{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Experiment with the scipy.stats.beta() function for generating a beta function. Choose different parameters a and b and find values that give a significantly asymmetric probability distribution function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from scipy.stats import beta\n",
"a= # choose some different values\n",
"b=\n",
"x=np.linspace(0,1,101) # x values for plotting\n",
"pdf= # use the method to get the pdf for your choices of a and b\n",
"plt.plot(x,pdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write a function that will take as arguments beta function parameters and a number of points to draw a sample from. Your function should draw a sample of the requested size and return the mean of that sample."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def betamean(a,b,n) :\n",
" \"\"\" function to return the mean of n samples from a beta distribution with parameters a and b\n",
" \"\"\"\n",
" r = # use the method to return n samples from a beta function with input a and b\n",
" return r.mean()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now write a loop that draws many samples of a given size, and plot a histogram of the mean values. Do this for several different sample sizes, and compare the resulting distributions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ndraws= # choose the number of draws for each sample size to get a well sampled distribution\n",
"for nsamp in [...] : # add a list of different sample sizes here\n",
" # build up an array of means\n",
" means=[]\n",
" for i in range(ndraws):\n",
" means.append(betamean(a,b,nsamp))\n",
" means=np.array(means)\n",
" # plot the histogram of means for this sample size\n",
" plt.hist(means,histtype='step',label='{:d}'.format(nsamp),bins=30)\n",
"# label the lines\n",
"plt.legend()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Discuss how your results relate to the central limit theorem."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"ANSWER HERE :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 4
}