{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Dimensionality reduction: manifold learning" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's work again with the APOGEE DR17 data set, looking at abundances of multiple elements. First we will download data from the SDSS Catalog archive server using an SQL query with astroquery.\n", "
\n", "To learn about what is in the data base, you can peruse the \n", " schema browser . We will be interested in quantities from the aspcapStar table (select that from the Tables item on the right), specifically FE_H (which gives the logarithm of the abundance of iron to hydrogen relative to that of the Sun), MG_FE (logarithmic abundance of magnesium relative to irorn relative to that ratio in the Sun), O_FE, SI_FE, AL_FE, MN_FE, NI_FE, and LOGG (surface gravity). Construct a query that selects the abundances from this table for object with 1 < logg < 2. Remember, the basic structure of an SQL query:\n", "
\n",
    "   SELECT  columnnames\n",
    "   FROM  tablename\n",
    "   WHERE conditions\n",
    "
\n", "To make sure all of the abundances are valid, required that each abundance be larger than -10 (bad values are flagged as -999). \n", "
\n", "To illustrate another JOIN, and to get some data on distances and masses/ages for some stars, I've added a query to the apogeeDistMass table, which was actually calculated by Alexander Stone-Martinez as a value-added catalog for SDSS! You might be interested in the age column for investigations below. I've also added in getting coordinates of objects.\n", "

\n", "While I haven't left you to fill in the query, please take a good look at it to make sure you see the possibilities." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "88346\n" ] } ], "source": [ "from astroquery.sdss import SDSS\n", "sql=\" SELECT FE_H, MG_FE, O_FE, SI_FE, AL_FE, MN_FE, NI_FE, apogeeDistMass.age, apogeeStar.ra, apogeeStar.dec \\\n", " FROM aspcapStar \\\n", " JOIN apogeeStar on apogeeStar.apstar_id = aspcapStar.apstar_id \\\n", " JOIN apogeeDistMass on apogeeDistMass.apstar_id = apogeeStar.apstar_id \\\n", " WHERE aspcapStar.LOGG>1 AND aspcapStar.LOGG<2 AND FE_H>-10 AND MG_FE>-10 AND O_FE>-10 AND SI_FE>-10 \\\n", " AND AL_FE>-10 AND MN_FE>-10 AND NI_FE>-10 \\\n", " \"\n", "dr17=SDSS.query_sql(sql, data_release=17) \n", "print(len(dr17))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Some errors were detected !\n Line #4 (got 6 columns instead of 1)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mAND\u001b[0m \u001b[0mAL_FE\u001b[0m\u001b[0;34m>\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m10\u001b[0m \u001b[0mAND\u001b[0m \u001b[0mMN_FE\u001b[0m\u001b[0;34m>\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m10\u001b[0m \u001b[0mAND\u001b[0m \u001b[0mNI_FE\u001b[0m\u001b[0;34m>\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdr17\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mSDSS\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquery_sql\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msql\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_release\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m17\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/astroquery/utils/class_or_instance.py\u001b[0m in \u001b[0;36mf\u001b[0;34m(*args, **kwds)\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 25\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 26\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/astroquery/utils/process_asyncs.py\u001b[0m in \u001b[0;36mnewmethod\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'get_query_payload'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'field_help'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresponse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 29\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parse_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresponse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverbose\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 30\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/astroquery/sdss/core.py\u001b[0m in \u001b[0;36m_parse_result\u001b[0;34m(self, response, verbose)\u001b[0m\n\u001b[1;32m 863\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 864\u001b[0m \u001b[0mdelimiter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m','\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_header\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 865\u001b[0;31m comments='#'))\n\u001b[0m\u001b[1;32m 866\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 867\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/numpy/lib/npyio.py\u001b[0m in \u001b[0;36mgenfromtxt\u001b[0;34m(fname, dtype, comments, delimiter, skip_header, skip_footer, converters, missing_values, filling_values, usecols, names, excludelist, deletechars, replace_space, autostrip, case_sensitive, defaultfmt, unpack, usemask, loose, invalid_raise, max_rows, encoding, like)\u001b[0m\n\u001b[1;32m 2122\u001b[0m \u001b[0;31m# Raise an exception ?\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2123\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minvalid_raise\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2124\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merrmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2125\u001b[0m \u001b[0;31m# Issue a warning ?\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2126\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: Some errors were detected !\n Line #4 (got 6 columns instead of 1)" ] } ], "source": [ "sql=\" SELECT FE_H, MG_FE, O_FE, SI_FE, AL_FE, MN_FE, NI_FE, apogeeDistMass.age, apogeeStar.ra, apogeeStar.dec, apogeeStar.programname \\\n", " FROM aspcapStar \\\n", " JOIN apogeeStar on apogeeStar.apstar_id = aspcapStar.apstar_id \\\n", " JOIN apogeeDistMass on apogeeDistMass.apstar_id = apogeeStar.apstar_id \\\n", " WHERE aspcapStar.LOGG>1 AND aspcapStar.LOGG<2 AND FE_H>-10 AND MG_FE>-10 AND O_FE>-10 AND SI_FE>-10 \\\n", " AND AL_FE>-10 AND MN_FE>-10 AND NI_FE>-10 \\\n", " \"\n", "dr17=SDSS.query_sql(sql, data_release=17) \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we've done before, put the data into an X(npts, dim) array." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "(-0.5, 0.5)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEGCAYAAAB7DNKzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hUxfrHP3O2Zje9AaH33kG6IoJSFRFUUEABQRERG6hXkYsNRcVCsSGIgA1EUBGQ3ntvoSaE9F627znz++OEkAihqFe895fv8+yT7DnvzLyn7Lzz1hFSSspQhjKUoQxlKA3KjWagDGUoQxnK8M9GmaAoQxnKUIYyXBFlgqIMZShDGcpwRZQJijKUoQxlKMMVUSYoylCGMpShDFeE8UYz8FcjMjJSVqtW7Uaz8Y+ElODzq5hNBgByPW6sRiMWw2VeAy0V1HQwVAQl7G/j0ePyIgCX0YdFpmE1WMAQc529aEitAKEEAeJ3p3LxebIwWiohFBMAqpaOpmVjMtbg4k9CRV9HCfAd0Q+ZGv6ur2xQE8FYBUTwNfGF/wQIGxiqlDwu3YAJhOkqffhAqiCsvzteGL3oj9V5FgEXx5D54I8HQ3lQIgFwO9ycO55EZEwY4RX+vuer81MA/jj9uSrhf+/YZSgVe/bsyZBSRl3u3P+coKhWrRq7d+++0Wz8ZdCkB0VYLntO9atMGfwRNZtX4/7xfa/a17sL1vHtb/uY/tw93NSw6hVppZYHnvVgvQNRyvh/NVRVpYd5IOZadnI+iKKGvTzz2j1dKv2bB1eS53XzRss7EUKUSlccUnMgC6YhrH0Q5qaXp/EnIDNuA0tXlLCZSPcqQCKsd5Skc69F5v0LETodYW55DWMXINM7g7k1StisEuc0x1eQ/yoi5HVEQO+LbaSGzHoQlEhE4Agw1kcIE1LLRaZ3AXMHhG0QMnsIBP0LxT4ULa0DaLmIctsRwlg4dhaIsBL3yevxYbZcTTD9ZyClFyHMN2TsMlweQoj40s79zwmK/yU4PQc4mdqb6OBxVAh95pLzjlwn67/dwukDcdckKFrVr8yhU0lULnf1FaRQgiHgTgAObjzKqX1nuXtsz2uekP8IDAYDD7x8D1a7BVPdaGoFla5JLD8dy/dn9+HV/LzWsg+G32sOpcG3H5zzkGoamN65/GSlBIGhNhh1DUJYb79sV8LaBWHdVuKYVFNBCUFcsuIHoQRC9K7L3kNhrI00VAfj7wW4Cv6jIAKQmSvAPhYRNAappoP06JqIYgOCAJveV+RyQC0SEvrYl67cb5SQAG6IkJCe7Uj/KYTtgf/oe/w/CSnl/9SnZcuW8p+I1Pg06fP6rquNyxsrDyU0lml5X5RKkxCbKLNSc/4se1fEiMZPya6iv0w8lfwfHed60PSLj2TVT96WZ/MySxyf9+/v5NA6Y2R22uXviab5peb8Rap5H0g1ubb8fvdPsv37n8gTaelSSinVgi+kmtxYat6j182T5j8v1eTaUs0YIjV/itRca6Wmadd/cb/vV3VIl3ONdKf1kKp7r36sYJ4+Vt4Mne/sJ6WaXFdq/mt7Rprml5p7ndTU/D/FmzPf+Zdc498BNa2bVJNrX/M9+v8GYLcsZV4tc2b/DYjdfZoHqo1m2shPLnte0zRS4tIuOW411aFRpYNEBT1cdMzr9rL88zVkpWQDUKlODGHRIf8Zxgsxfu4Ynv9qLBVqlLvmNpnJ2TxUdyyLpv30h8f1ev04HZ7Lnpvd427mdu9PtaCSK+X4o+dJPJlCytl0Th86d0k7IQyIgJ6670UEk5Svkl7gINddOI70AV5Auy5epfs3pKdQu/AfROa8gMwZBb79SDUJqTmuq78SPCs2TubMZI/zOG4tA+k7Crb+iJCpCPsQnUgpp3+udaXu+Q2ZPRKZ/+4f5iv+aAJ3Bg/hg8c+/cN9/J0Qoe8gQt5DGMrfaFb++1CaBPlv/fwTNYqMpCz5aIvn5Io5ay97/uspS2RX0V9uXLTtqn2tWbBRdhX95UdPfP6X8PbN2z/KwbUelxlJWX9JfxdwYP8J2WDMc/Lxp6ZJKaVMTcuV+w+dKzqvaepV+xjd/yPZq/nL0uXwFB17f+pyOfT+mdLhcF+2jd/vlwU5BXJU23/J2+1D5LIlu644hqZpMt/tueTYhb+/51PzJUhNzZSa5pdqzr+kmv+51LyxUk2uJ9XkuoWf2lJ1bZJqziTpcW2SanJt6UvrefnxffFS8x686r3IcW2X8dnvSjWlpVSTa8uc9Ew5vttkuWHR1lLbfPTbFjluwU/Sr156rzV/ulSzn5aa98BVxy4NqefS5cAqo+TXU374w32U4Z8DrqBRlPko/iSkdyfStRwRNB6h2C5LE1EhjFl73i61j9otqlO1QSUq1q5w1fFu6tmCQS/2o9uQW/4wz8URfySB5NOpOHKdRPxF0S9up4eXu7xGSIwBbVpbvl76BpWjl/H29O7MnPokMUFfgWMGRCxFmOoVtZNqJggFoYSR4cmhWr1yGE0GjIVRWgApSTmkJOXgzfuVAEsbhKHkPTMYDNhD7LTr14aTqbms2HiMPn1blcqrEIJAi/mSYwAyoydIF0StQwiB1JzIjC6gRCEifwLXd4AFWfAWBE1GGKLBWAvwIoy1wNoRv/MX/JofzRBI4GXGl1mDQUuG6D2FUVqXR4i1DSHWNmiOUNBySTySwd7VBwkKD+Tme9pdts0vB2KJz8zhVa+PQKsFKd3I3H+BpQtKQC9E6B/XJgCiK0eyMP7jou/egr083vY9qjRozMvfTfhTfZfhnwUh/8eKArZq1Ur+nVFPWvYo8KxDhC9EM7bgWHY6DcKjUf5LnGWapuHKd2EPsf9lfXpcHobWfoKQemE0nRhFSNpKbm13hN82vsgDAx5Dcc8GxyxExPf6hApIqSJTm4ESSLxtEaP3vk3n6JZMqDekRN+qquFzbMHsHA6WbihhM0rl49CR88RUCCUiXJ+ipS9Wn5gtPRAhky7r0JS+g8i8qYiQScicCaAmgOVWRMibgESmtQaZj4hcAzIf6dkCvr2I0PfAfw5ZMAMR9BzCWFnvz38On5ZF0uHNmI1pVGj87xLjao6FoMYjgp6/bgfr6QNxxNQqT4D9Usc5QHaBA9W1nPCwDgj/QaQIguyHwdQKJWLhdY11LXAlP8O9tc9StX4Fpu8q/bmU4Z8JIcQeKeXlV1WlqRr/rZ+/2/Sk+VOl5lojNU2Tnx3eIat+OUV+e+Lq6rzf55cFeQ7p9/tLp/H75Yo5a2XSmZS/kuVSoWmafO/wKvnN2Z1SSinHr1whJ65ZLVVVlVOHzZAL3lh8SRuXwy3Vy5k2vLHyQMrL8t0j3eQ3GxfKtPR9l9C4/T6Z53UVje3IHCvfO/y4XJm8Xj62e4r8KXFTKXw6pZr39nWZTXKd66Uzd5puFkquLTX35c18av4snSb/U/17ajvdSax59e/O5VLNnSw17dLABDV/ht6342udT1+8VJNrS3/6YNlNuUf2C+/7p53HUkqZmJkrv99yQHp9+rujeQ9JzXOpiU1zby90rg/U/2YOlZpnn9T8GZfy7loj1bSeUvOd1tt69ks153mpqdduktTUTOnOWS59Xs/VicvwjwNlzuz/HIQhWg+TFIJW5SrRMqoiTSOvbELyeX30jx5O35ChTLp7aql0hzYe451hM5k5bu6f4vHYjpOcO554VTqn38vnp7bwSexGNClZdvw4y44fx+3wsHLOOpZ/uroEfUZiJncGDWbygEtNGLlnRvFpz91YlnSldY3biIpsBsCi95bRM2AQp/afZdDGL2j3y1QcPg9CCJJMz7I128/OrD3MbDmB3jEdL8unEAEkqiOZu8+P2+e/6nVp0s2p9MGcyJsN5m5gaAGmBpfv2z4cjI2gYCrSn4CI+BERtUbPXVBT9US2gKGAAanlIH0Hi7UdBgEDkfkfIP1n9WQyc1tEQDf6jrmZvk90RSiBzNuyl0mLv8DrcyKlFy1rGFr+tEt4kVJDOr/WndfF8NHPW/hw2S+cODsPLfd1ZGZ/ZNYgNO9epCzm/Dc3AdtwCHwK7CMQgY+DsRYyoyda+p1IWeze+Q6CelLXoADp+g5ci8F77dq5UMKxhPTAaCrLj/hfQ5mP4i9Es8gYPm7cg6zTOdDqsgmOACiKQmi5EHxeHzG1So/AaNCuDoMnDqDdnRe1QVeBi8XTfqbz/R2pVMynsWvFPt5/9FOenPUIN/VoUYJ+bLsXCa8QxreJV45OsZssfN1pBMFmK4oQrBs2DAUBBgNvb32dypUjStCbA8yUrx5NTM1LryHHNZzYfUs5nR/Plyfms3rmaILtVjRNoqkqUpM0Co3BKBSQsGT/ET45sYsTWbV5tcfdV+QTYNaWHXx/8AjlgwPpUa/OFWkVYaVy2OsYlDAUe28ceU6OrDlNyy4NMRhKrpWEMCED7gSXF6meRbHcXHRO5j4P3i36/0EvgmeD/j1iGcJUDyGsSBSQmXq8vjkcYe0F1l6M/uCih+JEwiomd/4CV85RTBEvgXczaOlI20Bw/wIB9+k5F/7jyLxXyKcu9ugfMQgV6VzM8K5tGdRiGfWD5oCnEqCxd1dPKpR/iAp1BiBCXi68lgBE8AQ90c8xF+l+C2x9QeaAmo3M6IG03YewDQX7owjbAIShop6cZ3sIYekCls5XfRb/REgp+XX2Wqo3rkL9NrVvNDv//ShN1fhv/dzoqKcLOQfpiZlXJ74O7PntgOwX+bCc/eIC2VX0l++N/Fj6fRfNVvMmfSu7iv5yQPnhJdppmiZnv7hALpu18prH0jRNFuQ6ir4/+sIC2eHuqTItI09KKWXS6WSpujZKTb3yNaaeS5dzlmyVE2d9K705H0hNdRT1XxzLDh6TdSe9J7t+8oms++xE+Wib8VflMS4rW362fZd0er3XfF0XMH38AnlHxCNy49LdRcc0TZNqzitSzZshNc2nm2pSmpVop7k3SzVjqFRTO0nNs0Oqjm+lmvWY1NQCqalZevvkm/S2ue9JNf1u3RRV8KVU8z8tMmfl5MdLZ/JdUnX+pPfrT5aami/V3NcLTUTDpZo5WKqqU7qSGsushAbyp8QdUs2dopuykuvrNDmTpOpPkudPxso7Ih6RozsNl5p7i34tmcOkmv2slFJKNfetIpObmtJZqt4TUs2fo3/PGiPV1E561FbOVKnmfy3VlDZ69Fb+zGuKTvsn4vzJJNlV9JePNHn6RrPyXwPKTE9/H/qN60WPEbex8NudjHpkNm6377J0hzcfY0zbF4g7knBN/S6btYq8zHyiq0TyxPQRVKpTge7m+9m1Yh8Ag166h9sevJlBL/Yr0U4IgS04gNS4NL6esoTfvtpw1bGmj51N39ChnD4QB0C7ljVo0agyQYFWNi/ZwdQHH4ac4WSdePKK/URXjiQiOYMGmd9icE0H71ZUNZXs7Cfwei+abOpbAhnSpBEzevfl4fQomnRswFNdJpN2LqPUvquGhTKiTSsCTJfPLo5Ly+a+qfPZfPTsJedclcLwdKlHZK3ieSFecC0E1wI9ozn4Tf1TDMLSAdR40FKQBELeSyALEIod3GvAtRAps8DcCazdwX8YsIO1BxRMg4IPAAgJrEJA+R9RLpTq0HJBS0fYH0YEjQc1DrzbwbMOTamORRG0CfKCtSsSEPjBuwMRNA7FUIHy1WrSb3Q3HnxhDMLSHinz9PbunUj3ipJmtpAXUEy1UQIfQkRt053wSgSggmsuFEwEmQUInWf16ibL4pC+o2hZw5H+M9fV7q9GTM3yjPt4JOM+GXVD+fhfQZnpqRA+r48PR39O084N6frgzVdvUAp6DLuNHsNu48knvuL0qTQ8Hh9W66WT2eGtscTuPMXp/XFUa1j5qv06cvWErXZ3tiaiQhgbvt9GQJAVg1WPlDEYDDw/74nLtv3u7aXkZ+vtQ6ND6Db4yqG1FWtVILpKJPYQPdy3W/PqdG5YGavFRKU6MfhlbbatdvPjp+k8Nj2eGk1Krxv10bh5SFUhtVwznhh+Mx7XL7hdP2AwRGI2NyEvK5/H6j1F9cZVqHOgGxPmjmHGU/M4uu0kCSeSia4SeUVek/Ly+e7AIQY3CyHMORwCx6DYHyQuLYvjiensP5tExwbVS7QxBVrxSklAcEDRMSEsEPmr7oMAFNs9l4wlpRdkYSKe/4Re4sOk+14I6IXHtZw89wpC7WMwq2f1Mn3WLrqvwlgXDNHF+tLQE/uMyMw+IEJQyu0C+wikiIa8Z9mVcZSbIgYh817G6p2BCJwH0Ych6zHwb0K61yFFMKJgCo+8NBXpP42W9yt4jwE+MNVF5owFc3cwttAFl6HWxWs2ROhmJktXIBwCh4CWp4f9KtFg7VoUvXWtkJ7N4N0E3l1grHFdbf9KCCHoNbLbDRv/fw1l4bGFSIlLY3CNx6ndsgYzd731p/nw+VQ8Hh+BgZcPXVRVlXPHEqnWsDJCCDb9sIOctBz6PHrHZem9Hh+ufBchkRerlM47+wYn8vcwvv5nBJtKr8J5/mQyPo+PvIx87KE2ajWrXirtlh93Muflb5i0+Fkq1dFrLfWLfJiCbAe/er7GYNRzGnYs38vO5XsZ9e7QK9YMevGr8cRmZpGfWJdvXnmcMLsFj2cdZnNbFCWQ44fP88wjX9CmSQUmfvKIfu+8fhJPJl+TAL3322/YG5/MmLbVGFtnAtgfQwl6CoBz6TlUjAjGoJRUnKWU+P0apmL5GVJNBtdSpLkjQrEWhe2WaOePR2Z0AxGCiFyOMOh+KKnlgAjBkf0MDtc3hFtuxSBUUCqCfRjkvqA7ig1VUaJWAKBljQLvekTUBqRjPijBKIEj9XNSo83PL6FhZFe3npAzHPBB2BeQPw38h8DUHPxJIFMBECFvI/PeBJmNJBJBoTZm6gwBvcC7E9zfg/1R8B5ChL6GMFREyxquT+wAYQtQLK3R0nuAehrCf0IIEKa6V30OF++tV3eMm5ojhAGpZSEzB0HAXSiBj11zP2X4+3Gl8Ngy01MhyleL5sNtbzB56V+TKGQyGQgMtOLz+pg78RsObzle4rzBYKB6oypFsfPTRn3Mh6M/x+28fMkKs8VUQkgARFgqYM+LZvEbK8hOzSk6fvZQPPdVHFlkZtr8w3b+fc87VKlfkVrNqqOqKslnUi87TuyuU3oS3tmLJUX6PdmTfuN6FQkJgDY9W/DE9BFFQmLH8r0MazCOs4dKFqB8sM9YztYpT1odN0fOpSKEAau1K4qiO3edTi8+CfU6XSzhbTIbr0lIADSqGI2wQbf6HRDlDqEEPYXPrzL71x0UOD2XCAnQV5sXhITU8pG+o0jHfGTBe5B1P1p6T9QsfVKT/vNoua+j+U4gjFUR4Qv1CbuwyJ50r0Om3YR0fIHNXJcoQyAGNQ58e8Hzk+7sVo+DuRMicglSevGkdkd61wMSiYIS/GyRkABQhMLHDc8zu/5apHcj2VmF15AzQRcSCDC1KRIS2IYhRblCIWFGlWmosjAnw3cI8p7ThUTI++D4GHxbkOnd0PznQRbL3XDO0+9PyGuI4Feh4F1kZh+kr+S7WxzSH4/0nyp2b80IcyuEKHxXtAJQz4Dv2DU9zzL8M1EmKIqhfpvaRMaUvjL3uDwc2RrL9Whhp/fHseC1xcyd+M0V6UKjQjCZr24J1DQN1a8C0CvmYQLmN2Phv5fw6+w1RTT52Q6ykrNJi08H4OyhcySeTMaR6wTgy4nfMqTWGFbP38iRrbEl+h86+T4WxM2k9R3Nio49+PIAGnaoyzsjP+HRrlPYsuIAfk1je0ICXlUtvM6zJBxPLCFgAKKswdS0RzOkWRs61NNNVAc2HCkSVC1uqsGPayZw74PtmbF9GzN3bb/qPSiOiR27cHLMUzSMii4qh34kLoUZS7bwTPPxjOv0Mke3xbLwzR+K7ltxyJxnkJl9wdIOEfQimuVBXA6Fk7v26eGpeVPA9SVk9tZrOUkVsu5B5jypvweGaPxE88yCg8zaWEnv1FgbjHokVlbBWn5190azjQL3SvalxWKSZxBIMHdBKFFo/vNoPt2XIrVstNzJNK80nibVf2XxnP08eHcvNq+PAZkOohwgwfkxUKjJ+c9CzoiiazIKBVV6wT4OKCg8Kjiwz4FPvbDY8INnNdgfRLdA2/RaUYAwt0TY7gNrTzC1Qiq6ZinVNLTMB9HcF981mXkPMqMXUl56bwGEsQoiehci9NLw3zL896BMUFwHZr+4kHEdX2Lr0l3X3KZu61q8uHAcT3/66BXpajWrRuV6FTEYr/xInr5lIv0iH8bj8rBy7jo2L9kBQNzhBB5p/DQFOQ6a3NyApbnzGPQv3c4+/ssx/JA5p8iU1LB9Xao3rsK3U5cyruNLjO82mU/HfwXomk50lUtDe+e/uohVX20iPjaZ7b8eoE/Qg4wZ+g5f7N0DwP3P382C+Fm0v7M1AMd3nqRnwCDmv/UzVVNrsSY2lfazPyMlIZ1nb53Ey3dOKerbZrfg9PqYengTbx/eiEf18+6IWYxo9FSRhpWTlkdKoeD7PaT0oOVO1rOkgcY1KvDSA10JsumC47MJ85nzr685czD+d+1cYL1DX52LUIT9IQyhE3ju3p588npX3YTiXaUTi1B90x9DeSQ2XM7f8KS2RGbeTwYvsPFMTYRSuFmQPwGkEQggnL0czD+DmvciMnc8FQMcnHOGo0lFLxjoi4WMLpB5B5o/ngMpv/Hm4WM4874G7zpq1oyjQkwB1WvmFjKdSa56QbPzATHgXVf4Pwi8YGqP2dQGHJ8AFzRUSZXwyZgMeRdvgJoP/lT0zZ3c4JqHltYbLe12NN8p0M6Dbze45qOldUK6loJvJ3guCgpsD4Nt+EUN4jIQSkiJ8wvfWMz81xaVSl+Gfx7KnNnXgY53t+F8bBJ1WtW85jZCCG69v8MVaaT/HC/MH1lqrajiCIkMJqxcKEJRWDFnHbnp+YydOYJtP+0h7kgCznwXgaF2Vheane4c3R2DwUBQWCAbvttKTK3ytOnVkm+nLuPw5mN06t+WzYt3kBqXxvA3B/HD+79Qt3UtvpnyI5XqVGD0+3rl2kmLn2PK4A85uvM0bbvUY/Wnv1IlKJhbqun+DkVRiK580fEspb6x0p6z59njT6V6nQgCFAOpcen0G9eLejfpPoCCPBeZaXlUqBFOJXM2HPSQcDCBw0f3knwqD7/XDzYLY2/9N6nxGSxN/ZTtv+xmy5KdPP35Y3r5Cv9JcM1HerdB+BwMhvL0u6UJ/c7reSPnjidyYvdxatY/jdTK6VFKgMzoA2oaoGsJmlIRwr9k1t73cHqPEps5nsrmWwjQEsmxvcic0+/RtdwgApXRVOcdLqzWy4v32fV0pr5zm2gC8qC+QZ6pNR5NYXi0xBQ4FrwbiXIOQQbosUvILMh5FrAAHsh+gs/O9GVVckMerhGPLfdZmraqwPvzV2EvXD+4NUmIQcWlKgQYNCBJ74tiWq5vK6oEw+8qgoSFelBVEwZDYSSe86NLXzDthP43cyBY2oOhhu7g11J130zEMjBe9HEpQY+X+q4uOXWEyTvX8uXt/WlSLAl1wWuL0VSNB1/qX2rbMvyzcEOd2UKI7sAHgAH4XEo5pRS6/sD3QGsp5RU91X93rac/iyIHqbkDSvicUulUv4piUErUA8rLyic9IZOaTavh9/lxFbg5dyyRSnUqcF/MSISAeadnMLzBODrcfROrv9pI5XoxDHy+H7/OXkNKXBrdh3Vh0Xs/8daqlwkIDOCRxk9Tq0V1zuyPI7JSBAviZuHIdWALtuEqcJMal0b1xlWRUpbgJSE2kaDwQEKjQvC4PGxftZmg1huoZgnjeGIbds1YT37GSTYsKeDTg+9SvZG+Tedzgz/l8J44vlzZmfjk73ipQw6tujfH/sYW7DKcJ5vMR8t7hy/fSiclsSoTvniUCbe/yv61h/n0wDtFvEjHDCj4ECw9UcLeL+LL44vF5dlOsGKFvJfB9hhKsO7s1nKeKcxIjgcRAjKfj18pR56zO4/Mqkl81rNUtN9PlmEs047/hN28ntvCWnKb8QssJg0NBQU7kH/xQZnvAC0fp3oeqcZjV4rN1kp1pJaIR/o46fXRyGwAYUPgKiQwkOqvyZ5sD90j41GEPv2rEoyF3UgJS9fXJyErkCfuuXbN9tpgAvyABGM78G8D690ooW8htRyEEnpdvc0+sotXd65j4R330T7mYmRc3JEEpJRF70AZ/hn4Rzqzha6LzgB6AA2AgUKIS+oqCCGCgLHAjr+Xw6vDkedk8r3vsvnHP8GaEqGbPixdSiXJSMqit/0Bpgz+EIAjW2Ppbr6fjYu2U7NpNQCMJiNp5zIY1/El3hj0AdM2vcp7G18FQNMkVruFR98dwqh3hvL2Q9M5sjWW9IRMMpOycDs8WO1WqjaoxPi5Y+j3ZC+qN6lC2rkMNi3eTt+wh/jk2XnYggKo3rgqaefS2f7zniJfzbIvNjCs/jievmUiAD9//Bv/3vQDi2JjCfXNorqcjTtnDSNf2kHLLqEl9rW4tU8zWrarQZBlJo0qr+GlBbczetowhteeTtTaPvz08Upwzmbo2FU8P+cxFEXhpW+e4sNtb+hCQstDZt4Jmg/sIxHFnMJSSt6aO5v5y7/DI0JAhIHrG6TUV9RK6LusXjaEzWuqkqt8DCKcDnc6WLM7nUDjXTQIaEGkdwnrE75kZ2YSbcMeYdrrgkFT7mH9j6HkpCkU+QCsA0FUBC0F/FtJ9p7jlF9FSsnmc4WTpHYWpAcLEqPQtU0pnYXcChyqhXLGE/SM0oWEJnVdwShAFu7g5/EprN1Vk4phDq5liedQDVz7WtDHxb2394PtEZB+tJyXdD9IMWjO79DyP0JTs/Rii9J7SW/DG7bm+OCnSwgJgGoNK5cJif8y3EjT003AKSnlGQAhxDfAXcDR39G9CrwNPPv3snd1nD+RzKZF2/G6vHTs2+ayNI5cB3Ne+ppO/dszd+I3dLirNf2f7lN0XiiBiIivrjiOwWggMDyQoLDCKqil/PJjapXn1oEdubl/26KyBV63l1eXTaDJLQ0wGHQ78aQfniMlLg1nnotBL/bjyVkjUQqjg2q3rMEjjZ+mct0YOt/fgSr1KxJVObJECfSpD89k/7rD3DL6DrZ/s4viAxcAACAASURBVBWv0J2q5arqeQI39WnJM2uOk3amBpNbNGfdZhOrv8/j/Bkb9704BKvt4h7cNauHM23OSn6o2p57R56g5U2fcU/dtby58iXmPrMYk8VI7xE/Iz2bkKn1eP/tURzZ62L68sLXQeaDPxaUCijhJUuUON0+ftlUnsjQCjw+oCvSuQC0C6YaHZuWJRE2XiU26xWGhWhEVpH4q5Qj6eRzVI06SoFmopPtR5rXttDSto2k+tFs3hLMm7Oq0qVfFhOmFyZMylyQGeBPBGMTanIQj2ZBCJX2lS76Ri5oYfXNZkBDIPTnKcCmOIvosvxmwo0XJ19ROIFbzRofPPeTLmQK0++KQ0q4oOjl+o3kqGaqWpxcP1zg/AyADL+Z7xMPMyQiG7upEiJkCuS/o5cCcXykc2YbDLYHQE3Wc0vcS8HaHasxXBci3q1gbv+ntkDVQ2+PgalJ2VamfzNupKCoCBRPSz4PlJhthRDNgcpSyp+FEKUKCiHESGAkQJUqf99KpW6rmnyw9XUq1710b+ec9FyObj2BUARLZ6zk509Xo/pUTGZjCUFxLQiLDuH75M+LvjfqUI9fXAvYuXwfeZl5BEfokSwBdisvLiiZLb3g9cUsfP0Hnpk9mm5DbsaR46RD35tKHatCjWi6Dr6Zdne2KtrnYGH8LACmTP2F3XvP8vQzfTBHBbMqLhOlYgS9Ozdk5w87CSzko3KtCvwaNpTM+AzeHreKNb1PowAp54Lp0Peiv2b+a4tY9/VmoqtEElyuGQZzR9KSHGiaHynhtpmDqFkuEmGsCf5TSEykJrpITcgk/fR0QuxbCIzuhYjeAeJiLaXPdu8iw+ni+U6dmDf5QQJtZoQwXlYgv/ztU/ySkIEpwICIeASZOoCJY9ZQJcpDtt9AmNFPfVuuPvlKGDvoHL27ayyLrEDv/sUcuJ51FDmO/XoOg0XRI4EuE6ELaGR4zHhM3aloyQHfRt1tIeHQYRtRYT7Uipf6GeCisEGK38sJis+fwQY/wYaLhf8urC+uZY7VVHhvfAzDn08lIMLHiLBjJHkDsJOMzHsVzG3Bs0K/74bKCMstyOzReihs4DNQ8C6oaYigceBcgMx/ExH0Ath1n5f0bEHmv4UIeRdhurZaTLJgFjhmIELehYDr+w2V4c/hRkY9Xe51LVoqCyEUYBrwzNU6klJ+KqVsJaVsFRVVejG+/wQatK1TtNIHSHBkk+t1Meupubxy99sIBboNuQXVp/Kvr8f9ZXkamxfvYOJdbzGg/CNkp+WWOKdpevbw4vd/ZuHrP9CgfR2adm7A1IdncE/UMOKPll42xBJgYfibD/Dd20u5J+rhooxwgNzsAnJX7uHkrtM898kounVpyEdfP0l0uI3cjHxOH7i4cq4fEcW5lcdY++Vm2qh1mPSjh7e+Owj+I3hVlYS8HA5uO0lcQhbvbZhMn1G3g7UXFep0YIX3G8KbVuKL1LPMS9FNHrGHavHckIGMfKEj36/bSMWoTwi0HUY65iCUMIS4mPQ3Z/oyFr32Ax6/n7rVoqkYXbpt3Ww1c1e1x+kZkAwFHxBTroBb2oUjbHcTZtTv48WJtTJCQPXoVjw1OZUazepD8DuF51zFek3CTyjeK+ymmu8PIcLspZxYyXnneg54/HikxJGncGyDjXIxvsv+OItrk6VN+MUFQnGa33+/0F+K30mOWjJ/RzHA01OT8Dit2ITEpEiqmgs1E+96XUjYnoLgSRD+LcJyc2GV2kch4B6wP46w3avTWzrrobaWzkjNgfSfQ/oOgP84qGeQ3l1I777Sb9YF/i2ddDOtqclVacvw1+JGahTngeJZVZXQQzguIAhoBKwvXEGVB5YJIe68mkP7RiHT46DL8hnUDy3HlDE9sNotNOpQn7a9WjHuk1FFyWkenx+LyYjf5+e1+96jTutaDHqh31V617Fv7SEOrD+CI8+JYlCwh9hKhNQe3RbLkx1f4tF3hxIUHkhQeCCj3x9GherlqNW8Oid2nWbDd9vY9MM07nj4Vg5uOMqLC8eVMAd9OfFbYnedxhxgJjcjH1uwjczkbCoWFLA7p4CjW45SvecWvkusQszJCM4djEPzuHngrYEsXrWf3rc05JOnv+SXT3+j54t9OJ1k4NfNGi+8Uw5JABM2rGDJqaPUFgJ/p0aIC2MXTGXRlkg+WwsfT7iX9/r1pGakntdycPNxDm89wcltu6l2dx6bVt1BalwO/V94+ZJ7VGlNKtmJ2fgdXgjV77mrwMVbQ6Zzy73tuPX+i+XLpXs15Iwu/BZK/IkwAqNiWLPwR7oNUAiLVvEbWmFUd3NBAVbUvRzfG8D23w7Tpd9mqtQGt6qRLe2UM7hQBBjJYWtuFPXseYSb9Un4gllISkmQMRdNSlwyj1TNgA89oikoSOOmrnmlaCFck8nlaiQXAhGklGhI3KhoUhKKpQSdEFC+aul7fav509CtmZXRDDZQIhDhc3Qeg57U/UfSp9eLUsqDlofMm1xYcXeFXlnXUBmZWg+wIsofLHUsAGFucVUzbRn+M7iRgmIXUFsIUR1IBO4HBl04KaXMBYriLYUQ64Fn/6lCAiDQaKF9dHXaRFelQf06NGh7sfz1BSGxYNUepn23gY+f7U/tyFC2/LiL8yeTGfRCP36atZKCHAcDLyM0CnIcjG41AZfDTU5qLu36tELTNGbsnEJw+MUtNA0mI9YAC2arCaPRwIi3HuTjp+fSsltT7h1/F53vbc+MsV8QdziBtQs3c3LPGTKTsihfLZq4Iwl63abCiWbYGwMZWvsJhkwagNFkYun0FTw4sT/3PduB3YeHYM+pyPyZGyl36hwA/572E77IIGRGHj/NWglAfEUrv2Um0jkklHWLTtGm7zpsxwMJy1XxnkwktGp5suLTiY4KRoTN5kjWZnIKctkTn8i9HZoCILU8+o6KpnnnSdSolwy+zXTquRECnyUtMZR3nn0La8+6TBzaB7PBwNRVE0k4mUJKYjY/PvMlDTvUpV7rWmz5cSduh7uEoNA0iZfymGUKPn8ec6ZWJy0hidMHo8jKqMRdb7QnL/8j6v7OtF6vhYuI8j6CwnTTzt077uGcK5CdtyzEZPCChEx/LQxiN5l+hQTVRCOTp8iJDaCi4UeligGCDGasQqBqUL3epY7hCyjug/ijuDC+EAIDgkoGu15O/hK6K/dzUZilgOoDFWTO80g1Fqx9oeANMHfU/QoyE+mcDxjB1FLfx6UwO18GTQJhQcv/EJyz9T1AioXgluHG44YJCimlXwgxBliJHh77hZTyiBBiMnq522U3irc/im/O7mFbxhkG1mxeKk1YUAAhgVZsVjOuAjdCEUTEhLN12S4+GvM5UsKAZ+/EaCr5aHweH2nnMmjUsS5jZzxCh76tcTs9vDv6M6JqlefRibqaX7dVTZbmzWPzkp28OuBdAkPtFOQ4OLz5OCGRQXz4+OcEhtkZ8Nyd1LmjMTsOnSG6WjRvDfmIdd9sYcgr92K1mQmOCKRS7RgiYsIoXz2aVrc349jOk/yy5AD79pyn4GwDXpzQlDkL9hBTvzJnq9tx1bEzvFkjajWpRq1HutGqfU2adqhDq9Q01sw/wwdzKmN7bRO2oAAik7MRkRE4V+/np4qhWF8awNPDfqBp73rkVcslKuqi8PPmPIfmWUWNhoswmNsjhRvp/BzcP7Pt+2Uc+CGB7Lw0BvfqSN1ykVStX4nXn/uec7HJqKfPsmf1VnoPjmfMR8/T7d48MhKnsmR7FdRMK8FtP2K/LEdHV0V6V9tD9TuMdLGeweuCph0cGGQNUlQTFVSV7PzuxEQ4MKmbACtRMe4iHqvZctHcGlaDhkEYQEC70F2EmPz4NQg2eIpCXEG3sRpRsGPBaFCKts793fYY/JJemZ6RCUWTthCXCgufpqIhsSh/7OdsFH/MAi0EuD0KVkuxCsmeJfrfgjNAJTA1BMvNkP8GiGDAiQibWSQkABS7vj7U8qeB9AFXsNmV4YbghibcSSmXA8t/d2xiKbSd/w6e/gxqBkVSxR5GRXvpNvGe7RrQs50eBZyZnE1wRCB7fzvImQPxSAl3jel+iZAACCsXyg+ZX3B020neGvIRVpuZ7T/tZnlmDpr00/DXvez+cSeDJw7g6LYTvHrve9giQxj70cO8M2wm9hAb7fu25sMxn+PIc/L91GV4th8gr3oIe2qtIvtcJgDz/v0dBqPCF8c+4LNXviczLZ9tP+0hukoU29YcQbHbyct2oJ5PZdaI2fh9GqdCrPg6V8Ug/bQK38TK9QUcTstj19oDiJ2HsR1OwnwiBQBHnovgm+sxatpDrJq1lrNpGYSVC8Hn9eMocGPK8TLgnIllI+ZQ45NRqD6V/LiTOAsqsvjzJYz/sirRlbuw59BHBCqT6DEgi01J99N96P1EmC4WYOw9sA0Na75BXmoG82ZF8XJYL1qYD9HbPxurQVAjtBrvfN+JlqHR+CtonHf5ydacdL79LFWDL6zoA0A9xC0Bbpaua8YH8yphvjWPFUMMgLvE85nVbC1w0T/g1yCyUEgoQv+oEnyagtWgFaXImRXdIa5qGlnSjRUjdsWMQOJD5Ye0mvSKKulT+r2wMCnFihtKqeddKH9S7bhGWC36pO6XkOYL4Ky3Dh2CMkAmAufBs1OPTDPUBfsoRECvUs1nStBTyMBxfyiiSUovaDmIYhV6y/DXoSwz+y9Ex3I1Wd19zDXTqz4/uen5VKgRzX3j+3LrwI7YggJKpX+0xXhy0nJx5bvJTs1FAvbUPFxOL9OGTic/I5/aLWoSu/sUZpsJjzmAqKqR+L1+slNzCC8fRvdhXVgxey2RlSJoe0dr1v+8k+xzmdhDbPi9foIjg0hPyGTSPe9w9kQK+P00aFeH2i1qQIETg+qnavMa1O3VgF8Kt0Ztsqw8T8TdTk78e7TrcJRjC05z161DqFLvHFOWOHEFB2AzGzEYDbS/rz3LPG6+2nSYIX2a8vG6/Xz79lK2N3DR/tO2bB26Gs/Rc0iD4PCWWDITM+nUOZ0NP0ZxYH0so2+ZzNDJ97N06QlSE9rRLPQwO1z5BMecJL/SC9zaVmAPf4yC86uI7hhM5SppeGbVRdFgYodlCCHI9Hs54qrB82N3sX1ZMLtW1iZm7HGMjRTC7W7S/CYiDCoGc0O9nDhQrWIySqifShVyUaUfQ+FkVnzC3ucMxiMFbe25GBVI9ZlI9QfQ2KqXzTAIOFAQRuOgTExKSX+DhsQlVVQkgYU1nDzSx/T6v1FU06kQv9coNKmH2YLAI/148RMgzZiuUFbjWiAlrHVbqGZUqWnyFx0DXcgVl0UGIMbsYr8jq1BIFMJ/HsgGzJD3NNK7CULeRAgFqTnBtw/M7Vh3+Axbjscx4e7OmI3XPy3J7MfBuwEiVyOMZTkafzXKBMXfiLysfI7vOEXr7s0KNxSyUa1RZTrd05ZeI7uRl5XPkg+Xs3/9Ydr2akmP4beVaB9TszyhUSFMWfkvbEE23h0xC6MQ3DP0FnJCgzi27QTBkYFsWbITzefly+Ub2PBrSzRVo9vQWzh/IokVs/WVb8b5TDrdVB316Kf8uj2cAc/eyVeTv6dOy5p0H9aFWs2rMXfqcmo2rMQ943ojhGDUu0MIDJV0u1djSKMVKAr0nxVGvYA+fPH6Yh54YSCHD61i5dpIHhySRJ8m73JrzWr8evQ1Bi15GYOSB8JOu10HiAn3kLpfn8hMVhOnnl/PyRmteWnKA8x55RtSUnM56fThOpnMv75oz4ydr9C00wCatT/Ccw8L4pUopCGc3XsqMn56X3w2hbtaHUUA+zbOZelyC7GHGpI2tCPup4K4PzGcagFrcPoyKBA+3Ntz+PpENd7892oeHb6PdcfLEyis7PcGEOu30tpcQJCIJ9JQB9RTNK6TxuppcwGI8xmoatSYML8PUcHZPHfXZqSEmhYnNkVFlbAyuyKtAtNpEqALCVVqGIRCi5BMNHnpZG9SDJQXNpRi1VztwnrZ0MALDvEiXwNKUV8GKRD6kUuy568XEggUkurGkvuSi0ujchECvCq0C0ph7uZmHE+OYsqA34BMEOVBFsapuJcgLe0RAXchC94H51xEyDTmrstnf1wyD9zcnBrlIrhumFuDlgnXmT1ehmtDmaD4GzHzyTmsWbCJh169n4Ev3I1QBIGhdgJD9RpPn09YUFQFdv+aw/QYfhtxRxIoyC6gUcf6TFnxUlFfHpeHFxc+iRBwc//23GG+D82v8etna/l479tIfyLRlVSijrnp/0wfAoM9aLmTqNtcJXafPkHH1IohPEb3Bexbc5BfHAs4tP8Mzw3+gLp7T/HppkkA5GXmM7HvWzRqqxIVvJrR7aLJy7TTrGMetRQ7uz47yvkTSXw3bScf7/2Mgj4PsOhYAp2XG7BbcqmrGOhhvp8J08/R5b4a3FJTBd9+6vRdy1MnnuabPtNIjpXc/puVckODSN93FgNw5Kv15CRk4MhzYg4IpU2Pphi07SguNyI1mXvHpNBzbksq1r4ZzbMLso04PWF8tiifm95IJUZNYVFqGwLWx3J+VhITxvXkt3KSAYZ97H7DjSk6H4NBIzBIo0+rc2RpbmqawIikotGHlXTSXAX8ml2F28OyKWeCHJ+Z5anVeaxSLEaDk9WHqjP6ju0EmL2YhIYmIctn4bO0Rsi0WHrUOwPyYty3lPpK/HI5k2ZhQFJcAOgCRmigFFu+/14AlBQ4RkzX8LO+FiGiCGhl8ZbQHK7UxGwAMz7ubnGM91cEo2pgULSLQgIAO+Q+hzS3Rlh7IdUUMLfi7SE24tOzryokstNyCYkMKkoQLeI1cCQUy8ovw1+LMkHxH4DH5UUogkMbj7J6/kaemD4CW1AAvUd149j2k8x9+RtqNKlKlfoVObz5OFabhX5P9iY1Xi/R3al/W0wWM4OqPorqU8lKyeHHnC+xB+sCRUrJoCqP4XZ68Lq89H70CPVuqsXRrSc4sOEIo5o9x5KsucQdSeCNgU8DcMtd2Qx85BwPv9yUiYNM1GpeDZPZRtsBU1nwzosc3XaCJ9q+gL12eYhNJTYlj6yUbOIOJ3BkWyxHtsQSGpLDvSMdbPrZw5nDNlKTInhjhIOm3dKoc89NDLi3IzPGfoHf6yclDu5r0ojyVTzUfWoRpgATFnslMLUAY2W2rgzi30OepvHzBTw26zhTBjRl5SdrOXY2G0utSpCeRZLHidvtw3p7c06fz6RJg5kAvL0mn2WfLGTgQ7+haYfR0jfiyI5j/c8NmfV1DJxJ4sxXVkbPSSNyRgHm3UlIu6BKnXJ82WoxvuzyHIpy4knP5/VR1Xjz6zOAIMIQgEvz0MCir/5dfvgyrRaLM+oSYvByV8RZwkw+Blc4gxCC4QN+YggSP0Zmrm9JhxrJNK2aSXmLhwnR+6hvzeVC8rQBUUKLKO5nkFLiVwWKAQxC6BoHoKKSrjmxYSJUWhECPJok02ckxqKWCHOVUs/TvrD/xoW+VQ0UcalQEEWmsysLjMsl/F0NITYPr/TbeOkJpQFoR0FEIzUPQktBhL6DEGbKh0L50KAS5FJK0DIRBj348ei2WJ7s8BJ3j+1ZVKyyDH8PygTFX4Tzubl8d/AwQ5o1ZUSVMYRGh1Clfgzblu2m18huNOpQj0Yd6zP+yzEsm7mCBu3qEBIZzPyzMwmJ0jOaW3ZrSmZyDmNnjGDmk3PISMxi5NuDceS5inwXHpeH3SsPEFU5oqhs9uYfduD36eYBn8eHVrhHxGfPzy/i7+jearw+SrB3gx+vG2J3nWZonSfwOL36Cs1o4OTes9Q3F9rDc12s/3Yrs56ai9GsayDb1kZwX7dGaLnZFLQOI3HXedp0DyJiQBILttTh8IvzMJ/Ws5KNZo3y1Uw0alXAycgCUp9owpRVZgIOh5IrculdszdCLCDc5mH/+kicmUZ8daI5IxUqVY8i9dR5AnrZCA+KJgV4/Yk5fLtGj3M4tv0keSnZuFwG/JqZM8kOkrbV5KPnBLJqPjJbwWBQiAmVDOl+kCXHguj7SifigrNoV+kQu0il4WcNyNufAeEBHHUEkXwunJvrxGNWTORrYCCEFJ9Kp/AEYsxuugTrkUd+qReGzfEZqG4MwK2pLDrSiIW/dGB5hINfXpiPlDDjfBPuCoyjV6WzWE368xDFNIniyW9OKTjsV0hzRZCtWeluS8enKUSZCjAi8EkTXgkWAWYhiLFc6O/iLK4oCj7px1CYpldkilLg8rmtF/j4G0thaIXVeWQa5DyBVE+AsTHS1A5MtfQ8iWL+BVnwAThmQtgchKUDYeVCqVi7ArWal4XO/t0o2wr1L4Aj18H4+UtZ6Uzh1W63sWnk1+Sk5tK2dwtO74/jnXWTMJlLOiR3nD7Hb5+vYeD9txYV9isOKSU+jw+z1czarzeRcjaNgS/047upy/j8+fl0GdSRtQs3M2rqENISMljyoR48Nmraw1RrUJH6bWpz7th5xrb7F1GVI5i8dAKPtRhfVJG6UTuVpMRyZJ3LQISGYLVbcCVe3HRI2G3YggNwJGdyx8O3cuvAdhxcO5Gli6rgzfGQcWsVWmdrjH2lCj7LbF6d257077NB9WPI0pO0eg3O4LYR1VljcrDvQw8n/O0xahJPOSuzH+9DcHAn/F4zEx9qzd4WjWhTM4Xkr8LQdusO5Htfy+bLiLb4FubRwhvEBxv+TV56LgMrP4piMuCrW45bR+ex6GgTGossUj86zt2PpLFjYzAuSwT9n4+mXZufqRjgZ/HS+mRlDiHt7CzWRt9MblYQH47YSaI/nwFV9fHcXgOgcd5vZrM/hOZGB0FGPzleM1Wlh1Cbl73uMBx+C22DUrAq+sQfVxDEI9/34aHmB3mw+WGkhKOOMMqZnERaPEXZ1KVNymkqJPsVGps1jroDKW/04dKMVDI7SvgjSlv9q1LjorGKolBb/T3683kX/zkEoGe0GwAVDLVRon4pOqu5foWCdxFhH19+a9qr3NcyXB+uVD22TFD8BZj/2iK+eGsxN716JxNH9+eXD3/l0/FfEVEhjMzkbL5P/ZzQqJASbW4d9w7GD3fQoFM9Ptjw6hX7vzNkCG63n6ET+3PLgLYseG0xg18ZQECglbByofh9fh6uP46slBzeWfsKY9u+SMMOdXl/02tkJGVhCTATFBbIgQ1HSDuXjDPpZZp1LOCRZ+9F7j8GHj0OPiQqmCGT7iUwLJD3n/0aV3oW+HyYrSbsoUam/biHlHM2Xri/OlabEVeBj8emNiPu2P+xd97hcRTZ2v9V9+SRZjTKVrQkW3KSczbGETDBxiSzYLLJOcNiMmtMWDIsaVnAJBPWZDDO2Bicc5JlK1jJiqORNHm66/tjJDlgDOyy9373Xr/Po+cZVXdVdff0nFN1wnuW8+2bDvwju6NlJmBduA21sY2EXLjt5VJ2ZBgwNfZkzslhpKbzhWcONwy5G2/rLmZ9dS8vXf8RF8/axf3uXAZuqGLZfdGNrj8vlsrbepG0xo1jkZseVx5HbbmHXsJN+Q872DuwNyFdQXVCW0aE4f7tPHfZeiw2ybWvT2bXXB9dA5Xc9W4564suYsmjywk4JDn3mti+tRtTJnZhl3szV+WvI+SzUJAcpUIpC5nRAKvQSDNG2Bv0o6FRNDeLgZNaSU8JUxkyYFc14pSOmH9xxBwHTcrOCKmDcbDQlxKCEizK4ef8NiF/8C7l9whPKSVhqWEU6n+9sFV6gn5weVQDWKYiYq5FGDJ+0xB64wUQ2YNI/r6zuuEx/Os4mqI4Znr6AzBh+mhaGlqZNu0kbCYjU647ifTuXSgYkkcoEP6ZkgCYdf05LLImcMF5v0wvvuDtpXzw2Gek9elK2c4aNAkZ+WncNecGAKr37qe5rhzFoLK/pJYBEwrJ6ZPFwImFZPZI7yzdum3FTo47oxcxriT6Hj+BJXP28uMPPs69sC+FD57GI2c/RcAbJOgNcPxZI6jdV4+/+kBN7VAgTGh/mMtG9SImzobUffjbwlhsGief/xbz38sCCfb6VsJ2C6IlynvUWAr3XzQMtb+BWS/czDu7HOiajsloYPTZw/ns+SYaKq08sfhpVm0vJ/TRC9x49U6K3uhBTZkRa4Ok4PMAgW11KFXNbFmwAS21C22l9bz/0XounKATbtFwTnLS8GErweuNWGwSXQctoiMaAtQ0mom3SiaP+orqiUlk3lSOQdV5ZPjW6M3lwJ5dMRT08NASUvi8LYskPcikxBoAdgbseEUIkxAMHtdMckLUYe1UdWpaHJQJhX5Od6eD2ifBfpDMVYj6HA52CId1SYWmkagoxCrRiCUzP1cMh0c3HQlSwuTvJ3Nxt02cnf7LHF5HghACtx7EIUxYDwvB/Y9DP7yGdgQCnyD1akT8W79tDGEEYeKXTGu6Vkdb3XiM1slY42b/O1f7fx7HFMUfgC45KYc418xWMyNPH3LUPiO7ZTNydjuTpu5Deu4Cy0ko1tM6zyneUEplUTV3vH0WlaUNTLvl1EPGuPm4e3HXevig8lVi4myEAiEsNjOnX3cyD5zxBIoiWPjOchzOJq7582Os/DaJvH4r+eDJXZTvqOSc2xMovKgfmd1aUQx2jDHdOTfnelKzXO0zSAxGSSQsOP3Gk2ncV4rVEc/i935C1yTn3D4OjHbWLvFDrJmwN4K6fDeEtagPV0JSQpAp4/fyl5G38sjXf6a+QnLtkLtpaWxF6pIHzniC5Mw47n/LSMyHpczeeQo3P13BXWeCwyqw9ktiT7wV87dbMP9QjjW9lVZPCw9/fRGR5D10S6vn1HE1PPt5Cv5/+Pmpu4NXasfz+CX/REwPs3b+pSSlbqGqvoW16wbRNFdh2vQiPE0qwiqIsUSoqbWSnedlV4uTnbqD7xsd+L4OUzjcT35+G9vDAocwEJego7b/YmIUna7ORnwyxDv7+nNB1m5UARtKkxmdGzXhdSiIw8VYEEmblHQRhzq1O+pPHIqjKwkJlLYkMDE5qtg7TFQHQ5eSomtxlAAAIABJREFUoIxgEYZDlE5Y6liFATMGIu0bo1+pxPvHwjASLKdC28zo/6IAbJf95u5HK/QVhQQZas/2PoZ/B8cUxf8P0Coh+B3IFnTzKVQUVZPVIx2D2cAJF43hhAtGH3FVefatk2na34zFFqGt2cf2lUX4vQG6D8pl8En96De2DwveXoa3RaWlOZ7YlAE8cO+bDD8rnsaqcip2FXHjyPWUbzcCIaTcDiYT1cU1nXNEwgqWNDsx1nVc+7fFSMMIFs6JHlu34Av2bTayYZEVtCBqa5A+Jw9k27cbCCWYMfk1ho0sRvrC5PSU3DTycXTtgCSyO20o5gixx+/l6VsFzQ0xlO/ys2XdOBLTfyIxtYmJI77iteJBBGJjOHPGBOZ/8BPVd/WmNF7FfEkO4fvaGLbPDcBJZzYx4oQW9qzcw+ffDcFm8FNwfIRnqrphXa9w0a27yHA18fcre7JvXYgPtm5HQ/B+bC8enJFHbm49yefVUrk/mVV9QbftZbk7Fp8ngRnZOwhbJFZoD/sEv24mTjVwcfZuIjpUR+CFT8bhnbiBCX2LOUKCPQBWFLoZwKoccDzLw3YdHej42iN6VIgf7q8QwKqT38NuCB8UUXXoQIoQWDD8rN2AwKGY28+Jtv2X+jQiP4K3FER3kMUgi6D5CvSk9ShqzK/3/xUoagqxXYqO+TD+ABzzUfx/Ahneitfr4pOnvuG9WQvpPiiH4vVRiu3PPXOOmrEt/d/w4g1PsGVVOg01Ru7/5DYGjCvkk6e/5NXbo1L9Hzue5f6Ln6NybSnp3QPYbTq7N1vp9G4D+f193PX8Pm4+vRu+VhVNMYFqAJeTU16ooU+ym0EZV7P44zCv3fkZ3QZ42bfDitmm8OB3FzPvsZ2s/XYTuqbjzE+gpaYWQySC32MAJIoqUY1mjj9nOJsWb8MaY8bSp4whDzbyQd/0zvvpEIQZ3eC578JMn96V0MZGdKPCoHG9WWRooml0HLpZIffuDcRcEENqZRO9sv3UuZ3szYknvCJIQ52d/CmCpm8qyBtr4i93bCIcEqiKpM1r4Jbp3VC9GiPfk3y9sCdNhhieGbGAt/0FDLE1kR5fS6zdy7cVPbi72ybqIwrpxqjp6a+NPQhIhfuSthPRBLrQaJNBGmu7oGkGemY2/vx7ahfCPg1sanSlryPxSUGsgCf2DKbYG8er/ZYgNclXcxKZelkDtV4ryyuySE+sZ0RCIxHA+BvDW48GdySEUzV2Or9DWlQZKb/B5PXHQuEQfifrhSjOn7MC/3fijTXrcVrMnN23z3/3pfzHcMxH8V8AKf3Ihqlg7IcS98Tv7i+Mhdw54SKKN/rp2juR2rJ6AKbecPJRlQQAlglc/7yb68duoM29j6cu+xsvrnmM1+54ByEE3QbkcGX/24iEomGVVcXmzlWjxW7iL1/9GU9DK57Sm3ElR7BYdVrdRlAlxgwnf7p2B/fXnIJxU4Cuj3yM0Qzn3NGDbvlb2PFTI66uFzL/xTJ+/HQ1qsGAY0AG4Xo3YQ+EI9FXrMew7ow9dxSv3Po26+ZvxlPfEq0Bvs+EMTEJS7xGoEmly9gk4sP72L4pgYYWI3fP7IZjch2+HBNp/VrY+OAm4kMRLMUJ1E3Npf/Fo/leqcYTksTEwbcFvekzoBr3B2FaJ3Zl0/4Arq3VVBkULo05lR7hMi47q4gmn5mSmGSSDK3Ma0lE5up0+SxA3/MbeCjcRJxVQ0NHETAgbxMGAUkGnZCMIIDjbXWYRZQ6w6hCRAoCUqMtNkiaKVoedXNDMqtrU7mkxxaMiqQibMAlwujSCKqGIqIZ1C2RCLEGA4sasij1OfFrKjGGCKuauzNZa0AgOKdHEZv2J0cZX3XZmZj3S8K8Nqhg1AzE247MRCsl/LMln9NiK0kxhBFCYDqI8ePofpE/OtpIB3UUqHYILQDZdOh82n6k7yOE/QKEEv8HzfnbEdI0HluyHIf5f7eiOBr+OwsX/e+CjIBWHS0FeRiWfriSeyfPPqQI0JEwdFIP+o/WeXHVnYyZNorEjHjOv+dM3nn4Y3b8VAREixLdfNy93D/18c5+QpgRtunc/8ndWGMtdC3M4qkZLyOlJLtXBn/+4CbM1gNRISarCSkFt75+LV+2vseabzax8vN1vPB4Pmf26IMhLi96oqbh8LspWhDH9Sm96fppNUKFcBC+nVfO3x808vk/kujT5wViLR8zv2oLj66dyIZTUqlONRLsloyeYmf4qa3sWl1MyZZy7nrnejz1UVqLp79/CFNyCkXvOwm4DciUBE47pxybS0X0yMHbK49dWxpwripj6F1u0uNN6MEwUpdYtzWQ/eh69ld46bvEj+m7FsrmmRlYXkvVRyl4x+Vj9ILZKImdl0h190KaSuK499atBLwKs6/OJn6mnV339KR8ZQ7D6pvxB22EwgacFo1WXaAADV4r5R4DD24aweL9mYSkTjCikeEJkR/xsOyz2GhkEwIRcdEWcRIO2Fhb2YVEi5c/dd+FW0ZzXFJUDbOqUCmjCjtK4CdxtJeo/XzI57wy+GvsahgpJfmD2iiqScRu8lHidtI3pS5qolIOVRBRSpCo8A7o4NNhf9CKw3KobV6XENGj/TQJM1xlxP3OnYNfD1OpeQ/p84dYJbSVUSUBENqD3ngxUov6XaTvn+B9EfxfRe8jXIre9jq6rv378/4GmFSV96efw9vnnfVfMt//jzi2o/iDIJRYSFlPxyMN+oOs/Gwtw08bxOL3VrD66w3UlNQdNVnokln38OINb3BBt1m8vuUpbnzpct55+GPmPPgRnz7/DfMa3kTqkrLtFcS47Nwx4T5iXDZSu6Zx9m1TaKx284UnWthl3YLN7N5QQtn2Cl699W0+bXqLxe+toKWhhVA4zIezP+Pdv3yMMzGGz178llAghHmslcBKhbTMBEZO6s/abzcx5cKfyBka5quSjcgd9aT31KmojcO3rxXV5WT0aeX0GeZjx6au+L21RMr8nLJwBTt+MuEd34PA0DxWfqphVINMunQcu9eXdN5vyY6veW3e9/z1gR5s/lohVrr54IV42oqCiKxGsCQjfCHKltnYOzDA8VdOhKSV0FHRT9eo2lmKaPGgnJVEwdW1nBS3gZlPj8Of6sRV0UjPG2optdkReivh0gjFtU60YIicPxlxxFRjCEuKwjYWbiwAEebRN/vgCTn508Xr6RXTQqw1gMsmGRfcx+uVhTxdMoi7/N8zcWLUL/JVUh5LqjQeSNtCgzSzNWxnc1kG1w1ZH6XpExAIR9djRkWiCIFbKjRrOnGqQOigNSro8To2g84ER32nEL5szNbOZ5XrOrSKYQdkpwM8mvltUaL+jN52L5JDHeXj5lzEY+MXMiKzBoMCFbWxNDRb6Z9f9xuKHUXHsSpG0oXhUK6pXwn//d3Qi0CPlkvFOgVhPx8UJ1inRo+7rwK9DGQLxP5qAcw/BEMyf1vI7v9WHNtR/IEQwoRo5/b/7s1lzJ7+HPOe/Yo/v3sjL2944jdllLa622hze9Haw1BGnTGU7N4ZzHhsOgCqQWXW13+mbl8DyUkrWTd/LZ+/NJ8HzniCm0bOZOPSrbx861vkFGYx49HzALDEWFhaWULKyK401DTzxqNf0uaP0Fjl5oEzniTkD1HQ38el4/Zw6cx6ltfUsL6tmUEnFPLaw2ncNjGX1wIK3p4OqrYrWHzN6GHJtbOdTL+llnP79eQHVxfO7NkHd9VK7OYAms2Ap7uJ9LWbUVoDaJrk6SteJfeg5MKqLWtITgvTJVsgcjJpS+mOt95GKDMeWb4fdeUWlLJqwq1BdCFY9so3nUpCNaqEXRZ8o40Y94fpYq2na0YDS5fayVy/h4wfqzktfzPFIoawrmLZXoGtvprLHx/LjevPYL+SyXlxe/lw0HzenfgJWS43vp4Glu0dRNGeXBrWpmNSoqyuBgSjkqqYZNvN0Ngivg7msmJtF5q0EKVJiaxry2BNpZHysI3eVU2c12cLYU0Q1uHHgEayUYF2fteABv2NOnHtZh5FgYoyC1/PiW9/h6Ltv3WRrrX38Wiwy+Pk0wYn28MCgwpG5cBYioBHxy1hROaBHW96civ9DlISncywR5i7NGhjSUtK9JqPYvLqwB9ilmq5G9l0dbTUrf2CAzUsYq4AJRnME5BaA3rtQHTPPf/+fMfwizjmzP4PoaGqkfcfncdZt5xGercuv7mflBItonHb2AeIhDXiU+O49fWrcaUcYMXcs6mUm0bey59ucTB+ahnC9SI7V1fz1v1zaahqIhKKcN3zlzFi8mDuOWUWZpeNndvKIMGIoTRa9/ipr8uYeU4mBcP6snnlDgi1251VneqbRqIg6PvPYuoqGpC6pMszTirvbcOqhQkFFExWE19WuiC4kB1FD7Jj7Sv0799Mtz4B9myzcs3UnvzpBS8n9G/jiuEpEG43tygCozHCtQ9X0+JWCRkuZ+6bG0FR0OsaMCQmoPjdZGU1YLPqtFks7F3jQElPQe4uiz4As5FIop1Amh2RFMK+thGlKUxcoY49HMHdnEAgJg1/xI0a70Xk2sjr38RDE3YQ69I47cZLuPHCFfTpWoVPM/L4VV2Z8ISfVumgr6OWsd0rKCkys/oHG1kjgiwo6s9DZ/yILmHGnrGUhpyMXVRL3+GVHDdwP2c/cSF2XePzO95h3SYnyX118qwtCAENjeBustC9e4Ban5WKRhuuxBBpplasKrRGVJ6t6cWMlL2EdIWulrbO1Xs4AkbDgTBbKSV1mp9E1YIqlJ9FKH1bnkMkbj9GITkhNtC5CjyUV+pA2+HwRMCh/nLU06KWLkx0/Ny0GtDAcgRG8z/GIW6BhI9BhhFaCRh7Iwx5B+bQGpANJ4D5JJS4x/7Nuf5v45gz+78BiekJ3PjSFb+rz/Yfi9iyYgf+Fj/lO6vQNY3d6/aye30Jw04Z2Hle0Bfi7eLnsTttPHft3xn3Jw8Tpo9m/cLN/PTlOi556mJOvGQsVruFN7Y/y31TH0dtC+MYo2Fyhpg0KUKvfh6EyEDoFUhFdkbrS00h4YNtIAS11S1c8ucaPng2hdYHm8hJD3H9rGq69gzQWJ+JJ/wC95xqpmLXFwT9KfQYaKfHAB9Fm20oPo1vbnNivvE0CC9CCJ2L7qxl174UytwpnHz+Np65LZ0FH30Tzblol2KRunqmXFCNXxUs/HsCEoGwS6TBgLSb0VJdqGV1mJr8mBvcaEGByRohqKk0ZduoC9qwjnFR6CynIaxQ8dcg2nadkg+h7DMzcWGdGIufMmJ54dTeqO4QI56xkJPeyJjk3dGoJJ9CtSUBl81PpNjIgJ51FHviyI1t5q60jVQHbbguC/K5uysniWrO678FrTlEVZmRuzcOY0RCC493/wkAVxwkJgTY22gmxirIczUTY9HYGzKQKyLUhS1MSShCkwaeqS3kiczVqLpOSVMceYnNALy+oT/T+2xHGHwE0dgXMFAaTmBcbH07W2009PXEzFJKWp1k21tQ6AijjX6vR5LXhwty569Igwmx1YBAl/IQmhDzv1Hf+9cRgKZzQfraY/PMkLIJ0V5rQ6iJiJSNf8A8x3A0HFMU/yJ0/wIIfoNwPIpQbL+7/8dPfYGvxc/FD53b2fbSjW9QvCEaEnvqVROZ8eh0yrdX0HtUj85zakpqufm4e8nunYErOY5NS7ehspec7FeIjctHKIL9ZbU8c+UrTLxgDENPHsC5d5zOqi/WIVZbCUYs/PSNg+2rC/B7K2iureWcK1r46PVUzrp9CsOP78vjt79H056oUKjyxGKLB3eVAbNVoaHWTEKXMOGAm0emPceejQeygZsbVK55pIbiLVb27jCzbqmLARNH88PnxbTVF3P+TXWU7Qtw3bQUSstOZ8FHpR3kqp1LXalrfDknuT35rF2QeQMQbEX0TyGU0oV4m59ujiq2rYzh7pfKWL3YyZIvXPB5EANBGs/qSunOGnxlDtRcCyanF2ttPXNfjWfnqlx09w7mrzXTNCaNAaF9TB5exgf7ChC6ZPNHKl8/HkcoNx5TiRurXePa+a1M+eZs7shZzrDsauIcPtaEbYSVIAtbk3EvqWfaJXV0zQ8xZWsJu9rS8ISNOI1hwlJBRac2EkuerQFdB7emkGuMYFJgV9DBKc4ahAhxddIO/G5BXAKkWjydwv3S/lsACZqB54omsqI5m+9HfYIQ4NUh1hjBQHTn0d3Z4cs4kGvh9WkETEFiVRMmceAnfzCFSAfT7OGlWA9HixYGBHZhQGvf6ahHoC75d6DLqLO9w3SGDERrcAdXAJFf7ue5DwLfIRK/Raj/Qk2LY/hFHDM9/YvQmy6D0A/RQvDGXr+7/1TXxXg9PuaH5qIaoqujPZtKKVq7ByQMnzyYhC6un/UL+IKcmXApuq6jhTUGTOjDg6++j8Umef6udL55L4lRU4fyw7zVDD9tENPuOJ38IXm8cstbfPXqwkPGyi00c8Zlxcz/IJHta6LK7uqnLmbAyQN46NxnqN4aZaeNiQOvR3LGlfUUb7axc72NSFgAgtTcZAQN1JToJGWYuO6RYrausrDgowSQ0OoxEE6LR5oMDM/aS22FieT8FpK6+ln090z0iICMZGhsAX8ALT0BpaoR6bChtAUQikpiT0H9Xh0dQcKoGGbfuxqnM8SLMzPImwDPbx2NaXUt1r31IBVM8XasFh8tDWZMWXGc+sRWVl1vZ58/Eaamo75byvBR9ZQl9+eUUbtJtNbhSlMZ1Hs/t52VQ+8REd7feRyRVp27py/jo2dcFBtTCfRJ4aGrljC4u4fP2hLZ402iIhjPadt2kmvyMmR8K8JwaHazn0SsNLDpJzt9h3lR2p3NEegkFTzYRzDvtUQyuwUYMr6NsFQwKfohK//mgBkUiaJq2BWNgIxS6pmF/Jng78DrT8Zz+q37sAsjduVf40Q6fMyOa9J1QBw5WfDg834Pgnp0l+LVBXblYPkUC4ZBYCqE8HJ27roRp/kV0nqdgWI7G735TgjMRyQtRqhJv/se/6/jGCngfwBSb4JIGcI08FfP9TS0ULR2b2dlO4DyHRU8/s+lNNpV3rvpPAxHWcpVFFWxe10J488/Dl3XOdU2HS2s0WtkPne8eT1pKW8RaC1ny8bpxLgS6Tk8n20/7KJkSzl/u+lNRkwZQL+xfbHFWln8/gp2ri7GleyktqweoQikLlEMAj0SfRf6Tyhk0+L2iBtFYfwZjaRmBrj4zjq2ro7jvrd60pxs4/ZBp/PGne/jbwsgdcmgE3uzfsH2jicU7a5C6ymDwWzENm81yenxZPXdxfqvoz9kxWFD75GHWlaGVteKNBow9sxAlu5Haw1gMJuIBKO5AJY0mLjIjemrMAtnx5PWNUhRZj51GRkYq1uJLfJi2l3Gx9u20VRn5IznpxDMcTLjtO/oXhXgydXj8PoTcCzYwbD8GkJpKTw1ewWPzhrK8tX53Hv39yRYGug50E9RaQJ/e/0EPI27qEhykr+6mrLGHKxJRk74205OTd7Pj6FUNuxz8UD3zWz9yUooIDh+csth3E5RZtSiTVY++0c8dz5XRUQKjAcJwIgmCYswRqES8hpw4yQ9Jmp2OriexK4qF8GIkfzUBqzttap1qaMIBb+uoctotrdyUOa2lPDPVxOYelV9NIT3V3ijfmv0038SUkJYglH88lyeRpVphX3okh3krXVxCMfdoCQjI3tQzMP/sxf4vxRHUxTHop7+RQgl/ohKQmr1SP+n0WLv7Xj+2r8z89RH2bxse2dbdq9Mai2C0jo3utR/Nk4kHMHvi1JUP33lqzx24fPs2ViKqqqdCXizvr6HjO5dUBx/xpb+Cjt+quCW0fez4pNV9BvTm4qiaGWx1V+t55Vb3+bEi8cy7soTCflCnQl9ol2i6RGJIzGW7F4Z7Fy1u/M6FKeDH77P5v1nU5l1a3eeuzMbOcNJ4AwXnvAmeo/MQ+qSfmO70XN4z2hI5oGnhC0mQtLOSmw/FSF0SVySg8TkaZ1n6C0+xJZtaHWt0R7hCOlahC7tu6lIOISwqiR2CTHr5WJs+yMsas6g1W1g10Y7OfVFXJH0Ia7PdmDWvBBjpmKvmap97UmKUpJUpDB+eD2Zi8qIXbgbQ3kzW3bF8MjDP7JpZyKrS3PQrIL0LA89B/ppbTESk9rIVQ+8S/AaB8bCOLoPC6Hvr6Vf3h5OSy9DoDG0vobt16Vz7V3H03uwj4HHt+FpVFAE+HTRHh8QdeIX9Pdz+iVNbFttIxKB1oiB7c3xXD+tB68/nEoYjYAWoagamrRG6iOS2oiXIKFO4d4j3U1+ZiM3V4/ixbo8KiOiPZYKjELBrqqdvgNJNPNbCDj76kYMQkHKQ6WulNCqHfh8sLO7o+3wdeQvCe7fs+A80riHw6T80lx2wEls0hDOuvlUzrtnOoQ3IxvPRDbfCu6LkOEd6I1XoNeORg9t+c3XdQy/jGM+ij8Ysu058H+EEFawTAJgynUnYYkx031QLlKrQ3ruRthnMPfW89E02VlMvnhDCV+8/B2Xz57OdcPuprasnsyCdCp2VXHSJWMxWkxUFldz3FnDqNhZhcUWNSNIGUS2PsmQCQXsXNWHrJ4ZbPthJ2POHsHuVQso2qBgdwL4yO6diaFvLiMGdaVX7wyklHz18gIaappoaWglHIoQ9AbJ6pHOebe5+OqdLahGE1sWQ05WMxbpp/pqwdhzgsx5zsS0G62UbAqxadkeiqt9WJ02Ah4fHdH9bR4jeGq58L6zKFr1JZt/2EObuwqDGSJBkAYBgUOlxr5dVZjM7WymOnizbYw6J8D9lxZgywnj2RLNjibOgDYhhpf141EuD/KPk77E6DJw88R8MCokJjQRWV/DB95urPo4hYa9YJLRlXowMY2wto1AwEzPrvVsmBfm9SXduOXsHbhig0R0lXQV5vRdzsVLprI0MIyRU9dz1d0VYIAUcxBvF4WuOQ3cedtmdDRqSi24U2PorTWyIhBLkqLTz+zFrEh0CeuWxVJbaaJweCUQIQsPxT9k0licyIwHqlHVeDJzm9ivh9CklSa/jZpgLP2T2jqfTVBXqQzF4DDEsl8TpLdHGxnapaqugxCyfVcRPdbcKNj4o4Nxkz3t70tHVne0IsThlfc60PG5qcnEM08O5pHZP/7MVNbxWUeiyN/mwD5cIR2MX1MgUkZrdCj6Ks59YDhGJQLyIlDsYCiAYBoYckDfC7IWWp+EhHd+9ZqO4eg4pij+YAjbRUgRC6ZRnW39xvSm35jeAMjgOgj9gFTTMTpHYTworPCbvy9m/htLGDppAGl5qTRVubHYzZgsRgaf1J8r+twCROkwXvjpUQB2r9/L8g+/4Pyr36F3/2E8uXgOT176EgveXkav43sy+rQKvJ5EKvdaKNmwDD2Qx4RB2Sycs4yirCRyeqVTXRLNgDVajCgFuYjqetzBMGNObyS3225umdIdm0OiqLDgwwRiU0NsfM4EwJjJGxk8RuWOm4fQ1CMD1ahi9PgOeSZJ6YKGkrlU79UI+S34PH4iQRVDvEqkKQKIgymnkJok6IvuyHRV0Dglg2+X2ogLefEVhRDhEFLAZdeV84/ZGWh3KAgheOCO40nv3go3pWJrDBDYbSPdt4u6Rokx0IIpy06gOILeJx1jYSyqEmH4gCp659Vy9iuFrHrKxgX6FK4o/AH/Skn3oSGSe4d58JL5rFnblXhnf5KzG6kOBNFVP1+W5fLSez8C0Nqs8OQN2Ux/PgVT8nKcisbe1m7M2NKb1wsWU+dxEEmwMnJAJZpuRDVkYY0t5d11O3jxnnSWfZzAiec2k2hQidPNGMxjuXReKmUeFz9e9CYuSwCAOIPGvO7zMYno3k1H0PEKRbO2AQQtboUX7s5gwlluhp/YSq+T/AfYbA/yZSzalMukQQeSIA9GhyLweo3ceOuG6Pt9BEUSiQg+/KgPE8aXkprqP+rvQ5dQFjaTYwwe8fiv6ZkDSkqyz/NXCk0GEE6UlLXRA5Zx0eP2WyC8DmG/8OgDHsNvwjFF8UdDTYRIETK0FmE5Qq0J02hE/MdgzP/ZoctmncegE/oyYspgRp91qJ3V7w0wcEIh+8vqGDixsLP9g9mf8tMXqxgwdiYDTzoBgOPPGc5X36xicb7CjoczyOwONzw7hLa2rtw58QHiu6WiCUGV2ci1M8ZTsbuaimYPstGPwR9EpiTQumkXn7+RRYzFia9VxWiK8OZjXRj7SJCE4xtYfG4SSdmS2ddk421zQp2H7EEVqJb9VB903ePPbGTjCgfLvxRceLuH796XdMnrzvbVlZzx3V7WPOli51wn9izwlv/8cWkOC4kfV0KWAz0YJJQgMMelEW5qYtOKGDKyfRj/tpZIiyDidKJ5Q+hVMYwbUsKapT4s3Uy05FnY8bmZjPw2KuLiiE9uJT67glun59Mzq5Uqnw1hUjG2hOhXUMbZg6opUi18LXqhVkjOjCsmPKCN3sYFKLIVvTIDNa+SE/Jr6NBwf5+VwfWPVjJgQBFB0xmEwzvITJhKr9pV1ISSWb8il/WfxHDeudDf2BOrvoCQEsM+VXLiuU28/VoaJ57bjJRgUBQIL+P8fheyc/9OHKYgYCO6/m/ErNAeLRZVEpoGAR/YY6M7CkWBe2b0pXiVZOrl0dK0Kaao4g1LgV9XsSsRVAGDelRSHtLJMv7cf9GR2Z2ZeWTqGV9QwWbWMRgkixfn0uC2csO169DaDWJuTSHJcKhZVRGQazqgJDQdPBEz8aYjK46D0XFvEFV2hSYDISkIGXphi1ShChWhpiJlBFpuA2EDQyZSuP5LoqAamr3c9+o3nH/iQEYPyPv1Dv+DcExR/NGI7IXQD6AkwBEUhRACTP06/68tr2fZe89w2gU1xGS+wnFnDDvisFa7hccX3v+z9hueHcZ9L76GtI1BqF34/KX5LHr3ewI5DvRUCzkju3H5zGkMPXkAjfvdZPfKYMKMCcxdtI221UW8esc7yHyF+oIBjLTv5fqTLuaGKbP/UAXbAAAgAElEQVQw6pJX/1wORJMFw6Hoq1JWlk4k0EavASF+/LaDCjqIQDAuayPeOIXq9cko7c7aXoN9mMyS+R8k8ur90czeiO7luZ9SWFRbjtqeqaU3RDjS62hw+1FbFWSdH89wB8ZeBmybguiVATYujxaEkohoKG2bm6p1CidMW8aNF5bwUUsS77yegXaOifDJLiIpbnoUNXL+pbW8/Vgq5dttnDmtnvk3JSLSdJxGyUBvCboOVSKGW/tFV9ERTTAgBNnWqAlo22ovWXngVKMCtD5i5PJ7q/jwhSR6DDUh1BpyxV7C/rf4sLAcTKMZNWUxa+K7MH5sCVYlCal5sRJkQLJATILHY46nOrCPLmZf1HfQZuLCoYOh5R2iCsIXpbDwvx99j9qfT2uzIDZOsnxlAbndWijoFk2IO+38WjZmxpKVH0BKSSgoMJmhTTdgREdtHyDRFmRvuIOxF8IIvmtLoY+5hWyjD619l3cwo6wvJLh57mkoiuSVC74iFFI4++ydDB9WhSIEPl0Qo0iaj6AoDoeqQFGriz6OBmKN0dDXgyOlNAltmhGHIYSiiJ850yMyRG1gIY76rSSJNkj6EaEmQtwLyOAPyNYnEDIMMdcc9Tr+CJTXNLF+ZwVdEhzHFMUxHB3CNAQS5oGae0i7DO9GtsxExP4ZYRrIl68s4Iu/zaf7oDwWvl1MQlw5E67ygJr8u+ZzpaQgmxwINSo033/0nzTVNFPYI8wDk77n46qpFA6rRnf/nZbKQsp3VLJ96TYeuWsKM099lJq9tSRYkigcU8vk/mbSsu+k5Y7hxH1Rg7o6umIWio4t3ca+UXHwxn5O+YsPw1hfp6JIyYph8sW7qas0kVfo48yr6phySSP1NRZevi8VZ3yYtK4BqsssABjUeuLkTta8cBrrmg04xF40zYxulDROz8W2bj/2bW0HciwiOkpEx7GiCVaAYtMBhZueqKD3EC/3Xt2d2/5SSsCr8MAluaz+0sIH6cl89XYCoTod+1w3jmydjIc1RjR4mHlpAX2zm8i80smYqdtpaLSSldWGt1nFZ5Xs95jZ9I6Zj74fxuBJXoJbg1x3VjEAFS12svJCVJaYaGlUyekfpjxiZbCzhUvv3o8aczYEPiHTKPDoNcwtuYLBah/sYjOnnlIcvZ/wYjrMbUJK2lqNvD/iO6wGI7omEELiiA1BaHnH2wOGAeD/4pDvPhKGuioTttggjmFNFLjq0drl8qSza5h0dk27z0LgaTDibVNw5ens0+z0VFrosPXZIxZ0YwhFwP6wmS1BJ17dQIbRh1GB7z3JHO+IFmMKywgRaUJVdcb3KEVKicmkM2nSHtp0QUiHGEXSokGuKfKr4bEb3ImMSNh/SNvB5z9RNYCFnkzeyF1CqrkN62HhNyUhFw2amRGxLjAkghIbHcNyEpiGgSEbLGcc5Rf0x2FQz0zefegCso4Q1v4/HccUxX8AwngEKuLI9mh0RmgDwjSQnat2U7atgssfu4CcPqmMnN4f8RuVxP6yOpIyElANKsKYj9+2AqPRgJAatz0bZua5UDDAy5M3d2fn+l2cfuFicno0kp2xkOuff4hQ0E5dRQMBb3S731bazKyh11FYOAvCuzg9K43ymGQqqMFk0ehaEKC6DJ65+AaeL36TxUt1/nRBGdn9NKrasonLEAyfcjqZ6W8QDoGiNtPakoB7U5iS7VaEsGBz2oGo76Jsp4Ez8vsA5VjSYuh+wXD2vLsKaTNhqmollGfDutuL6KAVAehUG5KgTwFFISMvSHpukFCjTluzyvKv4pBEHehvPd4F3QCOXrG07WzF3wgxK2BFj67Uvdyd9U/sw/paM+e+24O4ZJjzYyXuJhsz7pjES3o8Q1ywOCnC+nnNXJ2/nj3b7OT28pIaEyZzVB+IbKBCGnn08my2bo7htSV5JKc2gLYPgOfmnMgmQx4Pnm7gmoI3+GZfCwJo8yg01hrJzg+iYWBTQBJW7AxLeAgR2QneV6n2WNnluZ3x2a+1f+MBggEDfhFEoOJUNbxBlZWfx7J2iYOZr+yjDiufNGZjbjFwQtZeVCCgC/a7JWnxkk/fSCQShuv+UoOzs8hR9MmmWkNICaEwZBoD3JWwm4BUOn0fY5x1HW82BqniMOu8PP3r9tV9ByWhwKFGw1qlhNjOqKWjOx0Guho6P/88VwO6WTzs9MfhMIQRMso0Y+SAQ/yTlq4EpMpxti0Q95fojr49r0kocWC//JD5pN6MbDwPLJNQYm866rX9K8jP/n0Lvf8pOJZH8QdAb/kLaNWIuBc7SQEPhpQhpGcmqLmImCsRQkWLaHgaWohPdeFv87NrzR76je2Nohw9Ynnrip3cOuZ+Jl9zIlc8fgH3n/44W5bvJH9QLs//eBfekuHMfSGJLj1O5qVbt2G2mTCbm7niYSfHn3085xX8iKe+hcweabTUlxPwCUac2IrJKijf0weHs5x1SxWkfuAXa4uN4Gs1cN3sSgaN83LhHSeTUr6HuGRBubeA9EQ/alMpE8/aj7vRRVbfc/n0pS3cOGsRm1fG8ME/uhJoCNN3aAs71tvQwu30C+05HEeCVEDoRCWCEFEDNVFvrRSAJknoqtE9P8yqxTZ0mwm1NYAwRBnfAUJD7Jjr4jC6VAYXVvDT7kK0O5toMtpJe7SEEwtqWPJPF1c8UMVLM9OJhBSsk1NpWxMkQcC09yp4zD8Q84pW7I/vJ3e8SvHAAj68JsC+dQt46LIcJl0+Hnedxs0vnoQ1OIW2tmRiYurwuBXemzOKq65fwf0XdaPPMA+jJnl47q5Mtq2OYdb7e/nnG0M55fXVSOlnuEXHJKApYuILbwI5xghjbPVEpGBLtYNlz+bjvaoFi0vnQlMlTy8YxRNnLaJooxlhM5KT30xT0MyYeTO4sXAN1/TZBECdFsGpqliEYM5fkxl8ZZheDvcR8yEODpHtOBbUBWZF/up5He0H40gJer8FB+eOHNz3cOoQKWFvOIagrtDb0tLeakAk//CLdSukVoWsHwfm8SiuV37T9fxfwTGup/80gkva61CEATMyUgmyCWHsy+71ezEZa8lK/hwMfRGxUVupalCJT41uUf8x8wM+e+Fb7v/kdkadMZSnN6wgsU0ht17l+LNHHDJVSnYief26Uji6J037m9m0dDvWGAs5vTXqSlZxQUEhI0/LY8azd3PcOW0oqkLl7hqyunt58e6okjDbzHjq9vHxth3sXG/jL1dmc9lMNwvmVhJNrRHYnFaGn6gR56qgxwAvq5flY7ZInHEhLh26glWeOPass4OxhH07o/6FV3dmoqIj9S/pkh3i7ml59Dg9g4CvGWSYfXvT0cItnfficGl4W6LlVg/sGIh+1kV73e2Dg+4FxNjA50cgaSpT2VAt0LsnkzI6jLqpGV1C/TozEoFhRwDprSLkT2BryEavIXVUv9OASTVyUs8qGqpNDB7fwq6NdiKhqPJq3hbCXNtMM1D/o2QkxWwrtqOoOiVLQNtSyk2fGjjrIiuBgELB0P4UDO7Kx4/OIKlLGhl5TfQZCl++lcDnT3oYf7yV3scN4K1HdrNzfQzx2QYsu6zMeeYkzrl6HyPMvuj9mqcQCBfgUp9kWmwtRaFopvytPw6h6JwgBUNSyd3qIXdsK2HTDVwxOrrb6N4viKIE2bk5BUtME4vHv0NKkr9TSLuEESOSsC6Zftt+QlJHSsMRhXhYivZoqgNQ0PhoTQ4n9KjB5Yg6xA8Ppe1QGEfSA5rsSNY6ctb4wQqk43Nj0ESyNXRAQbSH3ioHnadJgUGBbqa2QyckgqwbiUzeCmgI9E6KHSklKMmI5HVRR/cRoOuSZYu206N3OmnprvZ+Wvv9HoH58CBIGUTWjwdDAUr8P4567v80HFMU/yJKt+0j1mUnMT0BkfApyCBCtOc1uC8FrRyZ9BM3DL8Hg9HAl+5/gHAecaxxfxpFfWUjvUbkU+9v48Utq7A1RUi/YyNz9rxIl9yUznNDwQhxyQ7S8lJpa/ZhjbEwY/bpTD7rHpbMW4Y9NpuYhEzCIQ1nogOAgv4N4L6YkRNPZPearuzZVIauKWxfG0NtdSaX31fLuKlNNOy3seyzWEq2wdTrT2bS+T6uG/UV815LASKs/CqNL99MYOTJzTTWmBg0FjavDBFBQY1XqJpeiOOHavqHytm73cZVD1UwcLyLK+f6EdBZsKgDqiFMQf8QiV0idOvv5I2HBWldAzTWmgj6RWfy3iHyp8VLTDL4PBIRkdHjFW6MqpFxf29g6dWJdFB6443+wJWgm2vvrSRW+nhgRje0QISlznjaPAZSuoWpdrswmtvQgyAao4l/FlsEURlg16sOUlLdRPIVCq5vo+LNGPQHFeY29EI6wzw2/TluejeGi24rpXRXAkUbrRQOCxBzkZUztUZ6DPDTY2g5p9/wKGU/nkPvoT6WrZjJ+HMuRm+YAhHJw5f34cGv/soLlz9Lj14u+o/yMiA7KgBvH9Kbu7PLKVq7j8EnnsaU9CAEvwBzNB/EaxhDrNrMF2+mct1DC4lxHhqealR0btsxmt0+J3/vP49UY/QdLW+x0eiLpU9SLQa1nWdLQkPIhMsQQhWgSR23HmJQYTEuq4lWnxG7NdwZyawIaNWjZqYjIaLDI9UDuD5lB0nG4CG0HwdHL0nZ4S0R6BLiTCGCGpjV9gzzI5ivDIfN2Vl3AwUFHer6AZHouIlLEIYMZPM1EFyBSF6BEEcWfbt2VDH74c8ZNCSHx545Pzp2wykg2yBpxREtBoeifef7vwzHFMW/gFZ3G1f2vY20bqm8vfsFhHKYArBfDuFdCMXFjNnnR7mcPHeC3oCesADF2PWQ05MyEzGZjbhrm+nWJYd3TpyGe0s13lk9SOl6KGfN9pW7WL9wC4Wje9JndE/8bQE8DTpP3zWZsm278bbAgreWYTQbufbZS6nc9gmprgco3+2kucnBw/8cy71TvyYjp4j5H5/EHXNmo4f3gGcm5167kcnX3sUN4zez/KOfQItn4JgQ339uAKNAk4LiLTa8rQruBhNr1ls4+ax9KIogYaKZpyoNxKp+aspNWGwaX76dyz9m+37RSt1Ua6ap1owWI1i5VCO/n48Xvi1m3VIna1bG4G1WWfCBC81uJJISi2VvtERmQ2w8oV4OHMvL0UMSJRSk5pUg778SLS6jGQVqWHYKNKc9yNjj63n+znS0AGgOK20eP5pZoarajMHXhtkewR80YGqJ2q1i4zQ2r7STmhWkyeYi4/RWbK0aY08uY1V8Hk5bEm2uFkKBCCMKVyElxDhaefvJntRPyGJJIJZ7H7gT9I8RlvHYtY2UFecRCBmoK7FRuuk7sjNsvDgzjaEnCK4ZdDsWm44StjLxnKgvJ0w6HzZ2wfFGF5Lu3c2ACaMh8jJouzpzIswyjoB3BcMejkW1R59rwA+vPJPFtPNrSMiKsFGL55GCNQTDdip8JjIcPordCUzMriCiR9WqQGBWoU3TaNHDuBQjAoFf6mQYLeytieOLVQVMO3U96aYIrVqUkjzmIBPU4eYlgwI3Jm8jRo0+045jh1tXRXsaTZsmOmk7Dpi7xCE8Ur9kKu8ozlTktWM31+AQNuIMJkBFhlaBeiooidG/o4i9bvmpTL/kOIYO73agUUkE2VFf/pchhBmR/NNRz/mfimOK4l+A3WnjpMvGkdMn62fHoisgDaynIITCtNtPB0BveAP0BtBK4TBFsWnJNpbOXUlydhLd+ucwOr0rpHeFk38+9wkXjSEjPw13rZvbxz3I5Y9fwJpvNrDl+304kpK55fXz+e7NpQw+sS8fPPpPNn03h3tetbJmkRmfdyUnTPmEl1dcCr5vCQkfVZ43SXdeis80i9Id95GQ1ZWaPQvRIhq+xr1cdEc5rtShfPaBF19hKll1lbTUqSAlSqufFQuSOPfKaj6+OY7jspezZ6sdHyogcNerhAOBn9+EwYASG4PuaUHqOmqbJIxCVb2NzavsrPg2nlueKKXRa2LR+y5EW5hQltq+u5CEurmwbK9HtPs3IlYVg1+j78gWtvzoQA1H9yKK3Yhuc+CubuLSkT3wexX0GDNZvYK07IoQGu2gJhiLa3kD3rCKMVlDqwOhSFrdBur3m/FM7MZNly4iu6CRx8f0I9Bq4PYzN7PuufPZeVwqbRENGbOBVYuceL15fFg9l4AWYHTzXFJ933PD5Fb6jS3m8jvmYukK5W03smTOS5x9YTEoo7n+qSGEmr/g5XtNpHfrwk3PFkLwO3Sp8P1uE596SggKhTUrHkL1vQzqBOqCDTT4Ssi1tjH3631cMlknvXYbf91XyH19NlPdaObbF13s3BJP/7+auSV5C8c59tOmSxY0ZJDpLKNEjeH9kgL6t1bRs18rNaGo93nO3r70jG1mcnoJihDEKUZMiiQ+1sv0ieu4bfNonI42XiyI+gEjQIsOMgTzX+3CiBOaye0VoFmDBl3Q3RT++fff/js5sFsUhKXErkhCUuV9dw4nxVbRxRQ4xLzl1cGsCNwaJKmHm7CiirObrZkaXWJSrKBmgVYMLffQ3Lie92Y1Me7CJ+nlqkWKmCPuDkwmA5dcPuaQNiXhvSPew/8lHHNm/8HodJapuShJ8zvbdd2DiJSBse/PnHpaRGPdgs30HdMLqz0aQrp07g/Me+4bHpx3xxFZZDcs2sIDZz7J8FMHsezDlcSnuWiqdjN7/kyq9+znhevf4MaXLmfZRz9SWVROYmojQb/kygeq6XfChRj1b0ErY0dQx73+Xeoa9/H6i1v5f+y9d5RUVdb+/zn33spVXd3VOXeTYxMkR8EA4ijgGAFzGEdwHHWMmLMy5nHMWTELCogooIhkREITGugGOudQ1ZXr3vP7o5ok6uj6zTvO+3591oJF1T3n1OWGs88++9nP/sPkJpT2Icx7YhHuDJ2MLEnJJo0H39uDyQRrlval38gQd0w/fC79R3vZvDIBZ2KM9laVgp4Cd6KX7RtdHSqzh2GyakRjoKYkY/h8RGUQaVYRhkLV347DVB8g6x9b6D5VofrbKN4GFakKdLcVrTm+hSU7XAUBuDxRUgaq7FuqoKjyUMwbBFJTEU47stWHALoW+amrsHDOrDo69wkx55pcmsJ2IglulNYAWlt828ZQgNQkPNk6rZu8FA5uI6tXAHO7iS6DFT6Y25k6f5Sifl0oG5xMU1sjCQ9twWTW+Muz57PivRWc/aevye/qo6VBJSUTgokfMG36fCyRMLFVxYyZojD77QsQ5uOIBj7DUKaC/++YjQ8IhTyYzc08tmIqp3Rdx30PD+Pcqb2ZPP5eAKralvL4rOeZfMVxvDz/W2b/dTVdc5vxewWOBInfEOyqgO45YcyY2b3Rzl6vAyPfYGrXJoKGQKKwe5eLey7qy+MfbGSJksmf8soI6QKzIhFIpBSHVv/xiV3yWkUfOjlaGeupJiLjUTkT4G/SmHZcf+bt3ITVbiAE1Mcg7QdL0Z8SFdzbaCXN00JTbSKFWXE23sq2TIKGxslJFUf1a9bBo/74mBIB6gCEvpO4IGMYr+jGIwt0NlxhYeAknQdfKkYk3IOwn3vsifw/jN9FAf+TULIQ7kcQ7ocPfWV450D9YBDmH2V+qJrK0EkDDxkJiNe83rVuD3X765FSR0ZLjnK7B55YxALvm1z34p+47b1rmHRBfD/+lon3s3XlTmxOK1md05n9YoCbnt5CUvYQcvpHcXl0TNFnCYcU1q9wceDTZIyWq1n11hYuvSoRc7grb23fj3/KQGY9UMXUyyrJ7hTlros6MeeaPPK7VXPHdBh1mgVF0bn89ipufKqS3G7Q3qrhSNC59/XtJGfGiB21mIyfuxGLkJAQZPLpW5H+AFpAYmqNoXkjpL2xg7T3SpBAyTwDX4OKABRdogWNQ1tJQh6mzJ5zVT1Vq+KrU90QGGrcmwEQsRh0GInkjAh7t9lJ8ET5+KVk7riwgKZaM3gl5opWNF8Q0bHdoRig+IKElERSC8Ps2+Bm1euZfPVRCm67j9atLVhKfdR8vZFRKZuxEcTuiRCNxPhwzuts/KKM5+/00NKaytuPZfDlR5044/qF2NKtxFYVI1RJWq/jafMP4o531nP8sFVM73Ez5w1sJqBP5dslg0DCAL8Zi+xLS6WD6gO74pfROoUtiy5m27LdvP91Gfv3aTy/sS8xHbbvcBIMQNn3ncnO8eEngkmBPkMDLLwnie0tXfnUl8V9TX25u3gY6QVhbntiG/bEGAsPdGfm+uOJCDsCjUYjQIsMHMEjECxpycMw6wxyx/MemgMWnAqYBSSlRnl15RYUzTg0aaceMZmXBU2sDcTvoHGw9oiUrKjP4a7i4Tgscf2uthbToT637R/K7P3DiBoQMHQMKYkYx05ajXp82wniHqewDgeCQDsQxa/2xTE0kV6PhulzayNofcDU+5j38Hf8NH5Tj0IIMRF4krjpf0lK+dAPjl8HXEbcw20ALpFS/ojQw2H8Jz0KGd0Jah5CcfxsO8P/MrQ/j0h+D6EVYvjnQnhpnE77E0WPIuEoDRWNZHfJxGh/FdofRCQ8hLCfEf9tGYXQ52AZCVKncv04Xri7KzWVBQyfPJjyHZWs/mQDr68vJz2njafv+hOjzp3LwB5teJWzeWBamO+X7+e94goSPc1s3/0295z1T1ob2hl1o41V9YPJWfUFvYYkseTtwwHSOz88l3vPeRfNpDHpghDzX4hPzIpqYOiC3kP81Jab8bWqdO4TICHJYN2XbhwJMSae18z8V9LQo9BrsI8dG1wHr+Sh8a0Ond5Ddb5fYULXlcM5FJoGsQ6pU8EP4oWSgyHP1qn9SPhkK8I4XLUv1DsLd55k9rRvGTK+ne++djB7ehcOhsrD+UkEBufi/KYMU307UsSNEQkW7LSjCIHXmkysu8RT1kR7pYluA9u5+5X9zJndic0bnRyY0Yf0lfWcfXoex3XZjuGxM6zPUrascbCv8n5e3rwX3/oyujnr6Dcli6uuKuDO67eQmuqnZ3YZT9xSiJqezgnTjifFKtmy6AUGT+zO1CsC1FTsILtwHLHgYl5s60bIH+SNV/oR7uliYHINL49ZiG6ovPNWN5qbM/jLjYMwjPfY1J5CgTOTUNkyKneZqOyWRk5mK2uCqWzdXcBjg74iXQtSHDGTrUVIUuIexDere9Nj6HoMQ2FPYydGZVQjhGBxcw6neCqJGBALgN15xB2QcVqrFEcUHOqAL2Zi4Dfn0TexivcGLEXjcLzinNWnsr45i2Vj3sWphklzHFZdXutNJ6irDHVXYBICk1CISh0N5agFlyElm3weBiW0HDqXgy7noUC4eRRNUR9mxYE79bWOdjoQO0RC+X8d/5UehYhzzZ4hvhPfCzhPCPHDCkDfA4OklEXAh8Aj/9mz/GnIyBZk02Rk2y3/sq3iuBQlfT1CK4x/EXw3LgwYWfWTfcwW06Fa28I8AEMpYucmF5FwxzI9vBzZdj3S9zhCTSVn0Mfcs+hFXip+nC1fb2fzsrXMfKCB7ZuHE1OmULJ+L8uejevdPHHJBqIRK31G9UAmvsOSBbeT3a0LPYdYye8eZMqwHYxoCzH6nOk408dhS4nPyvm9c3jl1vf48/0qI6YU0VClkeCJMu3aGrr19zNuahMZ+WGaas1EQiq7tzgYckKc6dSlT5A/XNiE0THX79wcrwGuahK7J07JVVRJLCLYtUGNb18AqhavjDP96qqOHSUBzh8a5sO8GOeyEvQkG1IRh2xJpFMKrdUqS+clcU5RL777xnlUb6U9TNKHcTnqgx4LAN4w1zxSxUc7t5M03U3dhTm0V5qwuGPs22lj4tUnsGmRnVgLWCraUbc2MP+29dx+vYsvF+cggaLhAabMnMg4swV7SSVpziaO6z4RfyCZU/+wl3PO2cmJZ7QQua+I+lEZfP7xd5hTTTz8QRknTFvPrNl5XPfwcB7eUcrd96RSHtGJmE1k9dH5W/9mXhr7GVZN4jDHyCjUWVuaxrPXzUX6Khjp2MijpS4+dmWybbibUTmNjLQ1MitxN7P6bOStli6sC6byqbc7yZpAdgSmRwzZToqw4VasjM6s6aDUSsYnVhEx4hLg0q5TF4tiSElLVOG7QBJSGCzzpfNDWBSdiwvX8Zdey2nWj6bDPj7ga+YOW0CnBB9pjsghD0ZKybCEOo5PrEYBDi4Z1I7KfQelRZpj8fob/VxN1MSCHX0NolI/5IGHSMEfXk+Sazqu5MO5E7LlYmTdQKRxNBvvdxyL3zKYPQTYK6UsAxBCvAtMBnYcbCCl/OqI9muBGf/RM/w5aHlgHgXWSb++r/U0aN8V16D5BRDm/nyz7K88OP1Jzru1kUvuOw/Mw8B+IcL2x3gbUzek0Y4MzOWuj64gWPc8mekfout+rhyTTvkeK8JQaW4ZytY1ChMv7Uphn3xWflzCM3/5lHP2NnLXi8uoLDNz/ZQutDauZ92iTVxy6wHmb23kgb91xle5k859AjxzcxqwCZDc/mIVD8/KJy0nwjmPVFPQPcSqRYmEAiomk8FX8+Lxlb0lWTx68xCksRMAGY1bjL88VMnclSPxbwySm1LDCafWcc6sRq6f0pndW+M1JZ5aVEJdpflwyVTfESJ1Hd7FwcCo5j02eO78vBglavDNlkRA4ePn04/oDKbmeD1mU/0POfmwb7uVTr3DxBbVUITCmFtqWPJUKtGgSuLKurgxihnYtzSjhvT4eVTVEirvhEiYA8B3X2xhyfNLAcGGZW42LHsBMTKTJ1/1YVJtRFyv88Q5GZzjfBO3YqJzQSEkvcGj37zCOkVjUHcdmegj5/wQf3Cls8zXxKMnfknPhBb2R1SSZYzxy87HvNbMCRPX8Pmfk5lwfgs9i/w81ukdvmnL4P2GTlxesJaSYBJ9HC10tnp5rqUXjTErFiXMy1XdOT15P6nWMIoqUYSCHtNpjcVwq/Et04ghMYt4bsTukIqmRbCgYBWCQY4WNu6y86alB0IqnJhQg9pRwc8kDK7MK2ZYRJ8AACAASURBVGFPDGwddNhQVMFmNnBafPSx+DiUbXEoR0Mc+qxKiSoEumEQkDE0LOgSnKrEqsS3shqNMDvak7myZjSXZa6jq6OKAi0JKxEMowpdSiKtf8WqmDFMw+PaT0o2qHX8zun51/gtYxTZQMURnys7vvspXAos/h89o18BoSSheF5BsU389Z0t48E0ELScX9wlGo7i8jjpNawbekwHkYCSMBth6kHQH6Jkw15k4GOk9y4SHQvI7HsrMe00qhpvp6rMDlIw4fwUPN2f5aonL2XxS8t55KJ/4G/zc/F95zF++um8989OLHm3EL/PhlAEo/84lFDYQ1OdxqV/LefBd8uoq4zLi6uqQVJalC5FQZxuHc2ksLfYSul2Kxa7zrBJyYQCGsXrnAhF4G/yUfxN3EgkpurYOsj3jbUal1+0hbQugnLrQL79vgstDRp+n0okFP8zc0I37rk07o2pP9zXOChaN1jDGGRBtwhiKa6jdqaEBN3jJP64H5OZEW9zKBh6NN59OoPLR3fHXxLl3Nxizpu5n94jvIyY5D3k8fzx8kb650Dvkd3jMRWT4LK/vYvhewZhO5Xm2njOgyPDQdoFhSQNyac1LY2r7j8Lc+bnWB39SHNaMEwhup1ewcbPv0exDKNzXheuOHcTdIqSIAL0yaoEdx7z63sxa9fxPFHdlWWBZObVdKVZtXLiBd9x1cR9nPxUjPMqJnEglHpYRkNX2RpIYWlLDqvbMrhtzVja6pwUqH4adDsb9ESao/EYWUXYzu0V/XFqKm41fr9Lm504lHiJUlXAnmgmJaEcvP4omjDY8I2D9+9L49HsbzjZXXOo9rYQEJICgQZ6Iq26lRUNGURVBSklFTGdAx1bigc9gIPxBl1CmxFA60h0C0udFhnGqhg4lLiolVXoCMAcTWTRzmEkNgvyzO1oCCIdwlfSsCCxYRbm+P2NrsFoOp+tsYE0uV761TXv64M+trfW/Ko+/9vxW5rSHyMl/2jARAgxAxgEjP2J41cAVwDk5R1LWf1vg4huQUY3IUPfIkxFv6hP8cqd+JrbiYajTHZfwHEn9+PueTcC8MzVL7Pkta95+Itr6T90JsJ+JkJx8ti1+Sx7+03+8s/LeHX2OyTlTYf6oVRsGUR7a4DRfxzKSReMJS03hadnvcSn/4zHDFLzEjn/9jNJz09l/lMNtNZp+Nu8DJ3kY/Zz5Yw+tZVwMK5Z1FRr4p3NO/AHe3NG5/xD56vriUATwDEyHcF2wVlXVTP3iTSK1zmYcd0+vk6z0bA7id2rNc7p15twj3RsOa3IyjBHPip69Fg1UkUTKJ00YiuiVF/XDefOVpLmxxPnsGmc+dEBXn9wAK2Ts0l7Yj/myjirRtotEImBkIiOcY98KFWzwbhH66lYaafkgwTefiCfrSsS2fxVIu9uLWbdF30YeqKPK++swu+r4d6ZfQCBEZVYTD6iYT/bly/nuxVlCJcLv0fSfL7kD1oSta8ZtKQatLTFcFkh1eam+JS9eFsktpPO4rV9Czkj/2vcYi931Y3mbGctn33dk3XrU+h1cSsflqlsaU5h2PcGF55cyriUOoo3m8kojNI7NcglwQMsOZBPeGsu35oy2JqWTEUogdPzirmzbDA1bSmcn76VuQ09SAv4mSF3kJXVhjeqIYWC2xzh+9IU+hU20uQ38200DU+sHbsiKfO5KYu5sNRHSd0TY/EWK9Nml3PDsCZCipWIlByIOAhLlW1hNxMctVRFNZYH0+hhamdJJJ8tzUnMTN5Ob7MJXUradIOEDopVtGN7SxVgkXaqogrZJh2TouAyTB3y53EvQxFxg2NWojw2fDmNQSvJ1ihgxyCev1Gjm+liidCqq7hUiSJ16nQLX9S9RH7rowxPuYK8xEt+0XsIcPnqt9jtrWfFxOtIs7n+dYf/A/gtDUUlkHvE5xw4qpQBAEKIE4HZwFgp5Y+K1kspXwBegHgw+99/qv9eSK2DcdEhIPdLcNVTl3Dqn04ip1smLo8TZ+LhffoxZ42gqbqFgs6lCMtohJoBwMAT+1K5u5pRU4dy2pUTkIYX2ZjKBbPzOWXWLPZu2ocnIx4rGHv2CGr3N5DTLZP5Ty8kwXwXG+YJ1ixMx5Mmaa5PpibLyfCT/Yw4xcsbj6Tx3j8y6T7Azz2f1vLanX4gAU+6mVBQsvGLvXQdAMPG17F4bhKNNRaE3QaaRtjrY9saO937BxgxsY1zinohJZw3fQXLGpOoEYkER3RC7qnBVrk/7hLIH1tXdFxGu4L+XggFyHp6D2q7gTSp8S2pwlQceaVEUyCaYyWabsFcGSY9N0zRuDaWtIzDKKlD2111zLj2NJ1OEwPY8hVK3k8gENHYstODbnZwzWm9SM5V+G6Fkx0bXDx8dTa15eBOiXLCGa2sXZ9Hz9xa+h43i3u/GID0Gcg9Kunfmfn82e0Eb87B73Jxw4IvGFUY4OLuL2A3xXA5fNy0fRbF7Xa2GH3puXcI+z728pBlAkbfWspf20A/zcsleSaa/u7n449cbHn0Uh475y3WL8njhaeHkDEszBNXfoti0vl7eAAv5H/Jl6EcdksTIanRxdFIYmcfXzenE/GZub7Xakbk1vGxL5nTnM3cWDqMsFRRN8a4ZUwW42e0csNDZcSkjklR6exq5SIjSJui0L1XGJvLAGGgKgKL8LOyNYONsWzaDBODaMfh1OlrjdEc8DHQ1kgiUXravAgBu8JmzEqIJkOntyawKIJP2/I5LfEAFqA0ZCPXEqRBFySrgkTFQqsuiYgAVl3DKjQsiobTpCMlpNhCh+IcakfM5dOmrqSa/MxI2RePZglBpinCmYkK34WiBNpfgSMMhYztRXofRrhuRJi6HvNcTO80hC3NlXgsDqQ0IDQfTAMRWsHPvsN3n/l36ssbeWrN/ajqz8uB/LfhtzQUG4CuQohCoAo4F5h2ZAMhxADgeWCilLL+2CH+d0KobqSaB6buv7iPzWGlx5D4Q/tOxfNHHRtyygAGn5yGbBiHbOsEnjdBBjnx/LF0G9SFxLR45rhQEiDpGQyZyQ2Dbqe2rJ4bXp3JyRceT9GYXhSN6YWUkgkXDqAg/Szyuzmorh5Pe2MxzfUQ+RqapltJy27HnjyQmY/lktrjE25f2Jno5nj505NneDjr8qWU77by4r0ZzLi+Dl2HuU9kYLYanHxBGyVrHGxZDWf+uZ7TL26mrtLC9g023nkqg4zcEGpbAPuqUtSGjpjBzxiJSIaT5mlF2DdVk/D1fsxGFB0FojpGbgo22cLSOzJInFeH6+tmtJb4KrOuwsKu1ZIeKasp2W095MoKIL1zOnWldfgqTXxwag71nTphohKTB3rPCWN/3ctXHx3MbVG54awuxCLxBI62Ro3meoXit7uwyp3GZTO3EhvaGVOTRrvZjGeJQcuBKK6byrHe2Judu0v4vspFgp7FlMI2yiIxvmt1k9hgYnDS6by4eCVfvDqXxb5U1gQy6fdAlJmJ+/jKN4nISXsI1rhZag9TF1Oo1DrR4kxl4Amb0EwG1REHZ/bYitOkc1biPha0JpJi9TLDXsYHkQz0LIUrk6po1+PXt6cpSEwXnOXaS0XYxV/P3c2kISpKTjs+w4RDUYgZOmZVxU0Ih1uhLGKQODJMcbObyo8cjLuskr4JtfSTYZ47UMTNVQMBhTPSSxnlqUETMExpwqbGpeKTFJ0GQyVdMbB1FGSakFCJVYH9fie97O0IAQ4piUkFiwJuVVJjSIJSsCeQwnHOlkNSIAAhqcRlQYTkS7+TuqidYn8y56fuR0oISiuCCBu8JsZ5ppHiPi7+mEkD2XwhSD/EiiEyCn7EUJxdeBxnFx5Hg9+PiBXjCd4M5pEIz6s/+w5X7q6mbn8Dhm78bih+KaSUMSHELGAJcXrsK1LK7UKIe4CNUspPgTmAE/igI7hVLqU8/bc6538XhJqBSF166LOMVUJoEdinIxQn5buquPfsx7j0gWkM+8Nxv2xQJQuRcD9onZFNZ4FRzUdvP8gLN7zLja/N4qQLxsZzMZqmEgyNoLbMj8Ntp9+43kwv+DNZnTOYs+xO3nvicxa/8Q2KvweZnbtw1u3n8NzMMjr3aeLEs5opLRZ8/HwWFpeJaXfegDc0if3J9xEJ2ul+apSU4QeQBmxb52DHBhcTsos6mEswalwNs26s4MPnMtm9LpX6KpWPnk/hy/eTaGvSsDqj1FWZUVVJYlUNkbBARzksMC5AagIRPUx9VYJR1NYgWmNc9kIPxBlUAlArGokAVTst8UB3h5EASMqIkpofZdMy5zF7oHWldaAoJKRGsUUk2hdVGBokj46x5yEzz79YysRzmrllWiFGTCEWMVBUcYjR9fX8ZJRMgeLIRLPtIvnMdtZvyCVtZ4S93+xAAVSvzoQtX7H0g2Q8J1n5Yn4+b22pwuFOxZZcgb9MEr2zkr/cMp42/U3CIkovRyXtWhLJljDp+xSey+9F3WU2orqJj5u7MPP81TTXO+nRtYZVvlQ+bs3j3ORN7GnzsLK8DymeCj5oKiK7ykt7WYCiU3xEE6EypuEL28hSY9g0gxGeGtr89QgB9lwdvzDYFbLTz+5HE2o8eBzTCCsxGqWkNarQolgIDIL9VTb65hgYhBiXUsFW4aZWmBACDoTsLGrJZby7hh5WL5oCiapOmiYBNV7HG0jQdPaEBS0IDm5mqkIQNqAyYmFVcwbjPdWYFBjkasXooGsdNBalERudzCEciiRJjXBX3rfUR22HDIldCbHQO5B39ubw/A4fj8+4j5zEdjz2kyG6JS4c6HkLTAN+8nUzpGT06y/iMJnYcN41CMvof/mKPvvdIxi6gcls+pdt/9vwm4b7pZSfAZ/94Ls7jvj3if/xk/oNIAOvQeANhJoOtinUlNayv7icXev3/GJDIYQA+1l8/f4qVr7Xk+ufOo6eQ3vSbVAnMjql8fGTizhh2iBclpNwuE/hnYrhWB1WzDaNaKiJWChOLdyxvpT6yhZiLTYmPzCVGZ98ji0zi6GNGcx9fDeqSXLNw1UMGL0Iw98Lp+9hbn2ugLsudNOwEU57sYTaCjvLPxkCVIIU2JwuQv4Iqz938+ajEZZ96MaVqDP7uUpqy028cHecwxBsNyGAgp4BLrypmoVvpJCeE2XXZjt7Njto/VMmgZM9pF25G1N9lCEntHLu3xq5/zY/TcXxR7lbfz/le2yE/IdXbALI7hzC71NQVR2H2+DJBWXc8uww5PI4g8qwqaiB+EwfyUggOKYbL1/7Fjn5YaZ270PAp1LxRpx5dfnYHpx3TS1G7HBgXbWYMQJhwrlupKYSzrVw3pT9dOneyt9zl3LC9ovpkpzAnqLOnDgqgpqcT/2yFQCYy1qobYn/dlaXAuoONCA9ElVZzp63mnkiNJKEFBd6zwjDO9Xwzx2jmD4ik8Xam7zjyuT52p6sDaRxQEtgWH4VO9tySSNMb1s1+2IetjXksLYpnZGpPnYGsqh3JnPcqJ04UgJ8E1IZaY0gjSg2FZZ7U9muWxlq20d5VKMilMqzjWOYnFiCOWqiXQo0a5SuWhgrGhFiOM3NZJqslKYn8OSHUzlv5A76FZWzwp8GAqpidnQp6WwN8JfMEnQpKQuYqAokk2ltw2NvxCrdgIFFSDRFUmuArrRTHzORborTcO2qwK6G8Ssx/BGVlZFMNGEwzrkfh4izoADcSpQdYTv9zO0MtIRRUNBEAL8041QUIobkVNcmysx/wjp4A6FYKe3hrSQ7/oBM+gfojQjzEJ7ZtQwhBFd1P7ZSpSIEp3Tuhs1kQnGe9IveUc2kxdPYgfbW+HN35BbyfzN+54X9mxAviHImWE5ESbj5V/UVjstAzQXLyQAMPfU43ix7htTcX1/nd9ELS9m8vJHEzAlc/Y9ePLP+YT56fCHPXf86wfYQqTlnUTS2FxkFyRjeh8BfztxNW9CJM7Buf/1KHpj+JJu+3ELvgflk793N+Ok92Xzj23g7smb37bQyfEIIYvWAQr9RJi69rZoDZLBgQQYN25MZc+ZwrI5N7FpXSp9RPVm74DtiEZW3Ho3HT0wWjblPpFFRGk92irpNmNridGGrI8bC11NZv8xNek6YRz4s5brJXYi934BtjRetPt5O1SAvP0TKAINU6Sc9N0wwoHDV/Xv529Quh6TDTRaDl1aU0FBt4oIhvWiqgald+9C5Tz2GOYFIlhPbvrZD11BPcSKtGkvmp1GY5yPoP+zVoEFro4lnbz8ivKYqSJcbYQ5jqWgjnOXCuruRpPoammo13n4inbxPt3Fv8eM0BeZxx23fU1nSzF23305V9B2avPW4XjVzc8qVdE7M4+zhN5HZz8G8JZIrLm6i9HWVfZFs+KiZ2Su2EOukoYr1CCJc0KmN/IQW3iotRMaCmHvplATc1Jv9WKRBzPDSP6cSmSgoCXt4btCXFNmaeaY1n1Ijk+xoHWZbE98HPNyyfyQ2I0qyvZ2TCnYhUdge8NDL3MQ4VyPb/JDp9NJVs7M36GZvwE2SpR2PuYZEobMrbKa0IoO1u9qpzFWYnb2NmogFu2qgo+PvEP1rMnRm7DqTkG7C1a7z8ZhXebelgNMSK3FpcfJCPzNs8ttQtAgxQydIFEO30mgoTEneQ3UohXMS91EW0dCVdsqibl6uGohDCzA2aS99TQE0BVRD0G6Y8EsdzYjhECZUAV4dhvS8nR5qPXZFY4V3E8ubzuCChEaErEVax/NZxUKmZa4nEs3B/CM17h+f8PPUeCklsuVCEC6UpGeOOnZBl1kYhmR+82u/4K3+7fG7ofh3QYZAr/zFAWoZXodsuwHhnoOwDAXHhUcdT8+Py2X/EhiGwZ5N++gyoIDrX/oz53eayYYlmw8dP2HGaEKBEDndsrjvnMcYMXkwd8+7kffmrGDJXBOB9p6cepGVC+7+ApP1ZO784HqMholgnMGSm9biawmyvHYRIraR7IIgOzd5gAgtNWvxdNuIvX4gZkseyb6TOXn6hVza/VyE8iHNtfEV99oF3+HKh2C1TiyqYnXohPzw+iOZB68GQoKhgqLDjo0upCEwmXVyu4TIyIsyaLyXJe+Y0Zpjh+TH1yxJ5Orz7HirVfwNZoZPbOPVBzJY/2XiUdcnGob1yxIOGaWDFNnSYgcC/ZDM9cGrbSuuwra9mvelB/CgW8CeBeF9QIxjYUhkNC6/7e/mwr7bhwTefiidbxc4ObDDAbYQF838C7c8vo7Lr1WYM3YgjxGldmAaqjeBHhE/xVsPcO/tz9EyoSd+U5T37p1LbmoAu9XLPdc4yBtZxxOPZnH88RHmLu+CZYDOpP4VmCoMqq/2kNq/jYb7a7gxdR2ZHTTi9SEzNboZXQPZLulhbUUVknKvh0RnAI85xvdBN3siboKYSHT4MQuDXf5MygJZbAhlEJEm7Mp2Ms0WSkMp5DuCdLd76WT1oUjJW+V5GAmQkeHnpdvfpYe7DQnURyy41TBNYSvrg2ks2NaXwpQKBjj3ooV1Ei1RRubsQ8XCNE8ZDlUeosYmqJBpEkjFS5uUmISKUzVIUCW6tOJxxLcaC80RyqJWpAjQ31mBkDYkAn8HOc4iJD4ZQsHM03X9uTKtmByTpMXQ2BWCJiWBU51eigNebGqUZZGhjE0agEVJ5OkBhRB6l/LWT2jiTIamFv6i9/GIBwOixT9aXmDgCX0PSZn8b8DvooD/RkgZBCw/q1lvGEZ8myj0CbLtxrgulG3KD8aJIhtGg5KNcMwAJRlhGfOTYy547gueuupFrnriYqb+ZRLVpbXYnFaS0uMTpoyVIxsn0Cb/yEtPeDjt7NPpcVwX7phyH2s+3cLx5w7nlseeIxo1UVY9n64DC1F8fwajhefun8S8JxczeHwb024axKKX1rH0Aw/9RrYx5uzJnH71TIzAJyx7bQ4v3p3CWwfep2XnaK75QzpNNYelESZfUo81J5X37hFkdwqRlBKjeP3BDOn4NC0UA1WFi26u5v2n0/C2msnslIAiW6jaF489JKVFUN1WGvcYSE3BZokQ8nesd4QRV/qICkBgtsYDzJHQDwOHx+ZSxOwqWkAHJKom0WPH3sPsLgGmX9vAZ68nY7EZfLfCdWgcYTEj9RiGACVqYE42yBgeo3yhGZCIaS7UKxLotLkc12o/33+UhL/Qjf/UniQm29BfXoPhUTGcKt4BeUxy7eahmevYvNbBAw/3JauwnWH3VBFqVfnguePhiwBtfW00THYzVKuhqLgaOivYurUxtLCGDJMkxxIiZsC+qJW5zV1pCduZnl5McchFZxGkvC2B8pYM1NxWJtlrMBmSp+t7UNyezZnpJVydVsLOkJPaiIkBzmpsmLi1egh/9uwiyRSlPGjjo7pcfBUqVkWw15XNM72Xk2ENdTzHkhgSf8RES8jBpPenc8OIJczouZet/lRiSAptVXhUCyah4I0JqqM2krUIqaYY7brKovZkMjQ/Yx1+pJQEpIpDMYjEBJGI4KaqIZySvI8CRx2GbibPEmVV2IKiK5ziChAzJC0yRF3UwVN1Q7k7ewNWIXiquTP55mZCZQms+aiIGX/9gn0mJ4mKn4FWgzy1DZP9XEKWE/njt99REfCz6pQbSTT/upwLaQRAKAhh/deNf2P8XuHuPwQhbEd9llIifY+CmoXimEZrQxszCq9i+GmDmP3OtWA5Pl7X99iRQCSAsCPbbgLhQaSv/cnf7T2ie7w+xageAGR1zvjBcBo1DelcO7MJ/4ESTr20FW/9KaxduJV+Y3tx69tX8+zMzWz6qpkDJbdy6YPTOPemFwH46p1LAdiw3M24M9Zw/ePVXHFHFWf37cvebas5/eqZtFSu5YQz6snpPYX7zn2cv9wT4pVvSzhvwACCvihSKuza7KLkFUFajuT0ixtZ/fmRq6wOSQdDIS0/zMpFblSLxJnkwJmgULotbiQy80Pc9eoBmlst3Dh7LEpJ+WEjAUipHCVE+PLKnZjMMH1QT/RoPIW792A/066t544LC9GPqKynSMDlIC2xifqKjpdaVZG6fsikTDi3mR3rHZisBjMfqOSSkXHFGUdCjDOuauCNh1I7MlglJ7zqJZyp0bDGgmZEGZNzgH2fJzHQ1sxW3ykoObXY9lZhf349/mwHtqoAokpF75FG4dA6LinYzl9fKKLYlc6rL+eT63mJZ9/JZEnPXtR3s5JU3U72Zc1c0Wkr/ayN9JvUgtcIEZMGzzQdB0Iy1tLMem8q+5qd1JoTmJW1jWZD4DQFSdAaOd5ZjTm1nqgG2eY483xK0gEmJ5dRZI0zzuxqBK+iomMwv6KAuoo0ZNpGkk0KNkVHqKCZDEalNPJlXU8+rs+gJZaIQwtxasoBPgunkUqEP7prePb0+WxX7XhjFq4pG4smDBb0eYcFLXmc4alkRziFl8v60M9Uz5+6bceh6HQ1RVjrz2KUfTcK0KJHafZrpNvhHyv7sNaTxzNd17ItooPWjoaZZBGjVZWsDVmIGArbwzloisFlsXXcdXohVz1WhStVZ384lWCmRmWDmwIZoEracCkR0tRWwgjMoQ+x205mVs8JHGhvwm06+v3+Jfi1yXz/rfjdUPxPQgYh8AIoqeCYhqIoWB1WLLZ4tuuPGwkQQkOkfhEfIvQ5iGNlxo9EclYSj35991FCaVJKCH2KVHvQ1pLOsg13YY0+h80cwN3yMfbEbeR2z6egbx5fvXQWnpRWeo0+i8TMevqP63NonMdX3sv8p94h3PINA8b4UBRJRLuOC26ch9ni5dlrbmPJG7sZMKqAPid0Yc2nbzNukp3EFIWgL4bNIbn64f3UVdgp2WSjvhKevT0H6bTjv3cAXZ0VdP1mJ9/MczD0pDbueX0/Hz6XwvNzB2MkJuDbuAuBwDApmPLsPHhtJ2pLBZbIPswOg4Dv8CP8w4261Z+7+fTVFP46p4LXHsrE16awfYOLVx9U6TfCx6YVCRzUAFENEN0Kadp6pIyHHs9s7nC6LWZobdTYvCqB0xacSWqH2sz5N9bz6v3ph36/8yATB97QyJ0c4+yZlXz0ZBqLH03E0BXKHMmEAt9BWio2j5Ngczv20ja6TPFhyXWwc66P8+u389lnicQGJZJm64pXfZemsI0efTzMNZyYu4bYl5/OkPdWMuPxUry6wBtVWNjWiV72BmwxyYCEJt6q6YbNEWHf/mzqK5P4R1cnDw7/AsUcYHVpDh9/O5jt9hyeH/sZ83AwIbmSfbqFUba9pGjxSdEhDAKGyrZAGq9tGkQwYsFnCGpikhQlxknpxYgUN6MTvOTnforbWs+ssj9i1WO4WryY7JIkc5SoodJoNrPFn44SEzxcsIKGqAmnsOFQdTa1J/FNezr5qU3s9bpZ0ZrFiMQqaoJmzFKnJmqhJmplkL0NwylRBUwds4OewWbeas4h1VqHUwnTio1htiBz6ruTpjWxtr4QtyvEoIQqCgt8/PG1RvqlhcjTd7Pan8qekJs7HnyVfSYz6cJLqtJOk24QMGz0TpgIpiImZScQMdp/cc3v/4v43VD8D0Iodkj+EER8iyUh2cWHdS//ujGsPy8RsmXFdv427i7OvuF0ps3+I46EjhVMbA+y7QZefqAz7//DSaf++Tw871sUxUxa8v1g6svL2/sQDob5g+NzLNYUwqGvmfPlRXQruJyWAzO449wyZv69DzMfHYcwX0/ld+fj925g1cJGkjIz2LUuwpJ3S8juFiIxayinX3Uq6z/bygNXwvl3nsXQ08oo37aR1kaN9545aBQFZKSS28nF9miQknejtOx0xKW3cyJU7DXTtSiIck81OFsO/T9HntLCnc/uJ9iuMLV73/h/MfLTkhwQN0gAj/41D2EDGYy327vt4CrvcPaEmmHgnFiF3B+jramDmqIfbCPI6BRgyxona5Yk0HBBFt5UN9b+yTg3N/L6nAzCwbhFWXRgK1X7LFxxfA/sTW3Yu5hobzNhtuikFCZTvTeerU5dA0cWLZ1y1wGsCTrhhq6s/tzNmiWJKEs0rFmVfNOUlJJVnQAAIABJREFUywUXFLPFsJC9VmFbDwuuBi/2rmHqIyqlEQ27GuGtxiLcaogiazV/XnMqXdwN9DdVkufwUuVKYFezh8nvXMCw7qWc7SzhmclfM/WbqXwYzqFxfSKffTSAjJsq6dGrifW+NCpqXXTJr8GmhGkVkLRdxV/txjvORVGKD01RSBAJuG2tgEKuKcT33gy6m5oocrbiMEt0KemmtnNh2Tg6mb0UN2cwIbuGUe74dYhKQUSH22qGYSDItjRTZG/nRE81bUYYp7mZ02wV6N4U/jn/eC45YSVDclvwxhTmteZTEs3AF7TS2jiQPtmVmE2QrAWwawGmuFvooqpURXRchsE6fy67VQ8jdC8GYXrZamiXGp1tML8lj3GerUQMhWTFglNIatTJxALVFDdeTmO0hqn577KnUeWd6qUUJCQzo2AMihAkmP7vZ2f/bij+h/FLJTp+DAFfkFgkRkLyTz+ISemJZBSmseztlcx7ajHzW17DbDWD1pk3Hytg9ecanoxEgt4QGxafwLgzXUgZQzHFvQaTxUR21wykBEM3SM1UwKjG37yDkvXldOv8IXqTlYhzHRk9Z6F4z+e083ezbNGFtDS/wlX3lTL0JC9p+SoLnvuSwr55bFq6DSkl21bsRI8qTL2siT1bHKxbZqZ7/3bcGT055fqV3LKmP4HKVkJesLoks+6vZtdmK8ld/SRnhmk6Qk4nJyfEkzdmU70v7o0Fulhx7AsgdYWE5AjeJhNHG4z4BK+mSIQmiNX+6N2J/22HtBcsOPCxb86Px5dqy+zUltkBSfJr1XhMNai6jkQQbFOwu210HZjJ9g172bA8Xqv8uxUJ7NoUp70GNDN1+xugIy8EwDu+E+7lpYDg/csGIDytHPjCTkNfB+c+VE1tRZSEZI3GagcOVUffZaV6ayqplmZ69a9hQ04fXv76ZOaN+ycCydikUuylQRx5GpvGvU2YKG4FtAJ4rKIP2wNOqvakM6JoC/1sTaRrMZ488W2eajkee5cg7bFETnOU4FIi1MbslLalUkg1LVE7Yx0t6KduxddsJuYM4YupeLGxOZhMchSENUKBJURfbxB7+j4sQsckdPpYfbzXlINPNxFB5+VuS7FpYQ5ELbilwbttuewPOciLBqgw2agJJJKZ0M7jlb1ItDQTFQoFlj18trMzO0uy2Jqdz+j8FhSiNBtuvFEbzV4H+9tSGeypolaxkm5pRlUNdkYcNAuNGqys8ydSHUziwoyVLAy46WqycZw1QJ25nV0xJ+Pd1TxfN4p0Uzu3pu+mSddYWHMPvpgZs2KQb45R09rEWe9/hdkeoW+vKta3fIZVifF8/6sRpr4/8yb/78fvwez/QshYBURWcVG/b6kvb+KTttfjk//PYM7Fz1BTVsec5Xceyvqs3F1NKBBm/WebePW2d7l17l8ZO/5mMOoQaRsQihtd1zkz7VJMFo05S+8kr1sM2TgF7JdSUTmVXd/cx8p5+9i1OYc39j5JtPUNXpi9h5MuuYx+o5OJNc7gk5ccbPi6O5uW7Wf02YPoNrKdE84+A8XI56Fpf6apOsj5f6umpcHElEua2LfTwRt7u/Gachx5X+zD/XkjI0/zctLZjbyxoBv+zS34GzROn97K8AltXH1KV3RdHOVBHOVHCAPkwQk+fmTkRY2sei0FxWxgRI4+pqoGun5wrHgS3+3v72f+phSK7ztagvyIu4LJpJOaHSUWVTnnnhqevjSfzIIgjgQDu9Ng6+qDfY/1cAqK2ti/NR6XkQKaz+6HWYvRt2YdGTlW1r6hIZF0vjqCRY2wOHsY7tIQPSc34/9ecu2UXeghwbcb82m22lkey8FQYqgxwfii7XSz1RA4kEibW/DJxuGEHJIl498Bw0xN1MbgpAa+D0Opz4XFGsWQglRFkm3ys8qXySnuFm7ZM4LaqJ33+ixGiChmYSKsQ8BQ2eJPpq+rHhWFpQEXEamxvT6Lj8uLmNHreyyqwaWJewij8VhzLxKJcGv6dvaGNK4tPxGzEuPG7M/pZ1X4yJtJo2GheE8hJ/XcQhSFHkaYW6qPR0jJibZqnt0zkKxdYWw7NI6/fRVSFWTUG4ztvB+P1Udr2M6NlSfi100UJVRylq2W45IaOLv0BDpbmhnv2UFlIJXicCajHOU0S5XuJh9Dnc1sCtoISRvDbK2URE00GAo5QuBUTHzmy2JXRSoRv6BXlwMYigkbo3l3ewq3DT+ZBTtKGJyTyimFJt6snIc19h2X5Y9HcV33k+/mltbvqAtVc1L6H/6rt69+D2b/xpAy9KtYD9I3B8Kf02/MNBqqMtDM//o23fDqzGO+y+mWBUBh3zxaG7zMfeAj+o26j6SUKEKJT1qqqjLk1AEsf+tbbpl4P90HZ3DmJSrOTB9XH38rqqbT3uoGfDzxp5c5buRiNi2z8uXce3hk6e3cdFIKhmGQku1lwsXj6DcB0ob9g3ZRRUH6U+zdHKG9zYLVJhk7uYPS2NNPzxUV9F2RSXh9C+EgbP3KysZvO+Etj4EpAaKSLkXV5HUNY3JDuFbp0DoWYNBRBjWCr9l8hJHgUAGj/cU2Bl9Zz4bnUg8ds7lijJjgY9mHSVhsEIsJQkVWfPfk8Y/FVtpeCIJVENVUtPbYEYYIkIKbny1n5cIkvv4kkdadccPtSTd4bN5e/jE7i62rj/X8DE3Q/c8mrjz/ANcPiXuXQkLS4r0ofXOpEoOpKhNMfXghnz3dBX1DhDW2AqIDrLSlqaSk78ecrfDw45257PzdVPcT5EZaadnZhbT2EIFaJ6WObHp3aeDcoj08VVqE329jTM8tfBjM5PllJzMqoxyj6HtSHGX0dQU4Z+GfGZBdxsSCPUTtUSYl1GIXGg1RG/URB1VhMzuC6UxKqqNNQomu85k/HbQwyUhGmaJsCKvUexO4pNMWzvTsp9AcoCGms6nNg0sJEvSbiUhwaX5GOkupN5wkCxsLWtJJMfnwRu3Ysv2kCuhhbaMmaGV+t8/ZHnSx2esmxerDFNIwFBiYeIAULYgnJYQvnMgBXzbtQYVoTMMbtVMeSmaZKtjV7KCuzUGD5kAPWjGUKHcWrOOGqrG06hZ6pa5Gl5JBtggqMYqjMXTDQkzXWNxSyHW5O8mUAR77vj+aGuPK/sX0dXh5uMxFmXcY76z9nAxPiPqGT3CnfsWfsudQHEinWhnDz+lAf1j5Fk2RBoYnj8FlOpYq+78BvxuK/2HIyAZk83Sk8zoU55W/qI9wzkKaenDtS5f8/6LVPfe319mw+Htue/da5j0ZT4CvKc/Ak9Od8l1V3Dn1Yc67+Qx699/N+gUxhpySx6IXvyclexZ/uPIkwsHrmXpZHV36pdGtXzkVZSbyCqswmTshDUlt8W0kpSo01Wpc+diF3Hf24yx5VTLrjclIJhLqtZuX1nu4fHiYrxYcz9DTUyDwKuDk7Csb6TV6EB89U83q+RtorDFjssb1fwxdogCzp3XCatcJ+VV6DWkn+HcP3oUGTY/EAMmUS5oYfNoQFi1czXcfplDaPRcMgfuLBqo2OvjjJdewgZc46EkMOcHHRTfVomoGX7zrARSEVyJaY9RvVTFHBKqqI0PyaJ9ACFAki+cmkds5Sr/hPt5+PAOzTf//2Hvv+Diqe/3/PW170ap3WVZx772DMdiAAQOBhJ6QAKEECC0QQg0BAoHQewgEcIgpxthgbGxs3JtsI1uWLNmyurTSarW9Tvn9IWJubnJJ7v2Gm5vXj+e/M3tmztnZPfOZ8ynPg9Wu8rPzy9m/xfU3fwNJ1+lfFiX7MhNYIKtMos/vQM7KQZVFJFeIay/8gmyLwdYsK5ljA6jT8iAhkLWqi/5KK9JwOGnHEVpWmAnMl7G6dc4tqqUl5kTQnfzAvp+ReYfZGiymJ+2gfEwrRbn9yKJGhasfJJ1oSiZm5PF6/yTmTWiktrWQO2qrKLP38+H092mL23EHdRzJMBd89D3yq/tYnLkan6oQ18GhpNiWyOO1PbOwSSpPjPuUnwzbwy/a55IfSOC3BehQNYaY4jSrcWyuICtCLubae7gwdy92LHzgK6LK2c5b7bNo11xkxdL0WlOIokRvnY5pvMKvW6ZyNJHBVSM28XvLDM531/PZwAisYpIp9g4M3UmRrY0Cu8o5KYPdWjndagaNIRc1ci5pwwRR+KhrGIW2IHWFh6gy91Mf85A0omyMOUhiJkvQsMppWtMmjqQK6JGsXHD0RBbYDnHFvLWEsPBw11gqHH4kezZ3zFpJSDOxI1KNK2mnsTefcG6adf5ViP1ruWXEu4hf0pD8Z1w59EYCaf+/rZGAbw3FNw/BAULmYObTP3qKUo3wNypB/yMGXYbG19ZstB3qpP1wF1anlVlnT6V6UgWjZg6ju9nLm/e/Q8fhbp7+ye9Y0XMuiy99lZT1YiYtnM/kU8aRjKd4esev8DWv4P6Ld3POlWYuv0eiru4Vrn7gWgzDwZQTu3E4XBzY7sBs6mbKovF8saGOL1ZXsX3vVoZUmnjmpc385uPLkZ0Xc/2Cx7j0pkImn7qQ7oa3ePc3bzD/B3ezb30tQ0YpHNkXBAzKR5XSdqgTQ9O49ak2Nq/MIJkUCRwwSB76imb8jd8U0Jf6gvk3dSEqOrtGTUdQDdxr+wB46ppXcGU5CPWHIcfJBv8ENp52FKFvUNFMkmCUp5+h6zqY8qMg434Xo+mAmVu+Mwz0/xAm/7IKbM9nHvZ8BqJoUFIVo/WwnT2f/Tlz6m9DVgzSSYHfPVQICej2i5hNNgRBJJFpYPiCjC7rJbckhTpX5/u3HGTjAyM52XqQO5/dxvrDQzgQKyBstrD5sQyGxiK8N20Sl1XuRXLrnFRRw2xnNy/1TGBjTznS4wFK7/SxqbOKeKeDYNzOc7PXUmiL8lTnKI4lPIiCTmZmlHhCYLK1m1TMTKUzzKzcLhTdYL+3mPNymohrIr/8/BQenLmJUlsHddEMpua0EEzZEIiz3l/ALfm7WB8cyvv+Cm4s2oZsiJxkbWRjdxXluTo5opWlnVVErRHcpjgWScUQNVIDZpwlfvbHq+gLWKku76c5YqAhIgk6XVo2JzvbuXnYflb5SmjWFKpsvTRFDEyCyrK6SSz3jyffHSTfCBISrdgyE0zKaqYuUEivz0VlbjcbY8UokorHSJNnjdMat6GKIgniZIlp0rpMOGomhBVEAZtZw7BGkXSVkK+YvSEH83MPE9ItlFhD1HSYqDItorDqQVqSNTjFbMqtWTxSfyaTM8/i5Pyr/uo/UGIro9P7Jh8GfsWpJX9A+TdMmf3WUHzDEJQRX1sD8T+F4b8Q1CbI3fpfav7+cuXPSMVTbH5/JyaLie/cfAYAT1z9Ens/rWXsvFGk4kmW5L/H7w+/zmOXPMfuNft5q+U5HrjgCeq3N/LjBzS0tMQnS8u54qmXqZygcutNUxk+ZwwH0v2cNeNd1v7JxPtL3saVmSaVVIh5P+Gk88A+SuKGMypprtuNKB8gGU1x54U5XPNoiLMuSnHXy8d499UPiIeTlJZ3Ub8jC0GEYSMPQMpEdoHK+y8VUzlWYMXLCp6aFJHeLx/K4qALat2LGXg7hlK7MpNSWx1alkJxdQEdTd1gQGQgiigLaKowqLmtfmUANA3agoWcMPIIY+dGsZjgi4Z8DB3UseUIkQRy82BE3QAcmWlGTAlRu8lNT/t/vdMTRQH9S+MyUJGF49AAn6/KIJ0nYfKmIdNLuFike3YxmUc83PT9CnBITH3WT02sjLxVbQh5URrnuPC4o5w4qhnB5mSkp5MF5w5w6kCIVGaAJr8LuylFtyRRstXHCf4AK5Kz6Xkrn+FTW5gz7zMerjmVh45OpE+18oMhB3kr91N2RDN5p3UYpzoPcXHFLmLAii8mcerwwxSa00QyYxQ6vfxhaTYDK/wULQhgiDqf+UpRJIGmcDbf33UezlCKXcoAv17yPnmSglmEZR3lDPVoJGQnS5+00fejAZ5rGc93R+/BLqq8c3gqi4rruHPPWIbk+sh1htgfKUKPiZQpAVy2COfmNhHU7XSazDzTXcV1BU1ohs5RFZb5xuPoSjGsuI/zcveSkmVGmTvxp2xsjlSz2VuNpovYPAl6Eg5GSF0YiDR7M3hg/7k8uXAjmjnB7oRELJXNIkecLT43oqJjFZPEtAw+HyhgekYLkqahSwL9SSsYBh4lToWjh87mlXR2bueDxB4ucbaT0iUahTLi2qBM6z7/crrj9ZxadDvil6JLUbWbmNpDWovxefc6Kl3TGeLM/Wc8Cv5X8K2h+D+Egd4gB7c0MGvJFETx74gPCg4Q3Xzd26wkSVgdVla9sJb6HU18//7vUliRT3+nH4CfPHM5y59aTVt9J4IAw6ZV0rT/GPU7m5gwfzRO225Ou6CVsuoiMiofQRBM2BwpLv/ZLt7dorFu63AC6lSGTJzE3k0bWXShj57uKdz59AckNZEafykLHu6htDrJvi12Oo+V8cJdMptXKkT6S7no+jYmTv8E5T4HggAms0ZOkUDDPjNtjVauuOsohw9UMnHhYgpLXsCaofPI8gWwvx15YDDekU6K7Ht/cLcmB9PIQZWO/5B4qhsGgi4gDIQQttX+lTJWuFvn2VtzqVjSzOe/LWHFk24Wfi/A56u6SUa+lFUVDC663sui69pQLSne+WU5uz7OJRmTBu+/ABl5TgI94eNj/hnJUhemvgRSIDFoJICExUp8ppuSN5vxzShBnJ+mIqOTz6MVLEzINF46if4trRw7z0l2cYrs6w0Wnhxi8WVeFAU6arLYtGcoF87aR6WtG02A2PwhjFjTz4rLdDKjvdw+fwsHDYETnUfoCTgZNaKDWs3B6eZOqsI26jZVMGPuMbwpF2Zd41ftswm608zLa2e6o4djhkw0U0CqjZJARNYk/tg+EquoUiiGmVjs49z8Jp5aPhObYMarytRGsvhO0TEEYLK9jmuWTCdihBhn91GipTnBFWRUaZoNgWxybQFaa0ooH5nAoiQZLXfx9tq5vPK9lUSNNI90T8cipPErMmt6iuiM2NmUyKQ5mUsobcHtSuLTHWSJMQZSNrrjLjqDblRVRDMkZpU145GinGBvpC5agPdwHlG/g41tpZSV9fF4wyw8RyxomkjlhBZq2wopK/dTl3BjFnWu8nRQKgi84B3Ozv5yFF0jrFrpFjJwV8W5vm0AhzScPx2ZiCjCFUOOsrxrO4XWSWxo20BAaOfpI3dy8/DzyFSy2D2wiOuG/5p9vnco0J7g0yPVXDFh2dev8f9D+NZQ/B/Cize/zvq3NvPAqjuYdtrEr+0rZr78D1/3vg9+Rl+773jF9v0rfkbnkR7KRuZw49MTufGFKxjwBpl/wWyW/uodnr/pVUK+KDmFuWz9bDInXbwQwTzIc2PoA7z6UD6Nh0LMvqGT+KYemnq2koxrjD/9t0xZOJ72rnzyxReYmtWCnAMGElPmpyiPjmX9Gp0Dm+q54I5HOeZ1886Lt4Ee4OhBK1aHjjszxaE9dm5/9hgT5kTYuDqPW075kLOvsLPl0zxiZZmYggnkgVYAykfEMQwFz7Q0tpNMpP9YzoHNXhKRJKIscta1i9i/4SDHatuIV3qw28ykWnxcdkUb9bsd1B42kVugovQ6aB4opHxUnIM7LJjkCD/7XTs717kYOzPMgnOD/P7RQlSTyoa38o5XhAtWQOG4kQAYPrWKhp1NAGSuaUWzKYiqAeNNCAEDS7WIuLKVtGBC91g4st+BnpmHT7XyeUcRgqoTXDCEMY4ellxwlPJZYe7dspjtEzK5yN3K2ZPriB6p5k91U7l77kcIYhr/DoG3bytl2rl1XPRIJ50REznOMNeN34ZvwM1GowhRNLho2yk09udQfEoHYlYaRdEZaxK4dfJaGhNZLO0bzW9K91GpiygnR/lJfS+BtEh/1IW9V6BKTbBrfzk/unkDw7MH+MNcL11anDf6pnIoVoihy5yW2Y5Pk7mwdD/PNU9j794RlBLlFI+Xdb5ippQcIh418/EXk6iLZNArudmplTJsbAtjbQM0BWzMddXzQe9EUkmFD1sm4JcsyJLOyVV19EYcNMVzsZg0AhEVQXTzWccIQmYL+a4AiqaTKUYJJs10RDOo6ysks2yA4jG96CaDd9tG0hnNQkipCAZ4zRZyioMcCWbjVJLs6yzjCq+Jo4IT3SpgIJEWVUK9dsyaymFvIeXDO+hT7SiSCZeUoi5SSsTo590Dzby7q5zvzJhO8tMa7l76HtpiO0kxwcLCMYxyjcAVipGXO8C/E6R77733Xz2Hfypeeumle6+88sp/9TT+R8guzkRWJBb94MS/mw7734HVbiGrMPN425npoKgyHyP8GwjdRVeLk4urHie3sJV7X9nDKd/1suwZNydcMJ8LfnHbf1LuMhgz/m0mzB1O1xYn297x09eZ4vEVTYxdcDnoXpyOSQix15BE6O8fi83Ww9GDFhRLI+TITJr5PSaePBYQOe3Ks/A2fcrV9x+muCJB7XY7kYDEdQ/3korD64/kEfanaNhvI9SiIncHOWVCE+f92MuBHXZe+qyRCbNCvHJzPm37zdzx/tUc3dJNX3s/ggj125sIeAdJ6tRsG30nl+Pe1E59jZ3OZguWc8qYe0UEvS7Bmq3V+CgkXB9h2PgYP/pFD7ph4MxS+XiFm/eeLKRukwc1LSKYRVwzsrCdmya+YTBukiozUVEUwua04m2LHr9jUlpHkg3EZ3MQZphRnwggJiA1phTnumac0TixlQFyevyoK0NErG7ixU6uPaeWcZO9KEqKyXn9FJhjRNQYPd0yNf5KNneX0xnKpTI3wWehYjwHQ7hPU0lWypzu9nM04WJPqJQTM3upMgdp6s6hamgboz09BAwbM91HECWVxpidEbYEl2S3sTedyRcxDxNMAbpiDkTJYGdnAVe+dS4xUWJoSQ8OVSeemWZabh9l9gjLeqoQgH7VTku3mwe3z6VVlEjbdJzmBD39HtolC5uiuZTaOrHKBlNygtRqWdjyYvSmXRRagpyQ38BPG06hNuZgSlYbrcFsGsL5uJxxDFUg0xGlwBnAKuscDOYTTyt8v2wHY0wJlu0fR4ngozWeS180g+ZQFiHVwvu7ZnGou4TsEj+WjCRmc5pLcw6z5WgpY6s60apihHUrGODuj2L3pKjrLMa3VSTjoVYSiz2EwzYUOc1pQ+socQ+wvnYcXrMFjyNJhjnOqOxuDgVstISyWZjbSzQ+hHBNhNAXJkib6K0weGjKGeRbMih2DEMwz8bmugxB/K9Ssf81uO+++7rvvffel/7WZ98aiv9DyC7KYtrpk/6fjUTX0R7efOBdKscPweoY9KWnEileu/ttLHYLOcVf0pcLdtD7SQvn0F6/j+vu/QhJ0pGsVSx9DFoPtrPkhtOOC634ewbQk8fIzk9SWvI+c079gk+XFREOQGaeyqZ3v8DKs+SVWhC0FgwctFldbF4RZ/VLWZx5cS8fv1TE5++2s3X5ZmbPux+T9jK3npvHh6/ms2ONi7ySFO4sDcV5Kj8/XybUP+hGKpmfTVhIkU+As38U4sSz/AQHbPR2mtj0sZuWViuCzWBG1acsezIACBhfxr2fWdPA2rczMZI65rYQciCOrokUlCW47pJa/nRfJp8vc6J1RBlRJpCMRsgtNvj4jQy2f5rJvsyJLLhiLy07XQTavyT5UySSHTGksEK6R0W3gNyvEQ3KTJ3v4/A+mT8LKAEIuQKesTrp5yLoPTpCWkPuCSP3R5kyM0jfMYH4YUg73Yi5pTh8US48eTPXfvo9Mj1+5ueEKRCTtAoC1nYrV85uwIglaOwR2eYsoCAnyLyCNHUtRYzPC1CSG2VHNI8toXKmZ3SSL+i821ZNKiRxUr6XiniKjd5Kft80nbCm4DIEhrsG2BfPoC6eSVdUoiijhWzZYHRWmDNGH+TIQDZzh7WzP8fBen851UaIdU1l/PHAVMaUtWK3qYw3d7GldRiFNj/7+0qxiSpLxuwmxxlk1ReTONRdTnVBhMn2AToEE9tbSgn0ZVAkDRAWXHQYLuIofLG1lEZrPhgQ9tvIT4eoLu+hoa+QYNpGNKogChCLm9kRKKapo5BpJUfRFZ3+uBMjJmL2qJR6+pg8pJnaPUWkPQqtmouX906iRE2SK8boscmYRA1vzMWAyYk35SLXGMC1vBf3MJWB0TmEog5SSYW0IoMs0xjKAsEgHZNRVB1FgqqMXs7MOsRYx14+fquQ9pSGtSvNjy6YyWPnnss+fxs37n6HYruHEZkTeHjjXl7etQM5Yy8F1lLM0n+fR+qfja8zFH/HEf4t/q9D0zTi0cRfHFv7+kbef+Ijtn6wG4BAX5B9nx3k7Yc/4K1fvnu8n2CaiOh5kczsBq57cjHHDg8B0pgyrqRyQjnJeIo7Fv0KgERwI7bEdJ7+8a3cec5WQEWSXfxuSz23vnouS3+bx0e/j/LYTyvobnPQfLgCwfBiTu9HG2oizWyE3P2kUhPp7xpgzjnDefPxfP74dC52l4Ikm7ji7m4u/3kPTbU2pPSHpJNfMfx13ylh+7kLu0tn+2oLoYDMFb9oZeXruXz2bhZ6BIwWg7sutHDWNX8pJFMxKsk5V/Yhh1JYWgaNCMDpl/hZ+6dMgs2D1dN2l0r9jgFue6odRUkRS4q0OUbRvN6J2jWaivIv77MiMDAvC1IGsYovq7s1SBd5iA4tYuVbg6yynhlfzV+cZkWerDDygq/iF+miwayoy65p5fSfRVn8437eXbeLsSM7qMrrwOVKMyynlw8OzCScFvmo24OYVPnsDRc7j2ayfZWZotkJ7IEktaEi3i4vQ3DJWOwCLkmn1BzkXOo4UJPN/TWTWdM5jN2xctb3lHHzZ6ew63A52UYMX9TOUw0Ted+fTSopUygHwaYiYyaoWziWstJninPVSZ+y1FtFc2su4g4XP39+EWs+HMPs6sMc7CukSI2iWUTuP/1tFo/bz+LMFhZltXCas4dKJQpxmXhKoTHh5uqWWdg16usoAAAgAElEQVQdUeZWHmGos5fJ2V143AHKbD5c5gTXn76e+8tXQEBEajcRDZqpCxbhsCbJcMXJ/lhnIOxkbecIGmJZlBS30W+Y8QY8kJAx9ci4+tIodpWELFM2rJ9gyEw4oTA2s5d3l7zHnPxm2iNZdEZcTHX1MNHeg8lI0zmQTWD2CPhxFv1hBxg6KV3GP2Cn9lU3jg4fJkeaWIcbQYFdDUNZtWUiWwMTebBnHoGJKcJFEoEb4vSMC/Cbxicxy2HGeYoZlTFIrf9JYyPbWjrZ4P2I2sC2v1rX+wO11Ica/rGHwP8Cvo1R/Jsg6Atxy/x7OeniuXzvtq9oye8+89fsWfsFb3e8eJxW/NyfLqaosoC5501HUzUuLL0aV5aDO968npEz/1Kn29AjELqDm+aPwtfl5tnNl1I1cy6PfjaTn0y/g5Jhg0V7iklAsBi4s3Wa6zN44CeXcP6PPqZ6XIjkl8pwI6ZXUb+jiWDbMwyfEOaLXRPZvKaKNW8ewuFoRxBt/OLtmziwpYFYKMZr92xEknU0VSWryMWoqRHKqhNUjs1goK+H6QsDuCsyGDnhKvqK67EfWMo56/o5esiMK0PlT8/k0t4oYLLKJKKp498pIyfEYyvTeFvD5Bb5aW4cy4YVg5/LJhk1NSgq8coDhYgSWBxmLrnTwaoXe4iGYPmrWezd4CJVasPu9pH2yTxxqkBOoX2wqjstIsRBG+JEem8wNmE1KyQ6B9BNMoqS5pnPG7nh7EoAYpUenCYN9Ye97G/4KltKOZZEcRvs3e5kzcihTHZ1svbNOM9c9zF9XQr9jRlkZMU5M3UQiwR3bT2HDGuE4t376THnERtpJtUfZ6DDRdDtxOju5+aLDzLd3cflh2fToTr507D3cQ21UtESYffBHH4+YwfXbDyNaWUt/HBsDShx8uQAHlsam2jngdahfNAzjFOzD1OV2YJEgh0xD91xhWPpTIoKfMS7TPhSTk6YX0On2Ynm0DjQU05vr4e8ygBTBZlqo493jKH8QAgT0WRCATdCRGTqsGPYzBHUuJt4SsHbmkmb7OTpthlMzm0l3x2mX3Xyxm9ORdNFLBkmTGkNNV9C75AJh3X0tRKGWcEV0cnJGQB3mpjJwjZvNWgGgpTG5Uojl6boSzrpjrtRrCqpehtSl4O+2b1sr/Gw7UmZuRc20erJ5drcOqodQV4fKOCXTWcwUCKihT1YJJVq5wBNCTctaQ+ckIm7rh9FMUiWxWj2ZaEhYUfBI9noVtPEsiRkTwREWN29lzyHl1yzA3N/ghte+5izJg3HWqKhSHHMyfms6Qow0hUm0zxYsKkZGo8dfgqLaOHlKc8M0rUbOor4r9PZ/tZQ/JsgPBCl5WA7h3cd+Yvj+eW55BRnYbJ8pcPr9DiY992Z3H3mw4yaNZypp03Alelk4sljUcyD/TRNQ5KkQT9pxlPMOmsHK56v4/5LurDYbuf5vY/w6sGfYYQeQfddhEAUcvZx1b2TSMTjLKnQycsxUT0O5pwznUM7Bxg6tpRIIEbtngqaD33OwR1+1r/XwDk3nkHA20v92kWUVuvcOt+DrEicc62D86/cyS3nDKXjqJ8bz6jCnW3g6wzQ1VpExK9zwyPtHNxcz4Unj8Q7sR81DRUjk3z6npu3n8pl+sIgDfutxLAgfrmz2rt2F+88JhALZ3Lj41YqZtyDYnkG8KOlteP3qbQqga9bQZSS5GfX090yFABLsYt7XjvGm4/nMffmVlr3OvnsyWL6ugU0TURXBDwNBqgKoknCZDERCw26yMSUSnZxir4BMzG/jAHIuXZY3Y51SAr4ylAIKiT6RX73UBHRexQ2PmFlc18RsgLNdRY+WZrNYzu3k1uYZOtuF6XJbqIhC4W/VtB8Km2VQwlHIyj3e3l9/VYeWlbCe7PL2fC8k86nQ9yyahs7m3M5pTLMmDI/Ex29VGQ18ei8d+lVbYRcIQrEKLG0yOH2ck4b0o3dlMZuSuIXLCQ0eH7bdMonNvLgxiUETAq59igPjN+Ee06Ke+un0Jt2Yl5nwYaJ285ZxvL4VLriuXx0cAzGNje/mzWZ5/QpJJ0yc8oaCBQYbOioIuGz8EZfDkKfBAUaYlpkX88Q9CYF2ayS2S8jizri7AhiXhqTCGqbmQHJiXzdALm9STLyU2Rlh+mJOQiETZi6kggKpIpkkhaVoM+CpkhIZoOYz0xmnUDKLtG7u4CrjNOQ3RGMpI1Ek5WbTTOYmPJxcCAbmydKasBKYXaQBys/JRS088N9JyNZUthX9BOf5kJWBTDA4kiRVgxSOqzZYsdUDHHdjCAYZOgyo81D2NajMdrVTHZFFweax/KbQ72oVh2lz8Lmtn60zGOcmDeWOdkjUWQJSZC4cugPMIuDae+37lvK5t7DfHzibWSZ/zVxjW8Nxb8JiqsKeMf7yl9p7LYf7sLb2seR/S2Mmzfq+PFoMEbNp7WEB6I8u+thErEkZ7kvpbAyn3NvPJ0nr36ZR9bdzYT5YxAsi7j2mYWc/INmnrr6JdoPd2HoBqg7ILl6sGCQFAgKgmURFmseD66sZtSIOwFw2VfzxYaDrHvjc5b7X8ORYcdIfMLs035K4fB5vPXwSnRNRDFSzL4kyMw1HkoGJnPB/NFI0RoqxlrpOAozFw1w0+MdIAic/8VJmH4e4MnbipHkrdzy6rV89v5PscZfommPmRfuLkRNi+xc60bTkoiAbjEhq2kObDOAwbevJ26yAvczZnqY7qNOJp1cyp61rZRUJnj588N0HVMoLE+zb4uDhRdGWLPUgeYNcvSAlaO1NjqurWLWtb0AxEKD13TarZSOyOVY3WEySsL0HLUhKhp6evDz9i4bV66ZQ5bciaAaVLgitEcEOg66GDN3OLWbBl0KApDOsBA6ayzKphB9p5pRM808+wthUPHPAitWDOGkBV08cekI7M6jRPPLGH9+N7GojBLR6HxLYuRJAdotKqMfiLE9WEjbJCdWm5cSs8j6XcNYUFGDBnSH8ghpJuzWOEOlBIKgklCtvLJrLq/MX4cvbmGc3ctRjxN6JFpzbexcX0BMj5KVESSYyOLxcRuZlT1YWzJxaDtbGyoYVt1NY10Jb69YwKiT67GaFK6fcpDbdpxOvF9g8dz9fD+3js/bh7IlWEmdakPvt2Kql7CURrmvYhO1nQW81VtFNK3gsYe46t7PaErk8sa+2diDcXJyQsjlSTp25HNn4V7mT+zku5+fzsbO4WRmhoi2ZGCXU+S+2Yp/vIvgzGysa+1EqgxMI6O4+nTCeeB0DRBVXIg2C+o4EYsniSSnONhRzEGKEA0Ba1xFCCq0NBVwa2wWpGW0uEDmK30IqTSBmXbEHgEbKWxlSVKmNGGfA91rEOvPwCXoGLPCRDWB1Qc7IObBVjWcPc0ySUWnJLOfAkcJU0rH8oeOtVRp2dBmYu5Pn+C+607jlFkjmJMz6/hazjY5yTTZkb+muPabxreG4huCoXlB9CAI/7zspYycv6YAaD/cCYDV/pdFd55cN2+1Po/dPVgFqphlJi4YS1FVPha7GavD8hdBc0EQGDa5gqd2PIiu6SgmBcM4C0HKxVDGIwjmwe+S8QQAk0+NYPQvA8nF5tWVjJ6rUTq86Ph4mBfgKryAs68dTjzsY9ioLeSVKVy/aCiuCSozV3kwu2fx+HWlNO538cu3eimt6qG3w4TFY2AWRAJhg5c2Rckt9BGKB/hVKEHJ3bMQtnuxOeHH93fS3arw3os5YAiIiRQ6YM+wEQ18lXUkiNB5zMSYWU6KqoaxZ20rvm6F3Z85icXMWJ0BJsyOkIyLrFnqYMenbnaudWMAyYhMcKeN4soE8ahAf7eZaCBG/ed1nHpDN/OvaOWJ745GSEgcS2WgtCdJF5qJzs/EvsmPtT3OOVfU8+Qn+YDAgU0Ng9RRooAhSeR6HMTNCq5sA/8QB2qWGUMSEFSD8OQi3j02nB1L6lBcoCZFrPt6+PC3w4i8FcGWq3LNs7Xs2ZbLkd4cKjND7E/qNCQL+M2uLxgQPPT0KXzSWsLmfeUYoQirtlfAIZXRl0aoFFUe7ZxKi9NBQ8DDnkQumqBywtEQry6fxpMLZEou6+StHbOxuaLky2F+d2gM2WPjrA4XUL+6DGWdm+xbjrA7NJJQwEmyI80d07ZRaQtiPdFPc8pDo5rLBz6V1rY8mlpzeWLBJ/wpPJE9nZWIUZFFuW3kOkK82TQKuztGYdEARY4BTKqGeUAgkbJizfXR2ZwFVQn+2DaMRNxMY18OqiKT6rNiCstkz+pG+m0aJaEhRwQsPoG0AwJDTITtEtpYGJPVjbrDQmCkhmAMVoILkoD4JU08hoQUgpSiocsCTT0FgIC9NoB9fz9z3w7gLmvm9zVzIDPFQK8N0aYjl6Rwb3KQ0mIEpjgQ2+2YRAPDqmF3R/nwYB9RswlzZYyibD/JVJBd0UyGPurHX9vIG6+a0MtEVPmvSVpvH30mt3Pm//Sx8U/Bt4biG4ChHsPwLQTzAgTPc9/oWA9/8gu6m3upnjzoDzfShzASnyDYf0xuSfbxfpIk8dDqO4+3F1w8729eT5Kk4+yzgiCDec5fkncbBnvX1TJklA2PuA+Ekbxw83J8nX4eWvML+rv8pFMqq577PT+8+U3s8nCuePQxGKghETMxeoaDsacsYOCPZrzzTuGmx/pY/qqFuy6y4MmbQdAX4oE3j/L67E2kNpyGWQEj1UL8yBLOHvE9htiPsmq/lVRC4IzLfKSTAnW7bTTUDG7JJ50ylkT4KHXb/4OIkw73vdbKkQO9vP3coOsnmTJx1w+qeHVHAct/f4DW1kya66wMm5RJ8ZB6arY6MTtBSMc5/dIQJlM/v7qqDEECQRDRVR0ptYgVD6+ms84BioyCxoRTfcy5qIdH7hIwNcVAg+V3DBZG/kfGW0E3kCSDJzbcz2Xjbia7OE3e7hhdbRbGTwmz11lFaFIJmETiK82kulTmPB6hc0cB88a38d4nZRTM8DN2bILJw/toaCukyjrAkpHriVTJ2CQVFZ01w3LZipt0Ux+hpxR2lnl4clMDG2NuHuqfSHZzHMNr5ib7dGyCzp0lNbgn9vNSegTxohQZoo4oGMzMOYaWp+L2SvT43Zxt6+YT/xh0s8GBUBHIICkaWDQ+bC5he0EWupLg8VEreSs8jmd2ziXss5NVL7AqORnfXIOi/BaEpM5Ju85gTtkRdLOKgkFv2E3XgIdcTwirJ0pYVmjqy0O3giJqbN9dyc5oFfLoMHYhiSUFKV2nzDZA77M2Ymk7khind54F1a5j96RR4zrKsSiKPUXUpiAcMqPaDAxASarY4joF0RRl47rY2TYExaqh5MeR97kxdIHoNDdduSOIm2sJRUVSbtBTZrCAeNQMhkBgaJqMVV3Y8zJJz7CgGDFkxYI7I05Zlo9g1MrBzkI6pSiBhJ1AfxsTTxiKJifxKwa+4jQb1BZOY+RfrMn7fv4ObS39vPD6FSjKvyZO8W3W0zcB0QPyaDBN/caHKik/xNRpt2GkGwEwIi9B9AVI7/6njRGPJmjY1YRhGBzd38LtCx/g0e+/Aeb5IBbz4iaDW1+7kjsWPsDdSx5h2we7WfZYDZ9/ejVCxnMIWhvoPVgsbTy6PMyC753Am/cs5fWHzUSCIod2JZl97jSmL56MYQj4NTOSoWJXVrHp49FcfXIluz6RWcIKrrzoKBPnRVDTIrdfMIarThpGQ81X7riJ86uw27qOtyvHD8HpATUNX2x14G3pQxQN9LSGkdawZP+Exv3F7PzESvmwAibO3ss1D7Rw7ysteI8Y9LRY+WzFaP74VB7v1ddx3o97cLgGZUN3fdxFWfn1XHrveVSNK4O0ysENHkbNDeDpCCJ+GQ5pa/yK20d1yGAeXHaaqnHl+FswIkl8XRJG1MBlSlFSleC2U3dS8Pw+xqyuQYqoKB7Y8fxw2vbksuNAGd9dr6Pd7GDN3jFcuOhMXnlwBEuPVdGbNiGhIYqQiIl414h0+jKZdUEfRZeozPh1HEsC7DUCEjpTh3uZNPsYimLgIMW2RA6v+ivosVjx+7NYbHTz5FmvU1Dso8LVT9yic9/6udS05PPm1SuxzI/T0FpG0gHfW7CLrk9zafdm0pDIoUN3sbKtmt3tJYQ1MxYlhdWWZFcsnzNdezkjez/BY1n4Nxbz0eZJ6IJAygmSrPJCzYn8au9iAqIVJAFBBF0XETSI5wkk8wycRTHUqAVLXpgJUxupaSonLFrBKpLpiWEbF0TISCH0achdMh4lwR5LOfKYEHpcwojKIBhktmjk5vnxxy3EUyI5OQGSeRq2uD6oHiLqWLoM7F4LK9fP4uOPpmEEJBRJxWJKUyEOYD1iRvQlsNf349jUh2Yy0D0yrroQslmnJ+ikvrkATVVo7ioiFHSgJGFvuYjzphNp26zh6oLzK8Zw6YvLuG/5uuP/GV9fhF5vEF3/iufsfxvf7ii+AQhiBkL2+/87g2lHQGsH3QtUI7h+Bqm5YJr1d081DANd15EkaXAXFH4MMCNYTwHTrOMFQc9d/1s++f1eHvrkDsbOHc3pVy5gzJwR4J4N/u/gsB7kxPPuZOPb4ykZVsTiH59MTkkWU0+bSMdRHx8+28IPbsnhyWXDWbtrJH981sHouZPJyF6Dw62DkWDcvFHMPGsKN/x6P4Ke5KIJoxDFPl5c/wbLn6mgs1lj6cpypnYU0pgoBBrZ97kAfOVym3HmZPo6Ypx13YkcObibQL9CT2svkQH46Zl/Jlk00PU/65sKvHbfJ+zbEEUxK3z3qkZGTejmqZ+PZs1ShaJysLqzOLQrTVaOiKYJZBeo/PDOLn57cxnxYDfLfr2MdEpk/Al2Xv68gT88mseNs2YQj0ggiuCwQSwB6mCmVbLIjNISwZAATSARiKG7JFJDZLz7zEiSQXOdhS0fuckwIrgGVMpmqSQTIg0HfAhmC00bLRTOb0IdUsCqQ4WoVol4GjafI7F4mchvB+byneo6ttVZOXqXRN9Ph3DZGbvw3FBCs+4iFunmjx2zGNLSQXiJjJ5UqdL7+Y61nY0NZezdPRRXysSIITGWvpxLqDCHRT8L8XHvUHrWFjNQJPKaUcUQrR/JLyE6DXTF4Nm2SeijZRRvHklFwBdyUFIewBVTiaoKY8Y0svj0/ezsLcdKmmJ7AM0rIyoqI0s7qNkzgjLFyyxLJ+vySsCskxULkazJQJoSQXKmiTY4EBUdkztBuMOOmDaodPjxZMTY1lpNOGZFMVL0mmwYso6pScUIOsl9twnBrHHa4410UsD2ShsmVDK3mzjpOzVs9VVgnexne7QYxamiWwy01Ray22J0nWnGSEtEckCzgRIWSfVYECMC507exaqmKaRtBrrNTfflI4mNUdDTMskuCya7m/h+A2s4heo2gUVAlDSksIwelMGj0UYn9gqF8PAwf6jbzBdtfYTig4kZ/ckg1z06n6H24q/dTai6xl21b1HhyOdHlaf8d58ifxf/0I5CEASbIAh3CYLw8pftKkEQFv/TZ/NvCEPzDsYj/kUQ7Ncg5GxDMM8ZbEsFCNZzBt1Gfwe/PO8xznJdSsDbOugqS34KyXUYgZ9gRF/B0IMY0deYu2g/k08MMaTsTWRjA2PnjuThS55m9RMLQfOC41Zkk5nDuxt5/8mPEESRaadPxGIz8/Er6/ngmU+4eHwBFiWN2SRTu6EOXdN478UcLpo0gr1bikjGU1xUdjWbl3eC2oDDFcPXqbD5Yw9HD9o4sDOb4N44qm8Kt1y3k/fqa1nywwGuvKeTV7cc4p43bLTUtfHBM6vxlH6Xt7vew53tIvIlJ9RDa+5k0eUnAgIzl0wBBERJpObTWkxWhXQyTdnkB8F6AQNeDUNX6WrROLKvD393gKZaG0uGTWDZc3n4fJO47hGBVzYdxpkxaAAO7w5TOCRJ1Zg4qdDgDkLIz0EqK0Ywf6mRDtgPRzGSAhml4vFjUkjDui+KIBicfZ8f329LSJ7uJJmQuOFRL4+808yDbx+DVBo9EUZtCbD9vgzk9/z4P9TIqmil5yQI2GwsfTmHwz/up0uMMHF6K461mUwSmnj7jkKoTVLoi1OWH2XcEB83fKeBydZeFjk7KYkMMLOkh8pKHwOlIubyKJtTLrbPH8OddzZwUsYRZvX1Yg3oODKjjFP6mZjZx/ApXkYM7yCVLeDxRLFa4ziGRlk2fSkvzXuX7o8KGOLpoyDDT9Iqs7pvNHU9RbxydA6/XHcuSp0Zayt0dOcgySq3TtjJnZNqKNMTmNMpRhZ4sU4NoBkiakpGHJ6mbFWEjC9UbL0C5iYrNatHsrOmCkE1EFQJNW0inVZQUwruFjvOnhTxoW60tMD+n5ZyeF8eklMjnVLwTjJ4rX06XpMNe1kc97pOhC4JMSrSd6KJ/hkyaYuItUvEHJXQ7AbJPB3bAJgOmXh/6UyC2EjZkxioxMfbIAcUVcWW0hCSMmpUxrxDI3tThGxbmGwlime7CGYdXZQIqzrdzhR4ZY7tC7Pmtsv54zUXAHDXwRe4sfZxgnqYr0NCS7Gpr47PvLX/zSfIP4Z/dEfxe6AGmPFluwN4B1j1TUzq3wmGbxGgI+R98T87X+vCCNyK4LgGwfz3dwH/GYIggJT99zv+DVhdVmxuG6LiAmEhyNVgOQViryFYF1O/8dcMH/kuk065hEmnZkPktxDaSo47i7wSKwVDBDD6QOvA6JvL0+tO4dCBH9Kws4mbT7iHyx84ix/e/AcOfl6Ir9vCp7f7OONKF89d9QLRYByL3YKvWwCi7Fi5h+KqDCacMKg898KmPC4Z34ahGbxVU4czQ8OccwvE3wWtDYCrf9lOV6tCYVmarq5Meo4NBvZfuf0t9q0/wJzvTGfTsu0oZplx80Zxx8JfYXNZWfj9E2mr72T22VN5++EPmDQvxPm3nogrZzh6pIh7fvdHTisbxYSLkzS2ucmNRmjebUFLafi6FJY+6ufsa4az5u1OcopS+HsV4lGRi6eMxO+TSeUI5Lg9hNq96P0DDBtfdpz76c8IBCRCd2bjeLYPMaChmwV0s8RHn5dhnS0MvsKViNz+3VJOOd9PTJAwTEAaDEmn5Odw9FYr3rMKkF5oRIjHYbIZb8pFtF+ixZ+Ff5dC+h6N5E8EZj4m8YPiQ8i6wYAmMWT0ER5YNpsFow8ydkIj1SXZ9KdMrPbncPq8GpJJhVGpNI/vn0qhM4pZ0qke30ti5Db2rB/N+qbhJPqsrO4eirM3gDxUJSsrSqYURnreiXmijmLoOI6o6G6Z0Se20626qN1QTaRoMKMrozSEWq2SyJGRW2RkFZ6sncLRsIe9nXnkF/bjd9kwu1PEUxICMEfppHFeEZGAHaNXQtBUok6DqN+DyaZidSSRvZDodKLJIn3TNDxRkfjQEsTxOWTXDhDJVxASkNZMoBogG0TanJh+5yfnk168WW40hxXdDJF8EUyQyAKTOYmAGUMwCA/Xcdcb5D2xF++V1UiSB9IGemYKw2zgEBIkum0Iuo5m1klH+ghXZ5I+4kDIAY8CZj9oVg05pmOqs2IYZo45Ypz4m1f43ffP4YX9u/ArGcypKMRjcpJQ09T7+xifU/BXuhcOxcp7s2/HJv9tJun/V/yjMYoKwzAeAdIAhmHE+Tra0v8/wXIGWM76n5+fPgzp3RjJjRi6HyN98J83t78DX4efgvJcHI5uSB8AuRpRGYbofgikCu7+bgOvPVLEuuXj6fGeTWvnfezfAqMmHeGNo08w8Zy1CLl7wH4FSFXkVy1gwcVzCfWHEUWBAW8XIm089J6TnNIc0kmJ4VMriQbj2F02EtEk1VMqyCvL4eCWBkZPC+O07wMhB0E/yPST+zm4K4/M0kWYbXaIPAraMRDy6e5dTH2Nnbsum8XpQ8bwi/M7MFtEZpwaJsuzAUPX6Tk2mNaaTqq8cd87AJx5zSKKqwvR0hplI4u574PbuP/NPsZPfJWuo63cd+kAT79/BnqGiSMJB9l3iRQXxKkalyK72MmISVGe39DP6BNmsW/nQvp7sxGlLynFexXQBUzeBFNOGEPp8CIuu2vJXxmJwc4qgihgHepk5PQqxKRB5z3V1F1WRf85ARJvJ0i3DLLjfvRGFtqAgWC3YeRkIKga0XecqN2Q291L4QyNc09sR94VoXOrQfGICGdIPiYVQMV5A0w7o52EIGMVDToTdgKGjCbrmLJiaIKILOkE0zas6FTIAayqwUDaQnufwD1jlnPr0bmEVTeLnL1M0VOMLe6itKCPbTvLyfcmyJg6QMmYHtIqkBIRqw3SyUyO7ChHnhSnf5aF7lAGFouGOahh7haxpdNkhNPo1SnSHlBHSqRnxDkQzeTBAzOIJ6zkR1SEbgl/vQe910TSkIhm6xQu7ECOiIhJnUSBjGFVMNDJJ8jJkw7itiQR04MKuWmbgM8lknLoxIaY6ZmRi3tFmIJ7uhHSKohg3y+gOgR6zy5De78EcyXo2SqCWUPUQQgMxkaEbhO2Dp2MBgEhDYkMgb4bhqDnuBB1AcMskFYUTId0JLuBGFZQ4iKWfgn/aUNIVLlR80XSiAhOlV+cv459i1/DnR1h0akHmDn2GEZBHEMwuHH5Kg7LezFsByhV2pEEiQd3b2TJqjf5rKP5b67nfKsHl/LNaF38ozuKlCAIVr4UGRYEoQJIfiMz+jeD6L7//+0C5hMQsj4AuRLD/4PBIHT2agS54ngXPb4S4u8jZDxxXML0v4KhtoFUgCAoX9sPBjmh4pEEaH38f+y9d5xU1f3//zz3zp2+MzvbKyxLWzpILyoRC4IFxYgdYzcWjCZRgzWW2GKLBY29IjZUVMQCKCAIgtSFpSzb6+zuzE6/5fz+GARbjCnm8/n8vnk9Hvt47Nx77vuce2bOeZ93x2oEc+/+e0IIrlvwR75auoW7z3mO0VM3Me38w7llVilXPXE9U84sYucXO+nddzGqEkxv4KTVMN5MD5YlsXuKOWngIHS9g0S0lUET+zP5lAmUVrKyre0AACAASURBVBTx8Jyn2bZqB7++71cMHN+P43xnsviFJMfOziG3/2/xuxfx69vWYZnNKHolkI5a/XKZl2Ez3sbddRqFI6NMnbWN5+8pwABOnVPHkHE6A0d14fCPZ+mr9Uw9I4miRHFlOBGKYMHdC3nr4feJdydYufALTr32RG44M59jLzqe+ffNoypYje+3Abw3eQlfEia8IEWjKw9VVdGTEX55QSdffiJorH2ZrStTHH3NdJbc9w7xsAnywOnpkxc+RUrJcwsXo9lNdF3luznO3fNaSbaZbKMLgNwn6+h17URs04fR8NZGKs4I07jUSXi3jU2rvdAZw+0Nkzc4QWJzDtDNuQMqeWlxPks2+7BiMGV2F5k5Btec1pf8k/y0ZKq4P4mzJV5A99IIJ13YztrCnsSwOOOQNQTXu/hox1DeqxpM7a5CxldUcuERn/PgypG8kjmU1JaxTCivYn5HKaMz2lnWksXbW4aQO6KdVq/B4FgtbVW5WDZBIDOKw62zLauYS5ZMpSXoI6u8lUSzg+7FCllVcRzJVmJTS3G2A16BFlJx5KTQkxpmUkE1QXMlcEcFzbsyietOdKcde34Up2LgsAwav8ol5YOkX4KwUJMCLBvNqSzef3ocGODoMvCHJHabiZwYJ4oKUQ3sAk91HBIGareC5VGIlYHabYGloPSSaDkGriofid4JCj6yaBsNKALLDp5WELrAt0UhVqoQKcrD153C1aYQz0zTkJ0eYit9GIUJLLeJvVbF3qGSEhLDB7aoQK/QuX/zWJ4pqkDtUFi5cADd2RpichgtYiNCikJfEodqoClvsmLXSYz0FbOnqJNBWf/5OhY/lVHcCCwGSoUQLwITgbN/rkH9vwQhBGhpdzjpOhmUbFCLv90o8T6kVoLZsK8GxQ/j67KruE5B/AQG9vT2B5BSotg1dla+wp/OeIZZv1/KUWf/AoDivoX8bsrNABx22sFMOmEsb3Y8gUt9nXfmzecvly3k4j82MOO8br65Cw7/xWBebXmCDMeLTD68lt+e2AN/bhZjp49EUQR9DyrjDy/OYdeGagaO7wfo3PbGOK49/hMuOaIYWbyYK+ZNpcTYwU2zy5l6epjM7DgzzrMzcnIQwXr8/joAfnlxgs8WJdm12cExF07Dk38y4Y4Yi/56KwDBxgRfLgswaNIGpJV2h0xE02ec+qomTN3ky2VevlyWluQOP60DEgkSLTqrFCeWpZBTnEXjrrQd6onbitCTCmVD/HgzQ3zw2tuUDOpg16pv1wb5zT015BbrXHbTSI6fYePjBen5EQr7kxWqbSZOt4W7yEV7bQp7TYzTE2Xc4mvCf3Mew45uJDBI5/PfBOgI2lGA7OIEZ96xk2fu9cEeeHv+IAaN3ksg12CprYzjLttB7QY7nbUqR1u7WdanHzdP2kVnuIazfjeAaEhl7JEhTjsnxo2XF9C8wcW5dzXxZU4b1buL6ZvTRYmaoHe4m42mibta4ciiJqbnb+epzYN5d81BJE0nsaUW5jCV9pIAVodC5/Ysus0sUGPoORZ1lT5Mt4P67fl4GmyoFRFi+XHcih1jQBeO0jgeLUU8aSckvKCA2mnDtyudmTdvcyeyXSF0hEZGk0VS1bA5LCr6tdBrXJDFLV5a7R6kBVrMwuVOMXJYDSPCYZ5cOhozQ6Mjz0RKDXW1hkdLIiISe6NKbFgpnYMULK+Kt9oiWiSwdyroAYXGFcVorSB8Fu7NdmyJOFmL63FvaaVxzkHEXQZuw46zW0GtMrHcKsJwoDssUsUJfFtULL8LQ0gMS0ENCRwNCpYHlBZJSldRDQgLDzIF2OPIJRqubtACOlabghVU0LwWbTU+wo0B7goUEAq9TWaLxuWnHIzH9u+Lzfqp+EmMQkr5oRBiPTCO9GqYI6Vs/1lH9v8gFPfx4P6+Gkv47waz4e+WR0UtAdsgsI/7Sf3ZtPTXL43d2PVH6G5v455zHmH8caPwZWXgz8mgR0UxdTsa6TEgzbxc9g3IrjsZNOJIhk0eRK+xs5l79irs7kzWLX6Dv26eRFHvAjJz/VjNj1A+MMWch6Zz8KyzsWk2rPaTwNxLXo9V5PdMuw9bHRfTr98KDH0IdqdC9nE5TBs5l/dfyiIatvHRa6WE2yMUVwylctUqZt/up7VtLi75F7Ly2uh90AlEIg2s+mg8h5/Zi0Chjbs+ugGP341NqWH8h3PpM0Jw1RobJ14xnWMvOpJbT7mf7Wt28t4TH+HyOtOSFSCTGhnzFXYs9+DPEXS2WvuZBKRVQXaXnesej3DL2e10bHGxi0wUm4llfO2VItmx0c3zT2bjrQzRWTyEC+4ezhPXvIhlprmEEOlqaImYwsCSNrz2AdRua+DVexfhrmzAQLLo3rTtyXSodB/WG9/KGhp2wEPnDERPpuj3+4nsvm8dX9X4EEIirTDXbijn6MvaGfoC7OmRTf5fdhMeKdm83AUVLs68pYYhFWkJpqW+B417bSyM9sLYDb6iMNOH7yEDlUzaGRNq54tINh9s7Y8/M0b1niwOHbKVhho/2ZsamHJ0PbsyApj5SQ6rWc/G/MFU1+djt0tcQqdnfjuHj9nNA59OxF9gkD8lRm6qi6+eLyB+sJtWewaiw4bwW1hCwRYzwRBI00Ywz4MzkCRzchupOi89h7XQ/b6PTW/2ofe4es49/UMe/vRwInszsJwKMd3BF5W9WNNkx60YJBQbuldBTUhExAYJiBZAordKxh7IqAMUCZYgsB0MDQyvxNYu0GJg2SHpM2kd7Qa1J86qICI7gTokCYsMMBxYfhtY6e87VqCSUlwEGnSMUJzuXnbQBKYqUVtCaGY3sncpOR+2Er9MIec1F7agglUXQauupWNWBUw2cbstEttciA6NqFsSVTWUbpUSFTqlxW0fLCNkJrlswnj+k/hRRiGEuFRK+dC+jwVSynf/A2P6L74DoXhASTMJKRMQexEcU/bXidi9cS+fvb6aU645AWfOm/8wfRl/g9Key5nzwAmsW15Oe0MHyxd8zrTzp/Dktvv31eeGpVV76J83lMKMuZSPmcw9n/Rky8rtrFvyLD0qir9lYJPSAPfZYNYy+fRzD9xTAhipThLBCO89+SmVa3Zy9aMjcHo6eKH6XrTkLextXs6uPSX0HZbk3ZqNdAQHkJ27kxtmu1j3SQYjj23gmqNf54IbYeaFMOf+cu67Ios/n/cobp+LQ04az4jDhgBw6ymvsnxBCULAszvvZ96Vj3P99Auo3pZWzS19ZRWpeFrCcLgMJs9o5cGrSxg4Kkxbo0YklImeTKvUcDggmSQVT7F+5SAmTN1Jv2ExPlyQjWWo2F12UvEUIHj32QM10k2vA1VV9jOJ9PwckMDWL/ORWxLHk+mmrrJhn1wiiNall6eZbcenQ7/BPdi1aieh1rTBctaoCfy1Tz3NlQ3obg1b1KBtl8b8x4uI3t8DZyqFZ7Xk9IocUhcXknWaj/vX53NYqpJojs4J18fJKWnm9K9OJbNfnNMHfclT4d7YP4izQ8mldlM/9D4pNtULKq/qh2tgLsMv2Il3u8JJ5zZQtURhzWIn/c5OcsFFG1i+LcwDm0/gqDFr+EQfhicnyeze21AVg/7eMI/sGETrWjuupxqw9hZh/dqJzTLIWJEifIgfPQfU3SZ6lkTEHET6GohmD1YMTFOgdkLrx3moJUm0aJLMK6pgQjad03tibxeYQQVHMklSceCuT2DvVBGqjeBwHUeXxB7WMF0CM8uEuA3dBZYm0CKgmBaB7aTrowvw10JHf0EqU4IFtVcOp+iTGFK6Mf0OdKeJSFmYTtAiEO9jYXkhlNeNS+TgbjLxfdZMYkABGSv3onYnMLPysQJh1DoPkTEatvVuFFcBUijE8t3Ydkp0j4GnARgapyvgILC0Gbsti5ZBGp6KGEOzyjluwIB/eI3/q/h7EsU5wNeM4nngx8uu/Rd/E9FwjGQsSVZB4F8jlFyJ7L4T9O2IzLsBeOn2N/j01c8ZNLGC0UcN/4dJCs+FfLhR5dY1Cs/ffDIPnf4gX32yhd7Dyxg4rh9CCLY0tnDxy28xpqyE52bP3v/s4IkVPPTFn2irCzLisMF4/B6s6DPQfTsi6yWEfdT+tlJKapqu54IhV1E2+Fb2bkmrj25JDOeiex6ktB8QVsgPZfPFqrOZevYgrPhbXHzYOop7lTP3rzo71rdimgqaQ+PT93oxc85k0Abhcr4OpOc5Hk3g8ji55eQ7mHXhQhSzjK1rAxi6wbvxFmyOXMqLWrn79T0sfDKHhU+kT+7JuI2HHx1O8Kwy/nD5C4Q6VB659UKWzV8JgC3TjxmNIiNRtq118+lreXh8xv73SzOJfXOqCI4461CWPLOMjQvX0fRVDWWDS/e/89dQbOko77b6DhzuAyqFQGEmnU3pk7/WEUd8VEX9d9K03H3ePBLhOPTLoe6sMkpeqySjJYqrUJC8uAk9bhK2afhyTa47egVqsYvdnZkUx0tojxzFM1lLuMQbYd6ID/FpSR6p6Y+aabK9tBeeG9oRYyS+lTrapjC2lggtvyhlnK8aeaTG4vn9aXgtjKxJkNkvxrPVo1kW7UvgqTUc+buNrGvrQ/awVm6pG8b0QB1X3HcCsYAgc2gzxlVJyoeGSSzKw7tkF4m+AWIDs1C6TbQNu1Hys9B8WSjLooQm5uPcHabrKYHlSBKe6qFpQz+qqsvwxDdgb9Vx11mYqkrBiiSKBW3DHHT3cWHvsrDvq4qb8gryNut095aImAYSXA0m3l0RtJ3NdJ0wAFOXmHaBo0MihUQkBN4dcRIFLhAQz/Wka7XrFvEcFcsm03Ypi3TW2pQAFGgLIlIG3i/qECmdRO9s7KEU0q6h+8pwrlSQhk7XYBu2WAZSmgibjayHtqLoAlFewtxzV+EuTjFPH8v6WgeGpRBv93P7L4+lNJD5D6/xfxX/SMDdf72c/gVcMek69m6tY2HHM3j8nr//wN+CYxIiYy44frH/0gV3ncnoqSM4aMqQf4qkUHzsDI4lqa9DSsmF95zFpmXb6D/qgEG9X142Z44dwS/6lmB1XgKOySjuXwIQbOzk5pn3MO38KfzmsYtAuNNFkb6T5+qthxfz8OVPUTG2DxNPGIs3082qt9ax9v0NXLluN8PGtXLd41W01Bbx0OUv0rwjwflzqxh35FCGTvSQX7Se/CKVXx28GD2pc+Ob90HiMPTw61w01+LLj0dy73nzWPLsco67+Cjqq/ZQPqCDmRckuPrlL9GxaD+lB5417RhvtvL7k8qZeXEHv3n8Ql76419IxATGQbA7M4Obbh2Is9VBNBLFZlfJK4oSDLbhtHtwFAco6JVLz4E9qdlWx9f2GUUVWGb6f2lJljyzbP+7JyIJWve20W9Ub5LxJLWVDUhLMvVXkxHuBFlHbqOv52RumJyuG9PZ1EVmno+u1jBSFaTyPNAYSa/CfcJIYl/GWmtnO5M/dFBQ0szmXS5Cn6n0P66YLTU6vtYo7kAHtp4OevV9n7Kaifz5twarh36K0dvOC1vK2FlSSO+sdlw5OsFGHzmvNtLr2C52DM3GWhxCaYmQcaWD+j4qPkecJsvFq71H0DO+CTVH4ctXeiHy27H1TeB5LcC8xeMo/KSSsDeTylVZ7B4fQIko5DjjtFTl4BZJKj8rRwhJeHIvpNeNq0HBcgjCR/TB/+FekoVZqCJdj9wo8pNy+El6JKZqEqgFryeJ48Se5J/VxZbFCtINnSNsaK0KigG+dS2QMkkMKCCwUsfZHEfJ8uFqE3QMlRQsDpO5bDvSoSESKew7O5D5mdiiFoZLIeISZH64m+4j+6IlQGKRCEjcO7rwNhikxmdiFmjY2pKYbgfeBshZF0ZNCqpnZKLoBhilOKu7kG4nndN7Y6vtIlEQQOuywK6hdStYiSja3laMcZmEJvckI+ZBJA3uXTSGYRNbWZPIQ7oF/QqzeOPM03HY/mdipMU3ReDv3RRiD3AVaTfau4DfffO+lPI/FH780zFq1Ci5bt26/+lhfA9/vfp5dn+1l1sXXbvfNvCfgEytAyULYSv/l+iYpklbXZD8kgSy/XDQRqJkvwykCyM9cuktHDd7AwOn3IiwT0L8QKbLdUs28sDFj3PYqZOYdOJY+h5Ujp7S+ey11dx34WOUVUgeeCedeuT8KWMpLWvminvqufHsXty7qBBhfgZAND6Grs4CbBkn8+od13LwtAgDJw3ihLIQZRUWNz+7l4evzWHcSdfy5QfLaaoOU7u9nUknjmXkNYcz79i7yc9oomqjm5mX9aF05ji6PrmHp28qxO01YKIHZ1KlY1nsW+OfeMIYVr75BQCeXDdTPj2SxaMWMmxsiJqdWbTWpXN2HHvRkbwzb8lPntvMHk4OfrSa1VeU07YzjqKCx++ltH8RlWt2Ei/NIFXow7e6fv8z32RK38RpV3Ww5P0CCvPL2bx0O5rDhm6YUOojMw6Hn9qf1+7/gsgwP95NIeIjvXTO7UmfPc3kFBlkLFPQAg0cPbuVec0j6Uw6Kd9Vz5ayctriGRTcvouiSSo1vXrhuKWK6OhCjICTnAU7cB6skHmnh+azU7AjjlHow1ZUimJIhv62kUWVA9DzdIxMyNik4KmBaKGCMyKxkMRzVURSR6oKqVKJkSnJ2GRDC0tQobtEYg8rDFPq6f7Sid6mMuqxzXx461B8nQ6EauEdGqapLY+MVAskDCLeUqQmEHVtKJkBlFgSNZbAHhFYu2tI9cwi2TcHV0QjnmMj4TWwJ2w42hOItjDRvl5wudCiEq0pjOPzKowCH11H98MyE2hhg3i/LNSkRf7KMErKItzXS9xv4v9gF9I0SQ3tSarAiYwl0MsycQQtLFUiFBURMPGKJG2WCyEEnnoTaZl09VPI3pr23sru6+PF+y7Ebf/7noz/CoQQX0opR/3gvb/DKJ7+EbpSSnnOvzq4fzf+tzKK/wlIqwvZOgaUIpS8Zf8SrWdumM+Lt77OrYuuZcwRbmT8bYi/gsh+E2HrgRX+M8QeSzf2Xo3iPfcH6fz1mhdYcNdbALyXeGl/mVU9pUPiVdTYTQA8cv0IFj0nePrzNvyBIM68udA9FylBCDBNuPs3k1j6Wjc3vv5bygb34K7Z93LRnyqo6H8nqz6eSNnY23A7qji9zyMYukRRFQL5PoKNnUye0cmM82PceFY+yVw7Y15I0XC+Tm2lDz1xQJ0088pjGDn6AVxeE0OO5sbTg0jpJeeOIurvq0XWGF97Be9HUd98GnemDeCnX38Sy19ZSVN1K6ZukpHtJRlLkoofqH4ncxXUZ0owZ9Qi9G/TQsAxc6bR4pR8+eclWLq53xB+5NmTyS0J0Lirhk9f24hpmLh9rv21MQDOuuNUnps7H/YxlQkzRrNq4Vrcb+bhzNQ5ObaKJ0/pT8Tt4cQnZvL+jOcp6Zvi4Y+2sGBRXx57tTexU/PJ9nVQr/vxvRXiomm7ad+p8cFddmJXFxHf6SJnRTXuqz20OgM4n9Fw1sdIeky01iS1F/dB99uwBy1UU0BFDEW3SKUcHNlvC+ueHEHSB1FfnFSpC1d7kpRfxQiAZ5sNKQTRYTpYoLUKtCYJThsICDQk6ChVyV6v4+oCpTjG3qF52CIW+Z90Ei/PwLKppJwmitfAU21HxHWc1UGkodM9oRhL2BBJk3iBDcMOqk9HzzPwf+ZAiRjIDA0laaJ1JEl2t5Ea1hNUBaobkPl+UvluPHU6Wl0XyUIvDlNDsQTChOBAiW+rji2l0DHCibAg/6lNyGSSzl+O4OEL3mdsnwamPHIKbbFM1FCKZK6K4beRtVXHFYTg1DhbLruRdR9toWpDNadcNR1F+fen6fsxRvH3jraPA6vlj3GTfwFCiKnAA6SLBzwhpbzjO/cdwHPASCAIzJJS7v05xvL/Swg/uC8AWzkdzZ201LQzYGzff4pU/9F9KBtcSmF5PkIrRsbfAhll/y7p+RXITkitR2iDf5BGNBRl5BFDWbf4KwZN7L+fSWxZUcnHL33GBXediequgdjTaFoTT2y8lvzMOelXcU0H13Rum3kGiUiUOXc3c8rcS3FnrWXAuF5UrV7I/W+8xYJ52/jsnYt544HPscw5jDkihmk5gbQxOdjYhaIKli3MombPcLzZOvFYE20Pl7F7QwM5xT662sMYSQO7y87WlTvYuToPRVGZ+9hKFKWCSCjB5RPP5NqrbsXmVAjkJGjaayeQ76ezNbSfSXgDHta+v5b6qib8uT5CbWG6g5HvT0zMwuwyQILR345tRwrNYaNibF82f1rJovvfQ9lnDLfZVYyUSSDfz5xHL6Dxy+nce4WK25eHw6vRXhuiqE8BjbuaAdj51R5cXicDJ/Rn5uXTaNnbxhGzf8GbuR/Qauxh0tA42c828uCXYxiddQeX1wWZ8+BhDHlvHNrWOAXBTsJBD61burEmaIQHF/DokwLTmWLEPe2Y+a3sfUBiP9WBOsKB8rFFx1A3vp5u1I0dWFqKY9xfUtLL4q2b7aTG56FmeWnvr2Br6uaz5YMxCiGRJSl4oRZXQ5z2U/vgrEqQKvQiFIsCb5iOmIrebSNqOVEQSEMBadLRS8Gw2wn1EXjfDxJ3+bF3mNhDBiIURU1aODsyMHspxPNtOFpT2GImbZNywW4DS0FEoiTKXKi6wBGVxPMtUNMVz4VNRXeYuNpTiFiCrDFeWsMWpkiR/XENiZ6ZiCn9sdd24fyqFmdLLqbfhZnnw9JUTI+CDHWhhE0Cy2zIaARLkQgBjphk044CvFqKLq9GymtQ9F4LoZEBog4vkQKVWL5ANMTZVNXAY3PnU7e9kcN+OY6Cstzv/45+Rvw9iWIeMAaoIh1HsVhK2fxv6VgIdR/dI0inBFkLnCql3PaNNr8GhkopLxJCnAKcIKWc9WN0/ytR/DAun/AHKlfv5JmqBynuU/iDbRY9/iEur5Mppx38ret/mHYbiViKPy+96TueTdZ+FdOC227AoX7IsZecgZJxyQ/SP3fAhdz6/Apyew7DlvtSmoaxmz+ecBUr3tW4++MbGXZoD1YvuIS7Lo7gz3Hz6OdTcHiHgv0gnr7hFToVycghScZMGUP9bgeXjr2WiUd3cfRsP/2HbOXpO4p47/ms/X0ecmI5Y4/O4e3Hg+xYuxuAoYcM4OjzpnDfBY+RSqSP8LcsuobrjzlwTpnz0OFMO6c/lx3yPlXr0pGw+SUJgi12TEtFmnK/vSCnMEmw1UlOURZuv5uabxishQApwenRmPvylVx/3J3pGwq4PE7i3d+ud959ZzHuB1sRQYPSHvk0VDXDtxKUp/Gn132o/sv4fP4c3nwiD5Dkl6WIx7yEW3UQcNpts2jcXM+yl1fSc1AJNVvrMbwqtoiJy+ckGU0wf8tW4gn4rMnP4UMa0KSX816cyK61WSihFJkf12NpCuFpFdisOOrODtzbQySKnWT0g8TqFME5/ejOz6TsxY2Ye00004Gnv8XOXwxFi8QQRyZx7Uniur4RYSnI8kKiRzg5ceBmnt0+EcUSIAQ5gTZ6WHVsaeqPaNeJ9cskp6mDY8d/Rd1wH/GwnbULBqEkLZxdFlpCIIUgEQBsNujoItrHRfaqEPYcG52ZPhRNIaPeQHh1RJugY6BKxh6LRJETw60gIikMESfV049naxgyPESLFBzBFPaEhr0lgSmSKHaJPDaJ/VM7qZAXWziB2FNPqiwHJTcHpbYdZzCOzenBsCtYPhfGrj3ER5VipqK4HDmgCJR1VcheRaS6g8h+JWnPKb+T9kNTaK1Jyq7diuV3kPzlULptNgJJi57NKXYO9uEIp7ht+mQmHPPz+BT90xKFlPKifQQqgKOBZ4QQfmApacaxUkpp/giJH8MYYJeUcs++PuYDxwPbvtHmeOCmff+/BjwkhBA/l4Tzfw2tde3cOOMuTv7dcfzilEk/2vb4S46muF8RuaU/nBfKNEweuOjxH2QUNVuriIXjNO6up7hP6f7rXzMJ0zT56/WVuLw9mXTWNJKtzWRkeckIfLts4xGnF5NfooOZTlwmpeT205/CMiMMnViAvywHRAb9DnmAx5ZO4ePXvByX9z53vGun57AS5t/+BoGeFj0ePwVh782uTQ8z4pAwxb0TfPIqNOzK5pAz72bMCQav37+IcceOIrswwB1nPIhzn8eQx+9g06eVbF6xPV3Fb98mnFucRXZxFsGGDlSbSu/yp9nyQZKqdX3ILc0m0hmlZb+JYJ/+y2bjt3/u4tBjd3Nc7yEEGzq49oU5vHL3QtYsWg/AadcM4q1HNhMJ6dx44t0HJsPiW0zia++nnkvgrCXjWXrBh9TvTRdfUm0SRZFoLg+xUByv36LvwJWcPjKOUEpRNJ3DT2xlySs5INLuuUh46frX0ioSoGZrevDKvroY8UQKTDhzZAXJmMpBx2qsDWSwfNYobFkpst84kCZCep3oPTKhFjK2h6BExdkbUisStJ0xgIQvQOCreqovrAAp6X97kKYZTrQ+nTge6iIxIYuw5iM5qxCtqRtPZ5SBaoivUuWow7s40VHLe5srqFVz6MaD7tXIntBFIKeb6OMePr48k6w/aHQ58xAoKIqCIs39CYgUU8HQJKnyTEyfQAZ3k2yWOLNTJEYU0F2s4W6U2E0TZ6cN05HCuTuElWFHahpSh4y99Qh3NpYAWi1sQQvHpp0IuwPRrxglN4KuaWjVLnBZdA32k4UNYdOxLIOukT6y329DNISJlQdQ69uwtXej57mxvH7UVzfT9IfecEgRpdfvwTy0D4bdDlLHSoYpvXEPQrfomlbI2SetIW/0NuJ1j3H8pMH4vS5+88TbtO7tJKui6G8t8Z8VP0nRJaXcLqW8T0o5FTgMWAH8EljzL/RdDHzTV7B+37UfbCOlNIAQkP1dQkKIC4QQ64QQ69ra2v6FIf3fQmtNG7s2VLNp+ba/23bK6Qdz9TOXYnf8sEFMtanc+eEN3L6vuFF7YweGbmBZFne+uouXN2zkkcvu/uFnVZUHP7+de5f/V9GrWgAAIABJREFUicsn3MXsvpdxYvav2PxZ5bfazZp7PWQ+CDlvA2DoBstf38nqJZl0NIc4/uZHeHbdBmrXnIrXFyOr0IUvS+D2xsnKeJtbXtjNQ+/s4aQhc/ns9T+S438Db76dBQ8VcPIlLcw4p5URYz9hYMUfCDbUsuSZpdxxxoNAOhpbtVlMmh4GIKvAhzvD4OuT+o0z7ibY0AFIfn3vFPqPnYAvy8KfrXPzU6u48I/pTXviiaPTLyMl6DrFfdxsXOXB7tR4qe4x/nzeo6xZtJ4B49Mqvpfu2EYklF5mlvHD9QTsLm2/pNa9soUFx33B4TNbCDZ07+/KslQOP/2Q9GfhprH9dnzDS+kozcDULTZ85qNipAT5DcnDssCyyMzzHegrBZFJudiy0ilRkjEFu0uw/h2dne+X4Lu6nZlNWyk73olaZsPSBPnDB5KzNgSRFBJQ78lGvSmA0KHg6UoKHt1E4SdhAssSZK9xYF0KIpa23Th6ZxGrziAecaGTRM02aDrZx1c7Xex5OolWq/J6shf+vAjYIdlsQ8nQMaJO0AXRIifSp1G/MIdDA41oxTHunLGYqYMqsRJxTAcohgRLYm9LUPBmA6nhPZAjByAUE1dDHHu3JBXQSHrAsitonSkUBHYjnYhQ+rxYJbmocYloC+F/dSP22hD2vUFstW0o3VFs7zUj/txOJE8hWiqwR3USfg37tgaifh2HYcfqVYR0O0j2yyF0TAXhk0fiDIEaMWj/VV+EpaB1KkSOKCfSz48pk3jf3UT2ihbseWUYQ/rgabIxb/MpvPzhCayoq6VrX7rx8w8dTc22Nh5+dvkP/oZ+bvzUNONZX/8BLmA1cOXfElN+In7I3fa7ksJPaYOU8nEp5Sgp5ajc3P+s7u5/EoMnDeC53Q9xyYP/Hp+Cg6YMYfDECnZv3MupJRfy53MfpbMlxFXH5/KbGX2w+Ns5ZgaM7UufEb04YvZkBk7oT16PHPy5Bzaor4VAxTkVIXxYnVdgYwvPVZ5FbjGgZeEfWUKJ30efoaBqCofMfoXX2xfQv9/jEL2H5+8p5+lb8jEpY/yENxk9qQ0HcfqPiCJthyICz4O+A39mLZbesf8UrWomQ8YLLFPgD6RjE6adfwQSG4oKDreDrrbQ/rHu3rCJiLyZjatKmHB0iN6DEmQGagnk+6nf0bS/3ZBDBrB922yuO703yZjBxy99xlG/SrstV36eTgQokZQNKaXHwGImnzKBXoNLUe3fqCsgQE8mMfW0YK4nDOprkjy2Zsr+Pd8yFUxD8vYjHwAQ7Upw+cEvs7Wfl65pfUARtDXa2VPp3E9WtalpDmOYnH1LOmW1P8/H6+1PcainGL1PL2R5MSAwcyXFo3sQj5nYgw5COzLo+p0Xz4M+2uaOpyZTR7SFMQvTEqJ5UyfmRenEDJYAZ12EZF0Xrh1RhC5IvJUg6MnC/Z4kb49Oj/dimBkm8T7Q48gggRVOPHUGvi+asTXrSBd0VymoIYnh0zCDDtqasjnBu4E7LnqZ1l/1Jzgpl2d3DCOQSHLYyL2cOGUbSjyFVAWGXSJ1E+/nDWhuH/ZuBdEZwb2uFufHm5GWiWkX2LpjeHaGEZZBKscFnSG0xgYsp4UZiWLFQ6gxHSWSwCiLoPQuQ5T1IB6wI9pD2NoTJK1OMhZsokd8L1KD7im98e6O4PyqATPbiygpQLE7UFISIRTsXQa2BNg6NLJe7sDR6kMIN0rCQqgaeo8cOkflESl1UNipI3a3IoSBMPNYtbOWTyuraWgPUdG7gGt+fRRXXjDl7y/knwE/1U9zPVAKdJLevDOBJiFEK3C+lPLLf6Lv+n00v0YJ0Pg32tSLdIEFP9DxT/T1Pw4r+gKgo3h+9W+lW9gr/99KDyCQ76d8aE8GTuxPdmGAix/4Pbedeh9s2kjz3lYKyv42wzj75lmcffP3zUiy/RiQMcj9BPQNkHwPqfjJ8y/juTVNiLzVCCVtW5ByEW8++C51O17jnD9OweO7DbpvpqCXh5amAlSWoNlg61oX46YVctXMX/L+CxZadjE9Kh7m9lNuorl2J6f9pon5DxRi6iqbP5cUlycZOTnMV5+PY+CECuI3Q68hPajeXMuMy45m1dtf0FoTZN3HOnuPvYMxh4b49S2tPHrLNFa8001nS4jOlgMMpWJMXz58btn+z3/93fMIRexXI6VfBvJKc9m4bAsDxvajeksdQhVpt9WkgT8ng1BbeD+NCUeH2ObJY3NvgWtmEYElLQhd4tXSdc6j4RiJSDqS3P/xXlJ57nQ0MZDS0xlpLZlWJTo8DpLRJOOOGUlRnwKaq1tRFIXfP3Uxfzj/CWqaHciCPLBaadhaC3GB5XKx+jUbpRO7UbItMhdsxnSqiN1d9E/FCALGXgs1YSIAo2cuans3aiSBe10trnW1GFl29DNVOrMFtk+ayHrQRqCzB31zOknsVVE0A2+fTKLuAfiWmmg7BLHRbrS4BTYbll0gDJNExA7ZYItYBLZJzFQ3nc4URzlOw7kmSXiIj2Suir05iW91C6nRvZDdBmpHN0p1M5bLgUjpuIMmtg1NRIYXgWXh8AfxRBLE8zPS6Tw2dWEaqfRcSoFxQn+6B7rQ2nRSWSoZH2xDmBYU5eOuN1FjBokQJAoVFMVGqlc2orMdmakRUiRaVTNmHz+JgJ1wPxf+HQY5W5LIhAYtSXSPDU+DiaVaWLk+nG0plFSMFht0XDiCo8p6csbR4xHA9Y+/z30vLWflA5dyzOFD6O6KYlnWz+L19GP4UWP2/kZpo/abUsoP9n0+EpgKLAAekFKO/Yc7Tm/8VcAUoIG0Mfs0KeXWb7S5BBjyDWP2iVLKk3+M7v9WY7bVPBRIIvK3fy+X/P8FPHHti3zy0mc8/MUdBPL/8chQq/24dJGj7LcRai6kVoE2HCtVyZq33iGj6FSGHDyAWHecS8b8jvodzdg0yaLqzQitF0pu+jSdSiTZ9PZ4sgsMwuFyBh4yk6otY7hi0nWMPGIod3xwPR89v5znbl5A055WTpgzDT26mS8/qiUjp4xk3KBmawOzfn8oPQcP5a6z/kIg38/wwwazbP4Kzr+hmZ7DDubpW0xaatoYMWUw6z/cRKQrxvDDBvPVJ1uwOzVSCZ2KcX3Zvvr7KcQrxvRh+xe7+Nr+YbMLTAPGHzcaPamz/qNNqKpKKnEgkltRlbTbr2EhVJAmWAqY2Ta0NgNPwM0x5x3Bq/e+sz8ViGpTsKRMG9YBqaSjhNURWegJHxmpJMMGl9DYHWLo4N50NnSwbslGLvzzbCTw0O2LkZEITn8XMuVk4vFRXNF23nk6B/9BdnIutdh9joGSb0MznKS645imub/Eq1QgeVA50mnHuWI7KILohDLca+sw8r3ERubRNSoHgcWd4z/i+Ird/PL16TQXOsh/2k5LUkV3mWS1BGk4pgcJxY7WYWI5BZZLofCjMK72FN093aAKHJ/vpuuIMow8L1lru+nuq+Fe04AWyEV0hokNLsQWjKJU1mAN64uiqFDfiralBj3gwhZKYA7qgc2TiSRBZ/8MHMEUriDoGTbiRQ4sYeKujWPpCTzLd2LkZ2Jr6QIhCJ4yDCvTSe6qJiIehciIPNRknPhkULoktDvRghJni44qXFjBINEhATK2x/F0Ckw7JPJdpHwqzg312HEgpIJQFPI1aNq2h5I/HEHMo1LZ1MY7l5/FB6u3U98W4tZfHU1NVRO/nno3R84ay2/uPOUfXoN/Dz9mzP6pbGnU10wCQEq5BDhESrmab9ai/Aewz+ZwKfABUAkskFJuFUL8UQhx3L5mTwLZQohdwJXANf9MX/8bILJfQmQt+D/JJADO+9PpvFQzj0B+JnMmzmV230t5+fY3iIaiP42ANhxkJyL5LkIoCMckhOKlo/4rxh06n+Uv3AVAd0eE+h0tgMDltWisrwDHAXHb7nQwbPIQevZLcOPpgpkl71OcewPPrE1y3p1nIKVk/HHDufKJi3F6nZQN6oEzczhNewVV62qo2dpAIC9Jv0FrWb3wFQDGTS9m2fyV+AImMy9spTD/XR764k+82vIEpf2LiXTFyC4OoO4LlPzaU+q7TELVVGwOG9u/2IXHJ1BtAkWVOFwujpw9mVULv6DPiDKcHse3mASk7RSmYQESzS7oO7IXigVam4GZayPaGeOVu9/CZk+PQbWpSAnuDNd+GmKfEJNqCaNU7iVe30Zlic7SowI8mqzis9fXEO9OcP8Fj/HE1S/w8rKDsYLtxHabxOuinH/BFi69rYGcYhfdm3V2n5d2fR540AA6BxcjUyZ69rf7c3y5B6Wlk/gvBiJ751PenkJJGvgNhXMvHI5dNxjgbuO4/ru54pkjaXe4IUOSPMhB90Av8X4aqS4F52YTV5PEX5nEsglsIQshJZgWjrpuuvo6MMsKcDQm8Kai2FIpfO/sQPMFsJnpmAV3ZSuOz6uwN3fjbN+B6BWHYlBsGjYDzIo8EoOLSJlRZDxGtMxO5xAPiQIHqSyNZIYkXmgjme8kVejFdNtBN6AoF6swB1swiqO6CyUs8UY0em5oI/udOkou3Ib73S7s27uwt0TR2nWU+iC+7REK71+LVt1OwpYkVGjhqGrDubkJ11d1lPf0k2HqWFkegk47bzY9xvO/n825B49m+tAKcj0e1JV7MOavwzQM3pv3AW7FpKz/D3st/pz4qaqnDiHE1cD8fZ9nAZ37XFz/6YrfUsr3gPe+c+2Gb/yfIG00/z+PvxVb8M9gY2c1S5o28Ot+0/H8TBWtAKzOi8HYhch5F/GNdByJWJLOlhBPXfcygcIAU3/1ix+hAtKogfh8UIrA9W2BMLuoCLPDwcwrZwKQ3zOX3z1zHnu/+BOvPpLL6mUHM7PsVSxtBIrrCABsOQ9Tt20tmuMBYpEkUm+gsIcbJbcX0foLsVlLee1PZUz+5cH85dIncGc4Oeumk3n+5gVICZ2tDm6ZHWPeJ+uZdFQeLXUfIWURiYSbq2cNpXGPzrgZz3DxvbM587ctGKFWXvnLPr3/NyAUQZ8RvfD43eSVZlO7rYHta3eRXWgj2GSQmZNCUQUdLTE+eHopBb3yGD55MPPvWAjA4acfTEZ2Bp++vnqfIR1AkIrL/anQFUVA24GIPj2pk9czh9aa9rT3Uo9C+h5bRvOnW+huCIJhoDYaIMBKGlQHIOfVGuzV39bYSsuiqXEAGQEv3R1RFJvCDbN7kRGwaG84ELAnhKB+/XYcKQ13vg1a4t+iIyRoNe2onVGyXHZa6zpQVEFIRHnuuve5ZOLBZPat5eaXJvPFlnIcbR10DrChbU6RGQ4TGmJSe1kJnmoN154IudubKO/OYefhTnwnJkg+2kH7xHJUwyJS4UXFjowJUkoMdWhfDLdG20DwmCau9TYUowCaWlHHqdhGR8ku7yK02oPwOHHnO0gFI2jN3Qi3HVeThZIwUKIGluZAiYOmGyQDGt5qA3VgHyIZFp6v6lE6I/hbO6AwF8UAabeR0UsQqRWYASeJIaWIlEnevK8gkUROHIDQNCRg9srD8rvwR1KkenvStpXrJnDlSSdx/1UvEmnqIBUMMnfxGzx8wplMG9qfaUP7c87sx6lbuBK6Y0S6oiz8y3t4fG5OOOfQH11vPwd+qkRxGmkbwkLgLaDHvmsq8KOqoP/i349XalewsGENlaG6dETzT0CwqZMPn1uOoRt/t2042I2e0klEOsAK8t2zwLz1d/Nk5f1cfO/ZHHLSgZTmO9btJtYd53tQi2io/wW3XeBgw9Lqb91KyilUtyyksP+BEuxHnDGB824Zzhs7NjPz7CXpMaTWYrVNxQqeiZQWpeVBXtm0l+fW7qU5/Dhnj+/L479/nmCzj+4ulXVLfXzy8maMlEEinuK5m9JMAtIbvM2uYM86l8FTzmfvzv5AWv2zY4OLRCKLRfOW8OvR19DeECbSlfYUGzKpgowsL/48PzaHjaPPm0L/0b2pXL2TJc8up3LtLhACw3By3Pl+utrtHDmrg+GTuskpDtBc3Urlmp37U7iMO24Ue7fWcfyvj/rWnAhVULe9kT4jen3Pc0NaktaatCFZAObOespylxPz+vFWlJCRtc8lWULPyw7mOKORjHXNOIIHJJhRU4cTC8W57dT7eKHmUSDtkbVjg4c1KzJBQHhSIcmKLKSUdLXoqJ1REu2p746GUZNDlJTr2NojhFIquJxYpsTekMS5Jcq7z37G+uey2WoVIlImti1tFD9YhXNlFY4N1eQ+V4PWoZJygV3q6DGFvXaLWXmtNGzOp9vhxMxwIGMGGfUmntoEatTEyvaiJk3i/jiGUyPk9tF0sBMRjiOHD8BaU0RZVRZFfTqwXCaxIhfReh3Px9uwJSVaxCLzizay39lJxoYGMrYGcW9vwbeyHntzN2prN3qoE+/WVsSAPsgeheD3oXjcRD0WnaNz2at7aD21L63nD0UkLTLfrUrXNS8OEC3MwOwMIg4aiKvN4KxDh3PmGYfiVFXsYQvbO63MGXM1e+ubUaqbsTWFmJLd+1uz27dfAf1nHcqLNY8SyMvkuld/y4w50761hhes3cRzK9d/f839m/FT3WPbpZSXSSlHSCmHSykvlVK2SSlTUspdP/cg/4tv47cVM7hz+Gw+uPQdjvWeSXtDEMuyaKpu+ZvPPDX3Je46+yHWvPvjP6r2hiAzc8/hohG/4/ieFqtXP4IQTqSUxCNpJiCEILc4mxOvmL5f9bFjzVIWP3Qep5ae+z1mIYRG1Y4z+GyRH2l9m+ncf+HjXDL6Gla8ecDTWrZNheR7eHouBCvNWLattYG5h50bNrL+vb8gw39AyhS/OaaYyyfcQqitHa97PTedmeSak3tz6Z/qOGduurb24In999N2ehzpCOiUxe+nV/Ls7R18/EraDdXUTV6tP4/ntp5AryE9aKtr54xBm5h42j1MnjWBj19cQXdHhFBriMsfPJL3Hv+IRfM+JBlLn/4Fae+uUFuERU92YrND1aYAiq2I9oZOfDle3n7kAxQ1rX68ddZ9bPh48/dKpUpT4vI6ue6V3zD7llNwehwcMfvbp0hvwEOfg3pBIsmQ0j0ou6uIVdcR7joQ+d39xmY+vaP1wPegpPutXFPF8ZdN5crHLyIVTZJdmOLqJ3bRZ3g0re6R4FvRhCklgw4b9PXTODMOJLMUqgAE65b5COSkQFHAZmPItFEkh2TTcXgx8RIvqXCUjR9sRcmrZdIJBkpTWrKZcOxISmeMJTW+Aq0lhdaWYPKMcXReNIDSgIc3n0nXpv7/2HvrwCiu/f3/NWtxd1cghAgSJLi7U7zFihcotLgULQWKS3GnuDuluHsgQCAkEAJxl836zu+PpaFcqNze9n57P78+/+3sOWfOzM7s+5y3PE9+Eyck+cWoAs2QiCAxgDxfi1RrRKoVsb6dRT1XN2S2WmxfSikpa48xKRljgZLH8QJX14SjdLZEVlRCSWUP9FXLI7GyxGguR+tohlhcgmhtgSCRIjMoUBjkOOyNxTxTBVIpokqNAQNSB3uwsaQgwgWHyEAk+Spkcgusk3VIC3TYX0nD7LUSjEY0tmYYrKUYLGSIchk2dlZElfeib+domjraIMkrwTq/CLkAzt62SG1sCGxSkY51a77zG0+Y1Jbla/rh6uOMRq3j60Fr+X7GXm6djCltM+/EReacuIDB+IcdO78Lv6VHcfjXvhdFse2vff8P/ho4mtlQ2yWUB243cHCzQ24m5/uv97Fl6m6mHxhLzXZV3+vz0ajW2LvYUrHhr7vALG0tCa4UgFewG/lZhdg4mhT1Fg1cxYn1Z1n/eDG+IW/LXUT9KxDV+PrsZPicFNJeKtBpdPAz3zlAwy4ONGhhi2BrCoQb9AamtJ2LXmfaES39bB1htUOwd7EDiY1JnhUVgvNJ8jIKWDl2Im362nH5sAM3ztxj94uRxF1PIO3lK7zL2rHyohsK4x4U5j1YPTGN1VO9aNXHFHWt0TqKzOQc0p5nEFm/As5ejlw+cJPslFxcfZwZsrAPZaICsLa3xpDTEgsLLaM3HOXCrptoVZkUp8zm0SUNDm4u5GUUUKV+IY3a3uO7L8xQKzV4lfUgJT4NGycb3MN8eX41juAwDU/vKXiV6EFk/TAsbW5SmP0B+g7g6uH3ky+imkcyv993PLz8BIBbJ2P4+KuPyEnJ4+TGMxTnKUnIe4EALPzC503SuAEkAlK5gEwuw8zirVtSZiZDr9FjZqlAmVfCoWUnyUnN5fK+mwxb5Et0ixgKsm1Jne2CyliMk7cOnaaEhzcS6bqgD6e/PYBboDtpCekUZBaUBtBB4NFlc8CImJKGszwAY5EGx9gcjBYyUy0H4HgwmDPu5kz7cSLikwx2XoxHF/uCZi0rkZ+rJuZpFpUbuTB6RH16BQ3FIr8ETaAdHgkKUhoJSKUiueWk2CQb0ahzmDBGTcLVBH6Y70jiqMPov6iMxlrESqVElpyDzk1NdoQPFtkKBG9rZHFKdEI+NtcS0VtZomxYDnmhipxuYejtzbB+rsY2W4/BWoFoY4lEJkWhsIBAKwr85Ni+MCCUSBE0GjJkUsILjTxVqHEtNmB9Mx2zYtBam4PRgCHCHY01mDvZ4hFkjq+VE199uoGZ6z+lXf9G1G9TmSpNI5BIJBj0RpZM2E21RhVKf6sz956x7dxd5n3aChc70w5RrpAS0TwKVVo2FRu8bbux30foDAakf3EW1G/FKKIxFbztwFRc978Zif0/iqGL+zJ0sSndNqRqMP5hvniVcf9g24BwPwbM/eQ3x7S0sWDlnXnvHXcPdMPV1wlHmy0YlX6cPeCNpa0F1auNQCAHM+f93DwoUK1dU+ycbd/rL2ougvYiaG+BzA+NSsutU/fwKetFYKQfz++/5MqBm7Qa2ASc9kPRtwhiEYKsErlZL4iPseLqCTmh1UUSHunYOf8e/cZc5KtNUVSqeRmFogOoBTp+5kBBUXsOrTjJgdVawMiuuQfJSc0DoHLjCPIyCvju9lyUBSX4lvdCIpGwbvz32Lva4urWncdXb6PSrODExlSmbHGnduMYkuPc2LZQgW9ZFdM3JSGz/ZKOn+ewffZ+UhPS+f7lSpw8HVg/YTtVK50hOMLI1wPdcQ90Ij8jv3SXZWFjjlajw6A1GTFLOwtKClRIFVJEgxGjQcTKzpLc1HweXX1aev/yMwrYPnv/h4v2RAEbFxucfJ2QGQQSYl5g0GlJ+5kyn6O7A5kvs7B1tqU4vxhVoZobx+4B8PCaHZf2l+NZjC17Mtdxcv1ZqrWshEalZfzsw3x/6iFtOtfkx7Xn0KvfVpOXqxbM05smh8JPEq+vn8bhUSIlH5Co9GAmBY0B/7JeJGqUuDvY4tJxL851d7OgUSi6556MWtqfg3tvcebAXVbPPETrATZUCn/MkqvB5GTaUjWnhNRVT3GtHUmmVqBsDxWbtDJatTLABnskHu6EPdAzc0E3JnX8mkIzM4zmUgS9EVl8BhWKZbQa1oblm88hWpojWsgxu/wEM5kVSjdPjBoDjf1deJSZSq6dOYpKngjZBkRBQMzLxzxNRpG3HPs0IwZzGaJcyovYeMwLlaQ280PVLRCvVXEYg72w0IlkW0gxygVkRRoeyYyUD3CmVtMwtCVqRnVZQpOu0VRvaaLhyCtQcvrsUx7GZ1G3ZSQAlx+9ICYxleTM/FJDIZFImL918Hs/fbj3h9/3Pxu/xfUkxcTF1B2IAI4BO36ewvp3w981Pfb/AkRRjZgRgYgjzT19ECQCvcZl0WFwMAnPRxBZz6SHsXfREc7tuMycU1NKaTxEUQu6+yCvjCBIURaWcO3QLaq1qgwiXD5wkwbda2FhZY6oTzZRmctC0FjsRq9O4PmtLVw/40+fKZVp7zIfuULCwWf3wWo4qPaDqAIxH6xHIiiqoCk8T6+IJ9g5m8j4zK3McPRwILpdFOvGfk/fWd3pMbEjAM9jXzIocjQW1uYcKthiEmo63pAv2zogIrD2VkPi7rmxfMQBrO1E6rfPJ/FJGNMOTOXc9/tZM+4wwZVDiL0UR8UGYXTqdwSjHqb2CeDTqZZENp/EiGhTxXuNNlV4/uBlaZwBTG6cn1bo5tbmqIvf/hlb21uBAMV5SsytFKiVWsLqlOPpzUSMiBg0JoPzE1ngz2HjaI1Oo6P/kv54+zuxe85B7v744L3fVRBERFGgStNIIutXwKA30HNSJ/Q6PV0jxyLaWlJ0K57ASH/k5goKMvLIeJn1L6WvIuWrlFC9cSGb5noQ3CWK1xIdXWtXojgxC2ubZyg4x+uULni0O0vZ0PvMql2ZZtM/JcZJyRcN63JhQwyHtl2jSdN4ho+8y/ieIfSe9S3mlmbsmneQwIr+7Du/C7vBCu6cCcTMQYv1olQkvp4YUzJoOa05e3RX8HhlxvIvv2TMor0k3YnH0dOOCjlS9P7uxG67hNHSDH11b4TEAmSZxUTUCaLbZ81ZNOUAeZl5OHgrKUnIpThTBqKI1lGBxMcJHycvRs7owLz+K8mJMxVzilIBaYQHnn5uJOeDtEiDmPQat+pBKB1sKL7yhA4DGzN0fAfysgqZO3gD7Qc2pEaziDfvhciezVew9rNG4y+ltW95RNVJUouCiP8hnZhzjxi1ZlApgeZfiT9MM/4vg5hhMhjfAjNEUVz2503xz8P/uqEwFkwFXQyC025Mt/zvBVF7HyRWXNiXwZGVp/h45HUiayQx9qMgxm7fgquvC1PazeX6kdtsfLoU7zIfTuVb+cUm9i8+xsTtI2nQrRYlRSoGhH9BRP0KjNs0jCPLl7FrQSwSqYKPBtylde9sZg/xJSO1DL1HP8QjqDzuHpcZ16MF3YfHUanmT6Eye5NokpiC4LSXrHRPPg4Y+obXCb45OYmMpCzqdo4uNWLf9ltRKjK049UqnL2cEA3pzOy6mssnEmg7rAXNu4QypOrXb+8D0Pnzslw/+oDCXBllqlXh4aU4U4qrqMXSxoiXvwZzazmhdbqxb/ExUyYVmRypAAAgAElEQVSTACHV36+/+IkdtuWARqiVGs5uv/zOcZkC9FqwdbahMLuotJ9UIS3dnfwrXP2cqdamKke/O2UaR2fKhlKYmepAJFIJ5pYSSooNVGoYxqQdI+npNwS9To9ULkWn0ePk4YCLrzNmFgrun3uEKIr0mtaFLdN2v3MvND7m1PtOxHXfa/adDMBMbaBK9XJ0Ht2Wyo3CiT/blODQJGIfTmbqxxdQZhWAKODXyIZycwu5WByMv5UnL56lM8W7Fxc2nObW8fusf7yIiS1n8/RmAnU+jubStmuEtfQi7oUVbg28Sd14CVQ6ipuWxynQjRafB1PZMYBol7IUl6hp22QcQnwRkpwiAiL80GgKSC82x+hqhxAgh0OPEd/Updj7ulJslCPFgOZ1Ou2m9cDXw4plg9YCYDG8JoeXjCL+7gvGt5uPMjsfo+ZNgN9Cjtrbls+/6cWixUeo1aE6N/bfRXElDldfZ8ZtGU5E3VA2fbWTojwlw5b2eydV/vMrBzny8jHrakZS33wUmDViWFNbnt15ztbnK361yPXPwn9CM/6TgWiFyUj4A0uBv51g0f8Z6J+APh5EDfwNDYWgMG2P63cNpn7XWoiaK2TGr6B87do4eZkqq6fs/gJVzkls7E4jip+UvhDZKTmsGbuB2IvxjNvyOYXZRUTWDwVMMYv8zAIK0mIR9cm8SrAm42UeodFl2bPSiwr12yO1Enhy6ybZaVpunU3G3smeijVuEByaA4BWa4FCkQ9iPiJSbv2gY3KbIQxe1IfvZ+5FKpdSsUHYe8JRHYa34N7Zh7j5uzDjowXMOjaB3fN+xNLeBbtgLcd23+bVrc0mCvI8M3RGEQsfJ+7+GIMgSHD2cuKb45N4cPExoxtMAyQU5kpw8gkk7mIyD64eZPSGz5jbaxmIpvqLwAg/nj94WTqHn4roek/vyvMHLzm347KJ4+nNcb0W7Jx1qIryMSUbmuDh78rreBOtiFQmeVOLYUJI9TIcXX4CAL9IP3RKNeoSDVWaRqLML6FOp+qcv/2K61cTcQ71ITUxg5DqZSgbFcie+UcA8Ax2Z9iyTxkY8aXpfIFuFBcosbA2p17XaE6uPwdA1qd+HL4rxW2TBhtrPZpiNbdPxWDrbEPlRuEE1d7I6c27iblSQMVWVbnyNBPLuBe0aRxPG89MrFO6cnH2FWzaWFO5ZjDVa4eUXkd470rE2aaSU+UC3jEKevS7ysJDbXmgK8Grfz1U6y5g7mGPVi5hSJmmppRiIDMxA+m1VIy2ltj5ufDiwUsa9qhO6vYbSEoKMTz7if3YSJshTfEP96VIJyHxykPin9ty9sJNBn7aBJm9Jfr8EqQnkkgdlcUPB29SUqzBPcSHxacm8M3AtcScicUiMZf2bapRv2EE+iIND7w9yGldiQ0TtrN34REi6oZyZNUPFOUWM2Rh73eew0Gh0Xha2lLNswqo+yCYt2DmYX+yX+f8V4zEb+G3XE+bgTDgBLBTFMWH/62J/VH8HXcUojEPMacTmDVDYjvu19uKWhC1CBLrX23378CoOgHFCxEcViLIgv+0cX/1nJn1wJiG4HoTQWIKYHf3GUB2Sj4ztr4gpMkZHFzt3umjLzqEUDwGwbIHgu1UivPyObnxPGvGbOervaOJblOF+NsP8QmMo6PHfmwdDQyZ8QpVsZQSpYQTu0JYfbMfiZeHkZlqw9qZYeRnFTB283BmdVsIIux4EoRe2glXb0i4dYYRDe/RZmgzDi49gYWNBaoiFWtjFzKm0XQcXTIZuqIPP+7J4eQKk2KdCEjL+dGsczqPdhfwOsGCQ4VbMbc0QxRFDq88RVLsS24cj2HK7lGlLqfPlvTDN9SbhQNWkpFkIq70DfVi9IahfFl/aqlYUpkqgaiVal49ectmo7BQIJFoaT0wjAPL4zDoDHiHePL6SSrRbasgigJPbjwjP9NEL/IThUiVphHc+eFdV5OzlyOFOUVo1To2xC1mxLxd5CUWIb/2BInBgNH4/v+BvYst+W9oRkZ815+lQ9fhEeRO2vN0U3BCIgG9af6iYKqt+Kl6fd2jRdy6fowndx5zdUMWOrUOyyAPinw9EeKSCHHPZMmlkVw7ZcaMj+bTckBjRq0e9M75S/QaVsYfwCgcIEBWm5U/iuiOp6KT2GCwt8Dz2nPadqtNr686I3tT63Lr5D0mtpxNx5GtaDeiJWZmMtKTsrh8+jGHtlyhfdcqlOQWcWz9Ocwt5OxOXYNWpSUrJYchlcbiXc6K2adP8/qpPeM7haH6wheL0xrKNS3Gt1o5jo9Op+fnLRj4aRNalhmLaDTSsXNFBr6JA45pv5AHF+P49thYirPyKVc1GCcPB5ISUylWawirEPDvvE7/FfwnO4pPACVQFhjxs63Sm0xA8f2o5T94H6IGDClgeP2bTQVB8Z7W9H8MfTwYXpooNP5DQ7F30RFeP01lxHcDfpVvRnBYBoZMBIk9O+ceYPe8QzTqGY0q9xhVWzRE5mjH3TOxZL/OoWnv+gBIFA4gCwLzTog5nbDSx9G+hxtFeQOp3Mi0EwiNrsiDiwpgPwEREWxe4E76iyxmHhnPjO7uyK09+H5FF2IvxaEqzsYzyJ3Q6LL4lPPk1ZNUvuoSy7MHieyPTyM4OBMntwr4lffB0taCzqPb0uSTerj5ubDyzlwstC2xsBiPvs3aUkMhlUowPn2Jn0UJuX4K8nOtkclNf06CILBtxh7yMwup16UmO74xbbwFicDVI7e5fvQ2WrUWC2tzpHIpyoISJree846i3rM7z7GweXcn6R7gyuunqZzfnVpKHpjyZhfx6MpTCn8mhmRmaVaarvuTkZBbyNGpdNT5qAaX9l4vbTu20XRyFUYKq3vgbiElo1EA3vlGVOfe6nY8vvGQ/KxCLO11aEssWDp0HeZWZqQlmmRprOyt0OlFwmsEcTMxEelz01y0ah1Ong5c3HMNsfV6ytQRubm1DDo1lCSmMWZSB3bPSUMvBiKxqE3NdiLT9o8hvG75954lS5kZX4Z2A7oRm5ZOcsEOmnaIopdPOQKq+GMtl3F01Q/kpubi6msiBbV2sMbexZYKNcvh6e/KoIqjSXr0isYj2iFKpMTdSODh2QfILRTU6VCN1IR0JvZZTmauksXnpnF87XHib11DpohAU90Jq2lJGMtbYt+6iGLDHZbtX0xYkDtXD92iTr0gLu29zr6FRxkw52MEQSDveQrG/Hxi7ybR87MmpdfS9vJeCvRqznsOIMDB4Rffn78bfkuP4r/LPPV/FILUHdxi+INsJ//5+a1HgGUPE8fSbyDrdQ6LBq2m+/gOhNd596UVRQ3lQ2aiyVKgKvoYKzurXxgFBHkEFw9dw8ImhuI8JUV5SloObEFA2NvV4rd9lpOdkkt02yhTvEB9DgyJIGYhGrIpKRIoyiti5zf78Qx0p3m/hoDpj7NslSBafeqBn/d5DLKGBFez5e75bKZ3+paJ20dy9dAtjq4+TWpiOrvnHy5doVdvGY1ak8HedQFkvrjDiNWTqd6yCq0HmV5mZWEJRn0GjvL2PLmv4upJd/atNRWlSWUSfEPsSH6Sz6pJlti72KJTa5FI374mvaZ2QWbcycLhV9/eN6PIvQ8EkUsKVaWupZ9DVaR553PzvvXZ9NUuslNycQ90JSs5u9TFpC5521aQCKy4+Q2CRGDxoDUgEch4kYFMJiMtKZPQ6LI4uNlzeMVJAApyivH1tGfOjKGkz9TR8/t9ZKarsDF5k0hJTEevkRBQtRCXcjpubJOjMJPRamBjDi47iUFvMKkNrhxIi36NuJGQyKWrDzjVZzsyuZSc1DxSE9NJmuGI3Eak48QuxP34AAcPe+wcrXkdn0qzvg1KFxy12lf7xefpJ4R7uHPz88HYmZsjebNwPb31AmvHbSPrdQ6fLTExKZevXoY9GetL+1WoFYKlrQV1W0Vy6fAdXDztGbF6MOvnHOPH3TeQm8spCPJA72fEK9yXZn2asXeRjpFrBlO20gFSb5yjY5uGPJv9kB4TPiIi2INlw9ZxbO2PGPVGVtycY2L2ejOnoYv6Mq7favYeefCOofBQ2FCi1mEh/b2kGH8P/FYdxV1RFH9VTun3tPkHIAgWv93oLzu3AL/DSAA8vZXArRP38C7j/p6hQFRSvlI+gWHlsPgVIwEmDeyZXRZiZWfJwbzN9J3V/T0KjPGbmpOdHIO1vTmisQBUB0BeHcGsASePGFgyeDWdh2YyZGF36naOLu1398dY4u8kEn8b6jVKBbahy7pCYsxQkuNSSE1I55OvOtNlTFsSY5I4t/MKAHW7RNN79hdEf5TI+Kaz0JS40Weeb+m4Dy/HMaruVwya14iOH+fi5GnHruVugAGpTEqTHt6c3GKKK1jbW7H+8SIEiQRRFDm16RwB4b407FkHM+02nt7K5sIheyrU9OTGiUwa9qhNXkY+ljYWXDl4i+qtKnPj2F0cPeyRymUU5RaXZjtJZAJGvYiDmx2OHg6sGbOtdI4FWQXvxCF+Eo8CUzHhlLZzKc5XMv/sNLbO2E3sG60SiUyCtb0Vh1ecRGEhx9HdVCme/iKLhQNWsuD8DIba+3Pw293IFFKMBpGIuhV4dPUxBXkG4rOiUUTm0KCiDxVqhXBk5Q+UqRLAkxsJ3DoZw+ovt5DR1YP02naEmMlK03gv7r2OVmUD3i48vHga6atMZhwax9xey5CbyUlJSEcURU6+iCfUyRU/OwcMegMPLz+hQq1y78WTABwsLHgdn8rIulPwCDD57/vM7EaTXr9MbTFiRX8AJnRbhkalpVHfxpjJJWjUOur1rMuzbDWWqSUM+aoNuy4+oE5EILOOjOf60TssGNUJhzlvNeAPrL/Ayi++IfniPZBKkfh5EVQpAOnPFgyVG4UxZ+8oLC3fXRye6v7nskf/t/BbZq28IAjvL4XeQsBE/f0P/gvQaXU8vZVIaHTZv4xmuFb7aiy6NJPgSgHsmHMArVpL72km2nBB4gguVzEXLH9zHLlCzuSdo7B4U3j3r0YCILziTqhwD/TdeXqvBC8HI3IbexRGJbXaVyf1WRItP62KZ9mKAIhGJejjaditJoIA0W2iwHYYO6f3JfaahBknWtKomzMOiiEYir8g5kIoYbVDGLKoD90ndMDR3YHnD17yWdR4BImAaBR5dvc5JUUqTm+5QJ1O1XH2cuRFkS3d132J1ZEEIuqaU6tjdcJqhWBmXsTJLV9jZW9Ol7FtsXUyeV5XfrmJ/YuOAaaspKBIPzx8/dFqHvEi1lQZfXbHZZw9HZm2fwx5mYX0mdkNezc7ZHIpF3Zfeycl1qg3xQnyMgooeJPhZOtii16jpaRQXSrBCpS6mcCkmPeTal5JkYryNcpyef/NN4OKLOi/EgQIbhjOLaMeZ0RUL7LwCHLnRexLuneqw+1lZ0h7nsHcH6ZQuXEEP2w5z7zhGzEP0hAclIVU5s/qLzejVeuo3CgcuUKOWqlGWVCC5Yl0xgxri8Vofy7vv0FyXApalRYzCwWe/s68SC9AZqEwFf0VlAAmEsiH2RmM+2odbtuTmH9uGpf2XufQipO0+LQhX6wd8sHnqzhfSUFmIQWZptjJuM3DcX2j3pidkoO6RPvBjLuHx25gVGqoXLsMUqmEARNbs2b9NaysFDg4WePt78T0Red4nJzBpxXKMHLvJvxivNjz1URSEtKIvRhHwqM0Ul9mM+PYJOKfpCG3NH/HSPyEKlUDPzj3/0X8lqEI+Y3vAf6oFOo/+Dexe/5hNk3eyZfrh/4mEd8fhSAIhNUy/ezbv96HVq2j19QupVtqQfphKdUPoV6Xmr/6vWD3Nbmv7uIgLcsPWzZw5LtyVG2q49653qx/0J9+E56AbheieARBsEAsmkXakyNgO5dmfVoh6uIQc9qhVDbEOSCS4vwS7F0sIF9JUuxTJrc5TJshTWnWpwHXj92h+4SOuPm7UL1lZZy8HDi+9gzTO82nTFQQz24nUr56GfzDfLiy7RIvWpfB6Ukqr4o0FOUpWTlyE/3nfoy5tTmdRrahSpNIbp+OIftVLgeXnSi9JqPeyL0zT4ma+wla9ROKCy1o2VtOo45xXDrTkHJVg1lyeRZatZZTG86VamoDRDWryKsnKaYaBQAzM4wakyFw8XIkPclkdNz8XMhMzsba0Zoylfy5ezoWAIlUQJAIfHt2OlM7zEMiFXD0sMfV14XASD+Or/kRgMfH7mLsFEWjz5phnlrA3oVHeBGbjIO7HWnPM2g1qAkVG4axYdJ2/MJ8KFcpCAfxMsF+JXy/qIjIBhWo3bEGXcd3YNe3ffEIcGXBuWlo1DqMLw1Un9mdY2/OBdDo4zp8trQfrSx6YhVlgzqyBL8wb+RyGUuvzSb+fhIOSSpEAV49TeHQG9dY0qNfjumFVCvD7OMTeXbvBdFto9g6Yw91O0dTq101hteYSHZKLkeV296pTgeYvOsLDq84yYHFxyhXLZiVI9ZjXSWUJu0qU7WfOcW6e3z9aQsiAj1QaA1Ic3QkVzAZ6+9GbuTm8Xt8e3YqDdpXYf4XOxg2qxO1m0dQVKJm+pbTtK0ZipNRTlCIO1KpFLVah42N+Ycu4X8KvxWjePlr3/+D/y6imlYk9mLcO9xF/wlUSjWaEo2JNuMDWH5zDka94XdToxuLvgPVTgSn3YglO0B9FBy3IuhfgaLqO24SgCtHcpjeaQ+DF1jw6eweRLeJ4vaJ/Ty6loVEagfGLDBkmsQZBEBRi8SHP7J/7WoWX28FEjuQePPprJo8f1aHLu79KVslkLzM+oxc1YlGH1+iWZ8GbJ66i1snY6jSOIKw2uXJTc/n/oVH2Lvakp9ZSJlKflRuFI6LjxMZSVlICtQsbdeQPTeyeHozgRexyZhbmbFu3DbsXW1pPbgZ3bwGlsYXFNYKtMVanH2c0L2hID++7jRBFf2o1DAMY8lx0pNEOk3vwLRFuxBupPDZgj7Yu9liYWmOwWikz/SuRLetyv4lRzmw9ATNP23I3vlHKF87hLjLT3j9NJWFF4ag1dgSViui9B5eP3an1FAYDSIYRKa0/oaSwhJE0RS3UJgpGLygN36hPuyYvQ9BEFizoB/+Ps4s/WwdABkvs4i/nUjD7rXp/01Psl/nsOObA/iFetNnZnemd4olK80eMGDmbs/+xUcJruTPpB0j8S7ryfoJ3xNz7hGaEg2bny1j45MlzOuznOtH7hAU6Y9UKmX+uWlskW9jZeI65t+cjZu5yW30Rc3JKAxGmvdrQJNe9Ui8l4SNozXthrV453kRRZGY1DTKODtjbaagavNKVG1eiWd3n3N2+2UKsgqp0aoKLfo3IutVDgrz95NCIutXYHLrb0iISWJr4nJ6TOhAdNsoQqqVYfqjPqgMxcyK2oFMIufe2VisT+RRWe4PQJ8Z3QiNLktodDnuX0ugIFdJXpbJiCSm5nA2JoGCpHySf0ykfbfqPMnOJ+bBKw58/xmODr/uqv2743cX3P2v4O+YHvt3xdCosSTcS2Jf9obS4rM/goLsQtaM3Ur/iU+wsz6F4HwSsWgJaE6ARVdQ7UKwW4hg0fqdfvF3EpnVdRHDln1KtRaV3htXFI2AAUGQYzQa+brzMGTCUz4ZK8EzfCyI+UgsTSz0SQ8fMSBiGnIzOTqNjmn7x1C9VWV2zz+MX3lvSopUNOpZB4lEwozOC0h5lsaiSzNIe5HJ4IpjSs85/+xUQmuWQ66Qc+tUDFPbz0Wn1dNuaHMeXo4j8f5LAiP8SHr0CrmZDBsHa4Yu6YeTpwM+5Tx5ejuRCc1mAWDnYkPBmz8SrzJuRMxrwL7xJ7F8ms/s4xOZ/tECpFIJqmI1lRuH03l0W+b0XkZ+ekGpawzAzd8Fa3sjiTGmepE5pyZTpUkks3su5uK+60gEiYlf6w38w33ACEmPXlG9VWV8QjwpUyWIM9su0qxvA+b2WkZ47VDmnJrM8Q1nWDdmK0V5SgLCfMjJyGfoor406lGHW6dicPd3wauMB3d/jKVM5QA+6vsd+icpyBLTqdGmCteP3CG4cgDKghJy0/Lp+HlLwmqHMKXNHJr2bYBUJuF1fBppiRlkJmcTGO1Lu71Nae7eBMmbhcMngUPJTs3jQO4mzH/m018/cTs3jt1h0aWZWNlacv3lKz7ZsZe2oSEsaPvWiGTkFjF77l6y991GW6xh5uFxaFRaIuu95UT6OV7EvsTc2vw9dcjXJQlojGqCrE18aEajkauHblG+RlmcPN7PUFKrtJhbvDVGMQkp2MvkrFv4A1371ObKvSRuxyQxeVZtsvTJVHGsX3rNf0f8RwV3/+D/LiIbVMDc2sLEqPof4MHFOH7YdB65ojGfr5xnCtzbLyL2tCdW8u9x8onEzqXKe/3KVgliS8LyXxzXtAMxvViT28zh7ulMLK1tGbexMRROMhXWWbRFEMzw9TtB34mpbJztSY3WVajZypK4mxfZOGkH/mE+1GpfjRHRE/n2zFSm7OwOEg8EQcC/gg8R9UN5fOUpts62+FXwKaVLqNqsIvW71uL0lguc3nqB8VuHs3fRMR6cf4RUJkEikVC2ahA/bj3P1UO3Gbqkb+mOolYbNyrVyWPVJCMegXaM31iLrdNWYxVvy/D1g4lqVpGlV79mcJUxiKLI4+vxjG82CxFQVnJDka5EkWZKNa3SOAKFhUhizFkAYi8+pnLjCB5deYpBa8CAAZlciv5N6qy5lTm12lcj7lo847eNID+zgMGVxlBSqCI3LR+tSkdRnsmAPY9JoihPSYPutTi3wxT0z3qVU3r9t07eo6RITVRTU6HlgF4NuHP2IUqnBLqMaYdnkDthdUKo0aoKeRkFfPvdXuYkn8Ep3I60xAxcfJy4f+4RcnPTPRVKBFp6vEurvunZMowGY+l9NxgM5KTm8ezuc17EJqMqVmNla0lZF2caBgfSrsK7HvEbj19yJSePslYKnO2smNDia4rzlBwr+f6DuwrPYI8Pxsy8Ld9NHZdIJNTu8MvinT8ZCY1ax4ZlP1KzQQj+UV7MWvoxAOGV/QFY8WwSL0vi8bIMwNPi71c/8Xvwj6H4/zEGfdv7TxmnZrsoZhwaR1jtkNLsLkGQYO8Qj7ePmsSXH2Ef/J+pcnkFu9OmRxrlK+cimE1FVEQhiCWAEV3BHrSGhrTsr+XKqVyqNA1DzOlImUBbIICXj14hCKDMTURXeBiz4ilgPRHBug8SiYQv1w6hX/mRyM1k77nh2g1vwZ3T98lNy2dm10WlAVKD3ki5qkFcPXgL33LmSGUijy7fZuTqLzG3Mie63nacnG7h5mHLkc2OHF1zFSc3CbZOCuq3r0F6UiaDKo7Gyt4SmVxKox512L/kOHonCwqaByFPKybgUAI9J3bCxdsJvwreHF93Ca1ah72bPWMaTycz+S1flF5nwMXXmZyUXJ7eTCC8dnmmHxjLkqFrObrqB3xDvfEp68Hw7/rz/MYiwqJdMRgMDF7Qm/bDWmDtYIWtkw1NetWjXFQw22btJTUxndObL+Dk6cDO12sAuHHqEbH3klm2aShW5jJyMwuZ8dFCOs38mCAfOy6fvINmWBmqd6vOzM96IkgkdBrVmpmdF5CamIFfuC975h/moy/blLo0pVIpEomEmV0XYutkg8Jczv7Fx5j7wxQm7RiJuZ0FOqMBR0sLVn/U7r1no2WN8qhe57L/5BO6LeqDRqWlILvwg0ZCXaKla7kv8SvnwdIfJ/7bz6GyUMXizzfTsEsNoluYkiyex6dzcPt1Xr3IIjLqfUPQxrMPSconuJv7vvfd/wr+MRR/AYwFk0AXi+C052/J1/RnYXDlUWhKtEhlCgYt6P2e+8onaiUYXlHG3STI8vDKE+Kux9NxZCuk0vdXdD9H2vMMnL0dS1eZny3ph6itjKg5iygaIK8vokVnBGMGo5tu5uk9G/ZmbmTFLZMv2Fj0HKnEnuqtU7hx9C4BIRmMWxJHkS6FV8/NWDNjP6O3tufivussH7ae4d/KqNfmISWFBWQkF+AX6gZFc9ArQ8hNy0fxZvUYEOFLhdohNOtdn5JCFY+uxjNxgw0BATfQmXXAzN6KtkObkfPKiYObilBYVeDmj0+IqOfIgnMnGfnm+uRmcirWr0DMeRO/5oGlJqFHWa4K++MJyDOUKPNLiL/znDVjtlK1RUXsK3hwq70LM46fwulcynv3LLp1FT76og0Dwr+gKLeIxPtJuPo4AZD8+DVfrhuCTq0hNe5HAvwLWDJaZPyWEXiX9cSgN5CakMHFPdcoFxXM0VWnyUnNpf+cnrh73sWYWRvBaS9tW4URu/Ek3w1ZzeOrT4lqWRkkAgWZ+YjeNtg9KsJ1wmMeZSuJrxFNZL0KBFcMYEPcEjJfZTO6wTTObrtEs74NsHWyKZ27srCEi3uuATBxx0j8w3zwCHTD2t6K6nu/QyGRcrnT++ypADKZlGAnO3JT80hPyqTrmPa/+FxJZRJ8yrjj/YZledXozVw7dIvlN+e88/wajUb6156JVq1FXaBkyQ8T8Apy4/WzdC4duoNWoys1FCHh3nTvWZWc5+nodfr3Unp9rcrga1XmF+f0v4C/r8Psfxn6Z6BPAPFfFcH+nhANqYiaS/9mnzTUhYko81J4+fg1CXefv9dGEBQIsreqXStHbWTNmK3v0FN8CI+vPaVX8DCWDl337niKiqC9DXndQbAwkf+ZNSEgPAC/UA/kZm9fUInNCETzngyc+wmVGoXTeXRHkAYhmNVhWItIbv5ohrKgBL/y3niV8SA4QoKNvYFR9acyMOJLVo1cBqrvCQk9yILz0wmM8EOv03P2+8s8vvKUkGpl0Gn16DQ6Vk8x4/whF+Sa6Ygak/vGySeK1iN30rDPRBacG41Oq2XJ4DmmFF/A3NKMb89OY+m1r5GbyUoznwZ80xOr+5lY5KhAhKsHb5ZeU/svWqGzkaPwscMl8n3+nzun7yNixMnLkVObzjOkylie3jZVWcsVMnxDPNkyfR/LJ3oz8eMq+IX6APDo6gxaqA4AACAASURBVFN2zz/ExfjnrNCncDM2gWXXZ7MhbjFdx7anThsjGDNBVOPiYY/cTIZfqBcKczk5r7LpM60LPy49wpapezDoTZTiAMuHvS14k8qkeAS4Mf3AWGYdnfCOkQCY2GI2UqkER3d73HydWftgIR6BphiCt7UtXta/TgJRpUkkB/M20WX0+zuOn0OukLH87CTGrjQV5qUlZpD2IhON6v131Wg0YjAYURaq0OsNb9qnEljWhT6T2pP3hjJFEATu7LvKyVWnSElI/9Xz/6/inx3FXwDB8fs3fE3/G5kOYv4XoLsLTkcR5GV/XydjIesvPQFpENmqtTh7O3Jyw1n8KvhQvvqHV09frhtKYkwSfqHepvOKOsSiuSCvXqqHDeDq50LZqEAqNgxDq9GhMPsZxbKiJmBEcNiAIDHVc4xc992b8UREbQw6sSzLh2/h8v4bWNtbsiVhxZvOnbAFDuZvpqRQhY2DNd5lPdn0dGnp8JUabOLV4wy8y4chOKxHo/UlLTERWydr3HydcfRwYNyW4ZQUqVAXq5lzagrjm83ExtqCqPoyrB3MS0Vb+oZ8jlSSwqarT2jf255dS10Ri/IQ7OaWnu/qoVvoNHoCInxZcG4alraWJD16hUeQG3vmH0ZdrKFG2ypcP3yHWydiaFu/PFn2+eQONFLZOppmsmrM7WXy8ac8S6d38AgA7FxtMTNXcO2NKJJOq+fJzUS6j+9A5sts4q7HU6ejyf8+pe03FOUqqbmsM5fWn2fSogk4uNvTd1Y3Lu27jrlVNFWa9GVhp7VENa9IxQZhhLaoyJE9V8gqVLJ73iEAekzuCEao370m+xYdI6Tquz5/ZYGSMY2mU6lhWKkeA0BhbhE5qbmAQG56Pi9ikwmNNmX2CYLA/ha/raMCfJApwKA3sGveQSLqhhJW+20Bqah7DIY0pu4bjVateyeIDqb4xKbr00lJSGPxoDXcO32f7bP2olGqeXbzGd/2Xsazuy/Y8Xo1zp6OTNoxkldPUvAr7/275vpHoCxSI0gELP/DmOIfwT+G4i+AIMhB+Ov54/80WA0GzUWQ+f/uLoK8HBK32yBY4yZISHuewYL+K/Gr4MO62IUf7BMY4YfCXM7BZSdoPbgJMkkqlGwB2R34maFw9nRkxc25rBm7hTkfL2V1zHwCI/wAkNgMQ9Q1JP1Bf+7eaE6rQb3enkB9HLFgFOlpvTix7j7mVmY4uFogluwHi/Z81W4eOWl5LLs++xezvAYv6MPgBX0AOPTdSdaPn4zqZ8Vwac8zcXbLYfu882ybsZfm/RrSckAjTm+5SHj1Ytr07UW2bhOzehwiJzUXa1spJSp3Ips3IrpVMpi1QhRF1o7dyrldV/jkq854BLqSl1HA190X02dmdxp2r829cw9RF2sQBIEa9X7g+mEn7JxtSHn02pRJdQzuOufyWv6Mj6d04tWTVK4fvYO6RINoFImsF8rFPSZep/5zeuJb3pvKjcORSCRUqFWOx9ee8lPGo/ZNAF694z6DezZle+wO8tLzubTvBrdO3EMqkzB0ST8eX4sn7uYzRINIYbGK4mHVaVuzIlEqBUW5RTTr3YCOzn3Z/s1+ottWxcHd/r37K5FKQPJuuvX9849K4y1RzSKp3602x7Zepm7rStj8G2mlD688wTfE653dyvndV9k4eScKcznHSraXHhfzh4PhFYLLVcwtP1wblFlczMPr8cSce0huRj7Jj18z69gEes/oxoU915DIpFjZmmJy7v6ufynLq9FopGfzBVhambH9h9F/2Xl+Cf8Yir8QouYyonItgt1cE9/T3xQS8/pgXv+dY+oSDWe2XaRiwzC+rD+Vig3DGbepJ2LhPASrjxHkYQiSt+4A9wBXPl85kIDwXw/YbZi0nUv7buBdzpOoetmAFVj1/2BbBzd77JxtS+MDP0FUn8DN/TaxP2bQpHe3t0FLeQQoauJToQULL3TCI9AVR4svEQvHI8gCSHuRSfbrHESjSGZKFk9vP6d2h2qlQdWt03ezbdY+Bsz9mI++aEP265xSI2FhY4GbvzPdhlxCWvQJDbsf5vDyk5zccJZp+8dwfO0Zdi33pG3fh7y8OZxHV0xunSn7vqbn9puk3E2io1UkDk6JNO3jy54FJhrvRQNXU6FWOZ7dec6dHx6QnZLHy0evsLA2FWmJosj2RfYMm6dAatud/MwCts3Yg0FnRJ4rIVOTzZZpe5CbyRm6uA+75x8mLTGj1EgIEoEKtUIoX70MaqWGS/uu03Vse/rO7F56Pzc/W8auuQep0aYqlRuFU79FFRJjkqjZvhrffLyEqwdv4erjxJCFfcjNykcqSKjYoAIfq3VUbVaJjVN2ElwpAEEiEBjpj16j4+DS4zy8FEf3CR0oGxWEg5sdLx+/Zm/m+vfqcmwcTcYgINyHafvHcGL7NVZP209RvpJuw9/NkPrpnqA5DbJQBJlpBf/0VgKj6kyheqvKzDoyobRtVNNIylQJpHqrf2EZspkM+kSQOH3w2UvIyaH5+i00L1uGpddm4+rrRNLDV1RuHIEgCASE+dJnetcP9v0rIAgC4ZX9MLf8kwlDf+/5/6mj+OtgLJgKqh0IDusRzOr8v57Ov4VTm84xv993tPusOSc3nqNyo3Cm74pAzP8cLHoisZv6h8ZNfpLCzeN3aftZc2SGw1A4gVvXBlC9w5jf7vwGorGE14+OkJMdQsUGkRgMBhLuJRFcyf+9ILleHcPZrfsJbzwIVx93Lu67jru/K5un7uLOD/dZfGUWCjM5gRF+zOu7nLPfX6bxJ3UZt3k4oiiiUWm5eugWTp4ORNargLFoBfnZBuz9hnHvTCxx1+MpLihh38KjgMjIb19z9ZQ7Ua0Hsmf+YVRKNbVXfMLJHqtK53SoYDMTmn/N42vxlI0KYvmNb1Ap1bx4kIyysIRzOy7z6PIT0l5kIggmRtjd6etoa/sJUpm0lEEWQG4uQ6fWY+NkTdEbFlkHdzssbSxIefbWX959YgeUCgnbzt4iqkY5VswZ+LvudUmRimd3nxN/+zlrxmwBYPKuUWz6ahevn6bSalATjq0+jXdZDzY+MbnwDHoDX3dfzKV9JmPlH+ZDRL0KHF5xEolEwuerBqDML6Fel2hcfV0Y02g6MeceMvf0FCo3iiAvMxNzVVMERSjmHtvfm5Ooe4SY0wHk1ZA4bSud58IBq2jUs46J2uU/RG6Jit6799EprAJ9ot6v8fm/iH/qKP4fQbCdAJadQfbhwp+/M6LbRtFjYkea92vIkMV93nBLGRHsvwPFb7N8/hJ8Q7zwDTEFO/W6drQN2I6ZxSMOdPj9YwgSS3zCu+Lz5vOR735gxecbWHQqgNDIawiOO0pXmg+vyfh2UBzRbbcxev1QZndfjKOHPR6B7jTtU5/nMUks/WwdbYc2IzDcj4/utiEowh+Ag8tPsGXqbhZenEFAmGmndPZQOPN6L2X52XtUqtWMKk26sXPuAcCUyXRsZz2sbC04sf4MRlEkINyXUV0aYH0nhb1vdhHXj95lyZWvSX6SgnuAK4IgYGltQYWaJr/8vTOxpL3IxNrBiuI8JWqlhlMbz9F+WAucvR1ZN+577JxtCK4ciE+IJ0dX/YCt41tD8clXXRAkAuvGbUNZUILcXE5E3QpcvfAA24vJKB0d0OsNpdoN/wpRFFnx+QY8Al3pNLINkfUqcHrrBQB8QjyZ1XUR/ef05OCyExxbfZpRawa9QyB5//wjLu27jrW9JbU6VKdyo3CcPB25sOsKBdlFXNxzjTunH5D5KpvPlvSj9eAmvIx7TUGOqbbD3sUOMcsWZL9QBCorA1b9ERR1Sw9Z2lgweeeo3/8Q/QYcLS040ufjP2Ws1/GpWNlbvae/8r+EfwzFXwhBMAd52P/rafwh2Dra0HdW9385KgXzxr/aLzM5Cys7yw8GFkX9K0TlegTrQQhSD2RyGQsvzMHWJh5Rcx3BrMb7fUQVIDPFfd7AmDsQ9CkILod4cPEpotHItM3FlKtwCowqEEtK25avUYYeEztSs3019i0+im+IF2F1Qji+9gx1O9UoFeS5f/ExLx++YqS9FWUqmsjcivOLMTPPR6t+mxETEO5LeG0vgsudAOUrsOzGqY0mXu7x20ZQt1M0G6fsYPvXJi2KnpM70cb6Y0a+EeOxc7Xl5IazFOcraTvkXbeKVqNjfr/vSv3exXlK+s/piXc5L2b3WIRWpWPBhemAqW7i66MT2D3/EHqt4Z3dw9Kha6ndqTo6jQ6vsh6MWj0IG0cratSqgOVkOfsuvGDU0C3MW9Kcqxe6YmnWiEU9X1NSqGLIot7U71KTQ8tNfEvKAhW9pnbhizWDGTy/Ny9in7N/0yhCO2+mRptlvHjwknpdar7jTvq6x2IAuk/s+E4W0qb4Zdw7+5BKDcM4sf4s9Tqbfm87Z1vy0vN5eDGOBl1qIQhmCK4X33sWfoIgKBBsxv7i938mjEYjE1t8jYOHA+M2Dfu3+xfmFtE35HN8QrzY8HjxXzDD/w7+MRT/4E9DQXYhPf2HEhQuZ+WtsaZ01p9DfQJU20EWAFamYr+QamUwpndCzFOD25N3+KBEUYWYUc20gnTcZMokkzqD9gIgIhqLmdz6G9RKDScyfZDok8H5bOluAsDMwqzU4C0asIrkJyl8c2oSAeF+tOjfCI1SgyiKZCZnkZmU9U5mzMejzeg54DFF+vOkJ9ni7u9KUKQ/Cy4sQdT1B8EBg8FQKkW66ovNpL/IxM3PBQSoUKscmclZ6DR6tkzdhUQqoe+MbiwevAa1Uk10myikMgnndl6hfpeaaNU6zu24jFQuLdXG9irjQcX6oWhVOqztrfAK9sDRw4HctDzun3/Epim7SnW1fw5LW0u0ah0ZSZmc23G5lKRvT+Z6bifvwtfXie9nHWLXN240H5ZIXroKgFdPU5nZZSGDvv2ErTP3lgaGJRITTbkgkXB5owNWdgKjF3rjV96bwrxixjSYhkalxdrekuHL+lOYW/SeIbS2tyrNtOr8ZZvS4xUbhLHmwQJ8ynn+W8/bzyGKIidOPyQ4yJWyQW6/2d5oNPJ5rcnYu9oy89D4X2xn0BuIvRSHk+cfExmysrWkftdaBFX0+0P9/y74p47iH/xpsLS1oGpTb2o1T0ZUHfxAg54IdgvAssu7x22ng+3M90gDRdEIEnuQuCLmtEPMqmOSijVrA4r6HFpxBbVSg42DNVKnVQhu95D8zEi8jk+lo1Mfds4zzWXBhelsT17FuR1XWDFiA2e/v4Stkw29pnZBKpWiKla/U4uB1A+kfszrd4y+5UZgNJr+jJ/dfU76KxcEmTcXUpLwW9OK8PqhWEb7s3TVMXZ8cwBEeHT5KUe++4FT+l2UFJlEii7tvwGAnZMNPXwHs3bsVlZ9sZlu3oPQaXWUr1EGg87A1D1fElm/AtM7zefhlafMOjqB2ScmMrbx9P+PvbMOj+Lqwvh7d+NOAsHdoTgFirZlseKwuFMcihVtgeJuxTW4uwYLDe4hIUJCXMjGdSMrM+f7Y8Imy+5GgCL98nueeUjunLn3zmzYO/fec96DBFkiuoxth3K1SoPnec0gUf/n2rC0NUeleuXRf5bwJl+0tINmkLC0s4CtgzV27B+NmfO6oWnHNqjTujr6/bYSZ2KdcDXzKEpUcMSLm68gNjbChaSD6DGpE4g4EAkqtjYOdiha2h61sxJQ3Tx0B70dRiDoVSje+ssQ8DIYDy48EfZn5Bk6fwL7FxxDT/vhWDkk2yX54YVnGFP3d7gcKVgsT05Cw+OxaqMz1vx9LV/2xBPCfd9qMgUawtjEGCcid2On+9oP6pfYSIw/j01F/9kFWFv9CimcURTyyTA2McYy53WA8gFg3ADExQLgNB5fTGQJmAtvkrER8fB/EYQfujWGyEL/fyKmfAriowFRY0DcAv4vo7Cp23xsPHcbYnE6It4I+lFD/pJmDTLZHiFEaihTnyI1MQ3yRCHIzdLGApY2Fqj/cx1UbVQJ5bLiOZQKFe6dfYKazapqu3TyCWBWk2Fq548WPRlEIhGS41MwofFsiI3EuKY8jrVu9+AtisERp+H4fdAm2DQsg7nT+uHYinN4fPkFHEvLcfivFdj+YjWsiljhyZUXiI9MQP22dSALiUWZaqVQrmZpJEYno+fhLeCaqjC/zzDUbVMbQa/WAABcjtzD7AOTkJooR9jrt7C2t8KolYOwtN8GgAD7knboP7cn7EvYYWnfDSjiaIt3K0HxskTYFbdFtcaVMW3HGK0lojqtamK969Icz4zHL7+2hDwpDc26NkJyXApsi9qAEkcKgY6OD1GuRmkcC9+pucbSxgKWthbo+OvPePM8ELMOTMLGMTuRIEvUSrD0jis7b0GelIaorLzhgLAhb25lBgubD0/uVdLRFt2/r4CfeuZv/0xsJMZJ2W4wUd7KyFZ230Y81L8KEf2njkaNGlEhnx+1Wk0+j9+QWqXWlHFR3xMnq00cp9Kxn9NxCUmYlLwf+mqV8zxHXFw/4hImUYCbL51a2ov8H60iTlaVLq3rShImpemtR9Ky/lNJrVZTXGSC3v7waceIk1UlZeJmUilVdP/cE5InpxERUZBnKEmYlGZKFhERkVKhpCFVJtKgiuNJwqQ0peU8unvmMall9YmTVaUOxr1pQNmxRESUmpRKEialX8wHEBGRX0w0Ld16nFyO3iUJk9LASuM1fYgL3E7ygOq0cfiPdGXXTSIikgVH0+i60+n28ftERNTFejBJmJS2Tt1L1Q78RbX2LyT/l0FERHR55w2SMClJmJScnW4Tz/N0eOlpenHTnYiIutkMoXbiPuQ0/yhJmJS6Wg+mhOgkUmQqiYjo0o7r9ODCU+J5BXFJ84jLcKG3ATJydrpNarWa1Go1hb6OIJ7nhecQM4pc9zQhCZNSr6IjqJ2oD6UmyolL+oO4mHbEc3KtZ/zipgd1tR5MD84/1SrnOI5USt3PnIgoOjSGAl+FkFqd/XdyZPkZkjApnd/iLNz3rhs0peWflByforcOfZzf4kwSJqUTq8/n+5pCtAHwnAx8rxbOKAr5JFzZeQubJ+3BhI0j0HPyL0KhWScg4zSQ0B8oelrLvv+cnihbvRQq16/wXk0coPYFRInwexGBnfNFmGhpiUoVjNFpgC9qtz2MuV32ICIgDWKxWK/8MwAhgtu0PYws2+Hm0ftYM2Ir+s3qjlErB6NERUe0kjZDq97CZuo1p9sYNK834sLjsX/BCXg/eI23b/xws1FZLDg1AUP+SkOprHVvEzNTVKxTTtPvxKfhcJ10GneyXkwtrMxBRGCMwb7iKGQm1UO9jmqUqVYa47+fDbtiNgj2DIPPQz/81K8Fll6aA2WmCo3a1UXnyBjYF7eDtbEQQ9F5TDsYmxrD9cQDVGpSBdMm74f31qsoW6M0Wvduip3ua7Bu9A4cXXoWvad2RvUmVVHE0Rb/HL+Pe2efYOa+iTC3NAOp3gAZJwB1ALZNq4cnl1+gZCVHeNzxwaGFJ7Hg1O8wNjWG7JUXmrYXo8u4H5GeokZMeDxi38YD/BhUrLNM5xErMpTIkGciJVGuVS4SiQxmYHQsVwzvh6W17t0M/m5BuHnQFTxP8PjHE94P/HBp+w2IRAwD5vbS/xnnoHGHemglbaYbL1HIp8HQCPKtHl/LjIJLnElcTAfi+Qydc3z6FeIzbhWoPp7niOczP1X3PjlBr0Lo95//0rwNExHxvJK4mA7ExY8qUF2+T73I3dWdeJ6nYK8w4jiOeE5OvCqUiIQZgFKh1Lrm2XV3ur7fhXjFE+J5hda5uMgEWj1iC90/+5j6lhpN15xua86p1WqSMCl1MhtAHMfR7tmH6OjixTSlaUfqZtuHwnwjtOrieZ6u7b9NwV5CXxQZCto4bqfmzV/CpOS810XnnrZP30ftRL1p+7jWNPvnbnT72L18PYvbx+7Tg/NP6dGzQGrdeRV1qTmFetoPJwmTUrBXGE1tNY8kTEpBnqGaa2b8vJAkTEp9S42mZQM2CP3OfEC8WkZvXgTSwUUnSZGppBe3XtH4xrMo9HUEeT/yoz4lR9H9c0809cRGxFEXy4EkYVK9M4Sk2GSSMClNajbXYP8VGQpKS0mjYK8wrdnm+5xef5EkTEodTftTYkwSndrmTL/UnkxtmZQy0r7ev/vPCcdz5JPsS0pOmbfxB4DCGcUXgIsAuLcAqYEcy6BEHCh5KsDMwcw88l0dJY4BlA8Bx/tC7uqvjIp1ymOty8L3SpnwZm/SALeP3YddMRs0lNTVd7kWczqsgTwpDVczj6JC7XfREpZAlnbWO0XZnKwethmJ0clo3sITFiV+B7MarTnnULIIZjpNhNf910iQJSI6LHt9XCwWo1SV4ogMiEZkQBRGrRwMogxwqkXwfhoIn0dvULZ6aY29m8srrB2xDVZFLPFT/xao1rgypmwfgw4jfsLJ1Rfg9zwQxcoVRf+yY9GyZxNM2vQrAKBy/YooXUmBMX/JEOCZCL/ANE2dt7wDcOSxO9b2+wUOVhYI9AjBq7s+aN3nBywfuBHGpka4mHIIrYtb49F1GTI5HqYWpjiz8TJ+zEo3m5muwI4ZBxETFgvpjK4IdA9BanwqYsLicGn7dXQaLYGRWIyqDYGqDQX334Zt62Dbs2zdqZORu8GpOUz+4Q/ERSagbLVSyExXomWvplqKqBe3X8eZ9ZdQrlZZlKlWEvV/NBwnNK7hLMiCoqFWqjFgbk+MXDZQr12Xce2RHC9HnZY1cHbjFTi5ekJdrxymzO2lo8P0/8rd2PvYG3wQ0jI90b1058/aduFA8S/B7A8BUOvIjDMmBuy2AQWVHxeXBsQlkXPD9quHjwUyDoNXPMGKQRawc7TFqShtRdgru27i7N9XsPL6fBQrI8gpjFs3DPLkNM2AwKdugyLxMkxLH4JIrCu5wKduxdwdiUhK6wuLIkYAeBARokJisHPGbgz+Q4IqjZqh9g+2OBfRGCZFWmNup2Wo3rgShi8ZgKk7xuL14zcombW8xJg5+s1bggYdg1CzmbbAYeW6RVCmihHK1a6JS9tvwNrBCpe2X8cal4VYcFrQ4ImLTEBSdDKSs2I0AOHLOSLQFGf3/YRuk3+DLDEFfs8DUb1xZdzyCcCToHCExCXCwcoCk5rMgVrFaQL0VAo1Xrp44o9NI+A/rA1kwdFYP3oHXA7fRVRwDNbfWYyZPy+Exx0fAECdljWRmijH4PlS+Dzyw6aJe7Bp0h6svb3QYNa3d/g9C8DrJ/4AhARG/WZ3x8A/emvZBL8KRWRgNCIDo1GjWTX8umIQACApNhkn11xEl7HtUKqy4MBQpX4FmFqYQmwkQv2fDMcUbZu6HzFhcRi+uB8cStnjdUgMLJtURteeurE1/6/UsKmOenZ1UM+uzudv3NBU41s9vpalp28JWXA0zZQsJI873p+8bl7xnDLTQmjtr9vI5chd4nmeYsLjNBuoS/qvJwmT0psXgQbrCH/UgCRMSquHLiKeVxGveE5c5lPiUtYKG7VRDYiTVSVO+Ya4mE7EyaoSrwqjq3tukYRJaf+MVsTzKuJSthAnq0pJYbtJwqQ0pt7vBb6f9PA+xMmq0t2TJ6iDcT/NZvShJSe17BSZCspMz14ySY5LoYlNZtOFbdco9m08SZiUutsNJSKi0PB4cgvIXuLaMHYHdbEaSEMqT6CJ38+hnTMPUrpcewlzRK0pwga2zWDiOI58n/rTvgXHaEGPVXR89XlKS0knnucpwD2Ylg3YQB1N+9Oruz553p9arabzW6/RvgXHaUz932lIlYmkyNBeyuM4jpLjUmjRgGXUocivFBEoIyKiK7uF571n7uGCPVQiGlplEnU06a/TViGfD3xtS0+MMXsAJwBUABACoC8RJb5nUx/AdgA2ADgAy4joxOft6cdDxAGZ1wGT78HExb50d/Ti/yIIL128ULVhJdRtXatA10aHxiItOV2j7goAxMtB8q1g5t1BKm/E+LrhmlMEeJ6HSqnG2pHbMH33OLTs1RTpsc5YeSoFlesanimZFhuPoqVuo1j5akD6MVDqEkBcEeCCAdOfAdO2gMobzKg8YLMApH4NiMug/bBSKFrUFd81rQ5ADGY5GBAXhY1ZFxwN6wlzi1jw8h1gFkM1kuV5Efm2OSK9g/DaNwXFyxdD2Zql4XbTA2YWZlp2i3qtxYtbr3A8YifsitnCxsEaW56sBCAEe4mNRFCr1IgOj8fIQTtQvkJRrFvXH3M6LIE8KQOZaUrIgmLwfccGGLN6CGLCYnFk6Rn0ntoZRYrbYdzaYfB+6Iu+s7pDJBKh+vdVUL52WXS1GownV9xQrkZp/NC1MSrXq4A/jk6FUqECy9sTFGKxGN0ndEBSXAqe3/CALDAabwOjULJicc0SkEgkgo2DNcpX9odvUTVMxG8AlEDbQS0hEovQvJsgFxQXmYBFvdei19TO+Klfi1zb3e62GmqlWm9WukK+AgyNIP/mAWA1gDlZP88BsEqPTTUAVbN+LgVABsAur7o/54yC51XExfUhLnGWYZtMV+FtN3HaZ+tXQeF5nnyf+mvcKgvCoAqCS+k711MiIj7jRtY9zyYuujlxsqp0eOkhCn0dQV4PfGlYtd/I854PqVVqeni0O7mfq0/txX3oyu6bmjqcnVxopmQRyZO0XTJ5pR9x8cOJy3AlPv0S8TxnsG+RgVHk8/iNwfNc0lxh9pFxja4f+IeuH/gn13vlOKEtWXC0lnun68mHgmvmugu0/6/jdOOgK20cv4uGVplI8uQ0UqvU9PK2p9bzjQ6Nod6OI6mDST8a12MtOe3+h57f9NBsiI+qM41+KjKMBrddSEREh5acIgmT0rnNV8nN5RUdWnyS1Go1qZQqrWd0cds1kjAp7Zt/LPuZ8Tz1KTGK+pcZk+v95bRvJ+5DEiYl32cBJGFS+qPzMl07pTfx8r3E89n3dWT5GTqw8AQREXk98CUJk9LaX7flq91Cviz42mYUALoDs5GR1AAAIABJREFU+DHr5wMAXAHMzmlARG9y/BzJGIsBUAxA0ufpYn5QASofgHQjUDUYNwLMh4JZ5J5560vCGEP195LM5JdeU35B+BsZLKxzBEuZ/gjYLAczbQPQOIDSMejP7JnKu0RBxCejaXtbeLkNgNjoJcwskkDEgzER7p15jJcunoiNSNDSjWLG1cDs9+Wrb7PbL4YsKAZnYp00UhQpCamY1mo+Wvf5Ab+MHAwH+5ogkzZYM1xIjtN2YCuIs8Tynl13x8k1FzD74G+4tP06jq04h53uazUCgQCwe/ZhnNt0FZyNMXbtuQzmK0yMG0rqYtqucbC0scCVXTexcdwujFw2QOPqWaxsUVT/vjKeXn2JoMtP8ceqARhZYwoAwNzGHH/fGYpu450RrDSGmuPRdXx7JMekoHm3xljYey38XwQh9HUknlx+jgx5Jk7KdqNIcTt0Hd8BTTs3hCJTifTUDM3nUrZGKc195YcijrZQqdQoWckR37WqiaadG+kaGdUEM66F++eeIDYiHkVLO+DY8rNQpCvhee81Vl6bh31+m1C8vP58Dx9KiioDV996oFOpurA1yX0mmK5QYfDGY2hUuTT+lLb9pP34f+JLDRTFiUgGAEQkY4zlmvGDMdYEwi5u4OfoXH5hzBxwfAwww9NlJrICs533GXv1eek1tYtOGaXtBOSbQGa9AJOGEL0v2fEO7i2geoTvGqTjcsJAIGU2SP4WzHoK5h2fhtiIBI3S7IcwYG4vhHiFwSpH8puM1EyEvX6LZ87uOLz4NEavHoK+M8xQu3l1pCalQZ6cBlsHG8RGxOPmgX/gftsLIV7hMDU3gbmVGYyMtb9sKUvWw7hfDfC7PVGmekmYmJrA7dYrKDOVqP/Td6j303do2qURmuTI6jaqznSkZqmlEhEmNp4N+xJ2aCVthl5TOsPc1hQrJoUgyLc2vO76QJGhxPktzkhNSsOsA5MQ8DIYa4ZvBc/xKFnZESHe4Ti32RmD5/UGp+YxssZUiMQi9JnRFaNWDMa6fxbl+bwy5BkwszQDYwwnIndryjfcWaxjG+D9FpOlWzB0cjvsnbgdjDEQETbcXYxVwzbhlasnMqPno0zV5QX70AygzFRCbCSG2EiM8+FuWP/6GjI4FUZUzl2+X6lWIzgmAUWsPjzqO8++cRyMRSKdPBv/KQxNNT72AHALgJeeozuApPdsE3OppyQAPwDNcrEZA+A5gOflypX75FOyfwMueSVxsZ2J51K/dFc+OZz8EHFRjYTlp+gWudumXxXsYnsKMRfpNwzavrrrQ0OrTiJp8ZHk9cDXoJ0hLu+8QcsGbqSE6CTyfeZPw6v/Rk+vvdSc/6vXapIwKUUGRZHUcSS1N+pLPo/9NBvvuTG06iSSMCld3nWDnl1/SaPqTKcIn9PEZTyilRf+ofPPtB0FJnw/i0bWnEJrf91GK4duIgmT0ui603Xq7WE/jCRMSjHhcbSw9xpqb9SX1ozcSrvnHCYJk9KKIZuIiGhup6UkYVLyvOdD6fIMmtLiT2ov7kNbJu+lW4fv0rpR2wxGSxMReT/yIwmTklOOJavcCHz9lrrXnUdnnO6S64kHdGDhcTq94SLxPE9pyW8p3qsucQnj8lVXXigyFNTFahCNbTCDiIjiMlNpu58Lubn7UkJUYp7Xp2UqSKU2vET5MUSlpVDlg6to0p1vPyIcuSw9fak9Cj8AJSnHQGDAzgaAG4A++a37W/F64uKHEyerRrw65kt3pUDwXGq+A/94hRvxqgDdcrWMuJi2xMmdBK+l5BXEZz7Ms76AewPp3IpmJGFSunv6kaac4zitdXp9X+x+zwOot+NIkjApRYfF6q3/4KKTNLLWFFrafz31KTmK1o3aRopMRVadwp5EiE84bZvqRMlxgrxEhH8knV5/iU6uPU/bpu3T7F0oMhTEyaqSWlabas9cT7+scjJ4X2kp6XRu81W9khXOTi7Uw34YtTPqQwHuQdS31HCa2KgXjWs0gxb1WUsx4XFERBQZFEUuR+7S66f+tGzgBvJ7EUC+z/yJiGh841maAdAQIT7h1LfUaK19ooIwqekc6lV0hCYQkueV+Rpgc7Kgxyr6tfZUnQFNpVTR2AYzaHGftZqyhKhEzV5OTtLTFfTSPaTAbX8o8Rlp1OTkZlr45MOe29fE1zhQrIH2ZvZqPTYmAFwATC1I3d/KQMHzSuK5/GvZfA3wfIag3RTb+cOu59IE91alH3GyqvTm3nThrd7ZLR9tc6SWfUfKtw0pJUF7Frb2122aSOWokBg6u6wFJb5uRDyX/ba5athmkjApnf37Sp5tjW80izqZDSDnvS4kYVIKfTZdGNSVfrRl8l6SMCndOnyXiIgmNZtDEialbrZDNNefyooyfn1nNe39fQBt2XSewuLyfvPVR0x4HEmYlDoY96PkuBRSJwq6V7unDdfYxEUm0JFlZyg5LoVG1PiNJExKXSwHkYRJKT01nWIj4nQ0tQoCz/OUlpKeq83sDktoePXfKCEqkTzvv85XvT6+kXT05GPN2/6E72dTN9sh+XKRVSlVtHzQRp3P8+/N1+knyQq6e+/D7/f/la9xoHDIGgT8s/61zypvDGBP1s+DAagAuOc46udV97cyUHyLCF5efYlLnFmAazji+QziuSTiZNWIi2omlHFJdO/sY5IwKR1fdS5/damj9M7ATqy5QIMrTaCY8DiKDoul+weakOptNeLV0RqbhOgkcj3xgJLjU/L8IlIqlJQuz6BHl55Td7uhFP7yL+KiGhKvCqLosFja/9dxjQfTi5seNLnFH3R81TnieZ4mdFlEP9sMoK62QzQDze7JrUge8fsHv+X6vwzSLLHwmQ+Ii+ujkTMhyvaIOvv3FepkPkBYQpp3lLZP35+vNkN8wmlo1Unkekr/rG7j+F0kYVI6vPQ0JUQn5VrX3F+WkYRJye+57kzyfSb9foTadFxFvm+EOIx3XlzvSElIpYOLTlJUSP5n3a88w2jegtMUG/ttvYR9DXx1A8W/eRQOFF8PPJdEXPxoYYBQBRAnqym4o+bYl4mNiPuoZQLXkw9oeI3JFO73NrtdA7pY6anp1MGkH42tP6PA7USHxtDSAetp2cCNJGFSHcVUIqLr+2+ThEmpLZPSlWceRES0+bc9dGNrM3pzqw7xXJrONR+KUqWmVwFvieN4SoxJojMbLlNqopyOrjhLBxedpIToJHI5cjfXfYl3vMhyy3Wal70/kZmeSZOazqEdMw7QqXUXqb1RX5IwKY1rlPtLwoMLT2nZgA2Unpr7DISIKCgklq5c8yCOy/78Oflh4lIFd9p3AZM7Zx7Ms66vGUH3rT3xfN7P5EuS20BRKOHxH4O4aFDaPjDLoWDiD88YVqA2iQP4aJ32KHE0oHIHRMXBmB1Q7DZAcjBRdi7koqV1JTmy6yVA8Q9gXBNMXFKvjb9bMCL8IpES4wEq5wMY1xMy6Zn30pFJMTY1RvXGlVHhu3KI8JcBRChTLX/P6MXNV3A9/hCSoa3xfcf6qNqoko5NxTpC0GGVZpXxS2NB02rQPCn6lriGEhWK4FBQtiunzyM/OJYrmuv958aBq8+w8/xDLPy1Izq3qIVeUwXtnwFzhNweG8buwNXdLjA2Ndao5BqioaQuTkTugl1WTmdOzSHc9y18nwVAbCTGxvtLYWFrgZOrL+hkrXuf5t2+R/Nu3+frHiqWL4qK77vOyjcAlAKyHIUf+wlZ/1pLv3EZDy5SON7TffumMDSCfKvH//uMgpfvE97aU3d8eB08T8sGbqB1o7YbtOHkh4hL3Sz8nLxGaDPz/ns2+4mLH6P1ds8r3IlLWqg1q+CS5hKXOFu3H0oPwSMqfqjhfnAcxb6NJy62m2CbNE/oS9rxXO+xvVFfaifuk+tshufSiFcLMxWVUkWPr7zIU8k0Mz1TE5hHJDzLYyvPas1AIgOjSMKkNOF7w4Ga7xP0KkRrn8ErMJLGrz5JoVH683EEeoTQ1qlOOvs5+WHrFCdh1nTh6WeX1OCVr4lXuH/WNj8Ez/uvaXaHJflaFuN5tY6i8dcIcplRFKZCLQDEycAnTgSpXn3prhiEzKTwD5wJpbjPh9dBhIfnn+HhhaeGjeR/A/JN6FtiKPxfWQLiqoJwYQ6YxUCAjwElZ+ckprT9QMYRQPUy2zDzGqDQk8LSqDpgMQTMclz29XwCSB2m+V0kEqFoKXsw6xmA5UTAcixgORUw66hTXWxEPDaM3YkIfxlMzU3AGNPJNa31HBLHgGJ/BHGREIlF2Dv3COZ1WWH4mUDI0Z0zFwNjDP1n90Tz7tlv2VEhMWjauSF664lByZBn4OzfVxD3Nl6rfMbPizClxTwoM5UAgNqVSmLbzD4oV1x/Po5KdctjwoYRsC5ipfe8IfyeBeDhxWcoVaUEKtYp91GSGrLgaCzstQYB7sEGbe6ff4L9fx3XpJllxjXATOp9cJufi8eXnuPFDQ/4Zgkovk9mugJn/76CmPA4MCYGyyXW6pvA0AjyrR7/5oyCT78kvLWmrP7X2vhY7p97QhImpR0zDnxUPQnRSZQUm0xEwlvy5Z03tDYyeaUfvbwuZFa7eeiO3joEL6k6xMV2E1xl1dHEq2OJz7imJb3Bq2OJV+t3WX0fLqZD1j6H4U3VdHkGTWuzgI69t0n+Tt7i4KKTlJoo19yf0FeeXI7eo7cBsuy2UncRFzeIeC6N1Go19bAfRsNrTNaqU5GhoNREbZmRjLRMcj350ODso71RX+po0i+7jkwhw9787ivp+v5/SMKktH36Pq1rLu+6QYeXntb8HheZYLB+jzvetHPmgQ+aDVzZdZMkTEqXdtzQ3AuR8Hzys9+RE2cnYc/mnaSHPobXmEwSJqXYiLgC9/VLoshQkNcDX4MzUpej90jCpPT3xN2fuWcfDgo3sz8NPK8WEsB8xZtSsuBomv7jAnp52/OT1an58vo9e/Dh+UziM11JkS7P5cqswULpLwywcdLscpU/8aogvddwHEc3D92hrtaDdRRtudRtxCVM1sQ1cOo4So57q7XEEh0aI6RM/XGB1rWKDAW5nnig4+oZ9CqElg3ckJUedaHePsmCowXF2QbairPjG8+i9kZ96cruW7Sk33qK8I+kU+sE99iTKzfrrevK7pt0dW924qrM9EzqbjeUpraaR/LkNDq24myuSxrv1Gentp6vVR4vS6BLO27QjLZC4qKcOlc8z+dzmYSnMN8ISo5PoVuHhfSurice0JJ+66mDST+6f/4p7ZhxQEsZNyc3DrpSZ8uBdGLtBVKr1PTipodBWyLB4ypn0ON/hfTUdDq28lyusStfG7kNFIWb2QWAMTFg2vxLdyNXSlRwzJdcQ0Fo1rURBv7RCx1G/JRdmH4IlLoaxtbzAQg6ScS9BSgDzChbN4oxM8CoHMi8F2DSUrAjAsV1BZgpWHF3nfaWDdiIe6cfg4igyFBqnRNZjdf8nByfgCEVRuO7pmnw8yiNM7FOAIR0m0dCt8PaXnvZhYkY4iMTEfdWWxrk3GZn/HPsAVr2bgrptK56n0HR0vboPFaio65bo2lVcGoOG8bsACDknWjdpxlC3Y+gxU87QKqfwYy1r6ndvDqu7r6FlPhU2DhYw9TcFGfinCDKkoHon7UhbQhLWwvUblEdDdtq5yXYMtkJ904/xoA/eqLbhI6o0ST7czi78TJ2/H4Qfx6bCn+3IDy+7IZND5dqdLRmShYhNV6O7W6rkRybgpE1p+LH/s1hW9QG1g7WsCtmAztHW5zf4gx3F0+06NEE37WoAUD4PHfNOgTHsg7YNnU/AODGAVf0/b1bnomqytcsg/I1y+Rq8y1ibmWO/rN7fOlufDIKB4pCDMKnrAQyzsG66EWMWDpA+6Tpj4DSEzBtrSmi+P4AHw0U9xB0sLJgzATMdmWO3xnIchSgjgAfVQ+syFYw05aa847lHFCsnAM2P1oO+xIGcmIDYMwIJmZGUKks0ai99heSY1ldIbpXd3ywffp+tLjXBAvPzITf80C8fROJ4Yv7oW7rWvixX3OtTG45MTI2wtTtY3XKJ28ZBZVShW42Q6FWqtFpdFvYFLHCtF1jAcUNwEjXO+ryzps4v9kZxcoWhUgsQrmaZfDg/FOMWjkIljZ5y52bW5rhp34tEOIjSLeLRCIQEe6ffQIAOLb8HA4GbtHSHqpUrwLK1SyNMtVK4ebBOwjzjUBGmkIzUPg9DUCGPBOv7vqgSHE7OJYriu87NMCfR6cBELLhTdr8K2LC4+D7xB+1m1fX1J2eko7T6y6haBkH9Pm9G9zveGH0ysF53kch3xCGphrf6vH/7vVkCK+oaGqxfSdd9fXL9zVc0h/EyWoQr47I25iIuNTtxMUNI04Vqfc8rwogXpndPp9+OUvmu2D5wwvC4j5raXS96aRSqihdnkHLB24k96zlrBE1hfXxggR0GSLQI9sriVfHEs+rKTkuhTZP2kOBr94Qr/TS2MaEx1E7UR/qZjdEiE1oMIMkTFqgJZghVSaShEm1ZD8ubHWmJf3W0ez2i3USHSVEJWrkRdQqNR1Zfoa2TnXSrLG7nnpA09rMp4SoRPJ+5EeXd94oUHyL71N/ivDX/7nnRrjf28Kc2F8JKNyjKOROUDBVXr2Odj7RDRQzBM/zmr0AvefVMq0vEz7znrAXkfCbXnsuqj5xsuqajWyeVxNXwETxL269oo4m/ejmYe0N9NREOV0/4EpBnqFa5RMaz6IuVoMpKS6ZFnRfSRImpZVDN1FSbDL9Yj6AxjeeZfAL8clVN5rc4s8CDSS80jvLpXc0uRwRNs83jx0uDIiKJ0REpEq7RQs696H53RbR4aWnKcQ7jO6dfazlVktEtP+v47R88N865UTCPoz/S/17PO/j+9SfJExKG8fvIiJhUOtdbIQg8fHegEJENKrONJIwaYG++MPfRBrU0DKE/8sgkjApLey9pkDXFfLvkNtAUege+39C64oV8OK3CRj9feN8X8MYE/Zl9EAZV0CxrUHph7ILjRsCFr+CWY0WbLh4UMZlEKmE85ZjAcvxYEwEIjUotgWQUEA3XiLwPAFEWsXbp+3HmuFbMKbu71BkKDTlmx4tx5k4JwR5hOLhxecAgGZdGoMxBlNzE1SoXdagPPTz6+7weeiHUJ8IHFl6Gs57XfLun8gegAmgdEWLdo8xZ2soBs8uBZi0AMSVBRPlNfy1xx2pMY/QbkhrlK9VFrWbV8fZjVcgT0rTVHXz4B3cPnIPKQlynWYcyxVDlfoV8+xOxJtIPLz4HBbW5ihfW9gLmNl2EZLjUrH5yQqYW5rpXFOyoqD6n7MvuaFUqDCixmSMbzwLwV6h+bpGuIeiqNO6Fn7oqifXRSFfF4ZGkG/1+C/NKDj5fuJkNYlXvvok9R1afJK6WA2mMN/8LSXlhOd54mJ7EBfXV/hd+YrkwS1p89iRBt8kuaQ/NRnkdOtTExfTMddgunft8hm3tLSN9OF5z4fG1v+d1v66Te8MgeM42jB2B01oMluj/JoXSoWSgjxDKSMtMyvHtSD8x6ef08wOiIiCPEPpxa3sz4hLv0Jc0kLilMHEJa8iXq3t+snz6fTo/CHaMG4HqVXCjO3AwhOaDHbvSIhKpOltFlAHk36UGJO7xpIh+pUZo8ma5/tM0F9639X2HYoMBa0ctpnWj9lBv343TaNMmxc8z9P8Hqs07eSW/7yQrxcUej0VAgAqpRoqhVJ4I/8Q+HiNLAYzrgOndcNwcdd1NO8j07t5zCwGgZgZYPKD7jkmBivmnHeb6jegpPGAcUMwh+MGzb5rWRM7Xq41eF4kEmHqDt3N6NwwNjHWZLMzMTdBWnIGOFUcWPIs7FtZBXcuV8Lmx8sxr8sKxITF4UycE2zsrcHMOoGZ/5JVySydehkzR6UGHfD3b/NQouIl9J/VA53HtIOJmQl+Hpi9qV+kuB1KVnZEbEQcjE2NC9T3dwz6szfObLyCkhWLoXpjYUbTeXQ7vbbRobG4dfAOajWvjj2e6/PdBmMMY9cMge/jN7C2t0LxCrq54WMj4mHjYAVTc1M9NRTy1WNoBPlWj//SjOLf4GME+AQpguw9C6VCSSE+4Vo2rice6MY+yI8IomhqGemDz7xPfOZjA20qiUtZrSMPwnOp/1ouj5e3PenX2lPJ3y17D+D+uSfkcvSe0Hb6WVrU6w8ht0VoDN0+fp8OLT5JPM9TcnwKdbUeTIty5E7ISVpKOikylRTiHSbsG4zbadBudvsl+RbFU2Tqz//A8zx1tR5MPR2G5+fWyfuhL8XL9MuCvMs1UVDexaDMarf4g64v5POAwhlFIe/4mHSN7+9XGJsYa/nApyWnYWn/DbAvaYcTb7NTaSJtL8CHg1TuYGJtaQ0iHpQ4AoAZWAldaRTGjMGsZ+qUU0I/QB0AOL7QEhn8FAR6hCDUJwJhvm9RpUFFhPqE4+DCkxi9WogXYeY9Me9UdygylDC3NINjuew3aMYYTMxN4FgqA0QqMJY9E8hIy0TvYiNRvlYZzDsxHWNWD0H333SlRgAg1CcCL256wNTcBOVraccZeD3wRbkapTV5wGXB0RhW5Te0G9YGM50matkyxnRcZfXx5MoLXNhyDbMOToJdMVtNeXpqBu6deQwLG3Mslq7D1J1j9M5IVByHbqsOwMYnFv2b1kHx8sXw5kUQ6v9YC9UaV0Gt5tXRsF3uMRWFfL0UDhSFfBSk8gHJtwFKD5ib1McMpwmwL/le7IPFICDjJJixrqooYyKQzQodpdc8MWkNiBwBprsZq4+4yARc3X0LXcd3QBFH21xte03pjBY9mqB4eWEAiHgjQ9CrULx+8gaN2ws6RCKRCOaWZkhJSIW5lRmMTYQBwbqIFU6FjQElDgGlcGC2f2nqNTYxQpX6FVCuVhk4/XEE9848QYU65fB9h/o6fajRpArW/rMQFWqXhW1RG0253/NATGs1H993aoDlV/7Ao0vPcWzFWdgVs4FDKf0xJzm/+A3hevIhnl13R4hXOGwcklDhu7IQiUS4uvsWds44iC7j2sHKzhJWdgYGZQLSlUqoT7/EtqPPNcUnVxvjasZR/H1/aZ59KOQrxtBU41s9vpWlJy5xOnGxvYnn89bP2THjAO2Ze/gz9EobXulBXPIq4tQpxKedJF6lu0nJpawV3EFltfPcmNa6Tn6AuKh6xCt9PqxvPC8ojebj+RERHVl2miRMSmc2Xi5QOxzH0SLpGto4bqeOm+o7KY2cSyqv7vpQcoyfsPGf7qwpV2Qq6cWtV5rN6xCfcDq59qImAVJ+SUtJp6X919O5zVfJ2ek2rRuznSRMSm4uH+fw4HHXm3o7jqQNY3eQhEnp/BZnig6LpdF1p9MfnZfRxe3XdZYZX972pB5FhtGeuUeI4zjieZ58Hr8hd1cv2jZtH/UtPYqW9Fv/Uf0q5POBwqWnrxD1G0AdCoBDbhM7IsL5zc4wMjHCr8sHfbbuAQDJdwnRxWJHUOpywKQ5mP1+LRtmOR7eL8rgmYsag+b1Rb41MilDOKD+sM5lOiPaeyb83/RGywGL8lxa6TK2PSxtLSEZ3KpAzQR6hOLemSewL1UEU7aP0TpnYW2OyvUroEZTQSrD73kgprdZgO87NcCyy2chJGgUOLvxMvbOPYop28egy9h2HyRdEfEmEkXLOODPY9MwrfV8eN33xd8PlqLnpE6aXBgfSqZcgeTYFKSlZMC2mA3K1SyNmNBYBHuGoVzNMtg0YTcq168AeWIaipV1wILTM3Dz4B3Ik9JwfOU51PuxNhq3r4eaTasCAOq1qY3x64d/VJ8K+XooHCi+EMzhDEBqsDyWXBhj2OO1Xku6+nPBbOYByo4g03YAKcBMW+jaiCxwcJkvXrp4oVmXJpovCgAgPh1gJmBM989MZDUWZDkajH3gfRnXwPoZtfDy7mtsqhyg1a4+bBys0X2i/v2A3Pjn2H0AgJmFKVIT5Vqy3RbW5tjhtgYAEBMWi2DPUPzYrzl+HtgKlDQVUNwEirkiNlKEp84vUaG2DcpWK7jcdIB7MJ5efYl9847hh26NsfDsTIxdOxSv7vqgTLWS8HcLRoXvyn3w/tO9s09QukoJnE/cj61T9iE5NgXKTBUa/FwHBwO2wL6UHSrULgNTSzPsmnEQidFJuLzzBm4ccEWPyZ1APKHWD9U+qO1CvhEMTTW+1eNbWXrKL7zSh/j0Sx/lrfSp4Xk18Vy2Z8zbABm5HL2nHaXNJQupT+MG6F6vjiU+dTvxXHyOsiji0y/keymJiMjd1Yu2/77/X0muk5GWSS9uelByfArN67aCVg/fQhImpRc3PfTaz8+K+n6n2sslLyIuuiXxXAK5HBFUWLePa01pQXUK3Jcx9X4nCZPS6Kx/R9SYTN6PBCmUNSO3koRJ6fHl5x90n1EhgtLuyFpTiYgoOS6FHl58pjcaXK1W0+WdNyjEO4ziZQl0bOU5LQmRnAR5htLEpnPI64Gv3vOFfH2gUMLj24WL7SwEreURcPY54RKnZ/UpwKANz2cIfU+ap3sudYdwvXyvbp0Ztz+4X4oMBTk73f7g4LScLO2/niRMSrcO3yUion9O3KcBZcdSoEeIxkaeJKcjy85QVEgMeT/yowU9VunIXiTHpVCoTzg9ufqC3twZTGmRueec1ofHHW86veESxUclUr9So0nCpPTHL8uISAg0XNp/vVZujYLAcRwdW3GWnl3/tFnlbhx0JQmT0ok15z9pvYX8exQOFN8wfOYj4lL3aCX6+WJ9UccSFzeIuISZxMV0yHeyIc31vODrz3PxxMudiOcSs88pvYlLXqmVIrWgvJ/0J8I/ktJT9ecOuXHAlXbPPqR3phbmG0ESJqUe9sNy1S+6tu92Vnv7yeOON0mYlP7ssly4H1UAcVFN6diCXiRhUoqLFGZgPM+T07yjWvkoCgLHceRy9N4nETLMi2DvCLq05zap1QX729s0aTeNaziTfJ8FkFqtJnlyGi0buIGeXHX7ZH17/eQN9XS85GNCAAAfMklEQVQYTreO3P1kdf6/k9tAUbhH8ZXDTJuBmX4lyeW5UED1FDDrDlExPalLc4G4KFDsT4DZLxDZrQMsR2SfI17Yy7Ce9VFxHs26NEKfGd3wy6i2iPCXYUT1yWgoqYtVN+br2B5cdBJRwTHoO7O7Jh7hHSUqOqL7pI5o2Lau3ojzd7Tu8wPSUzLQStoMsqBodBz5MzqM+AlECpDiEUAJqNOqIVr0qAgbB2FvIz01A0eXnYVDaXt0Gtm2wPcoEonw84CWeRvmkydXXoBT81qpWt+xY+4xuN/1ReW65VDz+8o6589uugJzSzN0+lX7PvzdghHoEYJSlYtDLBYj1Dsc/xx7gEy5Ak06Nfgk/c6QZyI1QY6UuNRPUl8heWBoBPlWj//ajOJrg1f6Ec/rKo7meZ06jrjo5sQlL9U5x8kPCMtOabr6Q3nWy/P04MJTHV2itJR0mtF2IV3YpqszRSTIW3ve03bN5XmeEqIS9dq/f21Ot9aE6CSSMKkmTSqXulVwGZYfEerlkolX+WvsvR74Uujr/Oltedzxzpf8uFKhpLunH5E8OU1Tdmr9Rbq2X3spj+M4CvYK08ykOpn1J4lIqndmFfAqlM5tv6lx6c2JWq0mCZNSV+vBOucmNZtDHYz7kjxJyH7I8zy5u3rpaGx97L5bQV2LC8kdFC49FfI54ZWexCWMJ14VbthGHUe8WkgTySvciIvtQbzS26C9Ibwf+pKESWlOxyUf3N91o7bT6uFb6MjyMyRhUrq4Xf/gQkR0fouzIFU+ZJOmTK1W08ZxO+nyLiHPNKd4LkiqJ84Sfo8b+MH7TN1shJwVapWafvvhDxpT73e9X7DOe11IwqS098+jRCR8ib5bPsvJmY2XScKk5OwkDCDHVp6lU+svkSJDQWtGbqV757KlVNQqtSZPOs/z5HLkrpagpOc9H/J96k/vs3HcThrfaBaFeIdpDXLxsgQ6vuo8pSSkksuRu9RO1Oc/mQb1WyW3gaJw6amQTw5l3gIUt0BG1UBQgllN0XEDpvguAJ8iZMMzaQBW9FyB2vB64Iunzi/Rd2Y39JjUCS17Nf3g/t498wicisPM/YL8xe7ZR9B1XAe9tk+vvQQALeE7sViMKdvHICokBhObzMaAOe3RvHkGwEcJBuZdAWYFiHXF8vJi+u5xSJdnQCRmkCelIDNNhXtnn8C6iCUa/JydCrVxx/roNKot2g4S4kRMTI2x9p+FMLfSjlw3NjWC2EiMzLRMKDOV2Dv3KGyLWqNRu7q4vu8fRAZGoWUP4VmuHr4Ft4/ex27P9VAr1VgxeBO+a1kDG+4uAQCUrFwCKfHZSz9xb+NBBE28yfhGsxDwMhj732xC6SolcXnHDRxafBpmlqawLWoNsbEYYnFhpoNvgcKBopBPDrMaB5g0BaWsBzgPwPRnwOS9PBhmHQE+FYD+fBd5cXDhCbx08cIPXRtj4qaROueJTwUyTgJmXcDExXOta9/rv0FEsC9RBIPnS2FlZ2nQdqbTBPg9C9S71h4ZEIU3z4PgcTcMLXo818iLiCz6Axb9C3iHAm36Cjna+ZS12HXrOjjLvehSZB2s7a1wNm6fxq5oKXtM3zVO69p6bWqD53nMbLsQDqXtMefgZNg52oFTc7iV6IJicluMXDYAdsVtUfG7cph7eDJKVyulub5Gk6oI8giFbVFr2DhYY9jiflCkK/Bnl+WYd3waZrZdhHDft5j49whc3eOCqOAYcGoOl9OOgDGGoQv7wvOeD0pUEPJbdBnXHuZW5mg7qBWs7CzxYz/duJxCvk6YMOP479C4cWN6/vx53oaFfBJIHQKofACzTpqNaOLiQKlrgMwLABhYcW+ATwQlDATMe0BkNf6j25UFRcP3aQB+7Ndc7wY4pR8HpSwALMdAZD3jo9vLLxH+MpSoUMxg7u0Phc+4BMj/BiuyCy7HI2BdxBJNO+ed8EelVKGH3XAUK2uP/X6bAQC+Mj+sCF+NxkUa4reqEzV2nc0HwbaoNU5F7zVY36jvpiHUJwKjVw+BsYkR/N2CYGRsBOe9Lmjd5wdY21th6nsR7IV8GzDGXhCR3sxmhQPFNwbxclBce8C4IURFtnzp7oCP7w+o3MAcLoAZ1xTK0vYBqSsAiAHr+YDqJaDyALgQwKwzRHYbsuz2AGn7wOyPgxmVLXDbbi6eKOJoo1e+QphRnMiaUZT4mFsEACgzlbi2/x8cWngSq2/9pclT8TlJjEnGP8fuo8OIn2BpY5Hv69JS0iE2EsPMInv5LzJDBgcTe5iKhTIiwqYJu2FbzAbDFwuzn8ToJESFxGqi3mUhMRhaSRhYGGO4rj4Bxhg4NYeEqCQUK+PwqW61kC9AbgNF4dLTtwgpAFLlbfcZYNbTBVdQoyrZZeZ9QEo3wKQxRJYDwcefBzgZUPQuWM51ei4K4GOzNJ8KRmqiHLPbLUaxsg44GrpDt18ia8By1Afd0/vwPI8BZceCU/NIS05HeorQ32fX3eH9wBdD/uoDsVh3CY2IAOUDwLg2mEhb2ZXPuAlkngOzXSX0NR9c2OKMI0vPwNjECF3H699D0Ye+QaWUeUmt3xljOlpWi6Rr4f3AD06vN6Js9dJwLOuASvXKw8rOEv3n9NTM5MRGYs0gwXEckmNTYF9Cv5JtId8mhQNFHvDpxwEuEsxq2kf5+H8qmMgKcHz+VfQFAJhJEzCTJtplIiuwIpuzf7c/ClJ5gSmuABZD8W5fgln/CVjPAMunVHhOrOwsMXxJf5Sq8vGzhbxgjKF8rbIwszTFX2dmaLK07Z1zBIEeIZAMaYMyVUvqXqh8DEocCZh2Auw2an9mmecAxS1AHQSY1MtXP7qMbQcjEyO4u3ojI02BvjO6ac6pVWrcOfkIDdvVzVNGPSk2GbZFbfL8G+o2oQNKVHDUyK2LxWLszMoiyHEcprT4E8XKFsW849M01+yYfgDnNztj4/2lqN28uk6dT666oURFxwILIhbyhTHkDvWtHp/aPZaLbiG4Nn5ExHAhRFz8COE5Kp5pynguhfiMG8Tzgj88r3AnPr1gMuBfCu9HfvTytic9uPDUoA3PpRCXOFPI8CerRlwOyRKeSyFeUXDZjOT4FJIwKQ2r9ptWuevJhyRhUtpgIGPeO546u5GESeno8jP5ak+tUtOtw3dpXKOZFBuRHavi89iPOpr2pxE1p2jZ3zjgSiNqTKbIoCiduqJDBV2pX2tPzVfbhXxeUOge++Ew+wMAn/rJs6j9VyAiUOoygNlDZD1B5zyffhxIPwpYzwMzaw8YZ3sLkXwrkO4EZrsGMO8OSp4GcBGASVMwseGI6C9NbEQ8pjT/ExXrlMMuj3UG7ZjIGsxuNUjlDYIpAGOtc2RcF0SU79nh9mn78fjyc2x6tBx2jjYIehWKSnWF/ZmGkjroNeUXdBz5c651OJSyR/EKxVC2Ruk82zux+jz2zDmCH7o1RoBbMGLC4lC0tLDEtHvWYaiVakzfo+2Y0G5oG7Qb2karLCU+FdGhsahcvwKGLJCidNWS2DB2J7qOb48q9Svm694L+cIYGkG+1aMw4O7zwvMKIQo5qkmOMrVGx4lLnCnMJPQE0/HK18QlzdHkvuYz7xMnP/xVKeXqQ60SAuxuHHAt8LWpiXLaOG4n+Tzyo/5lxtC4hroigWp1dqDbOyL8I6mjqRBFHS9LoGUDN5KEST+JOqssOJpe3dVNIHVx2zXqbjeUfJ/5kyw4moiIVg7dTEv7r6dAjxC6tOMGcRxHZ/++QoMqjDeoPzWtzXySMKkmGt31xAOSMCltmrj7o/teyKcDhTOKQj41xEUBIlswZg4UdQZypCyi5DmCa2zRq2C2ywDr6Xo9j5hxDTDbFdm/m7bQm/Pia0NsJNbZ+M0vXvd9cXnnTWSmK2BmaQpTc938FJsm7MHV3bew9dlKVGskaCwpM1VQK9XoOeUX2Jcogla9myIxOgmlq37cHk1qohzzuq5EqHc4jobt0PJc6jq+g86m+VNnNygzlPjj6FTNbCbiTSSiQ2MhT0rT7Gfk5JdREhRxtEXx8sIssWWvplhw6nfU+6n2R/W9kM9H4UBRSIEhTgaKbSMsEdkfAjN6TzDOuDqgqgAwWzBmDHwC99T/ChW+KwtjM2MYmxphn+8mvTbVGlWC573SsHO0RWa6Av4vgvBdyxq4mnlUk5u7Va9maNUrf2KRKfGpmN5mAVr1b4GzAdGoUbUkVv3ZCzFhsRhUYQIqN6iIHr91QoIsEXaONjA2MYbP4zd4ft0dA+b21LQJAPt8/wYIWstlkzb/ipHLB8LSxgKyoGi43XqF1n1+gEgswuCKE1C3dS0sOjdLYy82EqNV708rdElECIyIQ4VSDjAqjPb+5HyRJ8oYs2eM3WSM+Wf9a9CXjjFmwxh7yxj78kEDhQgwG8C4IWCi/+1fZDkKomI3tF1h/4/ITFdgdN3p+LPLcp1zIhEDYwwmZoYz3XUe0w5OPhvhWLYo9sw5jOltFuDRxedaX9gFQZ6UhlCfCAS+DIaa48FzPADA3NocFWqXRa0fquHmwTuY1HQu9s8/AQA4sOA4Di06BX+3YK26bOyFKG1/tyCMqDEZbi6eYIxpXHBXD9+CjeN2YVyDmcL9ikUQif99D73rj30xcP4hHLzy9F9v6/+RLzWjmAPAhYhWMsbmZP0+24DtEgB3PlvPCskTJrIEczheoGuIVED6EcCkBZhx7mlLOY7TG5dQUEjxBOCjwcy75W38iTi59iIeX36OEK9whHiFQ61Sa0VpO5YrhitpR/JdX5s+zREVHINqemS+80upyiVwJs4JljYWEIlFmtmAdREr7PZcjwD3YFzadh1Fy9jj+471AQCTt43G68f+qNGkit46IwOiEPFGhmDPULx0eYVL229gx8s1GLaoHzaM2YEfujWGpY0FzsQ4fXC/C0L18o74rnIJNKhe6Hb7b/BFIrMZY34AfiQiGWOsJABXItJxumaMNQIwE8A1AI2JaFJedf/XI7O/VUjxBJQ4BDD9EaIiuwzand/ijK2TnbD+zmLUaVXzo9rkY1oJA4XjMzBRdmwBEYHn+U8yGL3P6DrTEeIdjjZ9mqNsjVIYtqjfR9XHcRxmt1uCUpWLY/ruj5c+MYQiQwETM5MCxef4uwUhNiIeL108cWn7DTi93ohSlQuXGb9VvsbI7OJEJAOArMHC8X0DxpgIwDoAQwDkmuGFMTYGwBgAKFfu80sr/JcgLhqAGkwsuE/ePf0IPMd/vICbSUMw63mAaXMD7caD4trDBM1gbmUGY9OP/9NktmsAPkprkACADWN34sZ+Vxzw36x38/VjWHP7L6QmyFG2eu7up6mJcljZWeb5xaxWquH9wA+J0Umfsps6vAsifJ+U+FSYWZrqXSo7tPgUHl18jnWuizB+w3CIRIV7A/9V/rVPljF2izHmpefons8qJgC4SkTheRkS0S4iakxEjYsV+/9cF/9UUHx3UKwERGoAwIrBm7B8oKCu+jEwZgxmORTMSP9SBkAAOHQcbI2LKYdQo0nuy1P5atO0GZh5D51yS1sLWNlZQGwkAqfmkJaSnq/64iITcGzFOaQkGM6qZlfMNs9BwsPVG70cRuDwklN5tmlqboqTUbux9dmqfPUxJxzHwev+a6hV6gJfCwgR3L0dR2JWu8VISUjF9f3/QJGh0JyXTu+KLmPboWrDigUaJN4GyPDw4rOP/psq5DNiyG/23zwA+AEomfVzSQB+emyOAAgDEAIgDkAKgJV51V0YR/FxcMmriEucq4lleHbdPd+5jpPjU+jxlRfEcfnLsRwTHkd3zzzWtPWx8ROxEXG0oMcq8n6Y/9iC2e0XUztRH4qXJeRpu37MdpIwKZ3f6vwx3aRgrzAaUG4s3Tpyl1YM/puWDdzwUfUZ4tKOGyRhUjq59uIHXZ+RlkkTm86hXbMO0t4/jpCESenKrpsf3a9JzeaShEkpxDuMYt/G09iGM+j6e5n4Cvn84CuMo7gIYBiAlVn/XnjfgIgGvfuZMTYcwh7FnM/Vwf9XRDaztH5v3D5/OkQAsGPaAdw8dAfLrvyRr9zIG8ftwtOrbthwdzG+a1nzo/WrfB69wcMLz1C8QjHU+kFXZ0gfFeuWQ3xkIkwt9C+95MT7wRsA0Kip5sXt4/eRHJOCnpN/0SqvULusRshwy297NV5In5o6rWuiUft6aND2uw+63szCFFseC3Euge7BiAyMRrNuepewC8Twxf3w8rYXylQrhYCXwQh8GfK/9u48OooiD+D495dwhASI5ODwQMELFBUQREEXERBUlENYWTwAr4csunitrLgadxXFeAsqioiurHJ4K6ByiYuAogbDTUAQ5FCuxJB7UvvHdGIgc/RMOnMkv897edPT01P9q64kNVVTXcWPS9dz6fAeVU5bVRNvNUh1/gDJwEJgs/WYZO3vBEz1cPwIYJKdtLVFET5rlm0wE4e/YLL35/g/2LiX0pw8dpopyCtw5Pwul8tkLF5j8nIDX9Pbjsyv1pk5z3xsu8U0KHWk6SWDfeYve19OpbWkPXHlvmlcB8aY0tJCr8e888QH5pW//8dWbIGaeMMLppcMNqs+D3x+Kn/2bPvVFBcVVzmd0tJ84zqUZkoLvnYgqtoHHy0KXY9CKYsxBvP7BIhtTkzCTZVeL8wv5Of1v3BKh1a2Wj8bv83icHYeHXudXeXYSvcNhJK1SOpSr+trXJ06kpz9uUfcmOeU7xdm8uHkedz1yigSUxo7mrZTTNFqzIEhUO9CYpJCMyy3JtGFi5SywZh8zN5zICaVmKbLKr3+7KgpfPrKAh7/7AHO7W2/S86R2EoPQOkBH4MB3KvrFRcUeVzIyY41yzawadUW+o/pS0xMTMRMZW+XMQYKl0Ddto4sVlXbROLwWKWqZOfm3cx9dQFD7xtA42R7C//4I9IAkj8GaeDx9a79z+OXrD2ceGbgq/FVlcQkQUySz2PK1sQoKS6hpNh1xIp2dky+YxpZP/zErPQPy2/G8+TL2cuJS6hPl8s7Au5/0Hk5eSQkel9rPBREBOL0e47qoAOfVdRZ9sE3vHTndGY/+RErPvnO0bSl7ulIHc/34px3WQfSFzxEyrG+/2HbZUpzKP39OUzJdkfSKzPmvH8wOPXGI4ay2nH3a7dxz7TRJCQmeP1y31Xi4pFrnubRoc+U75s67i0GNBnB+pWbqxS3XcVFxezcvDsk51Ju2qJQQSs9/BbkvoAkz/DZJeK0x69/noLDhdz56iguvsbzDXxOWL1kLc1bNXX8prxyhYvh8GSMyUEa/9OxZFu2PY7YOjFHTB1ixyntW3FK+1b0GeH9U3lsnVgenH33ERXJsac0J/WEZBolhWbNlkljXmPu1IXlo+VU9dOKQgWvdB+Yg2DyMcWZmEP3IYkPI/U6V+tp0967l6KCYi64supDNcu8OPZ11q/czFOL06gXV4/dW/dyzyVpnNzhJF7+Lt2x8xwhrg9i8qG+z4kHbCu7cfD+/451JD1vjp759YpbeiMSw+4tezwvCQvs2rKH8VdM4NrxV9Pr+u4ej7GrY++z2fLjdpq3qjShg6om2vWkKln1+Wq+eNP/PIwxjcYizTKRumdByRZwZWGKN1Z7fOf2PsfRSgJg/YpNbPw2i8L8IgCatkxhwJi+DLt/kKPnqUgkDokf6tgsu9e1Gs3wU293JK3fdu7nkylfUFRY7PfYwzl5PHPryzx504tejzmw5xA7N+0mK+Mnr8fY1X1IVyateKx8tT1V/bRFoSp5YsQkDu45RNcBncunj/ZGxOqCiOuP1D0XYqNr9s683/PZunobnS/vyKinR9Coibv7JCY2hn639eH40zx/Qo40RQVFnP2nMxyb0vvNtFnMn7aIxJRGfteOSGgcz4Oz76ZJs0Svx7Tr1oZZu18lMTW4obXGGAoOF9CgoeeBBqp6aUWhKhn/9lgO7c32W0lUJCJQJ/SjgarqqZtfYuns5QBsW/MzZ3Z139G9ZObXTBj2LDdNGMbQcQOr5dxFhcXUq2//fgeXy0VRQTENEuKO2P/NvB8Yf8UE/vbyrfS7tXfAcfy4dB15Ofmc3+/c8n1D7rmK1BOS6dTH3jBgOwsRNWl2TMCxlZl0xzQ+mjyfKRlPlq+sp0JHKwpVyTnda88SlT2HXURBbgHtL2nHhQO7lO9vdVZLTuvUmrYXnFYt510ycxmP/uVZHph5F92HXGDrPWkD01k593ve3jGF5BZ/rPUV37gBjZIakhjkMOG0gen8fjCXT/NmlM8S27LNcdzw0J+DSq86tGjdlNQTkolvrC2KcNCKQtVqXft3pmv/yl++n3TmCUz+JvAZW+1KSIynYZMEEhLtt9qOO60FLTY0q7TOdrtubXhv3+tBx3LPtNFk78/xuepeuA2+80oG33lluMOotfTObKUC4CpxseKT72jf48yQ3mBWUlxCbJ3YqLtbWkUPX3dm66gn5dH2dTv4ctbXUb9mwPZ1O3jq5pfYt+uAI+l9OXs5aYPSeSNtliPplZk7dQHTH3rH4/Xet+sA/Rpex2PXPe/oOZWySyuKGirYxWrKTBw+iUeGPsOOjbsciig8Fs74ivnTFrFqfoYj6XXoeRZ9b7zE501pwZj+4Exm/PtdCvIq301dp24siSmNSUxxZqoSpQKlXU81UMbiNdzb82H++txIBtx+uf83eElj3fKNXHPfgGpZWzpUDufk8f2CTM7v19HxGVWdtH3dDg5n59leR0Mpp+mkgLVM/fj6JCTGk3BM8H3o7Xu0o32P4Ba8CZQxBnPgWpB6xCRNdzTthMbxXDSoi/8Dw+zEM6JraPHBX7P5dt4PXDy0W0BDfFV00q6nGqhtl1P54OAb9K7iVAkh5foJSrZVOZl1yzcy9qJ/sn39zqrHFIEK8gqr3K3ohBmPzCF95GT+9+6KcIeiQqDGdT2JyG9AINNxpuBekzuaaR4ig+YhMmgegnOiMcbjfDI1rqIIlIis8tYvFy00D5FB8xAZNA/O064npZRSPmlFoZRSyietKOCVcAfgAM1DZNA8RAbNg8Nq/XcUSimlfNMWhVJKKZ+0olBKKeVTrasoRCRdRDaIyI8i8r6IeFxNRUS2iUimiGSISETNCRJAHvqKyEYRyRKRcaGO0xcRGSIia0WkVES8DgOM8HKwm4dILockEflCRDZbj028HOeyyiBDRD4KdZye+LuuIlJfRGZar68UkZNCH6VvNvIwQkR+q3Dtbw5HnO7pE2rRD3ApUMfanghM9HLcNiAl3PEGmwcgFtgCtAbqAauBM8Ide4X42gKnA0uATj6Oi+Ry8JuHKCiHJ4Bx1vY4H38PueGONdDrCowGXra2hwIzwx13EHkYAUwKd6y1rkVhjPncGFM2B8IKILoWecZ2Hs4DsowxW40xRcA7QP9QxeiPMWa9MWZjuOOoCpt5iOhywB3LG9b2G8CAMMYSCDvXtWLe5gA9JbIW9Ij0341yta6iOMqNwDwvrxngcxH5TkRuDWFMgfKWh+OAHRWe77T2RZtoKQdvIr0cmhljdgNYj029HBcnIqtEZIWIREJlYue6lh9jfbDKBpJDEp09dn83rra6meeISFhmj6yRs8eKyAKguYeXxhtjPrSOGQ+UADO8JNPNGLNLRJoCX4jIBmPM0uqJuDIH8uDpk1NIx0LbyYMNEV8O/pLwsC9iyiGAZFpa5dAaWCQimcaYLc5EGBQ71zXs194PO/F9DLxtjCkUkVG4W0iXVHtkR6mRFYUxppev10VkONAP6GmsjkAPaeyyHn8VkfdxNxND9g/KgTzsBCp++jgeCOkqRP7yYDONiC4HGyK6HERkr4i0MMbsFpEWwK9e0igrh60isgTogLt/PVzsXNeyY3aKSB0gEXBmqUNn+M2DMWZ/haev4v5OMuRqXdeTiPQF7gOuMsbkeTkmQUQalW3j/vJ4Teii9M1OHoBvgVNFpJWI1MP9ZV5EjFaxK9LLwaZIL4ePgOHW9nCgUitJRJqISH1rOwXoBqwLWYSe2bmuFfM2GFjk7YNhmPjNg1V5l7kKWB/C+P4Q7m/TQ/0DZOHuF8ywfspGRRwLzLW2W+MegbAaWIu7myHssQeSB+v55cAm3J/8Ii0PA3F/oioE9gKfRWE5+M1DFJRDMrAQ2Gw9Jln7OwFTre2uQKZVDpnATeGO29t1Bf6F+wMUQBww2/p7+QZoHe6Yg8jDY9bv/mpgMdAmHHHqFB5KKaV8qnVdT0oppQKjFYVSSimftKJQSinlk1YUSimlfNKKQimllE9aUSillPJJKwqlAiQiJ4lIvohkWM8rTsGdYb1+sYhkH7W/V4U0pohINxGZLiKDj0o/13o82XpfbmhzqNSRauQUHkqFwBZjTHtrO7/CNuCuTICvjDH9vLy/C+5psG/xdgLjnkupvVYUKty0RaFUiIlIW2CTMcYV7liUskNbFEpVXYOybijgJ2PMQGv7ogr7Aa62WgmXAfMr7E8XkQdCEahSwdCKQqmqq9T1ZPHW9dQHGFnh+b3GmDllT7SrSUUa7XpSKoREJB44xljTdisVDbSiUCq0euCeBVSpqKFdT0pVn6O/o3gEuBj3+s1KRQ2dZlypAFlDXz8xxrQL4r3fA12MMcUBvCfXGNMw0HMp5RTtelIqcC4g8ajWgi3GmI52K4myG+5wL4qkVNhoi0IppZRP2qJQSinlk1YUSimlfNKKQimllE9aUSillPLp/1OFTdYAde19AAAAAElFTkSuQmCC\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "X=np.array([dr17['FE_H'],dr17['O_FE'],dr17['MG_FE'],dr17['SI_FE'],dr17['AL_FE'],\n", " dr17['MN_FE'],dr17['NI_FE']]).T # create data array\n", "\n", "# heres a plot of [Mg/FE] vs [Fe/H], color-coded by [Al/Fe]\n", "plt.scatter(X[:,0],X[:,2],c=X[:,4],s=1,vmin=-0.1,vmax=0.1)\n", "plt.xlabel('[FE/H]')\n", "plt.ylabel('[Mg/Fe''')\n", "plt.ylim(-0.5,0.5)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To experiment with different manifold learning techniques, let's sparsely sample the data set, so things won't take so long. If you find some interesting features, you can come back and try to use more of the data set." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nsamp=50\n", "X=X[::nsamp,:]\n", "print(X.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, we're going to try a number of dimensionality reduction techniques. For each we will plot the first two components, but we'll make a series of plots color coding the points by [Fe/H], [Mg/Fe], and [Al/Fe] to see if we can interpret something about the results.\n", "
\n", "To facilitate this, here's a function that will take some array of projected coordinates, and make a series of plots color coded by whateven quantities you supply." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def plot(Y,color_codes) :\n", " \"\"\" Make a series of plots of a projection, plotting the first component against the second\n", " Color-code these plots by whatever arrays are passed in colors, which must be a list\n", " \"\"\"\n", " nx=len(color_codes)\n", " fig = plt.figure(figsize=(15, 8))\n", " ax=fig.subplots(1,nx)\n", " for i,color in enumerate(color_codes) :\n", " ax[i].scatter(Y[:,0],Y[:,1],c=color)\n", " plt.show()\n", " \n", "# set some quantities to use for the color coding\n", "fe_h=X[:,0]\n", "mg_fe=X[:,2]\n", "al_fe=X[:,3]\n", "age=dr17['age'][::nsamp]\n", "color_codes=[fe_h,mg_fe,al_fe,age]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we'll just try PCA, just looking at the first two components." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.decomposition import PCA\n", "#do the PCA decomposition\n", "pca= #instantiate a PCA object with n_components=2\n", "X_projected= # do the decomposition and get the transformed coordinates with fit_transform()\n", "\n", "plot(X_projected,color_codes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Just to make sure you're understanding the code, describe what these are plots of:\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, now we're going to try several manifold learning routines from scikit-learn manifold learning. These all are used in the same way, just like the PCA() routine:\n", "\n", "That's it! Then we'll use our plot() routine to plot the projections\n", "

\n", "I encourage you to follow the links for each method and read a bit about them to try to get some rough feeling for the methodologies involved." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn import manifold" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All methods take an n_components= keyword, which we will set to 2, to just get the first two components for visualization." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_components=2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Several of the methods take a n_neighbors= keyword, which specifies the number of nearby points over which one wants the method to preserve local distances. We'll use a default value of 10, but you can experiment with this!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_neighbors=10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, first we will try local linear embedding (LLE). " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "LLE = manifold.LocallyLinearEmbedding(n_neighbors=n_neighbors,n_components=n_components,eigen_solver=\"auto\")\n", "Y = LLE.fit_transform(X)\n", "\n", "plot(Y,color_codes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What are these plots of? What do you think about the ability of this projection to separate the data in interesting ways?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, now we can try Isomap() . See if you can fill in the instatiation and the fit_transform() call" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "isomap= # fill in the instantiation\n", "Y= # get projected coordinates\n", "\n", "plot(Y,color_codes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What do you think about the ability of this projection to separate the data in interesting ways?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now try Multi-dimensional scaling (MDS) . You may need to specify max_iter= and n_init=" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mds= # fill in the instantiation\n", "Y= # get the projected coordinates\n", "\n", "plot(Y,color_codes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What do you think about the ability of this projection to separate the data in interesting ways?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we have t-SNE . This one has more tuning parameters, including perplexity and early-exaggeration. See this page for a more extensive discussion : good reading while you are waiting for this one to run!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tsne= # fill in the instantiation\n", "Y= # get projected coordinates\n", "\n", "plot(Y,color_codes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we specify some values for perplexity and early_exaggeration.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tsne=manifold.TSNE(n_components=2,perplexity=30,early_exaggeration=800)\n", "\n", "Y=tsne.fit_transform(X)\n", "\n", "plot(Y,color_codes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That one is intriguing, isn't it? Don't you want to know what those distinct clouds of points might be? How might you track that down?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What do you think about the ability of this projection to separate the data in interesting ways?\n", "
ANSWER HERE: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For fun, here's some code I borrowed from the source for plots at scikit-learn, that lets you declare all of the methods you want try, and loop over them, runinng them, timing them, and making plots!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn import manifold, datasets\n", "from functools import partial\n", "from collections import OrderedDict\n", "from time import time\n", "from matplotlib.ticker import NullFormatter\n", "\n", "n_neighbors = 10\n", "n_components = 2\n", "\n", "fig = plt.figure(figsize=(15, 16))\n", "fig.suptitle(\n", " \"Manifold Learning with %i points, %i neighbors\" % (1000, n_neighbors), fontsize=14\n", ")\n", "\n", "color=X[:,0]\n", "color2=X[:,3]\n", "\n", "# Set-up manifold methods\n", "LLE = partial(\n", " manifold.LocallyLinearEmbedding,\n", " n_neighbors=n_neighbors,\n", " n_components=n_components,\n", " eigen_solver=\"auto\",\n", ")\n", "\n", "methods = OrderedDict()\n", "methods[\"LLE\"] = LLE(method=\"standard\")\n", "#methods[\"LTSA\"] = LLE(method=\"ltsa\")\n", "#methods[\"Hessian LLE\"] = LLE(method=\"hessian\")\n", "#methods[\"Modified LLE\"] = LLE(method=\"modified\")\n", "methods[\"Isomap\"] = manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components)\n", "methods[\"MDS\"] = manifold.MDS(n_components, max_iter=100, n_init=1)\n", "#methods[\"SE\"] = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors)\n", "methods[\"t-SNE\"] = manifold.TSNE(n_components=n_components, init=\"pca\", random_state=0)\n", "\n", "# Plot results\n", "for i, (label, method) in enumerate(methods.items()):\n", " t0 = time()\n", " Y = method.fit_transform(X)\n", " t1 = time()\n", " print(\"%s: %.2g sec\" % (label, t1 - t0))\n", " \n", " nx = len(color_codes)\n", " for ix, color in enumerate(color_codes) :\n", " ax = fig.add_subplot(5, nx, i*nx + ix + 1)\n", " ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)\n", " ax.set_title(\"%s (%.2g sec)\" % (label, t1 - t0))\n", " ax.xaxis.set_major_formatter(NullFormatter())\n", " ax.yaxis.set_major_formatter(NullFormatter())\n", " ax.axis(\"tight\")\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Discuss what you think about the different methods, commenting on their potential for highlighting interesting features in the data. Do you think they have any value compared to just looking at the original data?\n", "
ANSWER HERE: " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 1 }