sBDpiUzmshmnMJkTlcu9F57XuLrxr4M5lyZhZnGIH+dI5VLv99twijG66WpRJ0BoJ+Qtjx9jnriCFoKIiZjqDTLcGqK4myc5Baj5Er6x3U5BuEL0tXqWBOTFKlE3SGtCMWCVy0sfCJtARdlninF9Dt1q9mXvyXrM1SMtEnLUf30fx7oihyXV+buS7ZIwGy1GSs4HHF144yvDXDWKr7a5wbbVvi+sVJAyiAZ/hXJW48AmIeKaygxcuTpBcE7e2OBcCYVrIdIrCUYf6fp+PTFzEwmA26Of5s1PYqxbplkLn0hSOeCS+f5W7M+s8HJsmI+GlTj/HmhM8Pr2H8S+Ds9FELBVQVz0v2jQIPUFkw0YnwXE/xbcu7qLvSYvEcoBu9k4hnPIDnOk17NUY3kaaJ1++FyQoo5s/PnKijjm/fjm/U1VrpF4ukMjEmc9N8LHyX+bhsVn+1chXLneVMRAkrA46FhE5VtdSqQeR8TgiEacxnkTfUePwYIGD7iLAZQ/oE61xki+4pGdD7Pki4TvxY9W6u2Ohb8120QkKAAEAAElEQVSudTKZRKZT+DsGmPuUSzAQ8GN3vcCnk8fIGQHgsRo5fGV5P2trGfpOCPqfKyErja6zwK0UBHmLCMfBGMgT9adpjwX8+OgZ7o1fxBHmZVeKmor41899ktw3XCaXA+TCOrrVRvm9E1m8rgiBMZDvtgrOCx5MnmevvXZ5F+OKN3Q3+roQKv7Z7I9xfq2f/vlbIE1xfZO43/X7Dt/Bd2gMDbD4o2M0RjQPHDnLxxInaWuTp9oZnmrs5je/+hiJecn4XEh8rnLl+bmB9LR4FYZB1J+iNRwjyET0yRZJ2V0tKsBsCMLFpZt9mDcPIbdaf8Yo3h3xrz/yO0xZG9xpQ1MFfLU1zOnWKIlzFpkvnUS3O0Q96Nn5TokcSTxdZzhe7ebiaM18LYex7OAWdc9Xgr4hQiIsEx33aExGPHLgPB/MnMEQgkKYxF2wiS9pjLYiSrk0xjW/vPf3GDNb5KSNwmAtyHCqOoQ575L41hmiUunVvelMg8gGZUElcJn1u9Go/pdq3Z7U7R6quFbR5efdOg19r/GSq5crqtmE6RmEZZMfvItiO823791Fe1iTvup1cbODdEOUbV3pj9hjCM+FVIJWn8H943M8mjnPlFkBPCKtCYhY7GTJng2In1hBFUvvbILVGhGpW3bnQsQ8VC5JdcrlyGPTfKL/FB+KTbPXigMOkVaUoxhraxmsRZv0TAd17MztkiL/mgjbRuWS+HmPRL7BBxJnGDcrGFd1bOxo8E545H71SYDbpIflGyAkJOOEuQRBWnOHs8yI4eMK55qmJpcaNxRUjNMzI3gXbWKrvT+HRqUSlErv+PdVJkHtaJu7d8zz0wNPc8Q2OB34PNPczZMbOxl5QpF8dh5VrqAajZvy/PS0eEUKorhFJy3BDXBFtNVv+K1HR4RlI+PdrTXd7qAjdUtZ4rwRwjKR+T6iviRGymfK2iAjfZpKMB1a/Of5DzK3niO/pNB+0FOedNeDyIb+RIMht4YrIqQwmEgWmR/J0Vl2wejNqvm3gvRcxOgQ/kgae6DJA+mLjFolmiqgptxuZzEFlR0Waq+FnKyTlh2aWvBkM89akOFXph+mMZMmd55X5TZL10V4Hp2RFJV9migTMFfJ8Vud+4mtSIxiHZq3yY6GVti1AHfDoN6wCa7SdBLJPck5SjtiPFvbRbRrFDOZQK1vvKqA4aYhBOG+cQp3xqjuUdyVXGSXvQZwOX/zTwqHefH8JPs22tfYYL3v6MtQ25OmPibYn1xjl73GahSnGEWc8Yd5qTHBCxvjxE84JJYV9nr9thdqMhGnsidFY9BgPLPMkFkjLrtzwUbU4jvtUY41J3DKPR5NvI4IyyQYzVAbcwjzPkkZ4G41NbmS7yopqTbLoclTjf14F22yZ6Pb+p4x8nn0aJ7KvhQjA+vclV687OTztfpB/uPzH8JcdtixXO/ucN3EcaanxasQAj9l0cpLYqk2SSlew2j9jZGeC4N5kAJRrCA6ne62+S1iifNGSM+lM5mjOWgznl/ZirgKikrxTHM3K4+PMXQmInWqSNQrE/F1JPQEh7PLHIovkZQCC4OH0xcIdxk8t7QfYfb07f2GyFSSxp4c9RGTRybO8bPpM3S0oqg0G0ESo90Vr+U7A6Z2rvPRwbOMmILzgcmvLHyAuUKWxONx9jxTxSjVCFvXRgtkJo3OpijtsXnwodN4RsDXXj5IbbWPoZMB0fziZWulWx2tNNZ6nbQUlA46tK/K5TSE4M8mL/AjiWn+pvgBzt61n8SyR+J5v4fEq2Tt3hg7fuwCh9LLfCZ1jLQ0WIsEC6HFfzz3IeSfZBlfj5AzS0TvNOp6G9AeS1E4KgmnWvxA6iUO2D6fre3gxfok31rchX8iTWxNMP7lVfTS6u2d07mFzqUpHJX4Ix1+On+WnSbIrQYlc6HHv5v5KCtrGcZWb/058a0iTJPyLpfSHZrdE+vkJFsd5bo7L5cE7HJo8tXGQb64cgfDT3Wwnzp9W98zamqIlYeTNMYVf238BT4ZP0Xe0IDL5xbvYtevKKy1NfTyWldT3MRxpudnd23Q7akteGvx1q0kbCObRiTiqGySxmTX089b85B1H1koEq2tv6fH/V7S7XHvIXJZqpMOzUHBkVgViWQhknyrcYCvb+zHK2i8go9o9E7e4vVEC7BEhH1Vh5iacil2YsiAWzt/zbHppA06aUHObhATNh3dprFlBaYlKBPMZMCBzBpjdhGlNZtRnIXNDOG6h7epMIpVdKPZvRbSwEjEwbaIxgdoDXmXLdUAiARGS2B01G0jXC8ThEhfISPo6G7Dhktejq4wcQWMx0q8NCAQkUHCdd7kDW8QWwWryoFBr8qgVSUmugu1mjJYjVJUax6j6xFuwe86lbyb700ItCm5ularrjo0tKLU9rDqYDVVbz1bQnQbebgO1T4TfyAkn62TlD4GgpUgw0y9r2srtyKIbSio1ntncfIeISwb4TqEaRc/F5HJNRg0K5d3LiOtaWibzWocUbQxW++DaP2lYr5EnHafgOEWE/HSVivpV6cMzYdZvrWxl4W1LHuqPbSgvc7IeBxh2zQHXJojGj3YYcQqkZQKEDS1T73tkC42oVTpNvC4yfNDz4vXt8WlAibHofaBPWwcNmgPh9xxYIFQSc6eGcXZiDP0VBLnS7euCbWR7yfYMUhxd4zsn1/gJwdPcW9shpJq8/9Z+RTP/9EhvHXN4FNFWF6/LaOur0VHh3x9fT/Tx8bJznFL2ae9EpVJUDwo8Id99njdLeLNSDDtD1D0Y0Qu+GnB4bElfiH/TSIEc6HBt+v7sZ9JMnAhJHG2hFordLd2tMZIxgmO7qLVb7P6oGTo8Bof7lvmz6SfYzbM8t/Uo1gNkH4PCZPrgVaIIEQ2A4xWjPkwS1Ku029oXHFlCPxw8jQvfXiM8yt5cmeyiItzN/Gg6Yoyx0G4DsoEzwhwZLf4oqNDnm3t4URjDGvGJfncPLpe71bLvwu0axMmLCJHY6Bpap8X/CSzfp6NCzl2Pd/CKjZR7/JzrifCtlF37KQ96LH2sOZvP/IVJu0CeUNRVpqvr+1jdnqQzAmT4a92WyhHxfLNPuz3HGNkEH+in81DLo/ddZKPZM9wnzvP1dP+aphBnU+QnQFn7ebkLt5IpOchRocIB1IE99X4j3f/LiNmBVeYr+qmBfBb6w+y/DtTjKwqjIXlt1exf4sgLBt9YAfN4RjLjxn89Ce/zS5njQfdJTLSpBCFVJSk0XARlTWicqUn0sl6XrxqKdAGSPnqx0rLbhRSK93NYd0qYMJxaA5I2js6jI8U+Stj36StbH6x/QnWvDSd0xY9Eld5e2zZmuhEjHa+G3H9+ZEX+OnkDEUVUogMpst5smcjvLVOV7i+i6TtnkeAFBq5NeRGaAqNOM6mxKndAhWhb4CyDYK0wku3Sclu5DxAUo5i+MpEm92c3xGvyl7LZi1qMRfGKPgJ3A2Nt9xCVBuXOykJy0bEPFp5m8aggTlZ46cmnmWXvc6YCWXVBAXS7xbs3HaEESKIkD4UwhSbZoW09HGvCrbkjRr39c3RCi0iN9cTg+Ol8UyZ3V0GA4WBIEKzEmSYbeSwqoJorYAO3sV25laEV9smoSdRVrebodKaQphiJchg1STWWrW7k9MDk9clhGHQybk0BgysgQafTJwiKTSOMKipiM1GDHvTIFaIULOL7+463ULomEu736aTEdyVXOQ+d46+qxq6KBS1yMWqCdxyhGjd/tdFmCYqHaOTtZnqX+LjXgt1VZvgS6I10F0z/oVahuw5H2e1jqrVb9Zhv7dIgZ9xaAwYREMdfjT1Av1GcLmhR0VZLEVporax5W3bGxK+F8bn10XYNtVJg+bhFh8YWsS6ysYmJqC5x6f6mXuJL7YxX5xG2DbBHZN0+m2Kd4f81F3PsstdZ7+1QVnZjCXLNH2L0Mt0qw117wzAb8qWbZhKx1l9OEPnY1V29BW5y52jpkL+2sXPcPz0BKmzJqNnNhHVxm0bcZWxGMJxCBKCXe46E1YRR8huTmghxfA5RXyxdUtHXt8IW4aEMY00wTO6E06goaY8LKFojAiESmCNxzDbo4SuJIhL2llB84EmY/kSPzF4hge9C0QITvgOTzT2kZg1yJ1pY61WCG9h4f8qtEZVawg/IHsuzT9/+vsZHKzwv+/7PA+5V9wU2tpkpZ2m0nLJRzf//GUsRnDnLlqDNp3dbT6eOsGQWcMRJnNhyG+euB/nhEf+ZPCuIiHCsjFGBlHJOEsfzdK8p8WhsTn6jYAIQVV5bAQJzIaAYrnnrPZEzGPtPgt9pMYP7DxJXgoiYC1STAf9tE9nGH/cx1mpEfXQcb/XdIZTbN5h0Jry2e2skpMRzlaqzErkcybo55nqTtyiximGN6wz0k1BGl33lp1jXPzRJP6Iz98YPNn90VZ+66U/d3TIZ+sjPF3bzcq5PPsXN6FYQd+mtmHCtintdyjfGXB0aoGcEeAKQSEKKSqbv3XuJ1k6NUj/cYHuoR2XnhavGAbNIc1Duy7yUPoCFleqxy0h2D25xsz9o2QTHgNnutXTlV0ezWHBnfsv8E8Hnt/K7/FwohZjsTKlToyim7155/QOEYZBOJCmORqjdDTkG/f+Z/JG9+tbi+DEsUl2fCHEWa2izl7omdXRdUcIRMy73Gt53N5k0KhjYVLTEUbRJHWu1i1Suk0nKksoIk+hDUHsknhF0FAOpoxo59WWX6kB2iBIaYJciNfX4hfv/AM+7BWwMLCEwXzY4jutnRyvjZJYVDhnl1H1G2c0faPomnfXSJ7tI9eXpTSR59yOIR5yr6QGtLVFyfdodyxED4hX4TpUdrrUJwT7xxd41G1gbdkbVZSBc9Jj/Gs1jPVy19P1nX6ObRENZGjnXRpHW/z7B/47Q0aVnLSp64B65FIJPMwW3e32HnNqEZ5HcKDJv7jzD9lvr5E1YlRUi2JkM+vnSU+D+fXnb9sK8dej3WfS3t1hdKjEhFkiLa8UO69GMV5sTjFdzmNXNVa1c1t1W3wlwjKRjkNzOM6eR2b5gYFjfCR+Dug6EV2d76pQfKu8n2/N7CZ50YCVdaJq9SYd+XuPsC3qE5rHDp3l0cx5ctIk0IqispgN+ll5cYidf9LGWq+hbrCX6xvRm+JVGkjXQaQSRAnFhFdkwLz25rGE5O7cAuW9Hpt2FhnsRdlQPKyQfT73ZueusdRSdE3Yi40YRufmT0xvC2kg4x6b+xOU9sPoRIG4FDR1xEudDGc7IzgFA6dQRdYahLdDW9TXQZgWanKI9lCM9mBE3qjhim6v5bXIxugIZNvv9uTupaKSt4lRaxOfS9LyEyzszwEbJEXIuLXJmNeHToREHYO2spgPW7S1yZBZ5nBske/u3Ul5KHb5vVzPZzTRYDhWZcQsYSB4oh3n5fYEx2ujPD03RVjw2LXa6Rb8BLdnhAEAU3abMjj6mkI/gHIUZ7mexq86yKBHBumr0houdUO6hktNBd7JWzsOMpmAfI61exK0hgS7R1YYMqrEREhFKRYihz9aOcz8ao78eo8+T1oThZJCmGLCLBJphYVBWnYYMis0RgV99x7C2KgSzi3c0ulEb4dOWrJnfI0DmVWSMgCuiNdClOJYdZT1UpKRcoQsN6CHhMn1RmbS6OF+GsMmh+JFdtrrxMTVKRSajg6YCzWrUYIX1saQcx5eQd1+gaCtKLSRy9I+OEotb2HuqHN3ap4Bs0ohCpkJ0/yHxY9xsZQjOQvWZqPbur6HtEVPildpW13/0oEMVn+LDyTPMm6WMa4qrogJm7/T/13+p9wTvLxviK88cAhP+nw68zLjZpWcBHAvv76tBbPVHOX1JMMNfesIm0tCPpNm/UMB/6+H/4C99hpZ6XIu8Pnl5Q8xvZkne06hT13oRht7LDJyPRG2ReGuFKU7NLsOLLHT9DGQTIcW0/4QVk0gSlX0rd6MYXWD0ccdGuNxXnxwArLnGDRsckaVgAv8af4O6i2HcuDxndZOdtrr3Gm3OGRf5COHz19TeCEBS4ABpKWNAn55+UO89OIuEvOSnY9XkJV19NoGUb1+W0/ukWfhZyBKh8TktZP1cpBlbTmDs2Iim7Xbv3gllUJNDVHdGSfxo6v83NgLPBA7zwELKkqxHNldy70nRxk6qUidKaN6cWyJInTTZKaVZ9zaBOo4wmTcVBhiBePuMrNmhv7jcRJLq++PnFchaIwKfm3X75E3FDFx7VR/tj3MC/PjyHmP2OwGanahp1JBrjdqLM/G0RSVvfCxzEkecKu4olv5cilloBCFfKF6D2cagzSPZRl5OsRdbt52EWlpW123hQOjzP6cYs/IAn9n7Dt8MrbOchRxKujn8xv3Mvc7u8hd8IlNrxAtLPecP35videtogGRiBOM5mgPOKQTJTKySUxEl73pLpGVLlkJbb1OOTlDTHY4aFXoNzwUikBHVJTPTBjjTGcXq8UUZtHEavTOF/B6CNO8bInFQB/+QJJUrsERZ4mYDNmINBeCAc5tDNBYjdNXid4fg7KUBAmBzvkMejVcYRBsdc0phEmkDzoMu/mut7AI076PLDdwkjYrzRSLYYu4FCSERZ9sMJio4ZghKbONRGET4W61e4y94qlWKNo6pKMVz/k2q2Ga02tDeKuS+IrCWC2hqjVU4+b69r0pQnSrhW0LTBPhOOhO561tZUujm3oTMwlSCjMREJedrQ463faqxTCOWbRwSgLRuc2iLZcQAiOZBM9FD/XRGI/RGJbcn1nnTm+OvOwANkVl8GRzD89UduBuglfwkfV2Twp6rRRm1eBYeZQpdxNidQwhcbCIiZD+RIO5viStnCQ90N9d2AYhWutua/Ew7EahE3FQuluUEkXdMeSV99WWFaP03G7XszciDImq9Zs24StLM2go0tK9fI9XlE9NC841BtHrLs6mQLR6pwjnurOlKcKUQysvCLMBOaP+mn7xNW1yrDbKdLEftyiwiz6y3iLqoWjj9eCSVZifNhnqL3B3doEpa4OEdGmHbWb9PPONLLENhbtSR1drPaktekq8ykQCmU7R2j/ExZ+QZIcr/E87v8tuq32NpQ1cm6MybkrisRkkXM7rqSifsoJf2XyMz3/7AZxNycjxEHetibW42fMFKUZ/H9FoP/WJBEsfEhj5Nr+w5yl2WIpn2hm+Wj3Et1Z2k/y9JGPnGxgL67eljccrEaZJc1hz7+5ZHs1MYwmDsgr5XnMXx6qjOGWNqtRu+SiCarWRaxvYwJlTw/wt+8f59MBxfiY5y26rzT+c+BPa2mLIqJOUETEhkLz2ZFqIOpwPUjzR2MuvfenDJOYFgxcDvLkist4k2th87Ym6x5COQ3TXHlqDLs0BSXNY4K1qhv9ghnB17fV/UQiMvhykE5T22hy57zyH08vssTYB97Kwf2JjFxNf9nEWK+jFlRt2XjcKsSX4m4/to7TXojGqyN9RYF+yzJ/Pf5f9VoOagvOh4j+tf4THv3IX3rpg6Mkqcm4N1ejNXGhdbzD6rZDihTF+5VMJfv7eaWLCxhIGSWnwgYHzPCkV5+0hlDmF2dLENiKMVoQ3vU44t4DcOcHmff0IpUnOtjGrbeTKJlGhcOWDLvnJ2jb+nTso7XV4DWvQy3gbitQ3zt1UxxdLSCxhEGho6g7/vXqEp8s7eOGZPez6XAuz1EStb9y043tPuWqhtnmHy8jHFrgjs8K4UQc8JAJDSNAKheZ4Z5SXvraf9AVN/nQNObPUTaPq8XHxbTOUp763j9Jeg78w9jKfTpxgxNBE2uTp1k7+y7lHqc2n2DtTR8wu95Qt3tX0lHgVtrVl72FxYO88H8uf4UFvhrR84xWuJ2xGDfuansQ1pSlEMY6XR8ieFMRXQxIn1lDrG0S3QtVgzMPPujQGJRMHVrinb56HY9MkhENNeRwvj1BYTbP/eBl14sz7QrgCWy2DFQeSq4zbm0gkgYZ1P8l6M4nR0T25SnzbqAhVr2PEPNwNydn1AfYkByE5S1q63O9owAdev+PclWiLwWzQz7HqKH3HNNmXSohCkaiwidK3kKWYYdDJOTSGJPUJYKpB3YmB53YjYq93HkIi4h5ROkYnK3g0d4FD7gKZrZT4ju6OF2u1BOPn1ggXFm/YKb0ZQgEalBZEWiOvEktagjYlmAbCtLYaS2zFRl95LaTRFa+uQ33IpLYrIjNR5n+c+i7j1ib7rQZpaVNWPoUozunSELlTmtiqj5xbu1bE9RjaD4jNlLHLcabvSRAQEWmFISSuMNnhFCilY2wMxqlPZjGbAmUbWA2JsxoHaRBmY9TGBUIJrKaDY0qcWgtRMi/n+QnDQHguwnVpDdjUJ7uNUl4PZRmknbfXEfK6sBUdvlpYyy17tbPNQU4XBokvSowXzhLd6ulVb4SQ4DgIz6Wdg08MnmKPs0ZGyivCdQuFYi1Ik5zVZE9WkYsFos3iTTz494Ct+0IlXVp9Bn5Wc9BdYrfVlYEhEUt+lmohgbthYBTrhD1cqNZT4lWPDVI6nKa8R/IDfRd4IHaevAzhKh+2N6Ki2ny5OcFcp5/fnrmb5oU08UXJ4IkGZrmJLlfR/ruzlblRdCZzrD7o0BoL+czQae6MzeGKiJWow+9vfISZZybILAlkpd6TW3k3koqyeGlzjMXVLGP12+hqaA2tNrlTEbV6kse9PaiBp+Aq141XEuiIlcinrGx+q/ggz25MslTIYM24OEXB8OkKolBE1xtdoXOrCFe64qHVZ9AcEqiJFh/eeZ7vWjuo3TlILJPAWNkg2iwhrG7KDbaFSCVRMZeVx7JU9mn69hS4NzZDXjZpa81i2OJ/XfkU37mwG/eYh26+QQT3BqNbbdLnmzgVh7O7hvjmRIoho8oBCwYNn/Qja0wP9yObcczmKE4JBl5sYVY6iCCC8Mo4p1IexQMJOhlB/YEWH941zf7ECne587gioqxgNYr454s/xLPnduBdsJk4V8Uo1ns24noJHUWIagMzUnjzg/yva4+wL7bKTyTOk5Iud7vzDJkVxt0iL/ZPUPY9FsoZam2LzcNZvPUHqE8o9hyax1cGc/v6oWFhFUewK6NcquvREiIHtAn+rhZHpxZQWtCOLJQWaC1QVynG89PDDH8p9jpH/d4gHAdxYBedgRj+SHcRH21FFmtK843z+3BfiJE9G6BvRz/nq5CuQ/PeKeqjJsH+Jvd5F7vONEJ2A11bC72Tgc93mnv4w+UjJFbCbhrVbea4ImMxOo8epD5iUd0Jak+TyYEiU2aJQAuebCeZ9of47TP3kP+uSawQoCu9K1yhx8RrayTB5mGBmKzzseQJjtpdm6u3SlHBH23cydmNAcwvZdj3xUV0s020WSS6xUL/9VEbeXeFe/JrfCb9ApOmzWIYshh6vLA8xsh3QpyNNqpcudmHetOIdDdfsaw8lgoZzBUHu3p7VcyqZpP0C6skL8Q5sydDcKfCeYNoT0eHzIZpFoI+fv/kXSRedhmZiUg+fgbV7BYfRLeQYL0Gy6STFXQGQ+4YXeXn898mbnb4+t77CbwkmSBC1Ord6JjnoT2HzmiaTsai+liLf3T0S+yy17nbbhMhWA4lBRXj8Zf3M/5Fgbda76lJS7VamKdmSXoe7l07+fZd+zngLbPTnGXQsPm3+36X1d1pfG0QaJPPrd3NBb2H+JqD2VJI/8r33Bww2fhIh+HBMn9z6gl+KrkEgMSgqSNO+y5LYZZnj+1i4ovgrtUQJ84T3gqROa1QpTKi2SI5P8AXzh5h1+AIH9o9TdaQHLFdjtgdPu5NQ3aalvaZCaGsXJ46tIdzjUHuS13kp1LnCbTimR19rAYZLnbyrLTTlz9GCk3c7BCTPh9KnubDXpuODihEIQGCQEuiq8TrPzJ+lCieuaGXQtg2lf0pKjskI8OrGFsepgpFTZsY0zHGvlZGblYJw1tgB/JdIDyX4gGL2oGAD+28wL1OE0dcaU90aaf2eGeUzy7dzdzFPAcWqoRLyzfrkN8zRMxj7V6b4Eide8cX+Pmhb9Mnm4yZ0NYRj9cO8NTGDowTCfJfnkHVG0SN3vaJ7ynxanQUZkPQaVsE2gCuDL511aGgNJEWBEgCLSlEScpRjM0owXynj4VmlmdO7cLaNBlaidCNJrrj31LOAkZfDhH3aA5KdvZtsiO+SaQFhajDb5Tv5/nyBMFMEqfYwCg30bezrdHbQXP17XLboFU3+iqFIHk+w09N/wSu8fpJIq3QotCI02zbuGddkgsKb73TLUK5xYvYLiM0tgxJym7r3C/s82nnLIJElvhUisgRhG73n9aAIExo9g6vM25tkjOaSCQ15fOd1l6mW4PYBRN3vYlRaqJ6bFdG+wEYBiKEUEl8bRKhMYQgZ7SRQqG0xMfgzvQSLx6cojliIn0DGV0RUn5KsWuswJ5UgXFr83KhWkcHLIbw65uPcLYyQGzBxC3UMcrNy93Zeh6tu7tpvo9dV6iCy0WZ46vD+1lwlumTTWIyJCNhwIjjYJGTLSya7HbWcGTAlL2BK0wsNKNGBVcEuDKg36pd/phAG6x20pTDGKc6o8ASC8Eo3yrvpR44VHyPTnhlSl2ezrO/sX5DL4UwJO2MoNOvyHuvXogJTXcMuB3GgddBxuOIkUHCfJLGhGJ0fJODiWUsYVxuSKBQFKIOTS14qrqb2ZkBvEXrtmvUICwbmUnDQI72gGJ3vsi+xBp9sklSBhiYNLXmWGWU2YU82Q2N9v2uw0KP66aeEq9WpU18ySZI2jSUA1xZ9c+EJl+r30FbWVRDl3rk8NzaOKXNJLJgk7wocKqKfadrGJs1dKVGVKneUluj0rbwD43TGLapH+7wN8a+Slz41LTFqXYfv/b4Bxh8BnbMtZDHL6D8AH2br57f96iIcH0DYRiM/bcG/EmaN8roNYChyEeoDjTX0e022g9QrdYt8xy8FVwjZMTQ/ETyDA9+5AKbUZzPFe/ldGmIjNMm79bJWQ0eTp4nb1YZNer0GwYGAkMIliObX55+jNJymtEXFcZL06gg7K2qa61RrRYiCDECqEcOHdVNoZJIxgyLESMCIiBgf+5ZfuATL9HWJtFVHtcANhF5o4UjICNNwKKtQzaiiMebB/j6l46SOQfjpyqI0xd771q8CbrTNdmPLzTJnUjQWkvwH+SH6Es12J9ZZ8Ircm98hk94DSxhMGzEGDQ04+Y6gV7FESaOsEHAATsg0i2U0yC4agJfjeA/tD7C2coAxzZH8KP7KCxlGPyWgVuOcFebOLUrc1a6tUS0emPFK45DfQIG71jnodzMNV7n7xfEyCCrHxukOST41CPP89cHvkFOgiPi3RdoRUdHvNAZ4HR7lD89eYjxPxW4hQZ64/bKc5WZNP4dXU0xfnCVvzP5ZUbNKpOmQGJjCEFNR5w8M87gE5LUxRaqWr8l6kZ6SrzKdohT09gVyVONPRji7OWfvdCa4qniTtqRSTOw8SOD4moaa8PEWxekFkLsatBNtC6We86T7E0RAmHbtHMWzQFJLNUmbzRoa4NTnVHOtYbw1iSJhRZmoUbUat9a53cdEYGg4CcpOgmaaoOqSqM6BnZHIMLbR6BdRkVoFXWLZnq4cOY9R+luAVPUzS20hCQmDNI2tHWVQvocGatFzmwwaFXIm1UecDa3Cj69rUJOn4VQcbIzQWkjibNm4pQ7qF5tpbwVVTRaMFvrwzMCCnEBtIkJayua1BUojrDI2tDdgnitsaGbglVSbZajiELkccEf4JnKDmKrgsRSB2OzRtir1+LN0BrZ9HHKCmVIymsxlhs2QWRQSCQAGDVexBGvFV0Lt/55fZajJDO1PpZLaQLfJGobOCsWyfkW1mYDFldveicmIQTKgrTTJmG0X7uxxe2OlChLoCyNIwMsNCAIdHQ5zaOiLL7X2MWJygjGuo231sAo3X6eriLm0hyyaQ5JdiXKjJsVklIRYVBWPnNbNqL2poG3EWJU2j23+/R69JR4ZWmVTKNFcjrJl6c/wJ+4H7z8I7OjMVsKoUAqjathdyPEaLYRrQBZrqGDAFWudKORt1CUSZhm12Mw38faA5KBI6s8mJ+lpmy+UjvMb3zjMbxVyfAzbaxzS+hm630rXLUfkLog+WLiMKemhohNdfh6+SDJ0zbpixHWauV91wbyfUMU4ZQ07qrJ6u4UEfpyKaeFwYPuHPvtFVwR4YoIS/AqP8ffqe3n3738EcKCy8gTgvhiA2t+o7fdOrRi8Nk6m81xvrhjnNUPpziQWOVjyRPsNJvEpPGavpWv5JJ4/2erH+Wbs3vorMTInJY4Fc3wy5uIzTKqWnvT9+lpFlbINFqkHZv+4wkix6A10Mdysp8L/Tv5teHHeKfBSNmSZE9DfjPCaKtumlutglwsQKvduwug9xvFCv3HUrSXLH4/fR/fmdrFB4fP8xdzT/JSZ4z/c/qjFEtxEs97pC+G7FxrYJxfAj9A3QpORG+D1r5BxF9c52P5WX4s+xxDBqxGkrNBgt8qPMT3PneE+LJix7k6xvImutG4ZbRFT4nXqFyBcgVmIfniW/udS6mOvZ2d8SYYBjgOKuHBWIufHH+enFmnrS2m6wPkjgnSs22c6VXCtRu8DdVrRBHepqK9aLEYz3JuaJjZWh+xVUV8oYmo9U7BzTbXF601VlNh1Q0avo3S+rIdkCEEY6bDGNAd1rpD26Wo5CXbsJONUYzTcZJrmvTLBfTiClGvt8XUGuPiKgO1LFYzy4mDw7RDi33uCnmjhaEVsTeybNoaHQMd0dSa59bHUWcS9J+H/Nfn0fVuodqtlCbwekTVKmxFP8VZMKVBdnQYlU7gD8Spj9rodyherZYmfXwTVjfQrRaq3X7dGPc2Nw/dbGIvljDrceIXU2xEOV5wxvm+dILTrRGK53PdYNATVfRzJ4Db9DsUgnbO5O/t+grfH7tU2O3QCUNm/Twvro8y/qebRCfPonmzfYfeo6fE6/sNYZoI20YO5qnfMUhjyGDP8Bx3enM809zF59bu5qXZcXbM+9iLZXStfrMP+aajg5DU+TpWPUZjyeU3zn8EuwIj52oY6+Vul6htbku075OYb2K2Xeb2ZnjhQJIho86kKbDEFfuwtajDTJBiM0pwojVGKYxxpjLIej1BdTrL8PEIpxTAJeu8W6CDjm62kJuC9LRF56sppjNp/uGecbL9NQ72r/Gx3CmGzAoPOCUsIflyc4DT7REW2llma30oBKGStAKL+lN5Bk+EeKttdL2ObnduCfvAd4RW6FoNGYY4foBZj3GNWe7bQAQRFCvd/NrbQOjfrmg/QJSrGJ2A/DGX5KLJxsUx/vLo/wOrJhk8o3AqAcZa+ZYTbG8VY99umjuzlPZJMrKJQlFRPm2t+c3SY/zBmTuRFzxEvXc8rd8u2+L1JiIcp9umbTTL+j0m7aGQvzBwkoeciM8Wc7x0fCfxOQP33Dzh4tItlQrxXqEDH54/iSsknhT0G0a3pWMYdAei7Wt026J9H+PsHLF5l9iR3TzV2MNed4W8sUz6KvG6EMb4Wu0OZpt9PD07RVS1SZ4zSS4q+pbbWCfnum1lb6HuOapWQ9VqsLbOwMsWMu7RenAv9eEcTx/KsnZXkgPpVQ4OfJMYms8V7uG5+QmiNY/EnESE3UpzGWgmnqugXzwDWt26tmlvFa2v7Oitvrv8Tw23//W6DdCBT7SxCUJgLa1gS0FKyCuLlihCK014izz7bxshaOzNsfKIgbGrRs5oEmlJIZJsKo8/vXiQ7Jc9Yuthz3u5vhHb4vUmImwbEfPwMzbtsYBkvk4l8vhmy+V765PEFgxiq7rbom570LyC1qCjrpPHdgTk/YPu2rgIIL6i+c2z95GMtfmDzAZx80qhxUytj4WNDEHTxlm0cBuCxLLCW/exSq3Llem9bgXzmuhuBznVEjgbLbT08FMW571hLqb7WW6lsWXEU2d3YS9bJDYF8WWF2Cp2k5FGVpq3nO/1deF9MIbqICC+JDidHGOpkuaFoUmk0CgtWGsnia1oRKPdtZC83bl6nnifICwbYVu0swbBoM9opoorIpo64huNgxyrj9FaSpAvhDib7a594i3Ktni9iYhUgmAoQ2mvyd9++E/Y5yzzS0sf4b9P34N8Ks3EH64hGq2b2ht7m216CdXpgB/Q/yfn6f9eFi0NitYIxavyGO0gYnfQgqiB6PgQqa5lWMfvFnV2bv3FoPZ95KkZYuct4i966LgHhkHDG6AuBAcape65hxH66kYDSm8XFt3GRKUKY78zg07EwLZYcicv/0yEisHVC93GNlF0yz8D27wCaSBzGUQ8Rnkv/Lmj32Ovu0JOwlok+bfPfZT4cZeJ0wGxp86jff+WHgu2xevNQhromIufs/HTcNhdYNKsstGK01yPM7Cu0SvrKN/fzq/aZptLbEVT3sg27H0xJestEdqkuyX+Ct6HcdVtoOsLvbL6mj96XzwX72OEFAjLQjsWYUxzyFtkyKwQaM2m8pAbNslFhbvWIiqXb/nFy7Z4vdEIgfQ8hOOwcX8/hccCBkfWaWuLZzujrB4fZOhFTer8ViHFdhOCbbbZZpttttnmjRASLBPtWKh4xJ3OEhXl8IX6Pl6sT5CckaTPlJGFMuEtLlxhW7zeeIRE2BbCdaiPCT52+DQjbpm2tpjz+4kvCjInSt0b7BbocrHNNttss80229x8tGmgLQPhKEZMQTOIONYY52RxmNh6hFhcQ7Xab/5GtwDb4vUGI+Mx2vfupjlo0drhszu2zkyrn380/SO0ih4TMyGyWEO3Wjf7ULfZZpttttlmm1sAHUVQrWMEIdmnRjkqfgHdNrALJlZNMDZbQ7e67cJvB7bF6w1GJuKsPujQ3tvmoV0XuTc2w7c29pD+XILRhTbW9DLheuGWz0fZZpttttlmm21uECoiWu/WAQz82jqD/73bdU9vFeepdgd9G7mMbIvXG42UaBNMK8IxQgw0kZKYHY3RDrvWT9vCdZttttlmm222eTtsaQfVbkP79kgPeD2EfhtCqb+/X/ub7yPTtDfA7pNsX4subRq4xG/2Ydx09t6zk2PPH9++FkCNkrawxfa12L4WV7N9La6wPYdcYftaXGH7WlyhRklr/doNnd9W5HVqaopsccf1OapbnNLUxe1rscUz+us8ID56sw/jpvPV536PlMhtXwvga/qzL7jE79m+FtvX4mq2r8UVtueQK2xfiytsX4srfE1/9oXX+9lrKtptttlmm2222WabbbbpRbZzXrfZ5jZHHtnP2sNZhIbkfIhdDbDmCoSLSzf70LbZZpttttnmbbMtXrfZ5jZn7eEs//hv/yZtbfG/PP3DWAseo48PYW2L12222WabbW5BtsXrNr2PEAjDQMZiYJkIzwPb6hoy2xZCa/ADRKTQ1Rq63kBrjQ5C0Op9694gXRdh2wRJwWFnhZqysL2A0HFQ1nbG0DbbbLPNNrcm2+J1m95GGkjbQmYztA+O4qdNyrsM2n2aMBMRH2gQBAb+ZhqjYTDw/BDpE2WMRgu9WUKHIarVev8JWGkgJsfwh1O0BhXWdmfzbbbZZpttbhN6X7xKA2EYW38WCCFAvkbUSHWtJXQYdv+7Zcy7zS2KNBBSIGwb4TjoZJzmgEUnI2hMRLjDDXblSnyg/zyVyON7G5Ns1OPUVzLEVmOYloHR7kAQIIIQHQbvn/tBCIRlEmVjtAZsooTCEDf7oLbZZpttegAhum3aDeN1NYWOIlAatNrWEj1Kb4pXIZCeh/BcOnftoD5i46cF7RwoR+NnI7C2biahIZSIjsRsCHKnNO5mROxCETUzt33j3YJI1yW6ex/NQRc/IfFTgnYfmEfLDCTrPJxeY9LbYNCssMteJ9Ame91VKlGMr2X2M/dIlmbVxVzbgV0RDD/Vxl4qw0aJqFS62af3niJdFzExSpSLM/sDcbJ3F/jM0AVy0qRw+zRX2WabbbZ562wFwWQqgR4fIkw6bN7h0hoSBHFNlA5B0NUTkcBdtnA3ILESkXppDZotolIZ7fvbeqJH6EnxKgwD4TiIZIKNQw7VAyHJoRofHzvPuFvkz6ZeZtBwMOlGZDdVi5nA5cnmHv5D5mPE5y2G2mnMOQPBlWjsNrcGwrYp7YtR3QVBVmH2tdiRL/KLuz7LPst4jd+IeMhdAOAXsmeRSI75EV+uHebbG7spbE6QJYPjB3Cbi1fheXTGMjSHLCYeWuSrB/5o6ycu4N/MQ9tmm222uSkI2d2NEskEtZ1JWn2S5kfq/ODuEzyYuMCnYhs4oiuHWtrnn6w9ytfn97J+Mo23lsEs2YhGsytet+kJeku8bq2OjJFByg+M0soJqocCJicL7Ehtcii+RMZoUIws2vrKTVRTFmUVIyY7DE4VKaSSbNY9Blr7MIqNbgT2NhKwwjQRjoPMpGnvHyZIGgQxSei+zb1hDenZDs70GrrdJiqWoRd6H1sm7bwgGG+TzjTZ01dgd7xARobAa4nXLvIq2+KM9NnnrlDJevze4THafS4juh+5sHx7F3HZFu0+k1a/ZNxpXvOjsvII5+NkzoG73tzOgr1dEQKjvx+RiBEOpmmOeESWIPQEr92rZgsNsUKEu9HGKDXRc4soP7g8JgjHQXouwnXR6WT3GVotEFWrN+a8ttnm7XIp4rpnivqeDK2cQXk/hJmQB0aXOBxbYNQsYYnuvGIIiYXB4dgilWGPZ7VgIUzjFmIMf0Mj55fRnc5tpSduVXpKvErbQsRjNA4OIf6HdT49NM0HEmfYY5VwBbhCUlSKp9uTlKMYSksiBAYaRwYkjTb//sB/x0bx8+k/z3yun/SFGNmVdXStdrNP77ohYzFEX5bm3jzzPxOxb2yFD+fP8nBs+i2/h4GmrS1+7vH/gcnPjeAW2sh6A9W++eJVuC713QE/deQ57orP8bC7hCsEMWG/5fcYMx36jTXudpa54+OLnGsP84edxxh91kEHITq4PVfQwnOpTho0xxQ74pvX/OyCP8jQU5rUV0+hOp2bdITbvNcI0yLcO0p9zGXjqOCuR88x7pX4YOoMfUb9mtcaW0uYCEFbW/yTcz/C8rEBUhfiDP1hDcoVVKe72JOZNPRn8ftjlPa4CAX57wqoN27vBeE2tyZCdBdbts36Q334P1hmKlvifxv9JpNmiYxUxKSBhcGloEikFRLJZ5IX+cHEBWrDmvJRm98qPsjThfvJ1JqoSvW20hO3Kj0lXkU8Bv052n0Gh7Nr3B+/wC6rRN4wKaqQucBhKczyeHk/hXYChSBUEltGxEyffqfOrtw6ObNDyu1QjWkiZysh+zZCpJL4o1kaQxajA5vcl5vjg/Ez3GO/flTylRjCoKM7OMkOyvZQlsR4rUK4m4EQCFsxYFcZMivkDedyVFXx+j2fFYpIaxTdAcgVJjkD9jsrxKXP7+YfRUyNIRst1FoBHYa3zQpamCbCttFxjzABKhGSNNoAbEQNzgcuz1Z34JTD7UjZbY4wJEHSop0VBLmQBzMX2ems87BbICs9ABSajg5o6ghfa4rKxFCa8WSZteE0rZqL6s8iDQM2i6hOBxGP0cnHafdZtPsEIgLt2QjDQEfQ/dd1PpetXSZhGOA4CNMAz0W7drfw5s3QGtHqQBBCGKI7PkQRUb3RG7tM27w3CIEwLeRAPyrp0RoU3NG/zh3JFQ7ZmwwaHh0dEGjFmvIpKAcbxYgZ4oju3BETkqyECeBMYo5v5B8kMZLDcG0M20L7Aape3160vQ5Gfx/kMt3n1LhWW4hGC12td92A3uE17CnxGhyaZOUhj8ZUyP+cPc5dzjptLZgLNf9+/eN85YXDWEWDvhMapxKBAhlpmpZg05GcHjaY+Yl+Ppk/RaXloi2NMgXI20S8bm2B1O4dZeEHFJl8ib899Th3OkvkDQ14b/mtIt0VelpvXZvb5Plbi7oDUZ/sMGzYWBjsNH3ycpn7P3iaJ0d24p3tZ/ILMWSxQlQsoW+DKKQxOEAwNUB93CXY02L30AYH3GUA/s/NB/ntrz5KfFkwOrfC9pR9m2NZVHaYlI5E7N21wicTJ8nJiKR0UGia2qejFS91Mvxx+S6WW2leXhgjbJncuXuBf3b/H/Kbow8yH00QW8uSf8JDzi9ROzzA2n0GQVLjjNTotCxap+LEZj10u3Nddm2EZV8zXhsDedp7BwmSBtVxkyAJrX1t7t01hxRvPmg1Q5vjF8aw1i2coiC+pHDLEbHn5lCbxe2C3tsQYXa9wGUuw8KPjlLbE3Jg/yx/Y+Sr5GSbnLQJdMSpwGAhGOB31u/j2RO7MFI+f/nId7jbm2WPVWHYuDKf7rdXUB8vce5QkthCktjKEMmlAOeJU6hm8w2O5n2KNFj78b0YP7RBzArIuY1rntcXXt7F4JMCbz3A/d70Owqo9I54FYJ2zqYxGZIdqTBlbdAvbRajgJqyOVkcJnXaJLauyD2xSLRe6JrQqwhh2chEHG//BDMf7uNCMk8nMNGCbgXhbYKwTIRp0uw3uHPPHIfSyzzgLjBmXommvF205rYQroGOCLSiqGxWwzSYFQaNCEsYJIVNTGh+qP9FMlaLPwkPE6ZdrFanGzW62Qd/HdAxl9aAQ6tfksvU2ZncIGM0ADhRGaH/ZU1s1Ydyj0VdtxpQXI1W1+8bEW+wcH3V5+itqP4tLmaEIfHTAi/fZE+qwJgJMeF1nxECmiqiqWHGH+BYcZT1agJ5wSPeEKjdgh9LLLI2eJpfmhhBWSZ96RjSdWjlDILxDk4sYLKvyGYzTuhlwTBe277wbR+4QNjWNfeDSidoDlp00oLaDoXOBfzooZf4fw89hyHe/DMrqsU/jn2I7y7voLyaREuL0BPE4zFErQ6+f9vsvrwtLkWthXzDZ+S1uPzc9GqqiJAIp7sLVZ9UHNi/yPcPHudeJ0LioFC0dchq2MeMn+d0YZDkOZNOzuD87gHGrSLj5rXjZE76PDY6w9nkAOetQZRlI0ML17agJXrzOrxdLt0T7/Zctsb02iT8f/d/niGjzg7TuJxXrFD8aPjDLF6cAr11Dd8BN1+8SgOjL4eIuZT3GHzo6HH2x1cZNHwCDE75g5xqjbK00MfO4x3sYgtdqV7pnkTXk023WhiNDq1SkuOZEfwLKfpOQmLJR/vBTT7Jd44wTWQijojHKT883s1nvKvFXxl4mSm7QOZ1Jg2FoqkCAjQzgct8mGPAqHHQrl3eFrnVqSmfooLjnWF+8fwn2CwnCJsmom2QHKvyF3Y/w6S9wQPuMnnDYb+9hpsJODs1wPo948TXPDJPBrfFyrl2OM/aT7QZyNb4zPgLTNkblKM4n6vDyaVhdsy0MNer6GbrZh9qNxctFkO4DrUP7mHzoEHkaKKYRoSCxLzArr37ySCIQX0SIk9fu0ATIDuC2KrAaGkMH2QIdk0RX2ggmz56YQV1C+a1CdNEuC7N8Yi/sOcFdrtrLIZwIUjySwsfZr2eoNFyCH0Dse6QvCBJNDWxtRChNDP39xHt0tztzfLIneeY35nlQmwId+MOGofbfHjfOc6UB7jw3AROUdA3V0U3mtdFAJpjo8z99ATN8ejy96VjEam+CjHH56H0Jv1OncdS56iqNvKqtAFjK0phCQNHXJkMXWHyqezLTHobXBzJc2F3P+v1BGcPDGGXRxh8NsB7cQ5abaJa7fYQIa+HEBiZDCLmEQ1kaY3F8ZOS6qQkjGmUA8p+4/M3a93nxqprcqfqGBtVdLnaUxaEMpehfXic5pBF364iPz70AofdBSSSlajFF2p3MN/J8ftn7kQseCBAD2uifp+jiXkOOivkXjGtZqTkE5njHElkOJYaZ2ZXH6fHRjHb+/E2AuwTC0SFws054XfDpfSKHeOEfQmMpo+sNqHdIdoovu3aEOE4iH07CHIxgqGAvNEgKSPAQKGoKJ+G0qzWkjjFrR30dzh23HQFIwwDcmmCXJz6zpBfHP0SSWkDDk0VcKo1yvdKU3jzFvYzL6MajVe/iYpQ7Qiz3sYsZVlMZUhehP7vbSBqTcL2LbwtbBiIZBLVl2LlUcH9957hsew0fzY5uzVIO6/5a5HWNLSipiTPt6d4rjrFntg6eeMl0jLCkm89P7ZXqSnNbJDlK+U7aH9xgJGLIWYzwmi3Wbs/yx94d7Ivs86ewXXyBuyzDPZZFWaGjvPvDg3R6bNInUrC4s0+k3dPaa/Blx/+T4yZHhJBSMRvVMd5orIHFjzMs2eJNos3+zCBLSu8RByScZYfFfzCJ77ETmedR9011iLJXz//Z5ld7XvXn5PP1fjV/b/LUbs7OF7KhQa4GEb8i6VPc77cT73l0GlbiFWHvmNJ3FJEolS99cSrEN0oqGOTHqvwD/pfZjHsMB308bXKHcx9a5L4kqa/qrEaEe5qDU6cv2z/I2MxGj92EKU1d9pV/vexP2Yjsvhv/Q8x18zxwdw0H4uf5h/7P4x4Jk9iroG8uEzUbl+Xw4+Gsjzy4y/y70e/3f271hivkddaUz41fe2CRNItuYlJjYlxOSprYvB9XpNPeOcgew5GoKTaPHlwkLPtYX5NfZyphSyiUt8qPLuNk2qERGRSRLkElX1JNo8IgnzAn7vnGe6NX+SgvcaYcUX4v/LaR1rztVaGfzv7cRYLWRAJ0ucNbK17y4IwnaR4wKE5rPnZiWP8bGoJtp77hTDG55aOsrSRIfs1j74XqxTuS1H+QJvxfJn7vIscsCzg2mhgQjp8KlZDUSFIzhCh+T9y9/Kb5Q8QW3UZW07DLSleJcK2aO3MUZ0wccsesRUXs9ZBVGtvW7xKz6W6J019xCA/WCAnQ+JCYghBpDWbkaCoPKp1j5FihF32u4HId0APiFdJmIvTGnKRCR9LyMsTTIDmRG2EU8tDxEtA9CYDSxDibAqaTgyrAdowiEZydI6MIBQ4a01kow3FMtHG5hu/181ma0Vk9PdRv3OEVr+BO1rjSHKJKbtwOQT/eigUa5FNIUryhyt3cu78MCfHhji0d4EJs0RchJd97Xodibxm1fayP8Ss38/LtXFeXh+htJZibKlr8SNbAcIPia96LFzIU8gn+GjmFHm5QEwaxITNlL3B0ESRVTtDezSBVxhA1xuvvTDqYYRpIg7uxs/HaUyEJKVAoZgPOxQij99evo/z54fIztJbuw+G0Y3+JGNoW2OJCFcEuMIgLUMOZ5ex5LsXEcOxKhGSovJJbn33citCl5M+h5LLxE2fku9RDxwWYxk2RRK7ZGJXh7FtC12pEpUr7/pYbgRGJkNwxyS1YYfB5CJtHfJ0e5LfXH6A82v9pBc08dUQqxEiWyGy0iQKwivRRq1BX4pgSkCRlgH7YqukzDaODJgJc6w1kziV7u9f7/sqVAaBjojQKK1ZCCUvtCdoK4u2tlBacrI+wkzt2sWNY4SYUjEVL3IgvoyxVdgphSYuO7giYJdV4IAtcYRkxCzhOwat0ZDy4SyJBQ+5VkDfRkVcl6zNsGxEMo72HIpHsjSGJa0hjbmjzlCqzl53hRGzREbyqjnh6tSMCMWoWebO3BJxy+f0kUmaQzGS8y7J0RxmuYU6P3vzagikgbBMVDpGc0QTDvsMW+VrXlJTHqvlJGHZJrKhPRKjNSjYObzBzuQGBpqKanMqiDPr99NUDpUoRtZs8PHYOQYNm0sKZZezhr2jRi0eo34gR8LYC4XSLROBlbEYYmQQlYxRPGBR2xnhbBq0ci5e0SGzluzagr2VvHCx1Q0zmaQ2ZlCfUtyX2cQW4vIOSUDEQphmNsgTVWzcDR+z3Oq+/zvgpqsXYdtUd3pUd0hG8+XL2z8ADaV5+sIO0t9zyZ5789wkXavRfyygs2DgFkNUzGL9viSDPz6HKRXnnp4itpQm/2IS+d1iT28RScfpGs7vGWL+xyPGRwr81cnv8un4RRwhkbyxbVRTRzzf3snZ5hBLX53g4G8vsvbxUb7ylw7zUOo8OWMOp5fzgV9RjNFUAaf8JPNBjn998pP4F1Kkp2HoiQ2Gm6voUgXt+2it0UqTbbaJreWp7EjwByNHyQ3W2WOViJnwYa/AwYO/zuNTe/j3Z3+EAT2Be7EI0zM36WTfGTIRZ/aHcyQeLPDnRs+QlDbFqMNnq0c5Xhul8IVxDn5hAd1oEtXrb/6GNwhh2wRDGTr9DtrrDlwRgghNTtr83fzjBP28yleiK6de/++v/H81ZXEuGGAh6ONuZ4HdVjcvXCLIGQ4/l3meIAPR1q3W1Abluxyeae7mv9ifJHdqlPTpBNwi4lVNjXD+Z2z6x0p8YuA0iyH8x5kPEf7eAMOFiMRLC6hypRsEUAoVqdetuDcQuNImKeHHEtMEWvON1iR/WDzK8mKOA3NF1Oxit+3ydTsBRcn3WAgVHW3Q1ia/V7qPzz97L7Ipkb5ARpA7qck+v3Fl/DYkKpGi4xg8vX+KLx04etnPVkvQqQDLC/jgjgv8q5GvEBMWhyzNlLnMx+45ybf7dlF7NsH4cZfoNrLQM7IZouF+woxDZYdDJyvIf2qRfzL1FZKyTZ9s4YqInJRYQmK9hhVhpK99wvZZir+ff5x2PyxMJChHMf6v5cd4+fw48ek+Jn61RLS2fqNO8Rqk5yIScaqTMSbvX+Th/hnu82a5Ooq6FGRRMwmS64JODtYGLeyjJX5x52dJyoCGNjkVxPmXs9/P2YvDiIaBUzTo9EWoj/4xn0mew91KTfl0fI799/wqL7Un+Vf8AInd/Qw+l8D41kZPa4tLyL4cGw8P0RwS7Pj+Gf7R+J/wtfodfGn5IEvzfSRm8xiNJqrVftMIrNzynQ9Hc7QeqvMzB57nkfg5EsK6HMHvaMW36/t5oTROfNbEPHm2+97vsPHDTRevSEFkCyJP45lXBsJAR7S1RDdNnLLCrL/5IKkjhV3xARstoZN3affDB/rPY8mQU0MjtEKbIGW9zmZ7D3Cp77JtI2IeQcIk11/mrr5F9tirZKX7ur96tVXUZiQ42xziZGUYd0MTLS7jVEZoRRZt9c4SpG8YUYRumpxvDuKKgLi4SFkleaaxm7l2jtZqguSKILkQoM7PveaDpStV7FWXWNzkQqmfF1NTpGR7q3jFZocJy/YqfkrTSRs43lv3kL3pSAMjEUdkM7TzER8ZmOeQt4hE0tRwrjHIhUofXkERzi3c7KN9NUohtEYojWgavFCboBjGccVZ4sInJk2sLQmqthazcmuPWF21uI0QBFpSUy7Ra1RmbkYJnqntoh45lBMxFuxVDHFpMrbodh0DVwRYIiIjfY7aIREz/Kekxo8LlGN2n8lbYDJSnkks3+BQ/wqDVqV7bVoufevdXQlVrlybCiEEwjTBMJCpFCIZR3ghUoit6FJXAaali0IRaINCO4FoG4i2f929kkUQMVvO8a3+PTSVQ1tZPLsxibtiYjbB6IAIITnXIjp34cp3IgRGOoXhuiTj43Qy9qVdYpQBftsmTJgsDGRoa40rFI6wSAAjbpn+dJ2Sl7htXGmk64Jlofq7ea2dlKQxLPAzmgf6ZvmwW8UQAol9uXgp2BKpEZqmDqgoTYSgqUwiBCOGT7/h4QgLZyu1YNDwUbQ5nZtheShFaaO/ez/dJITrQDKOn5AcSBTZ666SFCFgUVFtigoutAewKgK7qmnGBGFcMxRvMmlGRAjOdDIs+H3MbeawVyysusDd1MiOwTPVnYxYJXZZm4wYHSwh2WeFwBzeQJNWM0EnZ5HwvFvCS1w7XTu9Tk5zILXKUUdRVRdYyGXZrMVRnolhmdB5C8+FYYDrEHkmuVSVI94CQ2YNkJeLqTcjwWyzj6VKGqsGqtF6V9fo5ovXVyC3TnYl8pkJ+7E3DRJLHcxSk+hNqpB1q4V1cQ0zGWfhhwaJHqxyeGiGTyePIYWmedRheu8AxzcOMvQl2Xv5TUJgJJPgOJDP0hlIUNlp8sMTJ/n+1EtMmT6XJtxX0tQ+TRVRUCYzQT9P1Xfzh197gMS8oO9CG9mXw48L4maHuOxwHWqD3zNUvcHw45LHZ+/h6+49hJ7GbAtiKxqzCTsXOtiFMqJcI3ydyI9qtJBLayQ6Ac3PD/Nrwx/n2e+b5Dd3fvHypJyRLfRUi43Iw6oncY7fGiLFHBli80PjNAclh+6c4X/s/zb9RoAlEpwJ+vnms3eQmDUYvtCbOZu608E4v0R80WV3Oc/5bx7kZFLye0MfInKhPRwi493v9ZKVm9iKxF/6u/Yl+BKzZpCaAeM10i5lpDE6GqHgmHMnkfUag7CAdp/AT2vkwRp/cN9/xsZAeYogYaIcs6eflauJPJN7Ri7ymf5n6ZMNLKEIQ4ldCzBqnVdtz8lYDNmfIxzMcPFTSdqjAT926HksjNfMNZ3r9HNuYwCrLN9xkcUbIeZXSP/SXn4t94Ogu5svdi1icrmCiCJEpEEp2CgTXf2cao1qtBDtDrFjgrGlDBgCbUq0IWlMxGhnJGdjQ5ydTDNi1Jg0o25Ra2TT7NiIELiOLhc3C+m6RPfspzXosHafZPeDcwzbbYbcKlmzyQ+kXrom5ayifL7RHKMcxZiyN8gbNb5Yu4ffnTlKs+nAiosIBB/40HF+efxb13yWJQwUgkfjZ3GmAv5T5UPwDivH3zVCoHaMUDqYpHQAPp49wX3OEnmjK3H+S+lufv3M/YTzcXY80cKstln6aJbWaETa7g4ep4I4f+eFn8BfiZN/XpA9VUMEEaLlo5IuJ1cO8XzuMOrRCn9t/+PstNd5wK0yZfr8g0Nf4tzuYX5bP8rOtb2YpSbqwtyNSaGQBnLruqtO583nsEvpFdkEtb0RydEqd3jdwo/9dok/0/c9aoHLYnYPdjKBDEKiNzkPkYjjj/dRH7U5kOs2BwJYi6CgHE51JjjXGuLJF/eRmDHInnv1ePR2ufni9bLtRvc/hhAEOqKmLDbDBEZTYFY7XaNp/foG9dB1HVClMsL3afcP8AsHnmCPs8puSyOR/Gj6BVbjSf567gBCijd7uxuPkF0j7phLkPZo91l0MnBP7CJHbcnrCVfohuSbGgpRnOnOICcrw2TOQvZ0A7PaRnguygZHhliix0T7K9C+T/psFW/DI7IlyhZYtQh3ptDNTa3V3/Rh0oFPFPjIMKTvxTjJeZcz9wwS7dCwFX1zRER/tsbqgIWfMno3Gv8KdDJGdYekNRryob5z3OU4gEOkFYUwRXzOIHs2xNyo0YsmQDoML+eci8UlYkCyL4eaGCZK2RT3ufiZNx6ajBaYTU1sIyLx7el3Xu0sBMbeXXTG0iwaSWr3WEihwFQoG7R560TjlCXZFdvgsL1BW3ej0koJZCcCP+gKv6sQto1OxGgPehh3VvjhybN8Mn18Kyr3asleCmM06w5e871Z5EXlCvaXnn1VQtRbcfPTgY8OQK2swsrq5Rw8w3FIqAnMvEepbLEZJUjKNmrL7bijTPzQ4DqkWPcGhkFr0KE6YeAdKPHLu36X2NZCxEBck9OqUNSU5mx7mIKfJEIS2YIXyuO0zmZwKoLMeYXZinjhwBjBWPSqWguJZNJsYsWm+a30fWjz5hUC+xmHxoggHOiw11q/bCEJcKw2CqeTZBY19vkVdKuFDLJgKWyju9uwGqZRMwmyM5A7VkG9dOryfScsm/xaHp2MMT3Qz6mJEaTQ3OdUyEqXH0ss0ozP8bvjR2kOeXgCzNkbY8MopABra9HgB28alBOGgTBNgriF1d9iT1+BAbMb6MhJk8N2lZ3xDWadfWjb6kZV3+wYbBs/bdFJSYadCiOmQyHqUFQmq2Gak81RpmsDeIsGmQshznoD9S4F2E0XrzoMia+GaMNk6WCaQHcfkH6jw5S9QWuXz9pDadIXY8TbHXS7TVStX5urteUrJrNZmvdN0RwwcfZWucudJ280kFs2DQCqh+Mo0rYI9o/RHHYo75a0D7QYH+xuU/AGOa4KxSk/ycnOKJ9fPsrCc6M4G4LhMw2stQqdyRyNoSyV3XBXfJ499jrxt+CReLPQQYhRKOM0O2AaaFMi2gG6Uuvmx7yNFZsOQoxyHRtolDxe9E1yss2kaRKXiiN9y0ihaeUGSdl29/17NPpq9OWgL0vtQA7znhKPDS5xb6ybp/ubtT5+6eIHWV7MMXk6wJuroavXRl6FZWOMDKJjLmEujp++EiURkcZZb920gkbdamMUysiaTS5KE8bfRLz6CtmJMOoddOtd2H8JiT+corTXxh8IcUVEQ9/0YfEdIX3FydowT3uj7LfXyMuQ+yfmefb7DxBfjjP8Rx3U4tLl16vdYyx+NElrUPGp8fN8KHWGKauMvGqRHOiIuTCkqFy+PHOA7BMOieUQ1ehRe7mtucDI99M4Ok4nY7B5WBCOdLhrxyz77TUsFGcDk0KU5E/PHiL+nEdmOnzHuXe9hLBMWjlJc0izK1XFFQJ3S3AGWvGcb7MQ9PHFzcM8dWEHqmlib5hIX/Dl2N1ErsZblQxOR5hNhbveQoSKjadzPKD+IvcOL/AvR75I/1UG/qf8LN+u72djI0k+2LhJJy7p5Cya4xH9+RoxGXK1vJmrZklf0MTWQ3SrhQ5C3JKitWpxYbCPuTHB+fYQzoYgvh4i6teOKTqK0NUaIgxJX+jnj3J3cXLnMB/fc46Y7LqYOELz4OQsT3zkAPHZGONrQxgbJVS98Z6mEMhMmmjnCEJpjPMLr1tgKiwbYUjUkT1sHkpQmxR8YOpl7ktdZNIsARZfbg7w31Ye4vj8CDuXO1CqvvH4upXmGA1mKBw1aY2E7HLXibTmV0oP8LkLdxFFkigSBA2b4YuK+EwVWSij3uU8e9NHaR2ExGbL2NU40/fHCHQ3HylvOBjUuW/vRV5wJghjHt5CFlltIlptdOeKgBGGgdjaal9+zISpJj+7+3nud9oYWytNpUHp3o6iCNehtN+lsht23TfHr+/5XWLCwHmNRPqrCXTES+0JHt/Yx8L3Rtn97y6gimV0FBEZBs37h1i/H3J7NnnQnWNia0Ua9FraxCVURLi0/Or2j+/gZtdhgNooYrTamBs7ebK5h33OCiPmJkkh+VT2OLtj6/xq3ye7+VpK926uUl+Wxr4+ivsN/sUdf8T3xypb1fOSX198iPC3BplaD/Gem+naYr3ieknPxZ/qp52zqewwaA7ry4VxRkeQnrbwNuPEz0u4weJVNZtdv10hkDNvVo541e+9S6N0IQWNYZvKPk1+pHxLi1ejEzG9medJbw+j2RIHLIufG/wOuU81+MrMftRTabhKvFZ2x9n5qRmOZhb4yfSz7LSsa4QrQEeHnPKHON8ZhONJBj9/Ft1q96w38qWoUjTUx/KjJuGIz1+593H+UuYEFt2xdD1q8kxzjJPNUWIveIx9fquo8TbotIdp0soL9HiLval1EsK6HC0NdIdv1/fzdHEH556cYt9vbHbbdDbboFV3/DNNdLuNqtS6O51CgiGZ0DtoHUvwxAcOsfZnvkb/VjBOoXi5PcFXlvZjrDrdNrw3ASEFrZygf2qTO/uXiV1V8KtQFEpJ9hyrIMt1okYLpMArhAQxi+JIiml/gAvNPPFVRWyhAbVXOM+oqNsFqt6g7/ggZivGxc4wxV02I3RTKCwM/vLg49z9oXn+69lH8J/N4EQK4V///PBryKYp708gIk1fIfXaBaaXGoC4DptHEgQ/UOZI/zp/c/Br7DANjC1v5D8tHuHMt3aSXgb74jzhmzknCIkwDFrDMZx7i9ydX+Wwu4BC8bkLd5H4XJLIFrTzAs+H9Iki6uTZdy1coQfEK1ohmm0Mw0C0XIpKAR1i0sISgr2JdTYH48zsGGLjnix2I4O33o/RDi/bIqmYjZ92aQ5aRGNt9gxuMGFvXJO3FaGpapfNKIEIe1PE6khh1TV2WbLZjNNQGim7kehXbuMFOqKifF7w+1kNMvzRyhEuLveTXBPo5lWJ0FJ0K24lGLKX486vwfWKgAYBOgiwK4Lvbu6mmXF40C3gCEneqNK2LMKERvbnupNYsdyTfc+jXJzqpElrKCJn1JEINlWLsoLlaoq+Qoiz0er2b7/q2hmpFAz2E/Ul2Djk0e7r5pU6fa3L64PANykZLvW6SWOwn/iuLM5mB+PFs6jr5OP5ltD6xuaiC0k7K3HHK+zNFnrbgeNNMOodqjMZvuwf4PChRe53luiTTfZ465zuG6Kyb5SUuAMVs1C2pLJb8oHUKrucNZJb0aNLO1Tng5BvNPaz4qd5amMHG/U48RWNbrW79lg9ujsh+3LowRz1nQnCsQ5jgyX2OGskxJWkIEsIXBGQMDp0cpr27gGsYhtD626/+kazJ5//N0Qa3Wr7VBI/oxnqqzDqlF/1snU/yUotiVUTiFoT3Wyi2908SW0YCEOiIwVSIL04ascYYcqmNubQGpBEgx0cEXG1dCgFcSp1D7MlXpWa8p4jRNeZx3UIUoL9mQ12x9axRdc2sBh1aGqIWiai0+iKa61ASexSh1jMoDlr84tDn2C9kGJiM0LW2t3t99dCK4xKC69g4y3b/NrmI9wZX+Dj8fMMGx452Wanvc5oukJx5zgJN0+s47+nNoyi7eMWI4TS0HkNkbx1jdg9gZ/zqE/Akf51DiRXiYkIheCcL1iNUhzbGMFbFcQ2ou488iYY+T7IpGgMGUxmSuyKFyhGCU5RRylBEBcgujUJRlsjrrbme5fcdPGqw5BoeQ1hmbjrOZ5tjzNlbXDA9okJi7+Ue4qfynyP4+MjPH3/LjY6CY6vD9Nq2YTraZySpNMfkR6vMJis8bfGnuAOe5W8obh6q72jFdOdIc60hjFb17cF5fVCtztkTlWIrceYHczxrd07mbI2OOo0iImrzyWgqSOe6Qzx9577caI1j/RZwcR8iLtceXfbqLcbWqM6HYTW5M5EnPZ2cu5Anp+671kmTZNDdoed5gLRWJvGwSHcQgtZb1yXPu3Xm9K+OOb3bfBo3ypTZp0Qh682J3ipMUF7Ok38xRlUtYZ6xfev9k2y+JHu9vCPfPBpPp4+SVK2iIsrA3SEoKw82tqioRxqkccvHv84u/7BEGpm9gaf6Y1DGJLK/ojP3/1/kZYBecNhufe++rfG+Xn2/dcx2sMJfuPvP8DPHPwsOyzFYPIk4/Ymf//HfoyVUpzUUI3JbImfyCzws5lnSEpBYmt86bq8RPynwkf51ufvxitoUrM+o+UOxuo8YbPZs8IVwD84xvIjLq2JgH96/x/zgDvLkAFX1wtYQjJkVohcyeC9q8zk+4nPpBn5joVRaSMvLtxyns8yHkOMDdEaTZE8UOQf7v5TpszSNfZXba04XhqhNJelb1WjiiVUq31tLYmQSM9FZtKoiUGm/1yc+FSFvX0L3JFa4YC7zMgr8sBnmv1EizFiBdDBjfWTFoaBHMyj0t0mR//L6J+QkYq0dGjrkGc6Q0x3BjELVlesNxrduV/5yJMzJKdtUs/FUZ9PkAuqsFbYsoZ6nQiy1uiLC3hLa4yVJvlmcB9/OnwPwaf+iJ9PzzNpmgwZGzTHvsv/9v2fZmMtzu76AHJp+T27BtHqOvEtF5Go/or7dku4yv4+Zj+dpX2wxUO7TvMPR75ITERkpKSoQv7d2qd4dnkC/VyaiW8XkbVGN9L8RkiDzqFxNu9wqBwO+NdjX6NPNvlC9SjzrRxCaMr7NXZFkprROLUI0bx+gZCbLl5hK9k+DLAacKw5TtX1SMoLJKWPBeQNxZ3OEnmzSiFMkbLabHTinLSHaMZiJPN1Hhm5yLhb5LC9wqRp0tGaivKxtpLUI63ZCJOstNPIHvJrfyXCDzHaESKwaSsLXxvdEPtV40VbR2xGggW/j2jVI7YsSSyHeAs1ZKlOeEmYb3Xc0RIwNaZUGLdwZOkdozU6CLHLId66Q2XEpalMAh0REzaWjLDskMizUY6JcT36tF9vRHcVe7hvlcPJJWJbHUvmOv2crg5hVUVXuF61nSscB2HbtPtcWsMKc7jJpzMv81Evousl5GxF8NsYCBLS3yrmawMVvjq6RDk7jIzHu5PcrRaNejOk0S1aikccti0M4Wz5WkYQSmQAIuxdofZKVKuNnF3E7QwwV02wFnWIia6n7ZS5yb6hdVYTSe4fmOfe5EV22usMGubldqrdxiYhq1GM0+VBUrOK+KqPc34dVSwR9XDE9RJhzKCTU3i5FgedJXZb3V72HR1iCIFJd787JjtkjAZ70gVaIxbFRo7mkIPjGLjlDNBt7NGzKUSvQDg2QX+Cdr/FSKrKHmuTpNAEOtqyOVMUlUGxEcOsSsyORlgmIjSvtFoXEiEFIhZD53O0hjzs0QYPjcxyT3KOu9w5MtLHwiLQEUXlU1OS1UYKqyqxGhqiGx15lWjLRNsmwo2YNM3LaRJKazbDBEudLIbfFdY6UpfFumo0oNHodgd7G46Cqt2GdhuzUCW5EEdoyaKfo6MvYAmDhHAYsUpM5kqcDwwi13pPdzx14BOVX/s+vSRco8EMrSHFrpEN7k3PMmkKIgyKUcRa5HGunKexGie3oZGb5W7L5zdKAZEG0nXoZE2aQ5p4X5Nxs0pMaBSCWtjd6dCORksw2wqzqa6rS0lPiFcAtGbwmQZ/Gj1KJwf/5mCdVLzNcLJK3qmzN77GQ/Fpxq1Nfjz3LIE2We1PUwiTDJoVpuwNbCI62uB0AN9pHuR4bYz9iRU+k3yZorL5w6XDLC/lGFpT9J7VAAjborY/R3XCwN1V4eHYBXIyJCavrYN/2U/xueJ9fHdpB0NPapIzFYzNGrpWR7U7XZEhDYxUAuF5NAckidES+zLr9LjD63uHVrgzBQabGcJYgu88uJe2N8Nuq01M3BpXxc/AT+efYdwsk5Q2FeXzW+fvRb2Ypu9kdM1gI0yT8KE7KO9yKB3WfOaDT7PXXeWgVQESl1/37bbNv5n/QWwZ8Y8m/pj7nSuVpUeSS/zWx/eTOHCYvidXCW+jCKywbIzBPCqTxPRCFBq0QqEpRgnisyYDL7awF4uEPS7YLqMidKeDqNSJTgzzM4k/z0eHzvJ3+l5gzIz4q6PfpBzFGLc2yRstkkJjia64a6qAmlb81fM/yYUXxknOCYZf3kBU6qhy5UqnnR5HWQLlKUwzYjVMc15sUFAxmsohb9SYNLu7EuNGhxGjQ3LgCVZzaZ4Z3sU3du5luRIj8fIkXmGC7PEq4sR097x7fOEW7hnj/J+zyAyX+anh75GXgqLSzPkGq1GOp+q7mWvm8F/KMnA8Qkaa5iN7MZsRzkwB3WgiUklUzGXjniwbH+mQzZX5qzuf4U5vjrxs0md0n4O6DpgJXP7mmb/I2lKW1CmLkZc72MVWT+VCB2jOtIY5XhrBqm6l07Va120Bpktl0ic97HqSry3vY7e7xl3OAnfYEpuIlN3GdQOU7SBMcyvie4Puo63CxejoPs7+pIc52ORH93yPx1LnmDI3idCc8B3+7dInmCn1EX2jj53HOjhrFVSp3BX5r3OswnGQ4yOodIy1+ySPfvAEdyYXyMlu7u9Hkye5w1vkzMan8ZYMvDVN+lS5O5ZU3iSa+zboHfEKmKdnGV3N4I/lWPYTlDNxNgaSxFJtghHJB+NnSMsOI2YHV5hImsAKwOUB+GzgsB4lea4yxYsro9QGHT6ZOMlmFGd1I42zZOGUe9FAqFsp2hyQNMYVB/s22WmCI7xXvW7Wz/Pc+ji1xRSjJ0tEp869yhJJSIFwXXTcI0jCrkyZMa+E9Rr+je8LtEatrmMUy8T33sGFdp4Rq8SYuUzsFrkkYVzzkFsmLbv3REN1aC4lGD0REZ+tXyMuhGlSG3coHdKMH1zlf+7/Lv1GnKuFK8CZzginp0fB1MwO93O/cyXZf9LZoLHHJ0hYZM4k4NZqQPaGCEOiU3HCrIdld7diFN0GHw3l4K1r7PNrqGpveuW+HjoM0c0miUXN4tkBnrE7BLnnSEuXj3pN4JK4uLKNrlAEaGrK4NyFYSa/GeKu3UCfyuuIMgSYCkNoylGMghFjxh+gGCbY7aySN9Zxt6LRJgbDhgKnxMPut/l4+iQvtyb4z/ox2isO3kYM73Q3ZtbrbWM7fQ4fO3qS78se5z53mYT0WI58ZoN+zncG+e7aTgqVBKk5TXK6Qms0SWWHhdUw6duMI4EolyBIO1T2wD++/0/Z7yxz0GqTkF0rPuimrBWikNmgn42TefpPQ2a6hXVqrhup7iHHhkhrNvwEhXocs9lNy3uzLp1vB1VvIOeX8eQIC5tJXhqcIG9WuYMGUig8I8AyIrSx1QwkDG9czEzIrm3asMsPPfoc35c+ziF7k7zhEGlBR2uWwiwvzY/DisOO51vI77zIW7nLhWkS5RJ0+l3kVIO/O/QVkrK7i2kIwUGrwZRZxxAas9S1M2RhhfDN0hDeJj0lXvXUKJtH0gCkZrvfsp+yCT2Hp0ZSvLhnDNcK6Ys1cI2QUEtCJan5DuWGRxAYBC0LAom9ZuJuCp7bk+D3k3cTMzqM5susWUmaF+I4ogebFLwJHR0QaMXT1V2UTvSTXO4m3b8mhoFOxFCZOJ18xEf6z7LbWb1sm9KdsKLLvcy7/7P3otHXk0sDlwz1Vg/1m+dJ+FYRlo24Yzedfg9/xMdAMB/W+Wz1CMfroyRnDOKzFYxilVArjFSK6OAUrZzDxj2aPUcW+ED/eWLCoql8TgdQiJL815XHeGl+HL3m0HdSEMYE/8fQxzk2cpaPJU/yIe/2vhdEIk75cI7GsGSqbw2Ac4HPF6p38a3CHrzNqJsf10OT8VsmioivRgRxk7nRLNHruE3WVYeC0swGGX55+dPMlnOkTlp4i0VktUl0C0RaX0lirkHfM0k6uRz/dONHMLyQqGxjNCVRNqR/sErc9tmV2iBnN3gkOc1Be41IS0bMCtKb5dG9w8wO9bEkhsgOHCW+EuA9N4NuNN+aCfwNRMZiiHicTlqSt2skZYun26O0lcVn1+7l+PQYomXgbBjYTUgudJD1NmYrhtExkaFG2ybadVC2gTIFyoJRq8SQ0cQS10qEl32b/7vwUY5vDpOehsyFNtZq5Yow7KFr09ZwYmOY+lyaoeL1323VqltPIVs+bGZ4aXOMPd4ayquRlx0eTU9jCsXLuT4SmTSq0UTX3tvF8KWOeRzZS2VPnM1DgsOxRYaMKjUlaWqfrzb289XCQc4V8sSf9fAKCmut+paEK4BMJVm9L0ljXHPX6AxpGeEKgSEETRXwXCfHfNBHeSnF1MWtIuL3YBztKfFa3Zti4+NtjAWX3b+6jppfQmxFCsWuSar7M0SOYD3dhzIFhq8RIXhFxcRMFeH7ENQQkULXuzdK45NH+IOxI+zIbvKJ4dOkx1r88svfT/Ymn+s7oaZCmhqeWZlg9FshbqHb8vG1EGa3g0a73yU+WuMvZU4hkVhbW+SR1gRaobVARCB6aNB5r9BhiA5DZKC7bXJ191pYwniVK1evIOMea/enqe6GwzsvYgmDU36aXzr2AVh2mXqxjX75DOGWZZTIZVh+NEFzTPGDjz3HPx98Aktcsghq8OXa3ZyojXD+d/ey97+d7G4PBQEy38+8O8Fv7shRuDfBY6Pfvdmn/p4iUkkKdwucPRU+lj+DRPB0awf/9cVHMJcdds1VXtcvsdfRYUj8fAm7muDCrgTB6zzbRaV4qTPK45UDnP3iHjLnI9KnNolOn3/XFmQ3C/3CafInLEQ6RbRjCG1IrKVV1GYJJkep7cvSTEq+u2OEIKU4fXSInx15kgmzyBE74oDV5uHxr9DWEf+/kbv4yj0HmHtphL0L/Yj1ze7c0kN5sDKdQg3maOckU+4GGaPJ723ez+nSIMXvDrHvjyvITgBBiIgUNFvoIMCsxbFaNjLQ3RbIuCjHQBuCyNXstIqXLRWv5onGPr7x5GFiK5KxJ4voM+e7nS97MDLd1AYbixlyJwXxxdb1L9JWEboTIepNvFXJXKKfs7khSM8wZnr8VHKeXfY6Tw/cierPIoW4tj3z9UaIbp2D67ByfxI+UeT+/Cofip2n3zA47TusRmn+6/QjRN/OkVpV9D0+S7SxSfQ2LM50Lk3zA3X+zL4X+VjyJHnjSlpjQyu+Xj3IsdIoqWkT77kta733YAfn5opXIRCmhdGfA89FGSDWHZyiQDTb3TyrSwdaqeOtx1C2xGyZKBOMoCtenWIHuVntVjqGYXdF1Gx2878icO2ArN0iazZIyhbKpPc6bEkDLJvIEShXETO7A2S3C4pPU2u+0dzJ6dYI9aUUQ6U2stp6w+pO3bUARQp9uSgDuhHcU4HBapgnrNhY9RBZ99G9OFltmSBL20Ik4m+p2wfQbWQQhuhIvan1jaKbIxd4Att97daYNxphmshEHPpzNIcEYrzBnsQ6EklDOUQVG68kMZrBNeemLZMgpdGZgGG7QkK6NJXPYlTnbJDmSysHWVrPMLQaXSPORKuFXdHYJYPNTvxmnPKNYavQQCU9wmzInmyJEavbnasYxRFFuzv+dHq4qvP12OoqJR2HoC9Oc8BGxyIiuFy4A1y23ttUDi81JjldHsTb0HiFAFG/BW2irkZFqHaElBJjs95tclKuoGo1zHINb93DbJlEjklQlZzKjvB/60fYnSywmj5N3qiyz4qICYsdzjp3ZDJczPfTHkvh2CZSSHStdnkhfLPRcQ+/zyNIQEq2iIuQnN0g47Yo2FvjeaQQ9SY6jCDw0ZFCNn2ccoQMNUbDh1Ch0w5hTKItxSt7Q3V0QFtHLLRzuAWJW9DIRovwJl8DYUhUJk4772G61wqkCIHodAvJjE6Efo8mfB1G2BVNZ9NivZO8/P8tYeCKoFswLYH3shBYCKTnIabGCDMezRHN0f519idWcUTXbek7zb0cr41SXk4xtKLwNkJ0rf6WU4Ok6yKSSYL+GNlkjR1OgYxsAXKrK2rIXBjjyfUdLC/nGNjQ6I7/nkXkb5543erHK9IpNj8yRW1CkpxX7P7tBrLaelWHn2itgFWtgWHgmFuHfelm9AOiqyw/tNKX/xwkJI8OznBfYoaUbBMh6LXd4stCJZOk3a/xhuvsjG0gkVSUz0udDNP+EP/m65+m70XJjlkf8/Qsut15RyuaQhTyL+d/mDNrA/S9YGC/PN1dKPTgFqmw7a5/YS5L/eAAYeytDQBmU2FXAoxWgHFu/hrbD6FBIYi05NJw1hdvsjmaQUYWjnXzNyRkJk2wf5zmiMvQY0v8812/z7jZxBIJVsM08TmT1KzCKDWu2e7Rno0/4XNoxxIH3K4h/blA88e1e/n62j78Xx9k7/EyYmXx2t/r+KTmQwzf5OKRXLeA6TbESKdgOE9tZ4o7983y/xz7GjvNChDjTH2Y7AlBYjlAlK5vftaNQNg2Rr4fnU6w8kiMxv4O9+yeI9DdHvZN3Z3Q81KRkA7PNHfzOyfuQS657Hy53n1OWjfQ0/c9RLVayIVlkLJbxMrWHFKvYxkG8WMemAbB0zkauTG+MznFHx06Sizf4F8c+QIfdNd52F3iHmcJ61DEFz5xP24hw9AzLs58EV2qvPOWxNcLIfDHshTudGjuCJiyNhgz4YfSL3B/PMPfmxqiORnH2bCw1jdRtdrl6KOcWyK2vtltyuL7CMskmthLfdjASLewXrF+XwgVC2GG7y7vYOjpDs5SBbV+k7ppXYWIx9g4kqQ2Kdg/vHBN4CHQEqsqiK35XU3xHh2DbjbpO9EmVrA5vnuYaFIjb2T8Y8vjVw7mmf3hPpq7fB45cJq/O/xlYjLEFoKZwOWXnvwImWMWkxcC4i919cOrrLXe6GOGB6ndOUhl0uSx/CnucecYNALAoRCFPNsZ5duV/TT/eIg9LzSwltcJG833rDj+ps3S3YIiBxHzaA5KWqMRsVWJsby5ZbJ/7YruUq/6t4uWkDZbZGQTW0T42rjcVahXEKaJSCSIEh5hXNMfb5Heqor1tWY1TDPb7ie2ZJA7VcdcrxJWqu94NdPWkuV6is6mR19ZEZXLvbFFuFUhiZAgBUIIRCKOSMSJcgkagwZh/K2NCmZTEHoCq24S38hgXDWahK7AliGG6D5UkdZYRkRkQWR1I703G2FZBGmLdkZwNLPKI64k0jE6OqASxrBqYFciRHvrmdiKUGvbxIn7TMRKZIxuPvSminGsOspiIcvO6Qbq2JlXf6BSmI0Quy4pB1e5L0QCEb03vexvCrZFlHDwE5KpxCb7rApxIQmJqIUObkXhlDpvyaC71xC2jcokCbMenT7N4GCFAbfOchTDEhFN1d3ei1lVEkAl8lA1C6cmMCqtWzZN4jXR+lXNNV5lKSQEZq2OlUwg/QH8lE0rSDCzb4CD9hp5KRk2XA7HF/nCyBFahku7z8KsxTH8ACrV7sR8E58NZUsiF4Qb4YoQC4MRo0lcBMSTbdoZFxHa2DEPEYaIKAKlttqd1rvjrGGAYRDGJH4KHNe/xtpJoagoh9kgT63hMrTegI1it1nFzcY08VMCPxvR51wrxCIEMhRb1pPvYYQ4ijCrbRxL0unceOcaYZmIWAyVitEaiZiaKPBQ5gJ7LQFYNHVAW1uYZZPYWtQd39odiCKMRHeXTYchOoq6aZpW9xzEK3Ygo/4UjQGDdr9mxCmTlgHu1lzZ1AbLQZbFZobEcoR5duE9b/Zx08Sr7MvROTROc9Ai/P+z999hkmTnfSb6nhM2I72ryrJdXe17vJ8BMfAECBqAoARCFClekXpkVlp5XUmr1d5daSnt1Uq75EparbTSvRRFipBEkCAggPBmgDEY19PT3nd5n95Fhjv7R1abwfT4nq6sRr148PQDVGVWRmTEie985vd7T4NP7znBf3EeRIa7iK0HOM+cuymLqVUP+dLCnVzMFflg5jRD+uBND4vJMZZ+fJjuEBx+8BKfKT3PQXMZQ2ishiZfXL+X8+UiybkIfWYV1bl5ch8DgxBoQ0W8Q+MEMQ0vpRFagm5B0B1SBJmQqT1L5O033ilKoWj5FvWeTcMzmKsWUL3hqz8fHt/gE7mX+pJTmzdfue3grCpi5QEpBybj1KcMOqP9hQLgjN/jeXcXX166g+x5j9i5tas9z1qhQDQ+RO1ggvdOHufn88+yT28BCX5z9XEu/M5+RlZC9LnZVylTvBZLfobYvEF8Ub2rmYtbSj5D9XDf13vK3iAp+1qHs0HEXCNLouyjVbbpoNauMS7+UhZ/2KNUWmMiWeP7C9N87al7UQJUPECLhfz5e77HX8ueY7e1TmGyxobMEKViCMNEBYOv5XrTUIqo1UZ4Ps5ZGGtm6ZZs/oX2Ef796CP8qb3P8d9kTnK/PcdfvPt7XOgO8RXnLqzVFIVjCdLPClS3u3WOfEphz9YoalnWNJuLjxYZ1paIS0FcBvzpvc/ye5+5j7WWw8JHJtG6gtiawKwr9K7CbEYEMUFrXMOPg3e4w93jizyWu0RSXitPhkrxu5VH+eqFQ5gnHWR1jbDV7l8rW4yQksABlQxIGz+a5jxyYpTKo8O0S5K777rInyg9x2FrGU1o/cSMkIzqTe569AKnpkosd0xo7QcFRALpQ/KSJL4W0ilIOqMQGRA4CrRra4HIeEyVFrkjXuNDiVNkpMTaHOibDzJ8fe0w55eH2FX1iVrt19eJvQlsXeY17lCfMumMCH52zzH+x6EXWTyY4bnVQ3gJg/hLNvDOg1e9E7K6nMELNO5KLA5k8BrkE9Tu8SmM1vnV0Sf5KacOm2LatSjGuXKR5kqSwqpPsLK6tR/23eDKDi8Zpz5t4aUEbkEROApjvMVjE7PscTb4lexzDGvW677VFRtdX4WbO07FRmjQVtd2xBnZY1Tr39SGMAiVouOaFCv9VgMGYMpaxUy6Q+AVAwpG/5qdCbJ8v7af5dUMB2eqBDNz116QTtAdj9MelXwgc4b32XBFFuvl1VEmPn+RcHXtTQeu0Ld9jK0p4ivBTXVG2UrChEV7VOAOB4waVRxhMqt85oIsjY5NptFDNFpEA7CBeav4RYeDj13mY8WTrPkp6kGM51f3MPWVAISgNWLgpU2endwN2XOU9Bp3Fpb5QdcidHR0TYLSBmLzdqtQvR6q1yNqNhEzcySHhyhk9tAey/JUdi+/kj7GtK7xV7MXWE4do3uPwYmNEeqtAskLKWRdQ9SbWyeltbpO3O3hjI6zEqTpqCUKUuIIk19IHeNDB0+zFiZ47sAe1rwk35w5QGPNwWhoWGUdPwHyjgbD6SY/N3qUjyVOkRQK5zqJRp+Qo+VxtNMJUrPRW+qTfNeRktAC0+nb/f4oEuYSVA8JvBGPT5de4FOJNa7ED5oQREqQk/CXxr7NynDm2uuUwFUmG36Sf3f0x3Av2ri7PB47cJGC1eKws0RSc9E2m+uKeoNpvY4tICn1q8PfAGtBkplyjnDdRr9F18fWN/e9y0gvQjZNmrEYvuo3UEcGyGQS1e1uqfSJPj1FbzJH+bDN1O5F7sktMqFXAI2O8mhGIS90DtI7mSG7AOZqg3fSPdJ3WglpKoNmx0ZvaugDYIOqDw8RDWVp7E+z8XCInvJIJro4ps++zDoPpmYo6XWcNxikktcVuzQh6PuaRKSlj3Nd2GYLhSF05OZ/QkIyiS6t0SQoi6S+9bdFkLGJ9re5Y2SNg1bfWvC59h6+c3Y/1iUb0V17xe+ruE27pNHLKeKyR6giZoIOK6FDu2HDG0zaCtuits/u947lN5AIaoGDsx4RW2r3s/3bGJlMImybxqRD96DL6FCNkl7HVyFfatzDl5fuwL+QRDZWUa47EBuY10WIvkySacJIkV4pSeWQRUH3qAcO31o+wEolRfyyjr1a678kiOE1dc6XixwbD/GVzv3JOdaLCSqlXWQmxxDrla3v5dxKui6pGQ+zZXA8u5tPe3+Se3KL/OXCd5HA/ck50kaXL+xLs1ZLk1hKEC9X31ZL281AeT60OySWAn7j6If5g6H7+PToi9wfmyEuNNLSR4omd8YWqJkO3QmTmWyOumvTaNvELJ8HS/OM2jUOWEskhbpaCoZNK/IopNqJYVXBbEUDZVahggCjCa2qzbr3Sg1rkwg/oXCHLPSWs0Wf8N1HaZJIB2mEGCJ4xXMwItpUGVKUtBZxce06DRH4Sqek13hwepYzqSEOZCs8nLlMRuswYZSv/r4UEUnhE99sv6tFAb4KOO9nmfGL/OfFBxEvpsitKbRK6y0lSd4uW/+UfpeRro+14eDqFm5k4MgeYUxBPoNsmf2m863QexWCxj3DLP+YwNpd59f2fJ4DRveq21O/lJni22sHmPxKF+P0HNFbaK6+EVcmAtfDDG7NJl4W6O0tXoiEwN9donyXQ+2w4tc//B+5x1y5OjBgC4EhJBriFT7db4REYgsdW4DzQz3OP6wmoAnB3swGT+8roKRG0nr97O6toDNk8vfu+zyfjM9sioRrfHP5AMVvWTirHuqHnEr8XIzGbgjHXHJaiwjFD9xdfK++H7lmvaEtn0gmKD8QcfedM3y69AKakKy5CRLn6qgzF4gG6IH1lhECmcsQFlJUDmj89Qe+yl32PAeNNj0l+OzFB9C/lWFkPkCtrBO1WgNfOheahizkUAmHjYdybDwQIXNd0kaXpV6GlePD5E5A+lIXzlxCKYXtOMQyKZYeH+Er03dzyF7iM6lTpLU2/2R6N0YnTxz6dpk/ooTNJsZTJzB1neTlaVpPlfjyQ6O85+fOc5e5zGdSpzBSAudBjy/k7qJ1OsXeo0loNrfkmok6Heh2iR+zGPudMZpDY/zLTyT52eljPJY4zwftBqNCMK33h6t+On6ZiH4rwJU72hYCbdNG3bgu49pXuglYj3RaVYexpRB73RusjV0Q4KwpQltndn+OUF0blrJESJj3aUyamPUY+jbUdn9TyL68mWkFmOKVxyeRSAEGGnuNiPBVxx8ALu/Z9UXcSYUpBNbm8/ZKENy32+3biQN0lMdMoLMeJvns2qO8tDxGdCzN9GcXiNbLBLdo6HPLglelSSITIlNhyP4JdUMdzRVoPXXzZJsiEGH/34itl0C6ipBEhiB0IuK2R066pOU115v1yOKoO8lyM8lYs0dUb7ylHa8wdPyUiZvVSGxKiIQoOgpqYRytoWGXFXpn6/uW/LRJpySg4DKllxnVrwWPklcOT0VvIfcskUREryl9df1758w2pH38uIXQtX4rwxY8jLRUCpFK4mYlo3qVrNbPGIQqoula5MoBZvXVVp1K9lU0pKbQNjPs59wSx8qjmHXxqolPYVlIy0KkkoTDGVqjcezhNgdSq4RK8GLPY6GZIdfztmUJ/RUIiUo4fUmhpGKXuc6w1kLS1yXstCxKaxFW2QN/m/R8ComyLYKUjZsT2CNtErEedT+GGxhYVYGz7qPXu0SeDypCCQGmgVkXHK2P40iPjzir5PUWflLhZjSc2JvfIN6WKHVVeUUvN3FMDbvs8HRzH35C5/HYLFnNZo+9xp5CmRPpBOibQ6ZbFRgphep0sdddUDYbSwm+6+yjVbSwxUvkZYfdhsIW+lXJxIiIUCl6KmAlBB9JSfPJimu9rp3I57jXz6zJmo5Z89HafamtgSEMMToRRlOj5b0y6aAJhRHz8ZMmoS3fnWBHagjboluK0xkySMb7G78rjp/lKIcMQITqXQv6hR9iNAW9mM33G/uR3GAg9y1iC5+81sYWIaNaQFZzCFVETwVUwpBvNu/lYqfIi4sTeItx0quqL0nXfmcJtrfC1gWvMZNuUdAbCijoLQAWW2mSswpnNYB3oWciVBJfaYgARM9/XY3UW8EVHVZN9u0Mr+fLjXv5neMPY1yMIesLBGH4lh6qIplk7UGL9lTAzxVnAGhGIef9PM+3dlN4CfLfX0DVG4Rb+bAWkspBg0MfOc896cWr0hu3EonkkeQlNvYleMbdh0rGkVWr/9C/lb1sQuA9sJe1+22ahzxKepPrbTybVYeJl5dQjeYbShr1VMB/OXc/1veSDF30+9Ol1/0dOTmGN5Zh7X6bvT97ngdTK3wkeZJRvcm/XP8A//jYx+F0knxr+3vCCkOntTdN+bCOvqfJQXOdohSsR7ASJtBnbDJPzaI6XcJB6eV7A4Sh406kaY+atO7u8Rv3/AFneyP85pnH6G44TJwMcJ6f6bdAbF7DUa+HbLbIn1CcYB8X7ynw8/cdIy/bsLtDRTo4a3HMl7f44AYBpYiWVtCrdYbN3Xw5/xBfHLmb/+mRL/JziQV+PH6Beyfn+CvdP4Fy7L5uuNo6VY6o2USencWZs9nTGcPNFfnW3hJf2H8fuVKdX7/jv3DYaOMIA0NodCKfWhRx1s/zz+c/TNWN8d/sfoJfSF6bqbgU6PzdUz9HdTHNyLNgH53Z1O3c+oTHFZTbI3GxhVmzmX8k9YqfOUKxf2SN00GJ9qKNfZO13a9KXI6VmP1JnfGDK/zyxAtoQrAe9jjSG+Kp1n7MmkLUW/178V1AX65S+kEML6nxtUuP8qXEI+/4PQNHkZiuU0o2+TMT3+ePxau0VI/VMOJrrTv47T/4MOnzEaMrPuZ6re/I9w4rw2+VLdR5lUSWAjPCkn5/F+jrxDoKvRvevN1dfwbhSv8y4ZVsm1Jv2Af4riMAoZDXBa5XxMQvd/KIZRt7A+h5b3lRVJZBL6uID7UZ25xW9xU0IpuK52CXQ4LZ+Zt3LG8HIRCGjpeGDxfOMGWuYwv5qp4d2HQEIyRS6qrd5ZXy1/UYmyUwAHldxvVKGcQQNxb5Lek19iXWeC61C+VYiFis76ZziwcxelmDzmhEstAmLn4o49nTiDbKr5IAAhCRQkQQhoIQSYjCbVrkVjeH0DQNYZhXpXHCbJzukEl7MuIfTX6BQ6aDr0J6SmPFTRHMx0museUbvJuBEAIvKekVIkrJNhkJltBpRrAepDBagmBpeXtkXKFfFdA0/JSOmxVkci3eHysTIek2Lcyyhr3eIVxff+XrlEL5AXbZx1k2qU05RIAtApKJLpWMRWhvvUzcoBC5Lrgu5mqRxLxNO7JY9rP4ao6CNBnTdMYSdRpWCWGa/Q3iFmVfVRD0taxbbQzoS2OpYULToBKlmdlXoKS18YWHLSS1KGI1jDHjFZgp53A7JsvjWaAfvEZE1KIY1dUUzpxOfOXV2uuDgAojZLODqQlCz9p8XmwOKwFFu8V80iWwYzdfAlHbNBaKm9hjLX5m7Bj32rNIJD0FS36WZTeF5vXX0Xdr+l51OsSW25g1A82zCGLvrMKspKCXltQTCYJQsj6SIqJCJwqphDFm3Dypi4rckTKslQnLlXc0i/N22Tq1gc1Ut5/QaYU2mhAU421WxvIoaZIxb45eWq8QQ93T5HBxgztjC8SFR2QrokwSqUlEs3nLnbaEZSFME98RaImAtOVioGhFPX6zfidHm+M8+dxhJr4XYpV7RI03r5AgbRuRTuGX0ujTLT4+dYp7YrPv4tG8PYRlIQ7sxs87uJMeD8UukZc9rB/qa73gBxzvjTLrFfj22gGqboxKPU7Y0RFtHbMmr8r2KqnwchEkfey4x0imQUz3GYk1yBgdfiJ9jPfZrxyskJuB7j6jjpE8SXlfgq/9yfuJrWYY+1oFdeKdl2BuBdblDca/M0T5cIxLDw3xoLnALz/wDF8rHeLC5TzFPXeDgu6QIIhBd8pjeHSDjxfnKWmwEbb53zce40RjlDPP7Gb8ewHWRht1i3fTNxWpIeMOMpWkvkey59453lO4hCUkC6HP/7LwSc6sD5Oc3z5WqNK2kcUCYSHNyqOS1KENfnryJAAnuuOkj1ikLwcYS9UbD02oCBEqpAcqFITb47C3lrUyQ89btFcdvvzAnewyN7jLWuKgobPLqfCdB/eTHDqMc2yBYHllaz+r6qsB0OuROKVj1tJ0Lpr8g84fJ0oFSDNEaIqwp0FXAwnCCTCsAEv2N6qXA5fn3Um+WT1M8rRB9lyAsVQfWKk8EUYQKlQg6GxuHixhoAlBTPOxjABP77txqeDmZcelZUE2RS9vM5lb4v3xM4xqPSDGehjje9X9nFwvkamFfYWGdyt4bXfQFjfQDAOjHEMZb9+FySvE6ZQMIkOQLTU4XFilqDeoRi5f60zz72bey+Jijj3zPVgro9qdm3gkb42ty7z6AUYLjJagGfZLo8VYi8tDCtmTZI2bFLxmdH5y+gjvSV5gj7GOISKUGRGmrL5g860WpN+0cBS2TWALYk6PjNlFE9BUEV9euZNLM0MUjgqc757uu2i9hUlWYVuQSeEWLe4aucCns89dvaEGCWlZtHanaI1oDI+sc6ehXjEscIX5IMP3Ggc4URlh5aUSZk1QnI2IlQPsxSrR2YtX+z+FbsDd++hMxOkULRamkoS24lTRw3Y8hg42eJ997tpnQKBtfv9jmsOIFhIvfB//A5KXN8bons5inbg15+OdEszMYczMUfTuZ8nL4sg1/kHxJP+geJJ/PH6AfyvfDwKm9qwylazwxwvP8xOxzubxO5zz2/zXmTvpXE4x+myE9dUjfavNrT6wd4DQ+sGrSsVxx33+3MT3mDDK2EJnJTR48fwUsUsm8aXtIwMmbIuwkKY7Fqdw1xq/tv8PKWktIqWY7eYpHHcxX778uiU8EUTIAAgHaAZggAk3yrBRJr0xxamlPE/n95LUuhw0OkzZG9T3gZ8wiS2kYcuD1741Oh2gVkc7B5lCntj6FH5CIzQ1Il1gdCOMZkhnyGDlAxp2qost+sHrUpDk29VDvLA8Qe5cQOLlpVcNiA4USiGiCEJBO1JIGV6tsJkywNYDXJ1+9Um7iVJwpkGUdvBSGnen1rjPlFx5ztYih/PVIo2NOEMNv/+dvEtErku0cnPWMOvQPrpDeZQO+/PrvDdzniGtSS2Cp+r7WD02TGpZYC4sE5YrN+Vvvl22LnhVChEqrh+Ouyu5yJF94zSNBOHEELoQRNXaDcukN0QIZCKBsEz8gxM0d9ls3Cs47CxR1Bt4SNqRgehq6LUuovnuWZe95kfUNGQmjUo6uEPwUGmBOxLL2ELgKoUfahDI/sPF99/0kFZfNscg2jvBxj1J2uOCDyVXyEgPe7N8vhrG+FbtMMfXRskPgETWm2HRz3KqWmKlksKs9QW2RQSRLlCaQEUKoRtohRwqHqM1Hqc5quMWwRvtYcR8dherFO0W+6xXauR2lcfLPZNymGBSrzKqB4SYTNhVluNpakbulh+v0QqxyiatYgz3h3yMrVyX4MGDSO+1v7vaHovcZg/5FQ7HFpmYXkeTEQ8XZhk3q4xpdTRhcbTX47crj3G6UcI7kSazALGV7i2/L94NZCKOe3ic7pBBqlhnTK9ii5DVMOCSN4axapBYUBg1d9sE6SKboXJPivaI4OHsGkWtzUU/zzfaQzy3PMlIy+sbLLzO96f0vrQOsu+211YGXqAjfNEfLNnhxvgBWtng+fVJ9sXWiGKXMERIaClCS6D0wWy5UD0Pc6OD3jYIbZ1IF/gpncau/txJplRjX34dW/pcDly+0niAb584iLliYG+0Ud3uwJp2qDBEdV2kEOi1DE90p5kyNnjQ6mAguMtZgAJ8NVNCJOIgJeodqolcqZxGu0qsPpKkPabYF+tLFy6HXZaCGF+t30X1bI7EqkSvbk1Z/a0gDPNqH335ToE37LM3vk5Ob/GHtfu50Cxy8uIY+fMQK4eI1tZlXK+wdW0DYYT0QfoCX2lIJL+YfokPPnCK/2v8Qxw/fSfplIl9RhItLr259zRNxHCBKJvg4p+w+Csf/CrT5hrvsfu9Xye8JItBFqsqUZfmCG/1QM7mZwzGcrgFm2B/h18b+yOSQpKQNgtBFzfQET2J5qv+DvHNfD4hkLksUSbJ6iMpCj83z3vSK/yx9Ivs0s2rPaTHehN849Rh9CWTUqU2UDfU9b1K1/9/xzvjzF4awqhoJGcjjE7UX3wTGpbdz873g5Qx3JxO9aBGd9wnMdTmk5PnGLOqfCh+mmHN23SNudaWsB4G/JvVj3KmMsz7Ry7ws5kXAXjYuUioJF+zp27R0V/DWm2TOa/hpSza6trtqQnJY5MzPPXTdyJe55LwSj77rFdmfz4aq/DIod8GwJHapixO/9z9duUxvvEfHyW+HLHnyDqsrhN13Zun9rGVFLIsfsDEm/T4f+1+mbvNfuB6xsvyTGMP+eOK7PNrsLF9pKG8yRz1j7c5UFrjFwo/YK8u+Y/V/fzeyw9gXbLQ1ucJOp3XfjgLSaQLQlsgpKIeWZTDBG7XROtK5HZXlngXUW6P1EXBRjjEU6k9/IXMJeKyh4oH+HHjHZVr302iVgtx6iJSk2iJOMK26b1ngo2HQuxClz+/9xkO2wusBym+29nH507ex97fDjHWG6j5ZcJBlo6LQsL1MsLQScyP8e/n3sPduUUODH2Hghbjjycv85PxC3xx8h4oZJF1A+X2UO9Al1emUpBJsn5fij2fOcdDmVk+ljgF2DzvjvL12h188+xBdn/Jw1yso5bX3vA9txQhkOkkIu6wcZfJT3/8B+yLrfJQ7DK+0vg7L95H6bsae5Y9zOPnUF33lslhvR5bl3mNInRXofUEjcCmo/oZwindY5+zxrMlgQxMjEYeLQig6xK+lpae6A+hyJhNmEvQK9joeZfHnXNkpIchNJpRyHF3gtOdEYwmt36S/Dr6MmECwwwoSPMVQ0RSKBCKSOu3F7xeW4MwdEQy0e+fHc/Ty1t0Soq7M4sccFbIyADQWA271CONY60JtDUTuywQ7uAN4txIBsuRHiIWEMQlbk4SxASBLVA6iMgh1dpDmLBo7DLx0gJ3OMQpdBhL19ljrzNs1BjWPIqbzlzX/42O0php5NkoJzlqj5PVO2giwhAhFzsFNP8WL9hKIboeZiNE72r4P5R5nYxVeGKkhwpf+5rI5FtkZBcw6UQeHeXjK0VTCXwlmQ1MPDQ6kUU7snhqdZrEUoSz4kG5env52xs6XjYim28yblYwhIaPYCVIs+4mMNoRotnuG5VsB4QgNCSpeJtxp4YmIuqRx+V2Hm3FxC7zxsOdUhDENbwUSCNiJUwz4xUIGiZOTaB3d4LX10RtJlw8cIP+5s8QAdIKiUwDJQe0DUMplO+hAoGWToFp4CUEVr7LaLbOqFElI7ucCUc52ymhqibGWgUq9c0htAENXK8QhSgfpK/o+Abd0Lzan+sIE1uLkGZIZOto3bfZjnil3U/XUcN5eqU4nWHBXakl7ozNkxSKiIglP8vpaglVsTAqdag2BjZrfQWhaZDL4OcTuHnFYWeJklFjPUyyFiTRKzrx5R7maouoVh8YB76tk8pqtkhd7KJ3bV7cmOCZTIYJvcYuXfDTqZdZ+7kkM608x1/aTWJmL9nzPs73zxJtavBdf0NJx0FmM4TDGZY+kKQzEvGB3RfZpfu4ChYCeNGd4je+/nHS5wSll9sDWRbVBMRND+WE9NImYmK035f7GoSFJCuPJujlFN5Uj9GhDT5WmOdP5Z4hKX1sIaiEPf7Z+gf45uwBeudT7PpqD6PcgUHfDW7yi9lnufvReWqhw/n3DtOLDCzpo8uI+U6W2WYWW3d5KH2ejN7vQSvpNTJahzGthSEgI195mYdK0VE+M0GepePD5E8JNmIT/Cd7gsiA0AbNhYmL1VuenVaLK8TqTeLje2hGMeBaYPWLmee4+7F5wtfRK87IDnuNEF+FfM9NcqQzxZn2MMfXRml3LKLFGHpb4qwonPWIeCXAPr/Qd5urD5518jshiluM7FvnT04+zwP2LKBz3s/zudUHObUwwvR6j7Bae9c9uG8GQtcRpkloaySsHqYMeKa9jyPS54WX97LnS12MapfoDTYfQtep7tdxfmyDjB7wr+ffz8xGjrFvCFJnyrC6MbCDOYNIXmsxNlRjQWUJ4waDmXvtI0wT79A4zUmLjYdDfu2eP6Kk1xjVmvSUxn+ef5DFU8PkTgpYKxM1WgMli/VOsG2fXtHBEgKxor/lzKuMxWDvJEE6xvxHYsTv3+CR4jk+lT5CUQakpUmoFH+wdC+V74wwtBAhVsqbwd6AnsPNgFwmEyx/dJjaXT53HJjhceci5/08/5+zn2B9LcXISwrzxDzKdQcmcIWtDF49H73SxrY1lloOc36ejOxgCZjWff58/nssZZL83eYfoyyzGE0dJ2YjVF/sV103bCVsC5WK42dsOiMR1kSLg4llktLED3vUIovLvSFSFyVDLzTRlisEW72bVKCUeEW5XAKWFiDMiDAGYdZBBK8dPrlFm+Z0iDHc5cd3n+ejmZNMGGUOmX03jGbk0VRwsjaCezlJ6jJYZ5aIqrV+y8Q2YL9hst/Y6Is+J88TojbdtiSVKGApiGGLgFE9wBEahtCuk9qK3TCb6xPSUYr1IIW9LknN9kCBUIrQ0vCS/Z5jWWne8uA1areh3cZqTtOOLHzVuZqZ32/E2W+8mcGJGJ3IY8YrcKw5xrlykfpMBqMpyJ8DuxoQP1smPHcR4JZY+d1yhCC0NHanKjwau8iw5hMhKQcJFuppwrqB1mltn6yrpiFMA6X31whDhKz00nRDA2tVwzgzj+p0X/94NqXpelnF48NzzLWzXC7n8FYdkhcahCfP3rrjuU2IC49CrMWGEycy7MEOXjWNXs6gUxIkS00+5szhCINKFNEMDVaqSRJzkvhqgGp33lFpfasII0GkXr25N/UAPy7R2wa69ha/JSEQpoGXc3ALBv50l7+493tMmetM62CJ2FVTgtV6ksxM1HdBbLUH+xwK2d8Ux2K0xxWH9i/y/sI5ilJwRknWl9PYCybxpe6rZfcGgK0LXt0eolztdyC+PMQ/cT/Gxw+c4u6R7yOR5LUQU9T5+akXOZ4f49nhKTqlvVh1yJ3uoXUCmlMxukWJl4ReISJKBjxy6BwHEqvss1aZDTyOuBN8bu0BTq8Nk18I0JYrqLcgPXXTiSK0Vg/LlLgVm293c4zpNQ4YEUmp8cdKRziTHuGFkUnO353fdDK4MabT5f2TM0zGKtznzLLPWCctQ8DCVQEnvCQzfoGLZ0YZ/36EvdYjarX7u6ctzjwrpdC7EUZHo+MZ+Krvwfx6bliGkBjX/e+kkIzq3X7Q/4qg9cZ0Ip+2ivhS6wD/59n301pNMHkywJqtIDY1f5WuYdsGIlSo5tZdJ/H5Ln/ru5/h/zta5386+EV+ynlzPUb1qMsLvQQz3iT/63M/QfIlC6OtGKtEaG6IvdpBdjyo1N7dA9hC9IlxenuGqByy+GBimVHNw5H96+O55h66L+bJLylkrTVQfd+vhzZawhvLUpvW+WjhIvvtZX53+VEuVXPYFVBd91UVKaDvAGToaLkszYcn6RQ09P1NHkjM0PBtum0LvS1fd5O8w2vTVibL7RTdpoX0BvMcyngcsWuMIOuw8ogke+c6Hx07gy00Lgch//PiJzhfKWA/n2DoSBdjrbX9XPVURHwlZPlUnh/sNaiXNIY3Y1SJ5CcnT/HZn30Qbd5mt78bfblKtFF5TUco6TiImA2lIu3pNN28xvrDIXaxw89On+Ree46k9PGVYD7o8c9WPsqp6jDiSIrEXBu92um3Jg4wWjFP69EpOgWNxOEKf6x0hHro8E83HuXp9WmyLxqk5nzMxdeQ3dtiti549T3CjTKy6zJ0JEtzzeaJ+B78ke/iCJO0EKQl/KXMacic5slinD+cfoCXy6OsxUpYNZPywwF37Z9hOrHB48lz5LUWh80mCWFwOQiZ8TM82djPi2d2Y67qxC/XCBYWt+qQ+8cdRmjNLrqUGJUU328e4GBsmWn9Eglp8cupRaLUPAw/R3jojbPDV4K9fuB2bRips9nje6I9SvqURuyLz4KKiLY643yFKELrhhgdjbqn46oIKUK017kkLWG8IpPqCAPnup+/UfDaVhGVSOeP1u/C+nKa/HJA/Mj81msz3gBjZpVdfzhBayzPV4bv4aecZ9/U6+pRyHeahzlWH6PwHZPsb2++bnOzoq7zNL9dCUayrN9n05yKuDM2z9CmxW6E4mStROlZH3u5RVTeJoNaQhAMp6keiNHaFfGRxEmGtS6/3knQWkwxXIn6lqY3CDiEpiEti7CUZ/kxDTXh8sndp3goNsNLrV2olo7eEhDc7lfFu0MzilFrOYimjvS2fojlRohEnPZ0hvawxuQDi/xve36PnOZjiRgX/STPHd2HM6cx+nQb8YNjW+u4+A5wlrpkTyUoG0ma971SL/zPZJ/hI+85yb9a/iBzp/aRkgLd7cGNglchEPE4IhmnuTfNymMaQcnj1x77Qz7mzGELDUsY9FREMwq4FBT49pHDpM7pDJ320C8uQ683uO0CV8hnWHtAozfq8xenX+CXUvP8X7V9fP7CPfhzcfY9XYPzs4QD2rO7dQNbm6ggwCr3UFKweCHNfzf+QXbZZT6ePE5OBiSlhi10hrQWh5xlQiX4+sEc7bbG2ESZu9OLjJsVxvQqSelhbbYSnPRKPNnYzzMru4jNGdgbCtEegMVFRdB1kZrEaKY52xzGkgFu/AKJzV+5EoS91f7/K37VPiFLocnX1g9zcb1AphJt2XDaa6GCAL3eJSYhvJTg70/+BHcklvil9HHS8ub6q7sqoKciPtu4h2+tHeTsuTEmV/oGEK+wTR0glNvD2nBB2Hz55btY6qbe+EVAtecwu5SHhsGula0bStxKwrhBd0ghcj1S0iVCcTlwWQnjLFdT7Kr1kM0u0XZwD9vMnHYLNq1doBVdHOkTAS3XQm9KdDe6+rsy7vRLgbYFlomyTKKERXtXAjXhsqe0Tojk+519vLgxTnxOJ7aqEJ0BWBvfDYRAy2URjtOfMm+3+/JKN8pSv+F7SQJHECQiUmYXgEZo49ZsrJpEele8/wYEIfqtdekktX06nWHFw+k10tLHVYJzvseJ7gTWmoazotCavcFJbrxVlEI2ujjrNu11g68176IRnecus0pBixGXgqLW5lByhaN37qebj5N3JrBTCdA1lKahLI1eIUZkSrykxI8J2uMCOd1kd66+qRGtUYsCmlHEpSDHU839nGiMEp/TSS6EWGW3H7gOatZVCPThIaJSnsbeJN5Uj7GhGkW9SSXscbI1hj8Xx1mSiLZL5AeorXYifQ22Pnjt9ZBHzxE3Tfas7uLF4/fxnWnBxicSPJ48y13mGqO6zl5DMZo6xSeTJ/lzxSfwlUZOc0kKhSH6PZD9XkgNVwX8p5WHOfryNPE5jfEn2+iV9kBIVqggIFhdR1YNEvPDHL80RnvC5Feyz7yj9/VV2O/ljEIqkcb3O/s5/+QU6fOQOV0fuPKo6vXg7GV0XWe3t5cTp+7iiXvu5JFPXeBB6+YFXL4K2QhDVkKHf/X9DzP1BcWBchd5oT+kNKi9v2G9gTx2nphhcPhkFjeWeVOvi4URh7wNCCOi2uB977eCzrBJ4o4KB/NrDGstekryhebdfGf9AOpcAu3yRcJKbfAzI0IgbQsRs6kc1Nn7vsvcm1mgKAMqkUZrI05mQWBVfFSkkDEbMV4icky6I3F66X6w5aUEndGIv37fN3ncOc+/WP0w/+bce/GPZtn9X8uIWnMgrT9vBkI3CA5M0B6PEVv3sGYrfeWajcpb7kcUZn9TZE202B/vP0sWvDzOZYP4okLW2gNV1RC6gTAN3MkMyY+t8LMjZ/mp1FFGdYtnewZfb9zF1xcPUnw5IHG2CisbW/2R3xFqYRmn1mAo2sVvHXiMr5cO8vf2/hEfjbVJS5OEUPzpzLPs/tl1LrjD/O6T7yF9qkRkQRADL6OYvH+RvckyGaODo3nstta5354jLgKGNR1DaJzykrzQmeaPlu6g8lQJe0Mx8VQFMbOE8jzCK33ng7YR2FRl6tw7ydLjOv54j//5kS9wl7VIMzI55ad54vIeJr4eYJVd1OrGQPfsbnnwCtc8pPW1OknHILAtjlQmkELhxg2mog2SIiIjFQZQ1Pon1KDvZe8rRSWK8JWkGUlqUYYLlQL2mkZsXaFvNKHRGpxJuSgk8kB3I0Rbp9rp28mlpYsjjFdIZ71ZOsqnGSmWQofj7gQ/qE1jrwucNR/R6r4LB/HOUb0eqtfDWK2TtDU6QzZPtA7hqgs37W+4Ks6Kn2HVT2Mv68QuryFaHYJ6Y7CzklFI5IbgukRb2Hu77RCC0BDk4x2G7CamiAgRbPhJVlsJ9I6ArjvQi/Ir0DSQGqEN04mNTckvgUQhrJAgZtDLGqQmRlG2hTuWIohrtIc1vLQgtMFPKKK8T1L214H5dobmaoLMBrBRJaoPvpzP20L2h9x6OYv2sCTSTKSXQXZ8ZNSvgL0pTANh24QjOfx0xHCyTVbvl5s7kYnRAqsRIQZMtUIm4ohMCrdgcCizxn3OLBnp4SrJvF/iaG2cjXKS6VqAaLSJtvk1oHp9WS+j4SE3YqwaaVZ2ZYhi/fXTEBo5TeMRe4ZRvcrvD99Lp5ogsiB0ImTW433FC9wZWyApu8Rlj6LW3dRKN+gpn2bkccmb4kRzlJVymsyywtkIkeUGQWOAXciuGDjZNt2ChjfiUxqqc9BcZkKLeMJPcao7hl+1sTbaaJXWwLYLXGEggtcrRGsbmF2X4bUM9doo346P8eWh9+AnFOG0y08e6Ht1zrVzeJHG3uQ6E3aF480xXloZp920sc/ZWDXILAQ4Cw1k00WtrKM8b7AWaBVhVwKceYt6kOV/z32UvfF1fj7zPHe8xaq5r0Ke6I7wYnuKz529l/TX49jViLFz/azKG8nnbDXR6jpWp8t4OcuX5j/IH9ofumnvLRR9L/cAdp2ro5ZWUf6PZjn9dueKS4yfgH2pdfbFVnE2W29mOzkqaykyDbaPAYOQCNNA2BaBo5iOrTNqVDGEpKQp/soD3+b4/nHO14ucK+fR9JB8qopj+OyJ1yiYLSIlCJHU/Rj/ZuZ91NoxtKfT7H65h7VWQdUb/cGS7XJO3iTCMJG5DOTSLL1XY/yBRepdm/VWjLARJ3MijdF8c8fcGRF0DrskU11+dfoJ7nNm2GeUkcRYdDPkznjELmwQbWytXeYVhK4jdJ3OY3tZeq9OOOnyd/NHuMtc41KQ5oib4n85+RPEvpRiYj3EOr9AVK4M/IDRG6HCEOX2MObLjDw1Rrtk842pw7wndom8pshKG1volDSfjKzyP979Jc7uH8GWPpb0yWgd7rfnyMgAg/48iSUkEkkr6vF0L8eMV+SfH/8g2vEE2SVF8dlKP/DfYqvUN0I6Dt33HaQxoVN71ONvPPRNJswyRc1jKdT4m89+mviRGJPnA+TsSt+oZpDipRswWMFrpwOdDqJcIb28jrBMwokhvLTJaifGkfwEClitpIgCSX3IZiOZ4PjaCO7ZNPGKYOT7bYyFMqrZJGp3CcNwYAMVrRNgVU1CS3J6fZiGZ/OB5GkOcc167Y2GkKAv/XTJK3K0No44H6f4B6cIa/WBKmG9HlG73Z/6XFkleezd+ztq87873J4IQ0eYBqEpKJpN8loLQwgipaj1YoiWjtZVEG2jZgpd3+zJg6R0ict+SdKRBp9JnuBnEidYHEowP5XHFv5mX17IqBaSlCb1yGMl1Hi6s4cnzuxHXzEZOuFhPXMGFQT9bNVtiNAkImYTJG3UhMuvTDxFM4pRDxxONEf5gbcfs/rmKlz+dJe//cDX2WetcJfZICttwCZCUfdsrJUW4fzS4LShaBoYBq1RnfTdZQ7lV7jDXKOo6RzpxTnrjtCZTzL55BrUm4TlyuBUJd8JSoEKUfUGifMJ9G6S2UaW9REHU7RIiBBNCBzZH/T9VGINEj/cSqhxI6fHtoo43ytxrlMinHcong5xll3UxVnCN2tfv4UIQ6c5ptPYA4enlvjl9BkMNDpKMB9ZmBdijD5RRys3CcqVbbGZHajg9Qp9v+IuKgjQVqrYDZuikaXaKQGQaff97VvJEsdiJcy6Ir0WYbRCjOUqqtnsN+eH4ZZLQr0mSmEsV8lpgviqSb2eYS6R4S8e/iVK+TqWHmBpAXuT6/ytoe8wosVe9RbLYZf/3LiH2W6Br188QDQfJ3eRbSG6vsMONxUhkOkUKpXAy8LdsXkmjDLNSNFUGucXh8ieFMRXQ2Qxj3CcvoD4ILcPqAjVakMQkD+u+LXkJ8iMNfgnd/w+U0aNpIC0FECLuPBoK5PzXola6PCd8gHmGllqzRh+zUava+TPgl2LiM3ViTy/vz7epqggQDVb6EqRfmKcf7j0abTJNh/fe4qc2eHw3XN0gzfntnQovbopjeRx3o/hqn6/6LPrU8yfKHGwsUQQhgPxwBeGiTi0h14hRu0A/OLESQp6i5PeEEeVzr+c/SCzS3lSFySi0SLqdAd2IOftEvV6aOUasTCk+pVhfvXUXyAyFMp8+8cpAoFRlWiuYPhcSPJiE1lvE26XoF/T8JOCMOcxbDfREFwOQv595b0cr42SmFNoa/X+ejMA1/GbYSCDV5S62gcbtVoAWOclI9/c3BFdCUivt05VESpSBCraNic/mJ1Hzi0SNw0S6RTCidG8e5hOYZi2LQhicHrPOD/30RcZ0V69q58PHH7r3KO0V+OkT+lkLvnYS53bNpuyww6vhdA0VC6NNxSnlw95yF4iKSTzoc4lv4BxKcbwU2WULgkLKUTCQbgD3vuqVL8i0emQf2KB9Lksq4/k+O7kId6XPMudZpmCtElLmAQuB22+1byDs61hjn9vH7mTiokVH/vicn8zX2+ggqBfjdoma+TbRQUBYbkClSpDn60xbJmsfHo/K+Mp7kwu8deHvsWI9ub6szQhkEjqUcQPuqOcc0v8lxcfJP+swfhyiKrUBiZJImyL+sEUjSlJ8c5V/lrueVZC+P3G/ZxrD7FwZJTCaUhf7BJulG+PjOsPoXq9vvzhyiqlC7MgBeI19MPf0vsqBZHqS06GYX8YdrvcR7JvCZ0ptBix+22E5/0iv3/iPrQli6lzXYL5hS3+kG+NwQxer+fKxaFC1ICW/982m2WOyAPZ6UKksNd7iNAitAShJVCazj+49DPsTb16EvRSM0/vfIp4RRBfCTErHrLVJbzNdtI77PBmUEKghADRd6szhCQuAjKyQ6/kU707C6Lv+2G2IhLrFdgOw3BKobpdtJpFYtnhc2fu48ncHkrxBmnjWsly3U1wemUYr2WSnYfYmo9Z7qAaLZTn9Xsab7c19I1Qqi+HF4Y4axHPntvN8dQIJ0qj5MzOq35dFyFZo4MlAoaNOkW9wXqQ4pxbouLFObI2RrMVI3bZJL6yKfMYBFsexAhdRyaTiGya5rikPRVwb7qMJXQqkc43Vw6yVE7jLPeHePV6l+h2f04odXVzepsf6ZtDKIRQ1HyHE57Bc61p9EWL+KJAb7jbTplm8IPXHwWikKjVQnS7aC93iBt6v29JCHK2TfSVJPPG1KteZvoh+5tL4Af9Ngu313dG+VF7QO2www+h0Te1GNc1crLFX33vN3jy8F6qPYf1VpzV5SQHZwuwuvXyeW+GsFJDNFukylVSJ/Mow6Iph2lo1zJKIlTs6XUhbCMaLVSn33oVur1+ZnC7ZIluMsr3UIFP6okLpE7nUbqkZo1R1V6djQttnfaoiR8XNKYhGOuhL1iMPBNitAKKjR7DrotoVa5tCrpbr+YiM2mCAxN0RixiH1znf9j3dfYbaxhC58n2AepfHGX0ko9zcQ1W1/sB/c5z4kcOpQQnqiP8M/djHLk8yZ4vdzFn1okq28Sw5Tp2gtdBQal+n9aNyjivkc1XsO12Szvs8G4hlOrb/Crw6Q9a6Gg4Eu6159ByivPdIY6G4zStOEp/42HIgSEKUb2wryH5GpPNP5qh6ZtEKcJyBXFFeUVIblRINuMx9Po4Qdoi0i1awiIxB4mTa6hGE9Vq97WhB2wzIGyb7pBFpyg5nF3nUXsRWwh6SrHmJXHWImILTdioEA64+swO7wIqQnMFrbaN6xmU2w5yzcRYWSVYWtmWG5md4HWHHXbY9qio7xKlN3X0tsVMkABaFKSJJgThZqjy3YW9GF/JML4eoS2sD6Rn9w7vEkpdN6R244d11AY5v4K1ZjG8kSJ/3EavuUTr5b7coh8MXOAK4O0eYuXTPfaU1vmFoR+QlhqzgeCSX+BodRyzHvRd5ba5HNYOb4+o2WLiG03cozZKmigNSrUerJW3ZeAKO8HrDjvscLvgB8iuj+wJKmGClOiRliGo/qBniKC5EefQkxXYqBJWalv7eXe49bxB0Kl875rb2OISku1R3XILJr9y53f56dTLTGgRjrBoRoIT3XHWW3GGO2HflGE7WCLvcNNRvR48fxzrh/7/7Rm29tkJXnfYYYftj4pQrRYiDCkcz/I3vvqLKCtCWCFCKqKmgdaR5M+KvnFHp3tbS0Xt8KNFfK7Fb371Q/zbzPsQZoTQI6KWgd7QcJYFxupqvwc63A6h+A47vDE7wesOO+yw/VGq38tXb5D4QoUDX7NeIY9z1VXL9wk2bSR32OF2Qb10hr1nbIR2TWC/L+3Ub3EIdwa0drjN2Aled9hhh9uHTXmcgdZv3WGHm00U9jWBd9jhRwTxVny+C4WC8so7ZQcAMy/ZORd9XNrYxLf6Y2w5+x+Y5tiLx3fOBdCkqgxMsXMuds7F9eyci2vsPEOusXMurrFzLq7RpKqUUjeUhXlLmdepqSmyld0351Ntc6pTl3fOxSbPqm/xiPjwVn+MLecbL/weKZHbORfAN9XnjtjEH9g5Fzvn4np2zsU1dp4h19g5F9fYORfX+Kb63JHX+tk2EjrcYYcddthhhx122OFHndur51UIZCyGMA38e6apT9koCUqC5kHqchej2u3L5GwTZ50ddthhhx122GGHHa5xWwWvQtOQ6RQqGWfmJ20+8ZFniWk+Ob3Nhe4Q3/zGfaQuxcgfM2FtfWfieIcddthhhx122GGbsf2DVyGQiQQyk0bFLLyRFF7SICz1eChxGVv6ZGQHQ4R83bgPBCBvZAy4ww63F8IwEaaBTCWJhrJ9O1TZ7xSSjS6i1UG5LmGlurOR22GHHXbYYduwrYNXoeugaYR372Hu/Q5eWqFPt8gn6/z1iRd5f2weQwg0BI1oHc0FuxIhWx7RzsN6h9sZIdDGSoSFFIuPpUj99DJDTpO81UYTiq+8fCfJU0OkZ0ISXzuxI7Ozww477LDDtmFbB69oGsI06eVMOlM+sVyXj+4+w2FniUdjlxjSHAAiFLbwkb5A70YIf8fRfIfbGCEQukGUcOjlbdrjin84/TUOmuuMawaaEMy1s5ypTmE2JUljey8DO7xJhAAhEYb+CjH761FhCGGIitSOqP0OO+wwsGzbp5bQdTi8l/ZknNUHNX7qviNMx9a5JzZLUWuTkwE9JVkIfY6443yvcYDYmsJe65dLd9jhdkRYFtrIMFE6zvxPZHHv7nLv5AwHzXVyEjQh8FVINzDQXJAeEO1UIW53pOMgdo0RpmMsvjdB68Cmx73Y/O6VgAhSZwwy5wNiq104dq7vib7DDjvsMGBs2+AVTaOzK075sI5+uM7fHf4WI5uZVjDpKUlPBcwHKb5TP8iRtQmcjQhto4HaKZHucJsiLQt/JEuvYBE91OD/f//vUJQddukmclMZLyTADXS0nkDzI96KUckO2xMRs+lOpukMGYx+fI4vHfwCklf2/rdUj5/c9YusOyXSl+Jkzpg7wesOO+wwkGyb4FVYFjIRRzgO/mSBXspg7T6daH+bR0fniQtJhKIeubhK8bQ7xtH2Ll6sTHLu7CjWhkZ2uYtqd1Gev9WHs8OtRgjkXQdo706ht0OstTai66GWVm+Pfs8rJeF0iupBh05JMF0ok5ddkjJCIomI6EQ+lShiZSNNcSYivuyBfxvfD1JDGDpy1zhBIUHg6HhpnUgXBLZASbBrEWY9QOsG6JU2wvOJVteJOtu4QiM1hBRok+N09xZopTWqBzS8bMR7M0tXA1dNbG5oVISBxp70Bt+fymO0DbL6tnk87PBmkRpC0xCaBMN4xY+EE0OYJsrzUJ0uhCGR23tl+8jmOqMl4gR37MbLmARxie9I7EpI4vgyqtUmarQGy6J587hlPAYjQ0S2SXcsTi8tUZoguv5SV2A1I/R2hNEJ0Kvd/rNicWV7rwnvEC2VQhRyRCmHxv4UXlyQXPSxllrIZptwcRkV3LqWzG2zOslMmmhiiM6Yw8KHJPpwh1849DR/OvMsSSlIyRhd5XHBt1kJ0/zTcx+jdiJPcgYOfXMFag2iZovQD0DtWK/9qCFMk4WP5ih9fJ7LKwWcIznssqL43eC2CF7FZv93MJKl/MEed+9a5E+NPMNeQ+fKbe6rkPlQMh/kMM/FyH31LKrrEt2u2TUhkDEb4Tis/9gQlbsUYrjHw1PnGLHrvCd5gYzW5v9Y+HFOXB5DrjtkzjlYtYjMM8G2flBJ00CYJtWHS2x8sks+U+Uzo6fZZW3wiD0D2EA/aL2CJgSfKT7H+IM1Phs+yrhtbc2H3+FdQ9oWwjQQtg1ODHVFeUdK/KEkXsbErPsYK3WE66HW1lG964NXiYzZUCpy+VMOzv4aD5bm+VD2NP/q8vtp/JtR4nMt5MwyYbmyNQd5A6RpIOIOamSItR/L4uYFmfet8IsTL5LTW4zpVQwRoKFwlcFvrf8YR1bGaawkSZ6LEdtQFL7jbes14R1TKlJ5oEhzUvKhTz/PJ7NH+Isv/CL20zlSc2kSlRqq2bxlH2fwg1ch+sMFuTStXXHaJQ2j1GJ3sczdsXl2GwnqUZdzvkslsnmidYilXoaN5TSpFUF8NUQtr90WAcqPIkLXEbqOCqO3vZMXut4vp6cU92YXqLs2rViM0AKl33hwZbshE3Eo5HCHYuRzNQ6nlinpNSSSjvLYCENqkckPunu41C1i1SCqN/sDOrdL28CVrJLRv2awLChkiBI2nRGBLHWZHKrwWOYSo0aV99hLpKXJs9nLrHfirOkpWp0YvqORyqeQ9QbK7Q1WBumNuJJpLg0RpRzaI5LdQ2WmkmXuceYY1atkZETEjb/zjOwwaZWRCR+VTaG5PaJWGxX4t8918qPIlcxjNoNKOISpGL28jbrSOSKgm9fxkgKrIXFiObROgBGzEN0eyu3BlU2upqFMgyAVsjtb4f7ULI/HZvlaeoNzzhBhzEAOSNZe6Ho/4C4WCIczdEsO7VGBVwj5YH6Rx51z5DSfES2GRKAJjZ7qcS59kV6ocwLo1jIoKVBJB2nbRJ7/IznMqByLblHiFiMeSV7iMavLnqENzo/GMTqSpG0j3N4tWysG4wp7LYRAS6cQts3K+woUfn6eO5JlPpw5xZheZVrvECqHL7Qm+PWzH6FejZM4bmFvKKbnPazFNUSrQ9B1t/pIdnirXCl7FgtEQ1lkp0c0t/iWe/CEYaINFVDpBL1SwM9kXmKxm+ElWXyXPvit5YpcXO/+vSy9z8Id9fk700/xuHOBYS0CbJ7o5vm/F9/PbDVL+EKG2LqidKRxewUkQqAV84i4Q1BI0h2N0clrlB8MMXMuH9j9Eh/NnCSvtZjQG1gCklJHE4JPpV7iQecStT0Os/cWeKk+yUlxiHzRwZ6pEF64vNVH96YQhomWz6LSSWY/NUTnsMuduy7xV8e/QV52GNZ8bCGxhHnD10skGdlj1KgyPbLB0ocncNZyZF5ah5V1ol5vpwd2GyJ0vd9yl0hQ/sAEjd2S7m6PHzt4npjmEymBFIq43sORHjOdPOerRdquibtaQGtLEjOC1FyA2fQxFmuEaRsj3eNAapUpc52c1BmxG7xclOg9C3N+ALL2UkMrFlAJh6WPlgg+UmMoucIvDZ1jxKjxgD3LuB5gi34YFKFA9Vusftw5x93WPOfywzw3tofn1iapLubJGBraSvlH0qGzPZUg/GCNewtr3GEuYQid/37Xlzg6vItfP/phCi8No5kG4Ub5lqwTgxu8bmZcRSyGSvR3S//r1FeY0uuMaCaW0Amw6KmAc+4I9dk09qrG0Isu5kIVyjXCanWrj2KHt8mVviwVj+FnY+i6RGjaa+SLXgcpUDGLKG6hxQOm9RYFqwW3i0+F6J8XN6/j7+syNVTh0dgl9hvXApR5P8+55SHC1RjjxwKc2QZiuUx4OwSu18s/OTHCdJxe0aY5qtMdhrsOz/FAZo6PJY9zn9Uvkfvq2rLnq5Bdus600QE6EN/gmdhl/uzIQWIbBmbZ6f+NbXCuhKGDEyPMOrSnAn7m8HHek7zAY1YXQ1xrH3k9DBGRki4jTp3ZsXEiQ5K6GENWDEQQvPX7b5ARm4vAZt+veB3zGnVFkWM7ZtyERNg2Kh6jPSpx9/T4sf0X+T8nv4KzuZGJuNY+csn3eTY/xaqf5vuFvay1E1QpIAONWFmgly1CS8O0XApGk4zsYAmDpOYSxMCPSdRWy+9txg8q4RClHVoTir954AmmzA0etCokpUmoBGAQEdFT/b7/K0Oto7rFqB4xqs8wZlSxpM+380X8XAyrbm/hgW0dXkLy4Mg89yfnyGk+oPOwpXjYmuEro6u4yRFkzXp7z+m3wUAGr1omTXBoCi9lUL7DpDusGL5nhSm9jiXgchDSVoIvN+7l5do4L5+ZZPRJgVXzsGbLqEYT1e1u9WHs8DYRhoncvxs/59ApmXSGNWIbJpnZGLydniMpiXSJ1ELiQmLJ4PYIXjd7OrEs2iMaP7H/FHfGFyhoPhGSlz245A3xW5cfJfGEQ6wcEb9YQ1Tq276NRsukEdkMYSHFxj0J/KSgO6zwUyEy5VPMVZmIt/i54SOM6lXmghxnPIsL7jDH6mN4oUYv1JFC8b7iBd6fOENO6zCtQ1Frk7mjzGoyg9ZLkDi61Uf75hCjwyz89AjdkuK+wxf4WOY4E3oNTbz51picBENv8NP5l3Hfa3BmY4j6cpqMW0SsV97e/TcoXJcQESNDqJiJO5Kgl9HwEgI3L4gM8FOKyLz2+DVrkvi8wq5HpH+wQLCwuIUH8daRuQyth3bRKWj07mvzif0neTRxEYMbXxd5TXGXtcC0uUZBb1IPHb6X2MfFfXnql1JovRR+XBIzb11/41tBy6SJ9ozjp21WH7bojIbsu2Oee+05ktKjGSkqkcfXWoc53RlhppVjrprtv1ZGWEbAp3cd4ZPJY4BgQm9wT3yOP7jjQfy4zUiQR87Mbe1B7jCYwavIpKnc6dAZEhTet8x/O/ksd1gLTOoxWlGPl4Ms816e3zt/H8G5JMOnFKmvnCRqtQi2QYZkh9dHmAbt6TTNcQ23IHCHQ/wFjaz91ne8QgjQ+hOlmhbhSKMfvN4uWBYi4dAdVvzNoW8xrseAGD3lc9Sd5snaXiqnChz48jxRpUrYdbdn9uiHEOkU3niO+h6b3k/V2Zdf58OFM9xrz1LUuoxqGhKJJgSuCvjN+hjfK+/j9GqJ6GwC6QnkpsjC7z2UxNgbcsBeZpe+SlGL+MXdz3F6aIRnLtxHQkhQg3/OgqEU6gNVPjJ2mT+R/wGPWSFgvOHrrictbdISxvUKn9z9Vb5TSvA3n/0zOKtxLLcHq+/OZ78lCHm1hN7ZncVL61QOStwxn+Rwi49MnGfSqvDJ5DHG9Wtl78+1SvzjEz9BZSlBYjYH2yx4JZ2kfIdOZzTkTx1+gb+TfwlNCORrBK9paZI2AXweseYB+IXUMWq7JP99/pPMnttLpAmShs+tybG9NUQmTe1gks6wZOTH5/nT409z0FzmkAE9pZgNDFbCFL+/eB+zcwWsRZPMuQihIDQFQQx+76fv554Dc5T0Jnt1yb32AgcOLHIpU6A9EyO51Qe5w2AFr/r4GMF4nlbRplMS9HIRhViLuOxhiBCQVKKIr1Tv4XyjiHc5SeYyOCs+yvO2RWnvZiJtGzExirKulYjDtE13yEJJUFo/vSh9hfQVeifELHcgvHaeZLONarRQ3uYk5QCcQ6FpuFmN7rDAjyuUrog0rpX53vIbXnvdlbLQ7YAwTcI9I3RGY3jDPvZ1pydEcbQ1yfMLu7A3RH/wyPO3t9KG1NCHi/3y54EClYMGnZLi/uIqh5Irm713Lp1I5+XQoBwmeLGzm5Veiifnp+kuJzArkuTc5j0RKBBQSab4994j3Dm6zOHJLxCXilGjiu9ofDer0CfHUO1uf3p6AAN/GY8jU0maRYuRZJndsXUy0uWNAteICF+F+CpiKRT4SjKs+RS0WP99kWRkh85EQKVpUeylERcHu4VCWBbScUAKkFr/31QCZZmESQs3beIlJdX9Gn5SEY13GS3U2ZWscthZoqTXSEuBJa6duwmjzB3DKxyPRgltfdusIPrYKOFonvqUQ3vaJznUYo+1iiYE62GPpdBiJUjz7cZhKp7zqtcPW01+NfcU04bBbBDjWG+C5XaKSO9nqHN2h3GzTEb2gBv3UW8JUhLYgtCGvN1mwijjiICOUlwKTP79xuP9bOvZYeILGrF1RXzFBwWRKQliksVykpe6UxyyF5nWK2gopFB9U4/boWr3FpCOg7AsfEeQM9rk9NbVeyAiIlSKIJKgQETqlm1nBip4bTw0zsJHFSIWksg0SVsed6WXSMou9mbwesYv8OXn7yE+p7PruR7Wy5dRbu/2lft5HWQhz/KHh3Hz1+6m7t4ev3z/kwwZDfJaC0OEnOiOM9fNcWR1nM6xLJrb/32hIHU5Q/p8C9noIi7PD8ZktWXRmBZod9cJPQ3la0TW5oNohz5SQybizL0/QfBAk5/afQ5HXsukdKKQb5w/SOqJGOnLHqrZHIzv9h0gbYv2fRO0xnTKj/j82Ye/xbhZ5tHYLEmhsIXEEJJvdvP8p7WHObsxRPD9HM6qYuxiB2N+EYKgv9G9zlUs92yWKO1w7sP7eP5XJrnXXuAha5EHrEX+7d73UntoBGfNQ3++PZBSOWJ0mPb+PNUDOj81dJaPJU4yqr1x1tVXIbUoYDU0+WLjPta9JJ/IvsSHY9eOcVzv8jMPv8TxfaNshKMUnxnsLLSWyxKO5lFGf80ILY3atIGb71dwkpMNSskmf37sB+wx10hKD1uE2EKR3Lx+LGG/QkLsftPjn01+gc9l7ubzhR/n1WHeYNK6f5z5j0iMUoe/f/fXucNaZJfeBSxe9gp8du1Rjq6M4XwxRWLp1VrPJ3cbZP9Sh7+WO87n6w/wRzOHaa0mSBngJ+G+zDw/HlvGEgMVRqBsk162n/y6M7nE/aZLLYpYDTV+v/YQ3/3D+0ksKvafbCHnVvtrgrsZP0iJjDtUDu7h9/P38ngpyXvs78O22bLcZIRADhUI80m6w4K74gvsM1eIb/aJuyqgpyJ6oY4eqlu6sR2Mq26zF8lLSJyhBnHbI2t3iRs9snobW/i4SmMu6HLW3Ye1rhNbVZhr7YHSkrvpXOnRsvpN0JjG1elydA1/LEdnpC/7cWW7MzZS5ROplyhqHgVpognBHmOdc7EhAL5dSiJ6mzeiAr2rYbYcLFNDW9AHIsARmsSPKybTdapujFbXwjftt515VVKidImUt4cYv9B1ZDKJSKfo5RWHhtfZ66yi0bd+rUce86FF0DBx1iOMWg8VbuOM6yZC13GzGp0hQXaoyfsTp8nIHs6mxelSKGgrjeda05xaH6a5mmBkISK+3MOY23jNXkUtDNE6CcxGkk7ULxfboq97apgBoSWIdPn2M//vJkKg4jbdnI6XUgwbdTLy2gT1DxMRsRD0WA9juMqhEdnUQoeq79ANDTz1ylKyKQRTdplm0uaIPXYrjujNIzVk3OkL7lsWQtcJR3J0xpyrJhSRIa6ukdZQh/tLC0zFyjwem2Fcj+ErSUS/UhEpha8iDBFxfbAikdhCYG2X9WNziNGPS0S+x0i2wR3WInsNlwhBJexx1j3AyfUS7ZU4w3Me9kz5VW8TmkPMujlWQ4/FboZ2PYbwBX4C/KQip7dJSAtfhXSURz2Iobug9xQi2MINThiheSB9QdV3WA0DZoI053sljlQmiC8rEks+2nKF4IdVA4RACIH4oeUyRNALdaJQe9XPbmuERDk2fsYmcBRJ6RIXAXJzLdwIQxbDBLVOjGIQQRBCdGtO0NYHr9fJYXVKgvdOXKJkNdhjrRKXHlPGBjnp8dn6A/zuhQfpLCWYesrDnqnC+u0buArL6g/jFHI07xrCS0qak/3dZJQOSOXbZJ06f3zoCMNGg3CzljFtrjGh+1hCQ9u8wMb1gLRcZGyoykM/dhlX9TMykZI8d/8U58pFlk/l2DebGYzMkmFgTLX421NfYdHPsuDl+R0eQjlvo+fVNPGKDp1hk2Ss8S582FuPVhqm8r4JOsOSqQfm+avj32BUa2IIgwt+wD9a/BnOlIfIv6iRemkJ1eoQBtvkwfs6CCfGxn1w8MHLfKR4mn1Gl5VQ4z/UHmDWzfGNU4cx5k2cVUHuss9QO8SaXUN1ukT11/juhUAkE0T5FH5CkNRcDCJCwI0UbtekUIvQmx6Eg5VxFIaJMHRau5NsPKCwJ5rsM1fISR3jBkNaPeWzHgZ86qU/S/hcFqVBpIOXifjwo8f5YOY0U0aFt9onu1XoYyPUHxnDTUsae8DPhVi5LlOFRWwtIGV2sWTIuF0lp7cp6g0mjDJJ6VHUdCIiLgch80GGlSDNBXeYnN7mU8ljm73jfU74gt8pf4BnVnaTrg34fSQEMhZDmAZeUpBOdRiN10nLHhqCP2pPcrwzwedefJDJLwoKVQ/zwjJRs/Wqt4pl43zr/EG6ocHT56exLln0hkMmPzTLrkSFx51zgM5pH473dvHN+QMMHelizpaJ1l8dDN8yVtcpPWXRK8T4w9jDfGd6H/VLWdJnBHZVUTy6jmi0Xr0mSK0fi2TTtHcH/O0932HK3MAWGs3IZG4th5y3MesDfg3cRISh0zyQpXxYQ9vb5KC5yqimsIVBT/n84+Wf4NunD5A4bWHMzxJVqn0d3FvAAASvmzIeCQc/AXcnFhgzqhww1ojLCFsIDCQXO0W8sylSS4LYuWWC2fmB7r16pwhdR9g2YSZOY1KjlwMONbmntML9mXk+lXqJpAwpSPPqg+qa3Mkr+4+S0iQpYVQPedCaecXPPhQ/zcnCKP/I+zgqNgDafAC6RinT4AO2z5oxw6y5yhPZfSjjbbTJaxqBo+HFBQn99hjUUo5NY5ekOxby6eJ53md7QP+7K0cxji6P4S7FmVwICOcXbx8jAl2HUZdfGvkBB80VstJmKQg41RrhQq1A4rhF4biHtdSCCzOoICB4M3aFpkEYtwhNsIWPKSJ8BT6CyJfo3RDphahBOodC9OXBTAM3IzHHWuwplClqXSzx6k1eRISrQuqRQfdchj1fbxDaOkFcpzlpEDwi2WOukZMB2yV4VYkY9SmNXkFRvHeVh4pz3Buf4z2xyzhCUdQs9OuGkq4ZMxhX+31XwgQXvSFm3AIn6yMU7BYfip9m/Lq/sxKkeXFjgo21FFl38AOXKw5aoSVI2z1yZgd7M5t8sTfM0eo4ziUD51tHiTodXusO0eod1FqSo/Ex5JqFVQV3RPHpkRe5w1pkXA8AnZUwxcnOGLVKnNHZdYItnsSPWm3EuTmcjQypfRPUoyyFo4LCt+dQ3S5htX7D3nWhaQjbInJsjIzLh5yZfvwhTFxlELQMnLpA7wzWJvbdRAiBm5V0xwL256oUtYiE3HTnI+DYxiiJUxapmZCo3rilya+tC16lhozZyFSSjY/spjUhsO6pcq89S0b2yGsKT8Fv1u7lpcYEzx7fy+hLCnvDQ9UHU6Lj7SKTScR4CWUZ+Bmb0NZojum0JgV+KiI1XWHE6fJgfo499hrT5ho5GWIIcTW7+nZxZEBJr5FLdPDGs1hBSLS2MRAZWE1Inu8N8bmNBzk3N8yhbu2mvbcawArwG7LpkhMUk/Tu6nD32DIPOn0B/Y7yqEchx91DBOeTZGfAXmn1A1chEZqATQtZcd01o4LtZYN6/dcm6YurAwihrn2nb7Y9bdONqrO/SOWwSXePx5heRQLf705xuTeEuWRiLawjWh3CAcq8SssieOgA7ZJF+b6IT02fZF9slcxrHPt62OPzzTs40R7FWRJoqzWkYyO9GHpBJ6b5jGqdq71s2wG/kKB7X5eJoQofHj7LnbGFTQcxMJBIJAEhJzzFSpjirDvK8dYY5V6c82tFPFcnahpobQ2lKZSp0HI9Fotp7uCalNyx7iRrR4dJLQv0cpXBuQpugJCIRAKViuPHIWW5xPUemgAfxUu1CS7MDpMrqzcu79ZbFF8cpr2YhVJE46Ee06MbHLSWGNa62ELHVyH/Yu7DzD6xi+KsGohnswpD8DxUo0X+pIuzZpKYa6NardcdWpUxG3+6RHfYIp/eICk1lgLFE908X6/dQeqUQfasj7FcG+xr4CYT6YAVEdOvbdyuPG/aronVAb37Jq6nm8yWBa/C0JGpJGEpz9oHfH7mnpd5f+osD1oh+mYWaS3s8J8v30/rRI7ScUX6q6eIum6/BDpIWZB3iEynaBzM4SUlrTGBn1Ik7yzzDw98jZJeZ5/ewpEaGuLqtLwm+ufonU7PZySEWpPxZI3LE8NAAbPrDoye41Ot/Xz/xAGcywai886d0voWgNuzaelKZsAtmvypO57klzPPkdM0wKQZhcwHDkebk+SPKzIn64jFNUKlEJro900bOiKRAF27dv90XHB7AzlF/yo2g24pIqRQaEKioTBkeDWIvRbAyqvi86/1XsLQkTGb2l4T99EWj4wvMK53iYDv1A5xYmOE5AxEF/tZ3EFCxB3W7o3ROBTw2F3n+ftDT+JIA8mNW2tWQ5PfX7yP+dUsYzMBwcIiWjKJ7mUxR2LEtd4rSuXbAbdo8hfv+QY/nTxOUYrN45dw3TlwVcAPuvs50tjF8ysTdM9lsCqCsR+4GBsdhFtD9Hz88Tz1fQ7NXQ4z9xYhdi14PVofZ+SZEGeuDWsbW3Ckbx6haah0Aj/nEMQVeatNTm8jgXakOLdaxDlvEl8N3rAPPqpWyX3tIvlknLN/qcR/e/932WutcNhwcWT/+eOqgPNHJ9j/z15G9XqEg3CfKNX/LL0e2hMNklKgwvANTVlE3KG+J0Z7VHBvuowjTJZCk89v3M8LCxNMPtdG/ODEK4b5bnukJDIFeiwgYfSQ9Ac9m1FIJTTouQbJpkLv3vrq3pYFrzJmEw3ncEsO8WyHA87KZtajv1tuRh5LoUmtkiC1LLArfTms7WppKSwLmUkjdL1fnjd0ooRNEDdoFwwqBzSCuMIv+uhxn0P5NSb1CmnZI/kaPWyvF7iGSlGPPHwgKSSOvHEp0FOKntLpBCZmO0JveTAIC9AmkRIQwdvW39AkviMJHIGt+0QoQrV9skvXo40O400VqE/pjJsVklKgbeYiF4IY32kd5kSlhFUPkc0u2Dba8BBkUnijKUJLo5fRCE3RlzVRCrMZ4cwNIV0Pltf6PvaD2mYQBAR1k+/VD6KlFXcYNRwRMhUr40caT00XQJqkk2nS9Tyq4xJVqzcMPIVu9K0jU3HcIuwZ2mDa2cBXUIlMTmyMsLGQYbQW9c/HoCEEfhLsfJexWA1L6DdcDxaCLmf9PM+29zA7U8Ra0bGqbv8BHwQIt4fRCjlaHecrybPcYa4xuU2CWL0d8uWVO9nwE0xaZTLatQ13I4pxvjtMzXd4YWWCes1BW7VIzAnMusKodJD1vkSg8nyEyuHHIXAUtuhnmFpRj6aKKLtxjFaI7PRQ/uCsjTdERYhuD62lo7djzLWyJHUXX4EhoJRpMjfq0FnTSKST/X7wbveG97uIxfAPjOEWLSj12GVuMKQ1MYTEVQEvezHm/RJmTaJ6vYHb4AEQha+pDig2h/xEzEbEHfyxHPU9gl7JZ8op46uQRT/LhVqBXiWG7LZR22GTf7OQGkLXCWKQTHTJme3+UDAhF/wUM34BVTWJlQOMeu+Wr5Nb1zZQyLH+YJrOiODju07zmeQZbKEhMalHHk+7RU50J4iftBj5TgVZaxL0eoP5UH0TaENF2neP4CU1WmMSPwG93T32T64wHWvyC+nLZLQOJb1GXHjkNJdhTaIhbxi4vhEd5fNsr0Q5SPCAPcuh15Dh6yjBWphgsZFi6EIdLswRuoMhOxaqqB+8voMavzAMOkManTHFiHOtQV9sw8uo+tgYaz/TY3dpnkdjlzctDhU95fOV5gP8hxcfw5o3mb60TrSyhjqwG3fEoXLIIHxPnWKyzU+WzjBpbuArHV9pfLN8iCNH92Cta0x+PYZ2dh7V7RK57zzLfbNRbo/MSZ0/Cu9l4744H3e+yrBm8ivZ53Azgvnh71ML4/x3R34WEY5ir/cwjvUIG68e1pKJOK17x2iXNJwHNvinu3+fEEElMnm6s4/2MwUmXw6IX6wMpI2usCy6kz6/sPdlfix57jXbh77QupN/ffJx/KU4u7/kY8+twXqFEIjcHiqsYs3Hufj0OH99+TP88l3P8vcKx2/twbxNnPMbrP3HMb6cHqdTUgSpaw9Ps6wx/EKIVfEpNXuMdOoIPwC3hwpCVLNJGEagIlSkCGM6jWlgrMuY0bcVP+XbHHV3Mb+WY99GB8rVftl5gFFBQDi/hFjRSe+9i0sXStTGbH41/yR7DcXf2P11To+M8a+ND1I4NoqstpALyze838XIEBd+0WTv/iX+1sgR3h9bxhASQ+jM+z5///ynmF/MUzo/oBu810Nq/c1rOoE7kqCxy6Q9IfjkJ57mp9JHKcoOLaX4QXMvlWNF0ksCrd5+zf7g245N90aRTOAWFR8dO8/9iVkMIVkNAz5bfoQTlRGyxyXO0+dQvR6Rd2uVirYueDV0ehmBl44Ys2oUtPjVH7lKUQkTrHgpzIZCblRRnRvvDt8QqSFNY7OMKPr/hn05BxVGt0waSsUs2kM6XlrQGYkIkyHT4+v8bOkoJaPOPeYKcSlwhLYZrL462gyV6osCX5F1QdGMFN5mJjG6riOwFsU4645QCeJMmevAjYORZmSwFGTpuBay1SQYkHaBm4aURCaEliKmDfaD5zXZlL7ppQR7R9a4K7NEUoZITFw8eipirpvDWDOwyyB6PkoIgoxFu6TTKSkeH5tjn7PGZ9IvMqnH8FVIRIQje5wdH6JlJOjlLeLZdP9vDmDwShhi1hXWusZSK0098khKnWGtX8LcpbuAy78dKrORn0QGJkbMhla73+emVD/TYpqIdJJOUaNbFBxIV9lr6CwFPZ73xjjdGSG2oYgttxGNAbPRFQKhG2CZSCdg0iqTl+3XrMIs9rJ4Kw7OisSer6MWlvs6t9AP3PwA0fMw6wK/YrLubR/vINXukJrz8FI6MtDwUtceZ7F1ReLkOmxUiNpdotda5zeD/tCUhMmQTNy9mnmtRQ6LvSxhV0O4PmwTkw/leyjfw2xG6DWdRsqhrQxCekwZFVLS5Tdzj+IO2ViaQNuo9I9tE2lbCCeGP5QkNdLkI0NnNq1VTXwVsh72mA+yLG1kMJcMrPr2Cen6mda+GkNYzODnbNojJp2SwC0FfDB5mseskFYEbaVoBSZ6S6C3b31P51ZypUUNyyR0+jFaXmshkXhKsu4mqLVjpFqKsFrdks+4ZcFrlLBpT4ZYI32XjutpRpLnmtMcK49i1RRRrf7mdSo3FyNhmv0LdWSIzoECQUzSS/YDGauuMBsh1oaLPHb+lmSZOntzhJ+qsC9bZk9ig5ze5oC9zD5jHUeEZKTc3NXeOMsaKsU5X7ESpimHCZb8DGdaI3z72CG0+g2+RqGIDFBGRO8RnfeWnrnhe36+/gB/cOEe1OkEdNdv9mFvPVISGRBZEeZ2tIUVAplIICwTNy/4YPEce61VHNHXdH3ZizHjFXji7D52f91DcwP8kQzhVJ7Zj5vsum+RR9KrfCr3AnnZoaD1ry9DaEQIHo3N8v8+9HXOTI3yWe0RrIdHKf2giPXVFwauyhH1emTOt7EaNgv5If7D6H3sttb4QGyJtLy22Xtf4QL/7n3DNJYsdlVHMWM2UblK1Gwip3dRfaBIZ0jiP97g4NAqf6L0HAD/pXEf//e3Poy9Khl/uYWcXSHqdLfqcG+IlssSHJigNWIzVlzjoLVMTnPhNXpdn1ydZuIbCmujDWtlIrd3LQBTqm84cEUXsyfpRVsvQPNmUfUG9tkVbEMncclBmdc+u+x4/ePtuv1Ws9dASyYhZtMaNdi/b567s4sMay18pfNcew9fnT+EtWT0B/a67rbKMMZma5Sey1FpODx7916S8hRxEZAzGvzKoR/wH//sg7QWUkx/bg/W7LVncP3+EkvvE2hFl7+2/0ked85TlAFg8aSb5tdnf5yZjRzZb9pkzncxFyoDb8sudL3fJjA+wur7i/RygvZ+j+JwnYLT5qFEmQm7wmGzDMQIUfiqLyeJAKWBskxkPD64LRI3ERGLEe0exR2K4Yy2+EjiFBkZoAkLH8lGN0G3aZP1tu5737KVKrR1ZN5jMlclr71SY66nNBY6GcrNOEPt6K0Hl5se1sK2CHMJatNGv0yfj4jsfubG3pAkbEnyjHlLskzdgs5f2f8d3h+7RE7TrhMR13kzX0NExErYF1pe8LJcbBU4vTbM0JM68aVXZxUiU9Iu6XhJnTMHh6F04/c81SjhX0ySXALlb9PM5BsQaYCmNi2Gr2PTzm6gERJhmYi4Q5BQ3BmbZ0KvYQuNiIh5P8/J7jj6koX57DGEbdF5eA+dIZ3c4Q3+tz2/R07zGdYs5A9dZxLJbt1md3KVZWeG5bvSnBgZobWQxxID6KQUhujLVRJNh9jhPM/XdtFJmTxqL5K+7tfujM3z8J4ZjtpjuEMOeiuBaHeh2STIJ6jtl7gjAX92//N8LHmcYa0vNfZyY5yhZyGx0EW7sEi4sYVala+BcBzaYzbtksbhRI1hrUXydXpgNqpJ9j8/S1itEb6WhXYYIgKQIQTbqB88cl2i1zCeeFNXrhBgWZCM42UEjxYuc3dsnoyMiOhXM6rrSZI1gXLdgTBweUusV0gKgZfIM9fLUYk55IwGRc3i51Mvcd+dM/yHoR/j4tMH0ZuJqy+r7dX49Pue5m5nnvfHZhnWYlyRFzvTG+Hc+VHsZZ3CkSrR8XME2yAbfaXiEhQSVO+KsEfa/IUDz/Kp1FGSQpHTrM3qRb/fO2JTKk8JlKBvt27030MFwUDNhbwbCNPALcToFHXG0nUOGQZXJPQiFdH2DJSr9S22t4hbHrxeuYh6CZ1UssFkokryh3y4y5HDhfUCvRUHo/3aAdUVkW6RTEAmhbJ0woRFZGmU91i0xwReJsKaaGCbPqPxDpYWcG55iOZSDIRGMmZDs3nLskwRUI9CmoRUIp1aZHPJG+KJ2gH8SONgYoUho8Gyl2HBzdIOTMpunG5gsLSRIWwaaG2J0ZCYNUhd6mBUXl3qj+IWvUycICZeNaAUKsVG5NGMNM6sDZM+D4mlANXb4sVZiP7iYJvo8uZvKHqRTjVyOdcaInlZkVj0UO0BbZOQ2tXynXfXLjpDJv54jzGtji1CZgPJehjnN85/mPLFHIWz/VIP+Szluww6oxEfKS6Q03wc0Vep6CiPl70Yzchmn1Fmt34tW2cLwR5nnW7W4FSqgJZKXLNdHpCsigpDVKuNCEJyZzIcj+/jxdIU8iHFPc4c95grjOoWk3qVx7Pn0UXE8w8cojGRwa6ksZq7qe7XkXfXmU43GTbqtJXJ55v7ON8d4plz0+xd6mGsNVHdAWub2JRJi7IJGlMa3eGI6fgGGRldtQX2VUhL+dQi+P9VfowjlQmMk07/vn6dITwVRZgthVcXrLsJqpGLJSSOGCC/+ncBoWn4B8ZoTMdo7g25I7bAlLGBD6yGAUdXx0icMUnOhwPf63ojVNdFVhvEV1J88cTdHB0Z5y9PfZtPxKskpWBCr/NI+jJPP3KQxlQaP6GILEV8T5WH45co6g02QoPVMOQ3Nx7nqaXd1JZS5F/UsKshstIk2mzHGXTkcBFvskB1v83IvlXuyy9yT2zuqq30D2MJSVKEvC97jvMPF6k2HLrDOaxqjuKRDvpL51FBgLrdbOk35QOF49DLaPQygqTZXwv7Tmo+5/xRqpezpC5q2Ktb11Z164NXy0ImE3gpjb25De5NzpGXPa4PXhf9LN5sguSCxKg2ea19ndycEgxH8zT3JPEdQack8OOKO95/gX8+9Xk0uHpxSiGIlOI3C3fyh7l7WGKY0Zjdlxe5RRPWIYJaaOArjZO9Mc50R3hmbTflH5SQHjx9YJp8vsXGagpzyUDvCJwVhdFVTK14GLUWst4m2qiA7/cb9G+QPdRyGYyxPXhJQRC98ub0CZkJEiz5WbzLSaae2kA0O4TdrS2RCt1AJuJEjokhb/5N0Q4s1kPJhUqB0gsVmF8eWI1TYejIdAqVTbH6gE1rOuCRvTPsNRS1SPGkO8qxzgS97xQ48LUKsuOiDB1/OEX0SJ2PT17gU7kXGNGuTY7Xo5Av1+9ltpPj08UX2KWXr/ZKWkLysHORgt7kSP4AIpOGdnezz29AMrBK9e2ghSD5nTapIynad5b4bOoBXi6N8edGv8eo3mK/IdhrnOfR2EX+yfs1FltpKs04va7BvrEl/squb5KULr7SqIUOvzv3IOsni2QvCMyzlwirtWt9oQOCMHSkZdErxmkd8hgu1Xg4fpHCdd+vT8hSoHPOH+L3nnqEwvOSsYudawoSr4XnY1dDQktjtZVkJdT6FrPa4GfU3gnCNCnfGaP2qMe903N8ILaEIzTmA8lqmKBxKcPe77fQKu3+RP42I2q3iTodYqZB8VvjbIyM8q0/fphPxJ8iK2NkJcSTJ6l/MMaal+Qj6ZPcb61hC4EjDFrK52l3mEu9Ib727fuZ+iOXUrkBs4sot0ewjZR//NEc6/fFaOwN+Y09X+VxewNL6FclJ38YR5jYWsQvpS7yc/ecoxbBd+/bx/nuMF+JPcauy2lUp/va1YxtijB0pOOgkg7dvMQt9OXWoD8EvhRqHOtMkjsmKb5QQyxvbJnm7a0PXg0dLJPIAFvzsYWPpD9Z3lUeHRWy4B3ArEqsikJ0X/kQEbqOzGYRlkkwmsPL2XQLGs0JSWRBLxuhYiGT8SpxIbGEjnW9z7eAcbPMVKrMfLKAilkIy+pnWt7Fh7TRjvh6+Q4Wkjk2/ARepHO2PsRKPUlnLU5+USECCG2Lct3ALmvE1hR6V+GsBWhuhLHRQTbbqFabqPkGYtBC0ktq9LKCtHktixQqRTMKebm7i7OdEmZdIFrdfllsi0vowjQgn8XL2uT0Nw4ermTx0foe52iv7hcOS1m8jMJIefhKcrw3SqMVo9SrE/VuvbzHm0XoOioZJ8jEcAuKxEiLvfH1zQyq4LQ7ypnmMGZdIWvNvnZrLkMvZzCUqnDAWSEvO4DOatjlUpDgTG8/35g/QL3hoIsIOMKYXuVuM0RD9NUujDphTBGlHKRSiKoYvBkVpYi6LhIwKzn8hTgnwlFO5ca43zqOJSS20MnIHoeSKyT1Hqt2kpZncSC9Sknrqw887+5m2c+wupohuShx1sPN8nAwcA8koWlgWQSORjLXZDpdvkG7VcRimGXWK2BUJfHVAL3mot4oOxaGmA2f0BKstWzWwzgaLQpysM7Bu4GfEGRyLcadWr9VBqhHFitBGr0j0OpdRGfr18a3jVLQ87DqIYGtMdPKcTlwyUjIyxiOEOy1VinoTaaMCsNajJ7yqUQes4HDf1p7mIvVAvFFgbHeH2AM2p3toQt9HdIL0NsKrStxlYGPwo08QqAeaayHcdrK5HyvRC8yyOptMlr7qs66LWDKWEcj4g+zimAsj1ZtI5rN26r/VZgmIpXAz8Rwi+AVQ/JGm95m4Pp8d4pTjRJWQyEbnS3NPN/64DUWI8om8RKCnNkhr7cwNofkZwPFi+4uvr5yiOLLAfGLNVh95RCRzKRpP7qbTkFj46GQiT3rjMZa7Ev2L6wrAweHnSWO+w552WWvIV5hE/iQtcjQUJOZXXm8Uharm4f1MlH73UuBJ8/XOfH7h3jZOoTZAK2niK+ETCy2kb0aot6CKKIYj4Ghgx8g3H65T3lX/vX7Lj9vIuASCYfqYZB7mjyWuwRcSfuHXAoS/Osz78WdSzJyOiRa3+jfgFu8IMlCjsqDRVqjkgfib9xvKJNJGMoTpWJU98TxY5vDetc9Z7oFwdh9S7yneIkzzWH+j0sfQrsUg+ZS/7wOWJByBZlM0NmdpV0y2PPwHP/D1H9lVOtgiBgzfpzfv3gv7ZU4u+d8wtV15P7d1O/IUtsj+TMjx/lU8iTJzXLyH7X38xsnP4S7Gmf8G4qhxS4nHz7M0wcPMLx3g989/FuM6zEOGB6j2gpy2KU9ncJes9DWywO5OCvPI/QD9PMLTP/BBN1hm9+JP8Thw4tM6DV264phTeeXM8/ipSU+El9JktJnWJOc9kx+a/ZRVlYyFL9rUvzuPKrjEjZaW34f3AjhxCCbojWq8av7nuHH46cZ1RRXbIEByqHgu41DHKuOkTkHsecvorruG35/YauN8fIlzESC1QcnefLQAQ7FFhnXV97lo9pahK7TGY34y3ue5bC1iC106pHHsd40J9pj2GsCNbtI5G/92vhOiNodEhfqmPU4py+M8c8TH+Kx1AU+FV8mKU3eH5snhKvrxWyg+H7nAF9dv5Ol35wmf6KJtjpHVK5s23OhLZUpAIgUTzf3kZIutdDBVQZP1ffxzOIU7bJD/lkdq6FoTEm6QxHO3jp/79BXKel19hhV9hhV/s1dG8y3iqQvxcmsrKPeKJG0jZC5DO6eIeq7TYqPLfO+4Qs8GL/MfBDx+fqD/O6ZBwkWHfZdbBItrRBtYTvNrR/YskyChEkYEyS0Ho7oXQ0r20pnI0jRcC3yNR9RqfenY7mWZROpJO1hje6QIDdR4+fGX8KRHnmtha80lvwsbmTQiSzO90r45jq79S76dTKISSkY1lokzB6uIVG61pfQeheRjQ6p2TRKE1i1AK0bYs6XCWbmbm7afVMaLIrH8DMh07k6w0YdAF/9P+29d5AkV37f+XkvXdku33amu8c7DLxbrOUu1nDpjXgSpeMdj6EIUae7Y5xO98dZKUKhCzHIUFAK6iJ4JE88co9ciuSuGORy93aBxS7MwmOA8a6nvSvvMysz37s/qmcwAAaLwRKYqZqtz0THBKa7C/WyMl9+82e+P0U5FKz4OTrFOIkNSaTiDkxdo3Zs3Kykl9FkzH4635QKDN3v9oxF+qN0jZ3pSfkM/ngSf8ykPSkJYldf6M3X9LKaQ+ktDkfXudQu0OhEMDzxfWsABwLDIIxK/Lhgf7LEw47majNBRzt0GhGsmoHZ7g/uUFGLTkHiZTVzdokJo2+H5WmfZS+Hux4numGQuFBCLyyTyh8niFlsjaXYOhQlKV2S0saSBk7Ex49GsB3jbz1++ENjp1NeNVvYSyWMdor1SoJz3hQSxZzZxBIGu0zjWmmEROBp8HRAQ0UoVpNYWzbxTZ9gaeU2L+j7IywLFbUJYoKjzhoHrXfWo3a0yZV2jo1mknQj7JdY3AwqJKzVEV0XqznHYjdHyuyg9MYHvIoBQoj+oJio4rCzwaTZRGLR05qNXpr1bgqzqwe2rOh94fuIdhczYiLbSVY7aSqxfoOWRJI3oqid4jyFoqyinOlMs1DNMnmhg3751ND7m+puF6PSwqknWGjlOensoh7E6IYWZ6oTdNYTRLcMcqdamNsNjN44ZsekFk9yfs8UYUSy32qQlAbzqQovTWew6yaZSASGMBL9bmjHxsuYeBnBw9kNHo5fJm106GiTdS+FX4wSLUpk0yW8zXaKt1a8CkHn8ASbD1t4+1w+lrjAYbt6zeYmLXvM2SVSUZcgPoYd3TkxXBfuOcTmIynccUg/ssXRdJHHUpe5N7LMv914nJeeOYzZFjg1kD2Nl+mPWXUO1/nL+3+HWfPNpb7g5fhm/S7OLU9yaLMFpQr6Q65pUuUqY2+Y/aYkrwdBiGp88E9sxuF9FB/N0Z4SHD+6wGfzZznq9Dtyn3bz/MbC51krppl4RpK61MJcGxybkyCXoHbcJztd567oCoaQ3B1b4eT+adYKKS4mx5G9cXrjAWbSx3Z8Yk4bxww4lqxe83G93u82a7X5ifQJps0muckWK9kcv978AsK5ca3TMFAOEhibNrENAUpjZDNs35Mk9VPrfCSzyXFnA19bPOPGOeXu5stnHmDm2xDd7sBWCdXziZ/bxqmmqJTj/OfWrzCTr/HP9/0lDzsD1qj0Hmg/QFWqyF6PiW/s5XcufhH5QJ3fvff/oWB0mTBMHCF3xgJLXnQj/P72xzi5PU36iSjpBQ/nSmmwb85CoCay1A+P0ZnUxOWNU3Uvdfdw+omDJJY1iQs/QC1aGDL+ms+L6jhPH9/HFz96mvTwmA/cNMJxMKYmCPNjmKkek0aDpAhQGKwGUf7o9MOI5SgzS8PXpPWuCHHNRvK9+FLpIzz9n+4jvqGx1lYH+9q4SVS7i1Sa1OsmW7+7hz+O70EoEArslmauGmC1PMzFLXSnS+KUILYSI1pK8oetT6KnXP7NI1/m87E6/8XksxxMbPMnqQdxz87ibOYQy+s3HIYybHT3Zln/JNiTTT6VOssxextXG7ja4EJ9nOzrkth2APXbH22+xeJV0poyUcda3D25xVG7zIwRu/btiNAUzAYp26XiCHTE7kfZgM7uOPVHXabHa/zGwf/I3XaIT4ivFQv1HHNf97A3m+jldVSng7F/D72ZNCtBivq9bzaDKTTn3Wme35rH2HSQ5U2CWv1DX7pqNvuuBh8y3lSS0oMh0fEOPzV+gseiC+QMDdic6u5m7cwEsQ1J9pUi4dmLA7UxBUmLmbkyH51YYN6qABEO2Jt8Mn+RejrKYiGHKUP+q/Fn+HjkzXduiLe7KdyoSDPKPrMD0Q5/NFntl2YMKU0VwakJomWFCBUiEac1K/jdA19mlxlcMxM/483wVPkg8kqU5DOXUNXqtdnjweIyLEny3YP0UhlWp6Oc3jXDw87l27y694kK++U+XZfs0xaZNxJcsXIsHssjxTZ5I7gmXAHOeVM8t7APsRLhwPMVwtPnB+oaeDf8dITWtCTI+kREALyzvvtid4KJF33ipzf7DZ3vEx2GxM9s4VTSLFsJah+xScvBalz7IBC2TZgfwy1EicVapKRPXPaF3WaYQl6Okj2riay13rVZ+E7m9dIMu59oYW7WUFt3hve39nuEfg8aDdIX3n2Pu7YX7AjRTHUeozdBbW+UhfvGkbEmn4u2+Vz0BBv7UrwxexxtSqLFyLXfGWY6BZN9x1Y5lt7gAWeNWTPKRtjFDQ3K7RjjlzzsrRa6dfuHt9zyO7jR0/Q6Fk3fIXxbwC8mBJNGm3vSq3z5gb00Zwok1zI45R7lIyZ3zS0zFa1zwp3lQs/jxeY+FttZSqcLZIpVRKON2rk5iyBE9kKkL6ipKC3dvjOtX6SBkAKZyyLiMcrzNhPzRfanS+y2ythC8Zw7yXl3iq8s30NiURLbVojO4EXYzJbPlfUszwA/kjzL3bZHTnrcFV2hFsZJmV18bbAWZPhmt0U5TLDlp6gEcd6oz9Ds9aOp+rpxsuOxJv/d9Dc5arksBCYrQZbNyhipYMA3ZcemkzfwcpC23pq6bIURIiVNfKOH7PggBFpqHBFiCYlEEhJwqTPBpWIeuy4gCN7adKI1oNC2SW8MwmRIUg5fR/VVhBToWIQgFSGIaCLSx76WCtWgFYaQlIIkqmoTrQsY9Dn1VxGSbsGitSckO1kn9i7i9YP4//TmclQOR3B3+cTFkByf94mMx6gcSNCZlMxlqsSloK00K4Hm5fYeYpuCxHIXWR9u8SosGxFxkIUc9fsm6OYksbk6H8kucMDZfNeSoP3pEicfOUp8M0bmuz3Uxp1d+/x98Xo4VR+nJll082yEp0gKSUI6JC0XLyMwuwaxyPBm8mDnXDEkMtRsNxNknBSu7u8xoe67JCkl+yV5A5KpvbXiVStMVyPrFpVsDJ+3XjwZGSUlNT+XeoXijyZZbGU5e2kGezvK2D0l/uXcVymGcX577dOsNDLU38iRugRzSz1YWCbo7oyQFQKCENkNMDxYCzJMm02mDR9HWO/y5oYQIfqebLZNODdBZ1eM6l2a3zzwdfZapZ2pKPAn2w/zwpl9xK5YzLzYxqy0f6DIzIeNWe2QPF1gqzzByV27+ELsMrNmlCmjQUeX2XJWaSqbv6zfx7nmBCuNDKViEqNsMf4SRMr9NN/1Z9XC3BRf+kdt/lHhKb5Sf4Bni3uRS9GBH8igklFauwXelM8u+62f1XYvSWqhh31qBeHY/SiyhLhUxES/LtbXijcq0wSXkiQ3dL857QZ1WWHExBsPiRXapI0hru8TkjAdozsRIUwqkrKLI0Kung1XBey6lya6bhDb1Iju8Hg0tnYZPHz/Oe5Oru1kUj54hGFQORyh+SNtHtq1Rla+efzuJHQqSfF+gTXf5LP5s2RkhJUg5BvN4zy1eYDcGRfjhTMEA+pEcrPIeBSRTtHdm2P9U2BPtPivDz7LPxg7u/OQe+N74U/mX2P5ixlWlvOMXcrBD7F41c0W9kqVRCzPufoEJ1N5DlhlYlIxbjXpTClAkhlm8SoEMhqBaAQZQKMU54qZoz1jolD4CHxtoJRAaA0D4rxxyyOvZkdh1yxa7Qj+Daa5SARpGXAktkHc8NiaTFC1khTiLdaDFJd741wojdMux0htCuKbPlalb28jTAuZTSNsG5VKoB0DBDTDCE1lERr9zchVFt2exdsHLg0bwrQwCnl0LEJrPk5jViImOkybVZIioKIMmsrmYiVPZM3qW2/Vu4h2dyAtooTbI1LSKFPwemM3J+JnaGuLtopTUzEuuZNUgxhPb+6jVE0SNizskoFTE8Q3u1ild4ovfyxNw++fa63QoeU5SJ+BuQDfDW1KgrjCSPjErqtxVDuOGtJX4PfA7t+AtOAt0+0V0PJszKbA6r7ToULGYohohG7Wwsh4TKaaGEJRUT16nonR0wh/CAzIpdH3e07EaU1Hae42kJkOcdEjIhTGdVucQuMrAxH2p0kN/NquQ5mQsrokDZe375od3aOuQip+HBFqCN/n5yYE0nEQ8Ri9McF4usV0tI4hBKHWbPljbHWTDH0FwdVm1mSEMOMzl6lTMPup3pqKcrEzTqkRZ64bDN80rRsgolHCQopuwcLMd5nPV5iziySkw1bYZSmwsURITno4ou82EBM240aTQ+ltKu0YfiqCnUyiXe+OOCbvFx0EyK6H9BRuYNFWzjXdYgjVbyQ2ADnkD3k7nvl+TGBEQ+J2D6UlHeWxEoxxzpvGbTnIbg/R8wdCP9ziyKsmtlBlUmfY1DHKj0bhBomZvLT5qeRp3ITgJ9Kv0VQRvlm/i//x1M/SLMXJP2uRK4bEliuIjTL4PbQhkfkcxcdn6RYEkbImUlOEETjV3oUUmoJxgZgB616aRjlOvC4G0gboZjHyWYqfmaU7ITA/WuFX9j/PAWeTA6ZPUQm+VH2EM40pet/Ns+evioiOiypVUEEwcCbsAGpji8ITASqf4sXMEX7p8BStehRR7YuwsQWw25p4ySfd7CF8D+H5/fRv+cbG8tFUhJbv4GuDph+h7drInmDwzEvfSpiwMXZ3ODK5xazVj7x2dI+mCmkHznuOtQ21plpOMLmgiG146PC69QoBB+Zo7Umy9ZDBP733mxxwNmmqKE925gm3osRX2hi1Tt8aZ4AxxhIER+bx8g4rPxXyY3e9zoPJK+y3XCLCxBIfQnp9wHi9F+WJ5jFeXJtlpuH3vWrfx81FOg5i7yx+NkZrb8Cv7H6VA85m37A/VDy5dpDScprp7XDgr5vvh5FNoycLNPYneOTIBX5x/HmO2dtAlJc7e3nq5GEiaxZGvXjbjNc/SPy9k2w9HKM5r/hv7/4Oj8UuMm/2gAhfqt/H77z+MSw74NN7LjIXKfN44jR323CX3eTXJr7FXPQ+/vzop8n7+7EXiwQrq7d7Sbcc5XroUhm7mmGjE2XdzzBvlW732/pAEYaBmi7gTsaoH4AvHDzDXLSEqy3O+ILfWv0spxanSb7uYCytoOqNvkPRbebW+7w2WkQ2LOxGho5yUHSQb0tNOcJkxui/tX2mAjq82O7S3ErgbJmkFj3s9QZslwmrVYRlIxNxdCpBe1rQnQ7RhoFQktDRdEOLehilrSSe9Kn5UUTHwHAZ+AjcuyIERCN0JgWdmZCf232eX01fBCDUJr4OudQusFDNEl9XhGcv3uY3/N5cnVVutDvE1tI0EmPYZYPoNjg1Reb1Wr8OrVJFtdvczCcnuwE9ZRAi8JRJEEisIbgzKVOSiLWZiDZ2Iq8SXyuaStIJrH5k7fucuyFAT2K3FNK7ToAKgTAMgnSE9rhBLx/wWOwy00bI19oZLrhTmG2B0fL6afVBFyuOg5dzaI8b7N29yS/nnyYreyTlEKfx3ifFYIyLrXG6zQjS9/pz19/PvmZZBJkYXt7GSPX61lFGA4nE04J6M4pdMbDag/0g814IyyJIOvQSgkOJLY7b22R3BptUgjhm1cSuMzy10O+CME0wDLy0RXdCYxRcHo1e5j5b4mmDju5xrj2JudSvDz+fHSfUglosCvRIyQgpCUci6/TGoJeysCJ3YL/IzaBCtBcivZAgNPBUfzomd8TjzQ6GQZiw8TIGfkpxV3yVgtmkpw0aKsJSNYO54RApaXSzhbrNFllXueXiVbc7yLJBdDvFfyw9RDlzlo9Hl97iOnAjLrcLxK9YRLd0X7iWKuggQDgO4cNHWXw8Si8XcvjYIgfHtlluZyh1E3w0VeJn8y9joPnzxv1seimee/kQ09+B6FYH/SEOJviwMPI59HSB+oEU9kfLfHp6gR9LvY5EshV2ueSP8Z3WYU48c5DkAqTPN29K6A0KqtNh4qUWqcUIZsfDbPaQro/YKqNc9+ameuykCMOISUSGWCJEigEXYu/BM+4Ef1G6nxMLsxyut1CehxGLwg1q1yJCkJ2uU7w3z1gqQa44AV4PHBvt2GzcF6X9UJe9E2Uu9sZ5Pkzwfzz3RSJLNhOvB7BdRnm9gUgP3Qhh2chohGD/NMs/DpnpCn9n+hUmjB7xG8wqv5N5o7ubF67MYy/byHoV1b25yOvVY6hnp1n8sShqvsvPHH6dA1YZCWyEcLo3h7wYI3dSEV1tooao1OIdmCbKMQhtQcrokpYS68NofLuNyHic1ufvojFr0NwfMndonb3J/sCXs77Pb20+zmvbM7ROZ5n5ro+XMVlITFCaiHNfYplPRJavvZarLcwO2HW/PzBnxJ3FTsmVTKdYfyhK87jH8b1rPBS9QlvbPNM6xJVuns75NIXXNImVbn/64IBwy8Wr6nQQQUC0PM2rW7sA2GdtM/Mee8hGZ4zkkiK27V+LuMpIBOk4lA5FePyLr3BfYonPxy8xdQMhvBx0+Lflz3BhY5zcCcnYE2fQrjcQ4e/3TXqMztwY9b0G/+zgE/zSWIlQ922mK8rkhDvLc6W9TLygGHt5DVWrD5V41Z4Hz79B5Lp/e7+yUxgGIhpF2xJThhhoDDFMR+GdvNaZ49nL+7CXHERrG93roUN1w5YaS0iO5Td59lCcZhglnR1D9gJUzCaMmTQOBvzK8e9hiZAVP8vL9XkKT1vkXyxBsUpYeu8JZ7cTYVuIeIz2TIS/98hz/N3Mi0waIakfoojrVS63CxjLEWIbIJrtmx7ZKCwTkUzgTsbZ++gyvzb7LQ5YZWbNKFXlshjYXHInSC5C6kQRKrUPdR0fOoZE2RJlQ8rokLgDzxWRiLP9gCRz3zaP5tf40cxJIsInRLDg53ny7CGSJx2mz/o4T75BbPc0tX3TNHSS1fksisVrr+VrA8PVGK0eDHiD64j3jzAMRCyGHovTPBjwS/c/zwOxKxyxYCnocK49wbnKBMkrkH51G9FsEwSDcx7c+sir0uAHWI0e9aUUz/UsPps5zUPO979Z3ptZ5T89OI1Vd0juPtyffmKCMgWVe/qh7n329rWoi6cDfEJKYcg5P88Z9wBnF6ewV21i2/1Rq/r9NjbcbqSBMAy8uSybjxr4u11mrQqhVmyHHWpK8pX6g3zp7IOE6zH2bbvoTueHcuORiThMj9Mt2Ox12iSljynUzfp0DyQx2cN2AkJH9yfCCdlPEbseVlPwnDvDQWubPZbCQHBvcpXa7hinmWKtl0IGEERBORCbqFP1Yyx1spzenMItR5nfDBCNmxc/txwhMFJjiEiEYHacxnycymHJfKRERISc8+PUwhhn3Rleqc8y7rT45fzT7DZdEsK6o+tfhYb3fELdKRkxZncRjI8ROAZ+wqQxa/JosrxTKgBV5fKcO8Hvr3+M85vjTG6HiFbnto6C/FsjBGEhReWQTWtWkTNbSAQBIb4OudLOkVgUJDb7ax02ZCyGnBzHn0zRm+7xYGGFI/F1Jo06y0GWL5ceZrGZJXrJIbUYEim5CEOiYhG8nCJWaDNh9ZvXmqrHemhwodufYW/U2+gBSRXfamQshsykcSfiFJJl5uwSaelxO4aTfmBIA2GZyHSKYP80bsEmPt7mSGQdgJd7Nq93D/Dcwj70lsP0lkK0OgN3Dtz6T0CFaBVirZSZenqG9lSSl/bu4e8kvr94/Sf57/LJnzxHLYxxwZ2iG1qYUmGJkLuiq3w+toYjTBzRj9fVVY+KMni6c4g/XH6EzVKKwlM2qctd7NXKm7ZaQ4SMOAjHYfsBh3/x83/MAXuL/VZIgMnJXoZT7m7+4MSj7Pt9jVWsoFc2CFutoVvnB0IuTf1omvpeg0OxLSYMSdQY7tRXxmxTGGuxGo+hLbPvbdrtons9okXNH218hLvG1vmH2efYZUb55dQpfmHsDZZ2x3jpvr0YaObsIhHh8732AU43p3jl3B7mvgKRYhd5ZZ2gUhvYOldhWuhdU/TyMTYfiWB8pMrx/DYfjV4mLeH3KvfyQnGelTOTTD2tOb/LIP5fevxC+kV2mz6ZO1i83gzCMJCxGJVHJykfF/2Hf0chcy6fS5/ioCXYCGHBj/C7ax9n/cvzjG8pEq+vEWwVB/a8eE92vLAb++KEn65xX36bA1YRcOgon6ZWnNyYZu/X11FbRYLuYN2kbwZZyFF9eJLWtORzx17jf5t8EguBJSSvuGM898RdxFdg9qU64twiSImIOPi5KIm9db4wd5Z7oksArAYm32wf5ZntfcTXe4TLqwNbPvRhI3NZukcmqe2z+GxhkU9GV4jJ4d5HZMRBxOOoXQU2HovRnVD83J7T/Gh8nWfcDH9Y/CgvbsyS+0aEsSUXe7H05vU/QFritj0+6F6PSDkgdATnmxOczvVIy4C8tDGEwHxbLVLWMDhub9PRBuNmE1dbSBSGUOw2a9dSQGXVxdWaV72+Mf9LtTnW17MYZYtoOcSqdtFdd6A+hPdkJ2Iic1lUKoGX1Rx31pkwFEoLKspjoTfP6dY0ompjbZagUke73nCt80NgWCsFhNL4oUE3vNogoEkbbcZjTVaTWYJCEqszsdO4pQhtgXxb6C0hHRKAQQeiC4RIDBS+NlnuZjlbnMAqmkS2GhjlJqrVHugZ3cKQBJko3XEbN6+5P7/NwcQ2llC0leZyK89qMYNTlth1DzMnCZTEeNtxuako5RCRtrr4Ywp/zEAn48h28po1mojHIZXoR+pNA+VYtGYkwZSHMBWWFZJPtSgYDSxh0NYmm2GK7XaCWFER3fL62ZsBPi/eC2lbCNumlxDMZarsS5SIiRCFZj0UrAQ53IaDbqz3p7UNEzvZOJ2I0Z6QuOOauUiFjIywFXZZDyxOt2eIFAWxYohRbRO02wjH6aeMpSBq+2TNNhHRj6yXVYwL7UlKzTi7vHCoHXn+tuiIjZcy8JOCrNkmJg0sDCQSV1lITyA9+vZ0Q4IwTUQ8SjDm4GU1YTYgbzWxMNj005yqTNIoJsiUA6xSpz9NawCv/9smXlWtTuSsxN5Oc/nJPfzMwV/lkT2L/Nr0/0da9pgz7bcI2JiwsYz+SNiCUSHUGkMIJBARBhLBRtjh96oPc7Y1yUsvHCR/QmC3FAc2XWS3i7FZRrXafVE3LFz1YEwm2fzibqpHNQfuWqFgKHytebmXZdnP8dvnP4l7IUXuLFCqoBot9ADVp9xymm0SSx2CSIJlL0tdhXhqeFI90gtpluKcsyYo5xNAk8cia8zOVPjLxH386c8+hlOaI1rSWC1N/WjIFwqn2Gtvk3yb52BK2hyyupz3o/zzKz/FUjFD5KUEE6+6WNU6YnEN5XoDnxYW8RibH4nSPurx4P5F/oeZrwOwEoyx2Ctw4vkDTLyoUJaitcumMy04FNtkzgyvDScJtEQEIAN9xzzY/ULuBXKfaPE3q0cpb0wQ38hguCEyUGw/kKD98Ra2HWJIhW36fGbqRR5NXEYKhS36k9UOWV0UNq+6s3yrcpTSYpbDZ6qwVUI1Wrd7iT840kDsmiLMJmjsh3+x69vMm1UKhklH9/jXG5/n2Uv7GHvDRnvDl5kxsmnIpKjenSH6+X6d6+PJU4Dk35U/xp+eeAB71WbuhTbWRhVVrr7na36vfYBvvXqM6JqJWdm+k/rqb56daH0wPkblqIE747PH2SYiTOSO0/Kqm2HsCiTWA0RziB56xnN09uWo77XI3lPkeG6D3VaFS4Hi/156jN5Xx5kpKeKnN1Dl6sDqpdsaeQ1LFaTvM7aYoUGUU4lJVgo5fLNGQbrEJNdOFInolwVgkhBvnWcfakVASF0ZnGxMc740TuasIP/EErrTJazV0FoPxQzztyMMA2HbiHiU1m6YPrTNY/kFHCFp6pBlP8dld5zWVoL0iiC25fcF+g+hofRb8DyMehe7HaMdOLhaoG4wFGNQEYFCdAxaXYeOcoAmE0aUCQPaY6f5q33HaKbjBDELpyoxsh0OOJtMGi0ib0uPW8IguVPsu7iVg+UoudM+xlOvDU/3uBAI26Y7rjg8t8Gns+e4z5ZUlctT3TyX3XFiG4LU6Srd2RS1/RZ+XJMzWiSkg9r585YhBWp4oiXfj8NWm3TqFepBlCcmCwhlYbr9QRPNPYp/fNcz5M0GcdnDEgHH7W12mdG3vUoEX4es9zIsNrJYNdlv3CsP3iS+94OQAh2P0Ms4+KmQ++0SeaO/9rpyuVgrYC5GiG2rdwzyGAaE4xCORXGzkh+bPs8nEufYbXhAlPONCWIXHOIbGmulRFgsvbVbXAq0EIi3pafWvTSRDZPYlkYMqHD5sBGGgTAkfsLEy4VEMi5p2bmmRxSKZuDg1DROpTeQvunvho44eGkTLy24L7vJQ2NXiEmPmoqwVRlj7ryHVeqgtkuozuDWf9++UJTW6DBEd7pkTjeIbUVprqf5n079ffyUYupAkUK0zV2pdWadMsecVR529DVP2FC/Obf8S80p/s25z9CsxYiddYiUNdnTHVSj2W9WGpYb9HUI0+x/7Zqi/Ngk3YIgdV+R/2z3KxyNrGJhsBrY/O7CRyluj5E5YZA/2cEsNgkHyM7idiEiEfxsHC8pGTO7RIQeKqsso+mSWEzS8ZIsHcoDbxpjz5t1/u7eV9ncNcby/iw1L8pjhQXmzTpJKbDEWz0ZL/g9nuoc5OnqASInYqQWQqLLdcIhuS6MdAo9P0N7Ko493+Jz42fYa29TVS5fb8/xvz/709ibFjOnelCsIieT/ca0iMISAQrFUtBjM4xzYnOG8dMezna7XyZxBxATBgUZ8NnUKV7/3Ex/MlLQH+f48Mwqj8QuERc+llBINGl544c4n5Cvbxyl/L1JMpcVDGrj3vtAmCbtPUlq+0ziE3Ws6zo2fa3Z3EwzdVqTWHEHygboZtGpBN3pOG4eDkY22GdViUmjL658B6sFVluhvV5/fTv3TWN6ks6hcaoHLD5RWOaR2GU6yuEZV/D8xhzZsyGx7V4/ZTzMCAFC9hs9U8m+Fuj5aKXQ9cY7PUt3mpnU/YdpzUUpHxc8/MB5DiW2mLdqKGy+1U3yYnsfL16a58BSB3OjimoPrsh7O950gvLdAn/G47HUJY5HVugoB1dZKCWQvkL4AXrAH+5vbx5VhX1l/8ppbCEoOA7jEQc9N83aZyYp5TRn90+wp1CmPh7lPvssjnjzLQeEhFrzF1v3E/mLNNntgNipJVSpjA4C1DDX6uxYPfkzabY/6TM9U+G/2fNtfiaxvfMDguUgS/V0nvSiYPylOvrVM0MjSD50HBs/ZeMnBGOmS0QIrCESr6LZIXUlxPAM1rz0W743a0b5p7lT7/gdydujaX3O9Sb4s7X7WVzNs+8lF/vk0lDdlERqjNqhMdpTko/sOsvPJ0/ha6gpwbdrR5j5mkHyfBWxttW30OvNEEZAO/2aeF+HLPhZTrq76KwniJy4NPBWYO8HR1g4hsXnom0eP/pnb9kD+qVVkpvZ6pXWrCzl2fddF6vYQQ1h49I7sCyaMybNQz4PFLawrsvY+YC1aZN+rYhotAbKBuimEIIgFaU9aeDlQg7aW8yaURSKUGs6voXV0ljtnVHS19UtBhMpyscsWvMhj6dO87Dj8q1umje6s1TXUky+tt0vPxuifeJGCMPo30tTSfyZLCiN0ekh/BDhefA28SqMvvdp6WiMyv2KPYfW+Y3df0lW2hjCxtchT9aP8jdXjhK5GMG4fJGgWLxNq/vBaE9Y2EfrHM9v8/HYZXYZFmd9l7UgjQ4Fwg+GIgsxOEWAWvcLw12Q9TbJ1RR2Q9D2E1zYjHGpUOA70wcxrxMgCkGgJOdO7WZ+08euuP3u6yAYzu5IIfoz520bNT9Nc0+CxqzBzMwmx7IbFMwGrg54wR3jG/XjPF+cJ7EsSK4HyHpnJFyvQ7sedsXFLphUgxhtpa/NpB4GtOsSKfVQlsPTa/v4vdg6RyNr3GN3sTDeYfvk65CO9vqd0708tTDOJXeCrd4YL2/vpnwhR2xbYlVr/SjMEDUY6HiUxrykO6mYjVaICIFC46p+k1poC8Kkgzi0G9hN5WiU7p4ehYk6OdnG14q/qt7Lt5f3E182YMBre2+E4cFaJ03OauN/n+tcIm96zHpVuawEFsUwyddqd7PYzhFfsLCqbWS7ey27NfSI/pfcSY93dI8rvuSCP4PVFIiOO1Rp3+vRpiR0BNq+mlmShFrjE5Kwe2xlBUKZROdnMNo5VCpGGDEp3xWledgnM9Fg3GiiUKz7Gc40pzCbBsLzUT2/b205xAjbRpgm3f0Fivc7oMHsxpE9TfZsHHu10i8fCkJ01KG3K4OfNKkfgtxcleOZdSI70fqm6tFUmlfKswQXk6TW9PBkJ4TAyGYQ0SheWpCJdUlaHpthnI7y+Pdbn+FEcbovyJtNRNdDDfg9YnDEK1wTnXp1nVSt3n9ism0wzX6nrB3nRlvMkc4aqlKFMCTs+QPZGXczCMNATI2jUjFWPpdiz+ev8ECyyC9mv8ek0b9I6gr+1cKP0frTKaJlxfRrq+hK7c6IknyAhMUyst4gZRxisZWjmHXohtbQVJCoWh3r5ALp1TStqRl+fenHOXx8hd/c82ekZY+s4VyrvwLoaJ/10OCkt5vfOPdZapU4ibMOY1dCkuWAwuImeD1UudIfzDEsBwJwp5MkPrnNp8eX+HzyJDFh4eseCkHc9HBzEqGiVA9J3MmA6b1b/Ou9TzBp1tlvuTS15msv3Mv8VwOczcpA13G9G3Zdc359AgA3+8G85plekj8uP8LLW7sx/zRH+mKbuc1VVLFMGAR3bJd5KQz5D5WPc7I6TXxNo4ql/lqH6Jq4Shg16I2BiAbY9AfVeDrA1Yq9yRKXDk7SmTTpjaWRgaaxX6PHPe6Zu8S/2/UNstJl2hT4WvNcfR8vXJknsS7QzSZqCO0k34I0EPE4IhZh7VM2/+oX/ghDKFZ6OVZ7Gf78yUfJnpzG8DRWR9HJG1Q/5TJVKPGru07wo4lTJKUiKR1cHbAUWKwFadZfnWLfl6rIZptgSCLT0nEIDu2mOxGhNa/4WHadtNXh5c5eNnopXvzzu5l5so5RWSNc34Rw8F0mBkq8AtcisGGtfrvfya1FCIRpolIxvHwUt6D4eO4Sc3aJScMjIgQLfoTNMMVqKc3uFR+n1EWVq6hm83a/+8FDhSg3RLoBPWXga2OoGrZ0GKLaXaRhECsqgpjBpfE835k4QNJwKRgNjOuyEOUwy5af5lR7mtpmEqtsklhVJBc7yGqLcG2jX/M2hA92ypKMx1vsjRZJSQ9DWDvpcM2Y6eJmQQuJOxWQnGpyV3aDY/YmSRkCgqYysOqSyEq9nx4ewqyM1dWEVYf1xBhbYZS4/MEGLygUxdCjrgxOuPs4VZmisjXG/mUX4+IqquuiXG94PV3fhhB9P1thh0SMfsS9rU0uNQusV1NkO6rvsjGk69UCtAQh3ykyC3YLJ+PiWQ7dnoUIQUy5zI1XeDC9zF22h4FkPQwphlEW6nl02cFq6p362CEWrleRAgyDIK75ZHQDS0jWrW2WnAx/PnUv7VIMoycwOwI3J5ifKnNvZpV7okvMmSYd7bMaeDSVxSvuPItuHqciro0qH4rzRhqIiINbcGhNGYTpHjm7Ragl5zsTLLWyxDY1cmEd5XmDO6TmbQyeeP1hRBrIeAyZTrH2WIrmPsX+46t8PnGKHpLn3RnW/Qy//fqnkFei5M5B7PQyutvtPx2PuPPQGh34qEaL7Pc2SJ+O4b0U4w/GfwItQUuBvi49LEONCMHoafZv9zBcF6PUQDeaaNfrp0XvhJvRDglh4ZghP596GX4WGkGEA9FtJqwas2aFaUPT1vCql+a8N02kJNDrW+hhbOBUIanXtnEqGSpHc/yv8Z/m7vQav5h9nrvt9/71q/g6pK56/JMrP8fr52ext0zSF2C2FmJf3iBstPrlVkP4gPOuGAbdCc39e5d5JHUFC4OLvTznX5wnsShILtTRd9J6YWdYD/x86mWO3LNOM4yw5adQCPY5W4ybTQpGE08rXvWy/LOTP9d3q3nDZP6Ch7M5wFP2/pZYGEwaAUlZ5n+5/2ucPTJNoCRdZZM2O3wieZ6C0SQiQjbCkK+1jvH/Lj9IuZbAPBUnUtZMvd5GNRr9utAB30uE42BkM4STOVZ+JMuSXgAACOxJREFUXPO5e15jLlLhaHSNv6ke56lv3ktsQzBxqt53KRqiB/uReB0AhGEgHBudiNKZ0aT3VXgsv8B+S7MVejzTy3G2PYV5Icb4KwGxlRbB+uaddZMZ8U60Rvs9giv9yTfWztdN/SoMpTXcjRAa1I7VmdpxG7FE3yz8mA3HCid2EqbXY9EMPVb8HJfdAlZLD3WGQq+sEymWycoDLDyUxw8NPp06w13c3JpCrfF0QE1JTq1NkXnNJL6pSJ4qIjouYal8Z9rrGZIgqTg+ts68XcQQgnKYIL4qyFzwMEqNO+I60VoQXndtAP1rw96+wbUBHRXQ1JrLvXHc8ykyS5B/o4N5Zgnd6w18yvgHQdFvYIwJixjw95JrkFy79v03bbAE60FIUTmcak+ztZDH2TaY+p6Hs1qDYoVwSMS9ME10PEqQdjh2YJVfn36SShiyFUZpBw7pc5Ba6GBslAiG7PofidfbiDBNMAzk7AyVR8bp5iXxIxUe33WBlNnhW908zzYP8GcvPYhVNpl4IyR2pYGsNlDDkK4YAEQYUmwnOOnupuFHbvfbGfED4BQ7nHtpnnPTk8Tu85hOXsQS8trgAehHFZ9zk1zsTbLQLXC+OcF2O0Hpcha7Jtl9Ybhrwq82s0aWamS/XaA6Ns2vTf8ywdj7eIBVIAJB9g1J5qKLWXOhWkf3/KG0ifq+SAMjEYf0GDLT4yPxi+w260gcbBEQRMFPmkTsm30cHEC0JrraJB9NUfUi/M+7fobj6XX+fuZ5jtlv3tqbqsclP0JZxXmyfpTLrQIrjRTVchJZtph4RRHb7mGtV/tp4zvlXNAKggB6PmZHcMJLM2M2mDPFDcttVoMuf9a8hxU3y6ul3WzXEqiVOOOva5x60Beu1cbwRaVF389XCo2FwV+1DvOHiw9TXMqwf9Htf+5DZPV1lZF4vY0I00REo7h7smx9xmdios4/3PMMn4pd4tnuPH9duYfvLu5j7qsQWyrDRpGwVhseY/kBQASKaiPGG+3d1NwbW0mNGGyMtRK7nozRnorw1Pwhvpg4TxJwriubcHXI1+r38PzWPFvraeKXbCJlzeHnKlCq9j0db9sK/vboqw1UFy6Tu7wIQoIUCHGT1gJvfy2l+w/Ad+heIiwTkRojzCSYyNX5kagLOEgElggJYtBLSBhm8Qroy0sk1qNEinNcSc9yfnKKA49tccxeufYzdaV5rnOAhW6Bv37tbmKLFsllxaETNWTHRW1uo1yP4A48H3TPByEwW4IXO/s4GNmgYKyTuoF4XQkT/MGFR2lvxRk7bzKxFBLbaCPfuIRyvb77xjAeHyHQEkwRYgmDv966C/eJAlPrCuvcKkGpNJTrGonX24EQ/VKBXVP4M2nq8xaZXIVdyRqutrjsZ/hW9SjPXtqHsRLBKbcQjfbQdYkPAqLrYSzk+IY6gq7ZmE1JbEsPpV3SDyva6+GUXbQR5YVze/nv1U8TMQKixpufYTuweXFpDr0dIbYtia9pIrWwf9202ndOGvSqpeDV/7yNb2WQuSrqteg7ZV0dbgOQM1p4Mz0ayia5Gse85AxFd/WN0EEAnodZ6xJfiWJ0bP7P/Cd4afJN8Vr2YlwojdPt2MSuWMTXNbHtAFlvvVkPfyeWoGndH1IkBPENzZfOP0Qy5vLVdIm4+c4U+UIzh3dxjHhFEN9QRIoeRrWDGubjE4aIrodd7/HahTn+sfMJzl+YYWpdES36fauvIdUUI/F6qxEC6TgI26b82CTbn/TJFCr88r7nSRpdXm3N8e3yIU4+dYBDf1JBtMt965qejx42E+0BIFzdYP//pdCR/g1KBCG63SUcEouTERDWG8jTC8QvmBy5kKcdG6clBFxvHqHgYKeF8Gv9CTpeD4KAsNXuXzdDukGP+MHQO5+3uMHHfr9T4V9+/Cuc7szw142PsetcBt3tEtYbQ3eeXLWXlJeXmCrXwLLQX42zEpm/9jMi1Mz2fAg9RHu7f214HmG33y0/jKL9ZlGeBz2f/F9fIv9iBi0NKtY0lRsYz9h+yMHmOvhB3y++56OGvP5XeR56cxtRqXLkX0+wMjbPkXoRag3o+UN9HxyJ11uMMAxEagwRjdAtCCanq8wk+rZgzTDKpWaBtXqK2IZAXbhyZzZR3EK03yNYWnnvHxwxuKgQ1d7ZZL+Phd6QxkZGfFgoBUoRKImn+wKkb7EGu60y7YhD6AA7U5iGFq1RrovavHFd93DJ8Q8YrUGHhMUivMckLA1DXVp0Q3aafrXfg4sLwJ2zT47E661ip1TAyOfY/Mm9tGYhfneZfzD3Ik9XD/BbX/9R7JoksaxJ1ULiVyqoUaR1xIgRI9432g9Q1RqGZbK9XeCvOgXSssOk2eSkN8tvnn+cajHJzMUQVW/008tDFnUdMeKHmZF4vZUYBjoZp3ZEM3Vkmy9Mn+Gz8XM8W91P4WVILncwL6wRFot33hPgiBEjRtwqVIjqdBDNFjSneKMzy5RdQyE5252mcTFDcl0SW2/3U8RD5G85YsSIkXi9ZZjzs9QemqKTl5jTLfLRNl9Zupv/0PgIxmKEucUOZrGBdofb0mfEiBEjBgXteuRflny5/TG0pVERjdGU5E9pIhUfa6s+lBPXRoz4YWckXm8R3QMFij/TZTLb4P5Ukbjpce47ezn4xyVEq0i4XSS8w6YgjRgxYsTtRLXbZP/kVXKmCXKnS0ftNCkpTTBq5hsxYigZiddbhJYC2wmIWT0cI8ASIdIXiFYX3encObOkR4wYMWKA0EM0r33EiBE3h9DvQzAJIYrA0of3doaK+4FXb/ebGBBGx+JNRseiz9zO36P9YnQsrmd0LN5ktFe8yehYvMnoWLzJnNa6cKNvvC/xOmLEiBEjRowYMWLE7eQGVr0jRowYMWLEiBEjRgwmI/E6YsSIESNGjBgxYmgYidcRI0aMGDFixIgRQ8NIvI4YMWLEiBEjRowYGkbidcSIESNGjBgxYsTQMBKvI0aMGDFixIgRI4aGkXgdMWLEiBEjRowYMTSMxOuIESNGjBgxYsSIoWEkXkeMGDFixIgRI0YMDf8/BsivI40sHpgAAAAASUVORK5CYII=\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig,ax=plt.subplots(10,10,figsize=(12,12))\n", "plt.subplots_adjust(wspace=0.001,hspace=0.001)\n", "for i in range(100) :\n", " ax[i//10,i%10].imshow(training_data[i][0].reshape(28,28))\n", " ax[i//10,i%10].xaxis.set_visible(False)\n", " ax[i//10,i%10].yaxis.set_visible(False)\n", " ax[i//10,i%10].axis('equal')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, now we are going to start to work through the neural network code. This is implemented as a Class, i.e., object-oriented programming. It turns out you can't define all of the different methods of the Class in separate cells of the Jupyter notebook, but we'll work through each method at a time, then put them all together in a single cell below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The initial declaration of the class include a __init__ method, which defines the keywords with which you will instantiate an object. Here the required input is a list of integers, giving the number of neurons in each layer of the network. The first layer is the input layer, and the final layer is the output layer. Given the keyword input, the __init__ method with set the attributes num_layers, sizes, biases, and weights. Since the first layer is the input, it doesn't have weights and biases. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "network.py\n", "~~~~~~~~~~\n", "\n", "A module to implement the stochastic gradient descent learning\n", "algorithm for a feedforward neural network. Gradients are calculated\n", "using backpropagation. Note that I have focused on making the code\n", "simple, easily readable, and easily modifiable. It is not optimized,\n", "and omits many desirable features.\n", "\"\"\"\n", "\n", "#### Libraries\n", "# Standard library\n", "import random\n", "\n", "# Third-party libraries\n", "import numpy as np\n", "\n", "class Network(object):\n", "\n", " def __init__(self, sizes):\n", " \"\"\"The list ``sizes`` contains the number of neurons in the\n", " respective layers of the network. For example, if the list\n", " was [2, 3, 1] then it would be a three-layer network, with the\n", " first layer containing 2 neurons, the second layer 3 neurons,\n", " and the third layer 1 neuron. The biases and weights for the\n", " network are initialized randomly, using a Gaussian\n", " distribution with mean 0, and variance 1. Note that the first\n", " layer is assumed to be an input layer, and by convention we\n", " won't set any biases for those neurons, since biases are only\n", " ever used in computing the outputs from later layers.\"\"\"\n", " self.num_layers = len(sizes)\n", " self.sizes = sizes\n", " self.biases = [np.random.randn(y, 1) for y in sizes[1:]]\n", " self.weights = [np.random.randn(y, x)\n", " for x, y in zip(sizes[:-1], sizes[1:])]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although we haven't finished (hard started) the class, we can use what we have so far to instantiate a network object and look at the attributes. Try to instantiate an object with some list of number of neurons in each layer. Then see what the values of num_layers and sizes are. Predict what the dimensions of biases and weights will be, then check to see if y" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n", "[5, 6, 1]\n" ] } ], "source": [ "net=Network([5,6,1]) # choose some desired network architecture with at least 3 layers\n", "print(net.num_layers)\n", "print(net.sizes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The __init__ method will populate the initial bias and weight arrays with random numbers. Remember, each layer takes inputs from the number of neurons in the previous layer for each neuron in the current layer. There is also a bias value for each neuron in the current layer.\n", "

\n", "Given your input architecture, what do you think the dimensions of these arrays will be?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's check to see if you were right. If not, make sure you understand why not. You should also understand why I'm starting with layer 2." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "layer 2, size: 6 \n", "bias shape: (6, 1)\n", "weight shape: (6, 5)\n", "layer 3, size: 1 \n", "bias shape: (1, 1)\n", "weight shape: (1, 6)\n" ] } ], "source": [ "i=2\n", "for s, b, w, in zip(net.sizes[1:], net.biases, net.weights) :\n", " print('layer {:d}, size: {:d} '.format(i,s))\n", " print('bias shape: ', b.shape)\n", " print('weight shape: ',w.shape)\n", " i+=1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How many total parameters are there in your model?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, now we are going to define the method that runs a single input object through all of the layers of the network to produce an output. Remember each layer of the network performs a matrix operation on the previous layer, multiplying it by the weights of the layer and adding the biases of the layer. It then runs this value through the activation function: we are going to use the sigmoid function, which we will code up below. \n", "

\n", "For each layer, $i$, you want to calculate:\n", "$$out = \\sigma( weight_i \\cdot out_{i-1} + bias_i)$$\n", "where $\\sigma$ represents the sigmoid function. Can you code this up by just adding one line to the function below, assuming the sigmoid function is called sigmoid()?" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ " def feedforward(self, a):\n", " \"\"\"Return the output of the network if ``a`` is input.\"\"\"\n", " for b, w in zip(self.biases, self.weights):\n", " a = sigmoid(np.dot(w, a)+b) # implement the output for each layer here !\n", " return a\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you have the feedforward function, then you can make a prediction for the output given an input! But, of course, to get a good result, we need to train the network to replace the random numbers for the weights with numbers that are trained to work on the training set.\n", "

\n", " We will do this using the stochastic gradient descent (SGD) method, discussed (briefly) in the lecture video. This will calculate the change in the loss function for a change in each parameter for each object, but will only use a random subset of the data for each learning step, with a subset size given by the input parameter mini_batch_size. The routine will also require input of a number of learning steps to take (epochs), and the learning rate (eta). Of course, you will have to provide the routing the training data! Optionally, it will take a test_data keyword that gives the test_data; if supplied, this will evaluate the test_data at each learning step and report the fraction of successful classifications in that step.\n", "

\n", "The following cell implements the SGD, along with two routines that it requires: a backpropagation routine and a update_mini_batch() routine that will update the weights and biases at each step.\n", "

\n", " You don't have to program anything here, but try to look through the code, and at least, recognize that there aren't that many lines: the algorithm is not very complicated! But these routines are the heart of the learning of the network.\n", "

\n", " Make sure you understand the parameters that you need to supply the routine." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ " def SGD(self, training_data, epochs, mini_batch_size, eta,\n", " test_data=None):\n", " \"\"\"Train the neural network using mini-batch stochastic\n", " gradient descent. The ``training_data`` is a list of tuples\n", " ``(x, y)`` representing the training inputs and the desired\n", " outputs. The other non-optional parameters are\n", " self-explanatory. If ``test_data`` is provided then the\n", " network will be evaluated against the test data after each\n", " epoch, and partial progress printed out. This is useful for\n", " tracking progress, but slows things down substantially.\"\"\"\n", " if test_data: n_test = len(test_data)\n", " n = len(training_data)\n", " for j in range(epochs):\n", " random.shuffle(training_data)\n", " mini_batches = [\n", " training_data[k:k+mini_batch_size]\n", " for k in range(0, n, mini_batch_size)]\n", " for mini_batch in mini_batches:\n", " self.update_mini_batch(mini_batch, eta)\n", " if test_data:\n", " print( \"Epoch {0}: {1} / {2}\".format(\n", " j, self.evaluate(test_data), n_test))\n", " else:\n", " print(\"Epoch {0} complete\".format(j))\n", " \n", " def update_mini_batch(self, mini_batch, eta):\n", " \"\"\"Update the network's weights and biases by applying\n", " gradient descent using backpropagation to a single mini batch.\n", " The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``\n", " is the learning rate.\"\"\"\n", " nabla_b = [np.zeros(b.shape) for b in self.biases]\n", " nabla_w = [np.zeros(w.shape) for w in self.weights]\n", " for x, y in mini_batch:\n", " delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n", " nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]\n", " nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]\n", " self.weights = [w-(eta/len(mini_batch))*nw\n", " for w, nw in zip(self.weights, nabla_w)]\n", " self.biases = [b-(eta/len(mini_batch))*nb\n", " for b, nb in zip(self.biases, nabla_b)]\n", " \n", " def backprop(self, x, y):\n", " \"\"\"Return a tuple ``(nabla_b, nabla_w)`` representing the\n", " gradient for the cost function C_x. ``nabla_b`` and\n", " ``nabla_w`` are layer-by-layer lists of numpy arrays, similar\n", " to ``self.biases`` and ``self.weights``.\"\"\"\n", " nabla_b = [np.zeros(b.shape) for b in self.biases]\n", " nabla_w = [np.zeros(w.shape) for w in self.weights]\n", " # feedforward\n", " activation = x\n", " activations = [x] # list to store all the activations, layer by layer\n", " zs = [] # list to store all the z vectors, layer by layer\n", " for b, w in zip(self.biases, self.weights):\n", " z = np.dot(w, activation)+b\n", " zs.append(z)\n", " activation = sigmoid(z)\n", " activations.append(activation)\n", " # backward pass\n", " delta = self.cost_derivative(activations[-1], y) * \\\n", " sigmoid_prime(zs[-1])\n", " nabla_b[-1] = delta\n", " nabla_w[-1] = np.dot(delta, activations[-2].transpose())\n", " # Note that the variable l in the loop below is used a little\n", " # differently to the notation in Chapter 2 of the book. Here,\n", " # l = 1 means the last layer of neurons, l = 2 is the\n", " # second-last layer, and so on. It's a renumbering of the\n", " # scheme in the book, used here to take advantage of the fact\n", " # that Python can use negative indices in lists.\n", " for l in range(2, self.num_layers):\n", " z = zs[-l]\n", " sp = sigmoid_prime(z)\n", " delta = np.dot(self.weights[-l+1].transpose(), delta) * sp\n", " nabla_b[-l] = delta\n", " nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())\n", " return (nabla_b, nabla_w)\n", " \n", " def cost_derivative(self, output_activations, y):\n", " \"\"\"Return the vector of partial derivatives \\partial C_x /\n", " \\partial a for the output activations.\"\"\"\n", " return (output_activations-y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we have an evaluate() routine which accepts test_data and returns the number of successful classifications." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ " def evaluate(self, test_data):\n", " \"\"\"Return the number of test inputs for which the neural\n", " network outputs the correct result. Note that the neural\n", " network's output is assumed to be the index of whichever\n", " neuron in the final layer has the highest activation.\"\"\"\n", " test_results = [(np.argmax(self.feedforward(x)), y)\n", " for (x, y) in test_data]\n", " return sum(int(x == y) for (x, y) in test_results)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we put it all together, we need to supply the external sigmoid() routine anbd a routine to return the derivative of the sigmoid. Remember the sigmoid function is defined as:\n", "$$\\sigma(z) = {1\\over 1.+\\exp(-z)}$$\n", "Supply the code to return this:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "#### Miscellaneous functions\n", "def sigmoid(z):\n", " \"\"\"The sigmoid function.\"\"\"\n", " return 1.0/(1.0+np.exp(-z)) #enter equation for sigmoid here\n", "\n", "def sigmoid_prime(z):\n", " \"\"\"Derivative of the sigmoid function.\"\"\"\n", " return sigmoid(z)*(1-sigmoid(z))\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, I've taken all of the class functions from above and put them into a single cell below so that we can instantiate and object and have access to all of the attributes and methods." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "network.py\n", "~~~~~~~~~~\n", "\n", "A module to implement the stochastic gradient descent learning\n", "algorithm for a feedforward neural network. Gradients are calculated\n", "using backpropagation. Note that I have focused on making the code\n", "simple, easily readable, and easily modifiable. It is not optimized,\n", "and omits many desirable features.\n", "\"\"\"\n", "\n", "#### Libraries\n", "# Standard library\n", "import random\n", "\n", "# Third-party libraries\n", "import numpy as np\n", "\n", "class Network(object):\n", "\n", " def __init__(self, sizes):\n", " \"\"\"The list ``sizes`` contains the number of neurons in the\n", " respective layers of the network. For example, if the list\n", " was [2, 3, 1] then it would be a three-layer network, with the\n", " first layer containing 2 neurons, the second layer 3 neurons,\n", " and the third layer 1 neuron. The biases and weights for the\n", " network are initialized randomly, using a Gaussian\n", " distribution with mean 0, and variance 1. Note that the first\n", " layer is assumed to be an input layer, and by convention we\n", " won't set any biases for those neurons, since biases are only\n", " ever used in computing the outputs from later layers.\"\"\"\n", " self.num_layers = len(sizes)\n", " self.sizes = sizes\n", " self.biases = [np.random.randn(y, 1) for y in sizes[1:]]\n", " self.weights = [np.random.randn(y, x)\n", " for x, y in zip(sizes[:-1], sizes[1:])]\n", "\n", " def feedforward(self, a):\n", " \"\"\"Return the output of the network if ``a`` is input.\"\"\"\n", " for b, w in zip(self.biases, self.weights):\n", " a = sigmoid(np.dot(w, a)+b)\n", " return a\n", "\n", " def SGD(self, training_data, epochs, mini_batch_size, eta,\n", " test_data=None):\n", " \"\"\"Train the neural network using mini-batch stochastic\n", " gradient descent. The ``training_data`` is a list of tuples\n", " ``(x, y)`` representing the training inputs and the desired\n", " outputs. The other non-optional parameters are\n", " self-explanatory. If ``test_data`` is provided then the\n", " network will be evaluated against the test data after each\n", " epoch, and partial progress printed out. This is useful for\n", " tracking progress, but slows things down substantially.\"\"\"\n", " if test_data: n_test = len(test_data)\n", " n = len(training_data)\n", " for j in range(epochs):\n", " random.shuffle(training_data)\n", " mini_batches = [\n", " training_data[k:k+mini_batch_size]\n", " for k in range(0, n, mini_batch_size)]\n", " for mini_batch in mini_batches:\n", " self.update_mini_batch(mini_batch, eta)\n", " if test_data:\n", " print( \"Epoch {0}: {1} / {2}\".format(\n", " j, self.evaluate(test_data), n_test))\n", " else:\n", " print(\"Epoch {0} complete\".format(j)) \n", "\n", " def update_mini_batch(self, mini_batch, eta):\n", " \"\"\"Update the network's weights and biases by applying\n", " gradient descent using backpropagation to a single mini batch.\n", " The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``\n", " is the learning rate.\"\"\"\n", " nabla_b = [np.zeros(b.shape) for b in self.biases]\n", " nabla_w = [np.zeros(w.shape) for w in self.weights]\n", " for x, y in mini_batch:\n", " delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n", " nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]\n", " nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]\n", " self.weights = [w-(eta/len(mini_batch))*nw\n", " for w, nw in zip(self.weights, nabla_w)]\n", " self.biases = [b-(eta/len(mini_batch))*nb\n", " for b, nb in zip(self.biases, nabla_b)]\n", "\n", " def backprop(self, x, y):\n", " \"\"\"Return a tuple ``(nabla_b, nabla_w)`` representing the\n", " gradient for the cost function C_x. ``nabla_b`` and\n", " ``nabla_w`` are layer-by-layer lists of numpy arrays, similar\n", " to ``self.biases`` and ``self.weights``.\"\"\"\n", " nabla_b = [np.zeros(b.shape) for b in self.biases]\n", " nabla_w = [np.zeros(w.shape) for w in self.weights]\n", " # feedforward\n", " activation = x\n", " activations = [x] # list to store all the activations, layer by layer\n", " zs = [] # list to store all the z vectors, layer by layer\n", " for b, w in zip(self.biases, self.weights):\n", " z = np.dot(w, activation)+b\n", " zs.append(z)\n", " activation = sigmoid(z)\n", " activations.append(activation)\n", " # backward pass\n", " delta = self.cost_derivative(activations[-1], y) * \\\n", " sigmoid_prime(zs[-1])\n", " nabla_b[-1] = delta\n", " nabla_w[-1] = np.dot(delta, activations[-2].transpose())\n", " # Note that the variable l in the loop below is used a little\n", " # differently to the notation in Chapter 2 of the book. Here,\n", " # l = 1 means the last layer of neurons, l = 2 is the\n", " # second-last layer, and so on. It's a renumbering of the\n", " # scheme in the book, used here to take advantage of the fact\n", " # that Python can use negative indices in lists.\n", " for l in range(2, self.num_layers):\n", " z = zs[-l]\n", " sp = sigmoid_prime(z)\n", " delta = np.dot(self.weights[-l+1].transpose(), delta) * sp\n", " nabla_b[-l] = delta\n", " nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())\n", " return (nabla_b, nabla_w)\n", "\n", " def evaluate(self, test_data):\n", " \"\"\"Return the number of test inputs for which the neural\n", " network outputs the correct result. Note that the neural\n", " network's output is assumed to be the index of whichever\n", " neuron in the final layer has the highest activation.\"\"\"\n", " test_results = [(np.argmax(self.feedforward(x)), y)\n", " for (x, y) in test_data]\n", " return sum(int(x == y) for (x, y) in test_results)\n", "\n", " def cost_derivative(self, output_activations, y):\n", " \"\"\"Return the vector of partial derivatives \\partial C_x /\n", " \\partial a for the output activations.\"\"\"\n", " return (output_activations-y)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, let's try to classify some handwritten digits! First instantiate a network. Remember, the first layer is the input layer, which will be a vector of length 784 (28x28). Let's define a simple 3 layer network with this input layer, a hidden layer with 30 neurons, and an output layer of 10 neurons (since we want the output to give a maximum value for the true digit, just like we supplied the truth for the training data.\n", "

\n", "Instantiate a network object with this architecture. What will the values of the sizes and num_layers attributes be, and what will the dimensions of the weight and bias arrays be? What are the total number of parameters?\n", "

\n", "
ANSWER HERE: " ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "net = Network([784, 30, 10]) # enter the values for the desired network architecture" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check the attributes:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "num_layers: 3\n", "sizes: [784, 30, 10]\n", "layer 2, size: 30 \n", "bias shape: (30, 1)\n", "weight shape: (30, 784)\n", "layer 3, size: 10 \n", "bias shape: (10, 1)\n", "weight shape: (10, 30)\n" ] } ], "source": [ "i=2\n", "print('num_layers: ',net.num_layers)\n", "print('sizes: ',net.sizes)\n", "for s, b, w, in zip(net.sizes[1:], net.biases, net.weights) :\n", " print('layer {:d}, size: {:d} '.format(i,s))\n", " print('bias shape: ', b.shape)\n", " print('weight shape: ',w.shape)\n", " i+=1\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, let's use the network -- before training -- and see how well it does. The evaluate() method will return the number of successful classifications from the test data set." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "954 successful out of 10000 test_data\n" ] } ], "source": [ "successful = net.evaluate(test_data)\n", "print('{:d} successful out of {:d} test_data'.format(successful,len(test_data)))" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(784, 1)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_data[0][0].shape\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How well would you expect to do with just random guesses at which digit?\n", "How does the success rate compare with your expectation?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, let's train the network using the SGD() method! Call it, supplying the training data, number of steps (start with something small like 5) so it doesn't run too long, a mini_batch_size (perhaps 10), and a learning rate (start with 3.0). Supply the test data with the test_data argument, so you can see how it does at each step" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0: 8966 / 10000\n", "Epoch 1: 9204 / 10000\n", "Epoch 2: 9204 / 10000\n", "Epoch 3: 9304 / 10000\n", "Epoch 4: 9308 / 10000\n" ] } ], "source": [ "net.SGD(training_data, 5, 10, 10.0, test_data=test_data) # supply the inputs for the SGD() method above" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What do you think about how well it did? \n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Experiment with different learning rates. How do things change with learning rate? Remember that the weights and biases are stored in the object, so if you want to start from scratch (random biases and weights), you'll have to instantiate the object again. YOu can also play with different architectures if you want!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "net = Network([784, 30, 10]) # enter the values for the desired network architecture\n", "net.SGD(training_data, 5, 10, 10.0, test_data=test_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Discuss.\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Are you curious about what test_data the network failed on? Let's run individual objects through the trained network using the feedforward() method, check the network answer against the true value, and display the data that the network failed on!" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "unsupported format string passed to numpy.ndarray.__format__", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m28\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m28\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'{:d} {:d} 10*{:.2f}'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbest\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mtest_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mflatten\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: unsupported format string passed to numpy.ndarray.__format__" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAANh0lEQVR4nO3df6zddX3H8dfL/sJeYFKwtSuVKqKxOsHlCppuSw3DAYYUo2w0GekSZskGCSxmG2ExkmxxjIiETWdSR2clCFOBQLRzksaNkLHKhZRSKFuRdVh71wvUrUXgtqXv/XG/LJdyz+dezvd7zve07+cjuTnnfN/ne77vfHtf/X7v+XzP+TgiBODY95a2GwDQH4QdSIKwA0kQdiAJwg4kMbufG5vreXGchvq5SSCVV/QLHYhxT1WrFXbb50u6RdIsSX8XETeUnn+chnSOz62zSQAFm2NTx1rXp/G2Z0n6qqQLJC2XtNr28m5fD0Bv1fmb/WxJT0fEMxFxQNKdklY10xaAptUJ+xJJP530eFe17HVsr7U9YnvkoMZrbA5AHXXCPtWbAG+49jYi1kXEcEQMz9G8GpsDUEedsO+StHTS41Ml7a7XDoBeqRP2hyWdYftdtudKulTSfc20BaBpXQ+9RcQh21dJ+idNDL2tj4gnGusMQKNqjbNHxEZJGxvqBUAPcbkskARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IIlaUzbb3ilpv6RXJR2KiOEmmgLQvFphr3w8Ip5v4HUA9BCn8UASdcMekn5o+xHba6d6gu21tkdsjxzUeM3NAehW3dP4FRGx2/ZCSffbfioiHpj8hIhYJ2mdJJ3oBVFzewC6VOvIHhG7q9sxSfdIOruJpgA0r+uw2x6yfcJr9yV9QtK2phoD0Kw6p/GLJN1j+7XX+VZE/KCRrgA0ruuwR8Qzks5ssBcAPcTQG5AEYQeSIOxAEoQdSIKwA0k08UGYFF747Mc61t552dPFdZ8aW1SsHxifU6wvuaNcn7/rxY61w1ueLK6LPDiyA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASjLPP0J/88bc61j499PPyyqfX3PjKcnnnoZc61m557uM1N370+vHYaR1rQzf9UnHd2Zseabqd1nFkB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkHNG/SVpO9II4x+f2bXtN+sVnzulYe/5D5f8zT9pe3sc/f7+L9bkf+p9i/cYP3t2xdt5bXy6u+/2Xji/WPzm/82fl63o5DhTrm8eHivWVxx3setvv+f4Vxfp71z7c9Wu3aXNs0r7YO+UvFEd2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCz7PP0NB3Nxdq9V77xHqr62/esbJj7S9WLCtv+1/K33l/48r3dNHRzMx++XCxPrR1tFg/+YG7ivVfmdv5+/bn7yx/F/+xaNoju+31tsdsb5u0bIHt+23vqG5P6m2bAOqayWn8NySdf8SyayVtiogzJG2qHgMYYNOGPSIekLT3iMWrJG2o7m+QdHGzbQFoWrdv0C2KiFFJqm4Xdnqi7bW2R2yPHNR4l5sDUFfP342PiHURMRwRw3M0r9ebA9BBt2HfY3uxJFW3Y821BKAXug37fZLWVPfXSLq3mXYA9Mq04+y279DEN5efYnuXpC9IukHSt21fLulZSZf0skmUHfrvPR1rQ3d1rknSq9O89tB3X+iio2bs+f2PFesfmFv+9f3S3vd1rC37+2eK6x4qVo9O04Y9IlZ3KB2d30IBJMXlskAShB1IgrADSRB2IAnCDiTBR1zRmtmnLS3Wv3LdV4r1OZ5VrH/nlt/sWDt59KHiuscijuxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATj7GjNU3+0pFj/yLzyVNZPHChPR73gyZfedE/HMo7sQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+zoqfFPfqRj7dHP3DzN2uUZhP7g6quL9bf+64+nef1cOLIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKMs6Onnr2g8/HkeJfH0Vf/53nF+vwfPFasR7Gaz7RHdtvrbY/Z3jZp2fW2f2Z7S/VzYW/bBFDXTE7jvyHp/CmW3xwRZ1U/G5ttC0DTpg17RDwgaW8fegHQQ3XeoLvK9tbqNP+kTk+yvdb2iO2RgxqvsTkAdXQb9q9JOl3SWZJGJd3U6YkRsS4ihiNieM40H2wA0DtdhT0i9kTEqxFxWNLXJZ3dbFsAmtZV2G0vnvTwU5K2dXougMEw7Ti77TskrZR0iu1dkr4gaaXtszQxlLlT0hW9axGD7C0nnFCsX/brD3as7Tv8SnHdsS++u1ifN/5wsY7XmzbsEbF6isW39qAXAD3E5bJAEoQdSIKwA0kQdiAJwg4kwUdcUcuO6z9QrH/vlL/tWFu149PFdedtZGitSRzZgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJxtlR9L+/+9Fifevv/HWx/pNDBzvWXvyrU4vrztNosY43hyM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBOHtys5f8crF+zef/oVif5/Kv0KWPXdax9vZ/5PPq/cSRHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSYJz9GOfZ5X/iM7+3q1i/5PgXivXb9y8s1hd9vvPx5HBxTTRt2iO77aW2f2R7u+0nbF9dLV9g+37bO6rbk3rfLoBuzeQ0/pCkz0XE+yV9VNKVtpdLulbSpog4Q9Km6jGAATVt2CNiNCIere7vl7Rd0hJJqyRtqJ62QdLFPeoRQAPe1Bt0tpdJ+rCkzZIWRcSoNPEfgqQp/3izvdb2iO2Rgxqv2S6Abs047LaPl3SXpGsiYt9M14uIdRExHBHDczSvmx4BNGBGYbc9RxNBvz0i7q4W77G9uKovljTWmxYBNGHaoTfblnSrpO0R8eVJpfskrZF0Q3V7b086RD1nvq9Y/vOFt9V6+a9+8ZJi/W2PPVTr9dGcmYyzr5B0maTHbW+pll2niZB/2/blkp6VVP5XB9CqacMeEQ9Kcofyuc22A6BXuFwWSIKwA0kQdiAJwg4kQdiBJPiI6zFg1vL3dqytvbPe5Q/L119ZrC+77d9qvT76hyM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBOPsx4Kk/7PzFvhfNn/GXCk3p1H8+UH5CRK3XR/9wZAeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJBhnPwq8ctHZxfqmi24qVOc32wyOWhzZgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiCJmczPvlTSNyW9Q9JhSesi4hbb10v6rKTnqqdeFxEbe9VoZrtXzCrW3zm7+7H02/cvLNbn7Ct/np1Psx89ZnJRzSFJn4uIR22fIOkR2/dXtZsj4ku9aw9AU2YyP/uopNHq/n7b2yUt6XVjAJr1pv5mt71M0oclba4WXWV7q+31tqf8biTba22P2B45qPF63QLo2ozDbvt4SXdJuiYi9kn6mqTTJZ2liSP/lBdoR8S6iBiOiOE5mle/YwBdmVHYbc/RRNBvj4i7JSki9kTEqxFxWNLXJZU/rQGgVdOG3bYl3Sppe0R8edLyxZOe9ilJ25pvD0BTZvJu/ApJl0l63PaWatl1klbbPksToy87JV3Rg/5Q01++sLxYf+i3lhXrMfp4g92gTTN5N/5BSZ6ixJg6cBThCjogCcIOJEHYgSQIO5AEYQeSIOxAEo4+Trl7ohfEOT63b9sDstkcm7Qv9k41VM6RHciCsANJEHYgCcIOJEHYgSQIO5AEYQeS6Os4u+3nJP3XpEWnSHq+bw28OYPa26D2JdFbt5rs7bSIePtUhb6G/Q0bt0ciYri1BgoGtbdB7Uuit271qzdO44EkCDuQRNthX9fy9ksGtbdB7Uuit271pbdW/2YH0D9tH9kB9AlhB5JoJey2z7f977aftn1tGz10Ynun7cdtb7E90nIv622P2d42adkC2/fb3lHdTjnHXku9XW/7Z9W+22L7wpZ6W2r7R7a3237C9tXV8lb3XaGvvuy3vv/NbnuWpP+QdJ6kXZIelrQ6Ip7sayMd2N4paTgiWr8Aw/ZvSHpR0jcj4oPVshsl7Y2IG6r/KE+KiD8dkN6ul/Ri29N4V7MVLZ48zbikiyX9nlrcd4W+flt92G9tHNnPlvR0RDwTEQck3SlpVQt9DLyIeEDS3iMWr5K0obq/QRO/LH3XobeBEBGjEfFodX+/pNemGW913xX66os2wr5E0k8nPd6lwZrvPST90PYjtte23cwUFkXEqDTxyyNpYcv9HGnaabz76Yhpxgdm33Uz/XldbYR9qu/HGqTxvxUR8auSLpB0ZXW6ipmZ0TTe/TLFNOMDodvpz+tqI+y7JC2d9PhUSbtb6GNKEbG7uh2TdI8GbyrqPa/NoFvdjrXcz/8bpGm8p5pmXAOw79qc/ryNsD8s6Qzb77I9V9Klku5roY83sD1UvXEi20OSPqHBm4r6PklrqvtrJN3bYi+vMyjTeHeaZlwt77vWpz+PiL7/SLpQE+/I/0TSn7XRQ4e+3i3psernibZ7k3SHJk7rDmrijOhySSdL2iRpR3W7YIB6u03S45K2aiJYi1vq7dc08afhVklbqp8L2953hb76st+4XBZIgivogCQIO5AEYQeSIOxAEoQdSIKwA0kQdiCJ/wNGNvRI2D7VDgAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# loop over 100 objects\n", "for i in range(100) :\n", " out = net.feedforward(test_data[i][0]) # use net.feedforward() to process test_data[i][0]\n", " best= out.argmax() # take the maximum output (From the output layer of 10) as the best estimate\n", " if best != test_data[i][1] : # if the network estimate is NOT the true value, display the image\n", " plt.figure()\n", " plt.imshow(test_data[i][0].reshape(28,28))\n", " print('{:d} {:d} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2}'.format(best,test_data[i][1],np.array(out).flatten()))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "are you motivated to try to make your network work better?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Congratulations, you've just trained an run a neural network, and hopefully demystified the process a little. Note that this code was designed to demonstrate that there's nothing magical, or even overly complicated about a neural network. Of course, much more efficient code can be written, and we'll look later at some canned packages for neural networks that are much faster and have more features.\n", "

\n", "Note also that we didn't use the validation set here, or show any learning curves, or work to tune the hyperparameters other than any trial and error you might have done above ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 2 }