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1 Tools for Success in ASTR 105G

1.1 Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject they
are looking at, and submit their results for publication. Along the way astronomers use
all of the mathematical techniques and physics necessary to understand the objects they
examine. Thus, just like any other science, a large number of mathematical tools and con-
cepts are needed to perform astronomical research. In today’s introductory lab, you will
review and learn some of the most basic concepts necessary to enable you to successfully
complete the various laboratory exercises you will encounter during this semester. When
needed, the weekly laboratory exercise you are performing will refer back to the examples in
this introduction—so keep the completed examples you will do today with you at all times
during the semester to use as a reference when you run into these exercises later this semester
(in fact, on some occasions your TA might have you redo one of the sections of this lab for
review purposes).

1.2 The Metric System

Like all other scientists, astronomers use the metric system. The metric system is based on
powers of 10, and has a set of measurement units analogous to the English system we use
in everyday life here in the US. In the metric system the main unit of length (or distance)
is the meter, the unit of mass is the kilogram, and the unit of liquid volume is the liter. A
meter is approximately 40 inches, or about 4” longer than the yard. Thus, 100 meters is
about 111 yards. A liter is slightly larger than a quart (1.0 liter = 1.101 gt). On the Earth’s
surface, a kilogram = 2.2 pounds.

As you have almost certainly learned, the metric system uses prefixes to change scale. For
example, one thousand meters is one “kilometer.” One thousandth of a meter is a “millime-
ter.” The prefixes that you will encounter in this class are listed in Table 1.2.

In the metric system, 3,600 meters is equal to 3.6 kilometers; 0.8 meter is equal to 80
centimeters, which in turn equals 800 millimeters, etc. In the lab exercises this semester we
will encounter a large range in sizes and distances. For example, you will measure the sizes of
some objects/things in class in millimeters, talk about the wavelength of light in nanometers,
and measure the sizes of features on planets that are larger than 1,000 kilometers.



Table 1.1: Metric System Prefixes

Prefix Name | Prefix Symbol Prefix Value
Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundreth)
milli m 0.001 (one thousandth)
micro I 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

1.3 Beyond the Metric System

When we talk about the sizes or distances to objects beyond the surface of the Earth, we
begin to encounter very large numbers. For example, the average distance from the Earth
to the Moon is 384,000,000 meters or 384,000 kilometers (km). The distances found in
astronomy are usually so large that we have to switch to a unit of measurement that is much
larger than the meter, or even the kilometer. In and around the solar system, astronomers
use “Astronomical Units.” An Astronomical Unit is the mean (average) distance between
the Earth and the Sun. One Astronomical Unit (AU) = 149,600,000 km. For example,
Jupiter is about 5 AU from the Sun, while Pluto’s average distance from the Sun is 39 AU.
With this change in units, it is easy to talk about the distance to other planets. It is more
convenient to say that Saturn is 9.54 AU away than it is to say that Saturn is 1,427,184,000
km from Earth.

1.4 Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is something
you must master during this semester. You already do this in your everyday life whether
you know it or not (for example, if you travel to Mexico and you want to pay for a Coke in
pesos), so do not panic! Let’s look at some examples (2 points each):

1. Convert 34 meters into centimeters:

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:



3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. In August 2003, Mars made its closest approach to Earth for the next 50,000 years.
At that time, it was only about .373 AU away from Earth. How many km is this?

1.4.1 Map Exercises

One technique that you will use this semester involves measuring a photograph or image
with a ruler, and converting the measured number into a real unit of size (or distance). One
example of this technique is reading a road map. Figure 1.1 shows a map of the state of
New Mexico. Down at the bottom left hand corner of the map is a scale in both miles and
kilometers.

Use a ruler to determine (2 points each):

6. How many kilometers is it from Las Cruces to Albuquerque?

7. What is the distance in miles from the border with Arizona to the border with Texas
if you were to drive along 1-407

8. If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?

9. If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?
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Figure 1.1: Map of New Mexico.



1.5 Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square roots. Let
us briefly review what is meant by such terms as squares, cubes, square roots and exponents.
The square of a number is simply that number times itself: 3 x 3 = 3% = 9. The ezponent
is the little number “2” above the three. 52 = 5 x 5 = 25. The exponent tells you how
many times to multiply that number by itself: 8% = 8 x 8 x 8 x 8 = 4096. The square of
a number simply means the exponent is 2 (three squared = 3?), and the cube of a number
means the exponent is three (four cubed = 4%). Here are some examples:

e P=TxT=49

TP=Tx7xTxT7x7T=16_807

The cube of 9 (or “9 cubed”) = 9% =9 x 9 x 9 = 729

The exponent of 121 is 16

2.56% = 2.56 x 2.56 x 2.56 = 16.777

Your turn (2 points each):

10. 6% =

11. 4% =

12. 3.12 =

The concept of a square root is fairly easy to understand, but is much harder to calculate (we
usually have to use a calculator). The square root of a number is that number whose square
is the number: the square root of 4 = 2 because 2 x 2 = 4. The square root of 9 is 3 (9 =
3 x 3). The mathematical operation of a square root is usually represented by the symbol
“/ 7, as in v/9 = 3. But mathematicians also represent square roots using a fractional
exponent of one half: 9'/2 = 3. Likewise, the cube root of a number is represented as 27'/3
=3 (3 x 3 x 3 = 27). The fourth root is written as 16"/% (= 2), and so on. Here are some
example problems:



e 100 = 10
e 10.5° = 10.5 x 10.5 x 10.5 = 1157.625

e Verify that the square root of 17 (v/17= 171/2) = 4.123

1.6 Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of subatomic
particles, to the size of the entire universe. You are certainly comfortable with numbers
like ten, one hundred, three thousand, ten million, a billion, or even a trillion. But what
about a number like one million trillion? Or, four thousand one hundred and fifty six million
billion? Such numbers are too cumbersome to handle with words. Scientists use something
called “Scientific Notation” as a short hand method to represent very large and very small
numbers. The system of scientific notation is based on the number 10. For example, the
number 100 = 10 x 10 = 102. In scientific notation the number 100 is written as 1.0 x 102
Here are some additional examples:

e Ten =10=1 x 10 = 1.0 x 10!

e One hundred = 100 = 10 x 10 = 10? = 1.0 x 10?

e One thousand = 1,000 = 10 x 10 x 10 = 10* = 1.0 x 103

e One million = 1,000,000 = 10 x 10 x 10 x 10 x 10 x 10 = 10°® = 1.0 x10°

Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific notation? 6,563
= 6563.0 = 6.563 x 10%. To figure out the exponent on the power of ten, we simply count
the numbers to the left of the decimal point, but do not include the left-most number. Here
are some more examples:

e 1,216 = 1216.0 = 1.216 x 10®
e 8,735,000 = 8735000.0 = 8.735000 x 10°

e 1,345,999,123,456 = 1345999123456.0 = 1.345999123456 x 102 ~ 1.346 x 10'?



Note that in the last example above, we were able to eliminate a lot of the “unnecessary”
digits in that very large number. While 1.345999123456 x 10'? is technically correct as the
scientific notation representation of the number 1,345,999,123,456, we do not need to keep
all of the digits to the right of the decimal place. We can keep just a few, and approximate
that number as 1.346 x 10'2.

Your turn! Work the following examples (2 points each):

13. 121 = 121.0 =

14. 735,000 =

15. 999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First, lets look at
powers of 10, but this time in fractional form. The number 0.1 = %. In scientific notation
we would write this as 1 x 107!, The negative number in the exponent is the way we write

the fraction %. How about 0.0017 We can rewrite 0.001 as % X % X %0 =0.001 =1 x

1073. Do you see where the exponent comes from? Starting at the decimal point, we simply
count over to the right of the first digit that isn’t zero to determine the exponent. Here are
some examples:

e 0.121 = 1.21 x 107!
e 0.000735 = 7.35 x 1074

e 0.0000099902 = 9.9902 x 10~

Your turn (2 points each):
16. 0.0121 =
17. 0.0000735 =

18. 0.0000000999 =



19. —-0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in scientific
notation. It is kind of silly to write the number 23.7 as 2.37 x 10%, or 0.5 as 5.0 x 107!, You
use scientific notation when it is a more compact way to write a number to insure that its
value is quickly and easily communicated to someone else. For example, if you tell someone
the answer for some measurement is 0.0033 meter, the person receiving that information
has to count over the zeros to figure out what that means. It is better to say that the
measurement was 3.3 x 1072 meter. But telling someone the answer is 215 kg, is much
easier than saying 2.15 x 102 kg. It is common practice that numbers bigger than 10,000 or
smaller than 0.01 are best written in scientific notation.

1.7 Calculator Issues

Since you will be using calculators in nearly all of the labs this semester, you should become
familiar with how to use them for functions beyond simple arithmetic.

1.7.1 Scientific Notation on a Calculator

Scientific notation on a calculator is usually designated with an “E.” For example, if you see
the number 8.778046E11 on your calculator, this is the same as the number 8.778046 x 10!
Similarly, 1.4672E-05 is equivalent to 1.4672 x107°.

Entering numbers in scientific notation into your calculator depends on layout of your cal-
culator; we cannot tell you which buttons to push without seeing your specific calculator.
However, the “E” button described above is often used, so to enter 6.589 x107, you may
need to type 6.589 “E” 7.

Verify that you can enter the following numbers into your calculator:

e 7.99921 x10?%

e 2.2951324 x10°°

1.7.2 Order of Operations

When performing a complex calculation, the order of operations is extremely important.
There are several rules that need to be followed:

i. Calculations must be done from left to right.

ii. Calculations in brackets (parenthesis) are done first. When you have more than one
set of brackets, do the inner brackets first.



iii. Exponents (or radicals) must be done next.
iv. Multiply and divide in the order the operations occur.

v. Add and subtract in the order the operations occur.

If you are using a calculator to enter a long equation, when in doubt as to whether the
calculator will perform operations in the correct order, apply parentheses.

Use your calculator to perform the following calculations (2 points each):

(7+34)
20. (2+23) —

21. (4% 4+ 5) — 3 =

22.20 = (12 —2) x 32 — 2 =

1.8 Graphing and/or Plotting

Now we want to discuss graphing data. You probably learned about making graphs in high
school. Astronomers frequently use graphs to plot data. You have probably seen all sorts
of graphs, such as the plot of the performance of the stock market shown in Fig. 1.2. A
plot like this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market. Each
place on the curve that shows the performance of the stock market is represented by two
numbers, the date (x axis), and the value of the index (y axis). For example, on May 10 of

2004, the Dow Jones index stood at 10,000.

Plots like this require two data points to represent each point on the curve or in the plot.
For comparing the stock market you need to plot the value of the stocks versus the date. We
call data of this type an “ordered pair.” Each data point requires a value for x (the date)
and y (the value of the Dow Jones index).

Table 1.2 contains data showing how the temperature changes with altitude near the Earth’s
surface. As you climb in altitude, the temperature goes down (this is why high mountains
can have snow on them year round, even though they are located in warm areas). The data
points in this table are plotted in Figure 1.3.

1.8.1 The Mechanics of Plotting

When you are asked to plot some data, there are several things to keep in mind.
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Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003 to July
2004).

Table 1.2: Temperature vs. Altitude

Altitude | Temperature
(feet) °F
0 59.0
2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

First of all, the plot axes must be labeled. This will be emphasized throughout the
semester. In order to quickly look at a graph and determine what information is being con-
veyed, it is imperative that both the x-axis and y-axis have labels.

Secondly, if you are creating a plot, choose the numerical range for your axes such that the
data fit nicely on the plot. For example, if you were to plot the data shown in Table 1.2, with
altitude on the y-axis, you would want to choose your range of y-values to be something like
0 to 18,000. If, for example, you drew your y-axis going from 0 to 100,000, then all of the
data would be compressed towards the lower portion of the page. It is important to choose
your ranges for the x and y axes so they bracket the data points.

10
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Figure 1.3: The change in temperature as you climb in altitude with the data from Table 1.2.
At sea level (0 ft altitude) the surface temperature is 59°F. As you go higher in altitude, the
temperature goes down.

1.8.2 Plotting and Interpreting a Graph

Table 1.3 contains hourly temperature data on January 19, 2006, for two locations: Tucson
and Honolulu.

23. On the blank sheet of graph paper in Figure 1.4, plot the hourly temperatures mea-
sured for Tucson and Honolulu on 19 January 2006. (10 points)

24. Which city had the highest temperature on 19 January 20067 (2 points)

25. Which city had the highest average temperature? (2 points)

11



Table 1.3: Hourly Temperature Data from 19 January 2006

Time | Tucson Temp. | Honolulu Temp.
hh:mm °F °F
00:00 49.6 71.1
01:00 47.8 71.1
02:00 46.6 71.1
03:00 45.9 70.0
04:00 45.5 72.0
05:00 45.1 72.0
06:00 46.0 73.0
07:00 45.3 73.0
08:00 45.7 75.0
09:00 46.6 78.1
10:00 51.3 79.0
11:00 56.5 80.1
12:00 59.0 81.0
13:00 60.8 82.0
14:00 60.6 81.0
15:00 61.7 79.0
16:00 61.7 77.0
17:00 61.0 75.0
18:00 59.2 73.0
19:00 55.0 73.0
20:00 53.4 72.0
21:00 51.6 71.1
22:00 49.8 72.0
23:00 48.9 72.0
24:00 47.7 72.0

26. Which city heated up the fastest in the morning hours? (2 points)

While straight lines and perfect data show up in science from time to time, it is actually
quite rare for real data to fit perfectly on top of a line. One reason for this is that all
measurements have error. So even though there might be a perfect relationship between
x and y, the uncertainty of the measurements introduces small deviations from the line.
In other cases, the data are approximated by a line. This is sometimes called a best-fit
relationship for the data.

1.9 Does it Make Sense?

This is a question that you should be asking yourself after every calculation that you do in
this class!

12



Figure 1.4: Graph paper for plotting the hourly temperatures in Tucson and Honolulu.

One of our primary goals this semester is to help you develop intuition about our solar sys-
tem. This includes recognizing if an answer that you get “makes sense.” For example, you
may be told (or you may eventually know) that Mars is 1.5 AU from Earth. You also know
that the Moon is a lot closer to the Earth than Mars is. So if you are asked to calculate the
Earth-Moon distance and you get an answer of 4.5 AU, this should alarm you! That would
imply that the Moon is three times farther away from Earth than Mars is! And you know
that’s not right.

Use your intuition to answer the following questions. In addition to just giving your answer,
state why you gave the answer you did. (5 points each)

13



27. Earth’s diameter is 12,756 km. Jupiter’s diameter is about 11 times this amount.
Which makes more sense: Jupiter’s diameter being 19,084 km or 139,822 km?

28. Sound travels through air at roughly 0.331 kilometers per second. If BX 102 suddenly
exploded, which would make more sense for when people in Mesilla (almost 5 km away)
would hear the blast? About 14.5 seconds later, or about 6.2 minutes later?

29. Water boils at 100 °C. Without knowing anything about the planet Pluto other than
the fact that is roughly 40 times farther from the Sun than the Earth is, would you
expect the surface temperature of Pluto to be closer to -100° or 50°7

1.10 Putting it All Together

We have covered a lot of tools that you will need to become familiar with in order to complete
the labs this semester. Now let’s see how these concepts can be used to answer real questions
about our solar system. Remember, ask yourself does this make sense? for each answer
that you get!

30. To travel from Las Cruces to New York City by car, you would drive 3585 km. What
is this distance in AU? (10 points)

14



31.

32.

The Earth is 4.5 billion years old. The dinosaurs were killed 65 million years ago due
to a giant impact by a comet or asteroid that hit the Earth. If we were to compress the
history of the Earth from 4.5 billion years into one 24-hour day, at what time would
the dinosaurs have been killed? (10 points)

When it was launched towards Pluto, the New Horizons spacecraft was traveling at
approximately 20 kilometers per second. How long did it take to reach Jupiter, which
is roughly 4 AU from Earth? [Hint: see the definition of an AU in Section 1.3 of this
lab.] (7 points)

15
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2 The Origin of the Seasons

2.1 Introduction

The origin of the science of Astronomy owes much to the need of ancient peoples to have
a practical system that allowed them to predict the seasons. It is critical to plant your
crops at the right time of the year—too early and the seeds may not germinate because it
is too cold, or there is insufficient moisture. Plant too late and it may become too hot and
dry for a sensitive seedling to survive. In ancient Egypt, they needed to wait for the Nile
to flood. The Nile river would flood every July, once the rains began to fall in Central Africa.

Thus, the need to keep track of the annual cycle arose with the development of agri-
culture, and this required an understanding of the motion of objects in the sky. The first
devices used to keep track of the seasons were large stone structures (such as Stonehenge)
that used the positions of the rising Sun or Moon to forecast the coming seasons. The first
recognizable calendars that we know about were developed in Egypt, and appear to date
from about 4,200 BC. Of course, all a calendar does is let you know what time of year it is—it
does not provide you with an understanding of why the seasons occur! The ancient people
had a variety of models for why seasons occurred, but thought that everything, including
the Sun and stars, orbited around the Earth. Today, you will learn the real reason why there
are seasons.

e Goals: To learn why the Earth has seasons.

e Materials: a meter stick, a mounted globe, an elevation angle apparatus, string, a
halogen lamp, and a few other items

2.2 The Seasons

Before we begin today’s lab, let us first talk about the seasons. In New Mexico we have
rather mild Winters, and hot Summers. In the northern parts of the United States, however,
the winters are much colder. In Hawaii, there is very little difference between Winter and
Summer. As you are also aware, during the Winter there are fewer hours of daylight than
in the Summer. In Table 2.1 we have listed seasonal data for various locations around the
world. Included in this table are the average January and July maximum temperatures, the
latitude of each city, and the length of the daylight hours in January and July. We will use
this table in Exercise #2.

In Table 2.1, the “N” following the latitude means the city is in the northern hemisphere

of the Earth (as is all of the United States and Europe) and thus North of the equator. An
“S” following the latitude means that it is in the southern hemisphere, South of the Earth’s

17



Table 2.1: Season Data for Select Cities

City Latitude | January Ave. | July Ave. January July
(Degrees) | Max. Temp. | Max. Temp. | Daylight | Daylight

Hours Hours

Fairbanks, AK 64.8N -2 72 3.7 21.8
Minneapolis, MN 45.0N 22 83 9.0 15.7
Las Cruces, NM 32.5N 57 96 10.1 14.2
Honolulu, HI 21.3N 80 88 11.3 13.6
Quito, Ecuador 0.0 7 7 12.0 12.0
Apia, Samoa 13.8S 80 78 11.1 12.7
Sydney, Australia 33.95 78 61 14.3 10.3
Ushuaia, Argentina 54.65 57 39 17.3 7.4

equator. What do you think the latitude of Quito, Ecuador (0.0°) means? Yes, it is right on
the equator. Remember, latitude runs from 0.0° at the equator to £90° at the poles. If north
of the equator, we say the latitude is XX degrees north (or sometimes “+XX degrees”), and
if south of the equator we say XX degrees south (or “—XX degrees”). We will use these
terms shortly.

Now, if you were to walk into the Mesilla Valley Mall and ask a random stranger “why
do we have seasons?”, the most common answer you would get is “because we are closer to
the Sun during Summer, and further from the Sun in Winter”. This answer suggests that
the general public (and most of your classmates) correctly understand that the Earth orbits
the Sun in such a way that at some times of the year it is closer to the Sun than at other
times of the year. As you have (or will) learn in your lecture class, the orbits of all planets
around the Sun are ellipses. As shown in Figure 2.1 an ellipse is sort of like a circle that
has been squashed in one direction. For most of the planets, however, the orbits are only
very slightly elliptical, and closely approximate circles. But let us explore this idea that the
distance from the Sun causes the seasons.

Earth

Sun

Figure 2.1: An ellipse with the two “foci” identified. The Sun sits at one focus, while the
other focus is empty. The Earth follows an elliptical orbit around the Sun, but not nearly
as exaggerated as that shown here!

18



Exercise #1. In Figure 2.1, we show the locations of the two “foci” of an ellipse (foci
is the plural form of focus). We will ignore the mathematical details of what foci are for
now, and simply note that the Sun sits at one focus, while the other focus is empty (see the
Kepler Law lab for more information if you are interested). A planet orbits around the Sun
in an elliptical orbit. So, there are times when the Earth is closest to the Sun
(“perihelion”), and times when it is furthest (“aphelion”). When closest to the Sun, at
perihelion, the distance from the Earth to the Sun is 147,056,800 km (“147 million
kilometers”). At aphelion, the distance from the Earth to the Sun is 152,143,200 km (152
million km).

With the meter stick handy, we are going to examine these distances. Obviously, our
classroom is not big enough to use kilometers or even meters so, like a road map, we will
have to use a reduced scale: 1 cm = 1 million km. Now, stick a piece of tape on the table
and put a mark on it to set the starting point (the location of the Sun!). Carefully measure
out the two distances (along the same direction) and stick down two more pieces of tape,
one at the perihelion distance, one at the aphelion distance (put small dots/marks on the
tape so you can easily see them).

1) Do you think this change in distance is big enough to cause the seasons? Explain your
logic. (3 points)

Take the ratio of the aphelion to perihelion distances: . (1 point)

Given that we know objects appear bigger when we are closer to them, let’s take a look at
the two pictures of the Sun you were given as part of the materials for this lab. One image
was taken on January 23, 1992, and one was taken on the 215 of July 1992 (as the “date
stamps” on the images show). Using a ruler, carefully measure the diameter of the Sun in

each image:

Sun diameter in January image = mm.
Sun diameter in July image = mm.
3) Take the ratio of bigger diameter / smaller diameter, this = . (1 point)

4) How does this ratio compare to the ratio you calculated in question #2? (2 points)

19



5) So, since an object appears bigger when we get closer to it, when is the Earth closest to
the Sun? (2 points)

6) At that time of year, what season is it in Las Cruces? What do you conclude about the
statement “the seasons are caused by the changing distance between the Earth and the
Sun”? (4 points)

Exercise #2. Characterizing the nature of the seasons at different locations. For this
exercise, we are going to be exclusively using the data contained in Table 2.1. First, let’s
look at Las Cruces. Note that here in Las Cruces, our latitude is +32.5°. That is we are
about one third of the way from the equator to the pole. In January our average high
temperature is 57°F, and in July it is 96°F. It is hotter in Summer than in Winter (duh!).
Note that there are about 10 hours of daylight in January, and about 14 hours of daylight
in July.

7) Thus, for Las Cruces, the Sun is “up” longer in July than in January. Is the same thing
true for all cities with northern latitudes? Yes or No 7 (1 point)

Ok, let’s compare Las Cruces with Fairbanks, Alaska. Answer these questions by filling in
the blanks:

8) Fairbanks is the North Pole than Las Cruces. (1 point)
9) In January, there are more daylight hours in . (1 point)
10) In July, there are more daylight hours in . (1 point)

Now let’s compare Las Cruces with Sydney, Australia. Answer these questions by filling in
the blanks:

11) While the latitudes of Las Cruces and Sydney are similar, Las Cruces is
of the Equator, and Sydney is of the Equator. (2 points)

20



12) In January, there are more daylight hours in . (1 point)

13) In July, there are more daylight hours in . (1 point)

14) Summarizing: During the Wintertime (January) in both Las Cruces and Fairbanks
there are fewer daylight hours, and it is colder. During July, it is warmer in both Fairbanks
and Las Cruces, and there are more daylight hours. Is this also true for Sydney?:

. (1 point)

15) In fact, it is Wintertime in Sydney during , and Summertime during
. (2 points)

16) From Table 2.1, I conclude that the times of the seasons in the Northern hemisphere
are exactly to those in the Southern hemisphere. (1 point)

From Exercise #2 we learned a few simple truths, but ones that maybe you have never
thought about. As you move away from the equator (either to the north or to the south)
there are several general trends. The first is that as you go closer to the poles it is generally
cooler at all times during the year. The second is that as you get closer to the poles, the
amount of daylight during the Winter decreases, but the reverse is true in the Summer.

The first of these is not always true because the local climate can be moderated by the
proximity to a large body of water, or depend on the local elevation. For example, Syd-
ney is milder than Las Cruces, even though they have similar latitudes: Sydney is on the
eastern coast of Australia (South Pacific ocean) and has a climate like that of San Diego,
California (which has a similar latitude and is on the coast of the North Pacific). Quito,
Ecuador has a mild climate even though it sits right on the equator due to its high elevation—
it is more than 9,000 feet above sea level, similar to the elevation of Cloudcroft, New Mexico.

The second conclusion (amount of daylight) is always true—as you get closer and closer to
the poles, the amount of daylight during the Winter decreases, while the amount of daylight
during the Summer increases. In fact, for all latitudes north of 66.5°, the Summer Sun is up
all day (24 hrs of daylight, the so called “land of the midnight Sun”) for at least one day
each year, while in the Winter there are times when the Sun never rises! 66.5° is a special
latitude, and is given the name “Arctic Circle”. Note that Fairbanks is very close to the
Arctic Circle, and the Sun is up for just a few hours during the Winter, but is up for nearly 22
hours during the Summer! The same is true for the southern hemisphere: all latitudes south
of —66.5° experience days with 24 hours of daylight in the Summer, and 24 hours of darkness
in the Winter. —66.5° is called the “Antarctic Circle”. But note that the seasons in the
Southern Hemisphere are exactly opposite to those in the North. During Northern Winter,
the North Pole experiences 24 hours of darkness, but the South Pole has 24 hours of daylight.
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2.3 The Spinning, Revolving Earth

It is clear from the preceding subsection that your latitude determines both the annual
variation in the amount of daylight, and the time of the year when you experience Spring,
Summer, Autumn and Winter. To truly understand why this occurs requires us to construct
a model. One of the key insights to the nature of the motion of the Earth is shown in the
long exposure photographs of the nighttime sky (Figs. 2.2, 2.3).

Figure 2.2: Pointing a camera at the North Star (Polaris, the bright dot near the center)
and exposing for about one hour, the stars appear to move in little arcs. The center of
rotation is called the “North Celestial Pole”, and Polaris is very close to this position.
The dotted/dashed trails in this photograph are the blinking lights of airplanes that passed
through the sky during the exposure.

What is going on in these photos? The easiest explanation is that the Earth is spinning,
and as you keep your camera shutter open, the stars appear to move in “orbits” around the
North Pole. You can duplicate this motion by sitting in a chair that is spinning—the objects
in the room appear to move in circles around you. The further they are from the “axis of
rotation”, the bigger arcs they make, and the faster they move. An object straight above
you, exactly on the axis of rotation of the chair, does not move. As apparent in Figure 2.3,
the “North Star” Polaris is not perfectly on the axis of rotation at the North Celestial Pole,
but it is very close (the fact that there is a bright star near the pole is just random chance).
Polaris has been used as a navigational aid for centuries, as it allows you to determine the
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Figure 2.3: Here is a composite of many different exposures (each about one hour in length) of
the night sky over Vienna, Austria taken throughout the year (all four seasons). The images
have been composited using a software package like Photoshop to demonstrate what would
be possible if it stayed dark for 24 hrs, and you could actually obtain a 24 hour exposure
(which can only be truly done north of the Arctic circle). Polaris is the the smallest circle
at the very center.

direction of North.

As the second photograph shows, the direction of the spin axis of the Earth does not
change during the year—it stays pointed in the same direction all of the time! If the Earth’s
spin axis moved, the stars would not make perfect circular arcs, but would wander around
in whatever pattern was being executed by the Earth’s axis.

Now, as shown back in Figure 2.1, we said the Earth orbits (“revolves” around) the Sun

on an ellipse. We could discuss the evidence for this, but to keep this lab brief, we will just
assume this fact. So, now we have two motions: the spinning and revolving of the Earth. It
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is the combination of these that actually give rise to the seasons, as you will find out in the
next exercise.

Exercise #3: In this part of the lab, we will be using the mounted globes, a piece of
string, a ruler, and the halogen desk lamp. Warning: while the globe used here is
made of fairly inexpensive parts, it is very time consuming to make. Please be
careful with your globe, as the paint can be easily damaged. Make sure that the
piece of string you have is long enough to go slightly more than halfway around the globe
at the equator—if your string is not that long, ask your TA for a longer piece of string. As
you may have guessed, this globe is a model of the Earth. The spin axis of the Earth is
actually tilted with respect to the plane of its orbit by 23.5°.

Set up the experiment in the following way. Place the halogen lamp at one end of the table
(shining towards the closest wall so as to not affect your classmates), and set the globe at a
distance of 1.5 meters from the lamp. After your TA has dimmed the classroom lights,
turn on the halogen lamp to the highest setting (if there is a dim, and a bright
setting—some lights only have one brightness setting). Note these lamps get very hot, so be
careful. For this lab, we will define the top of the globe as the Northern hemisphere, and
the bottom as the Southern hemisphere.

For the first experiment, arrange the globe so the tilted axis of the “Earth” is pointed
perpendicular (or at a “right” angle = 90°) to the direction of the “Sun”. Use your best
judgement. Now adjust the height of the desk lamp so that the light bulb in the lamp is at
the same approximate height as the equator.

There are several colored lines on the globe that form circles which are concentric with the
axis, and these correspond to certain latitudes. The red line is the equator, the black line is
45° North, while the two blue lines are the Arctic (top) and Antarctic (bottom) circles.

Experiment #1: Note that there is an illuminated half of the globe, and a dark half of
the globe. The line that separates the two is called the “terminator”. It is the location of
sunrise or sunset. Using the piece of string, we want to measure the length of each arc that
is in “daylight” and the length that is in “night”. This is kind of tricky, and requires a bit
of judgement as to exactly where the terminator is located. So make sure you have a helper
to help keep the string ezxactly on the line of constant latitude, and get the advice of your
lab partners of where the terminator is (it is probably best to do this more than once). Fill
in the following table (4 points):

As you know, the Earth rotates once every 24 hours (= 1 Day). Each of the lines of
constant latitude represents a full circle that contains 360°. But note that these circles get
smaller in radius as you move away from the equator. The circumference of the Earth at
the equator is 40,075 km (or 24,901 miles). At a latitude of 45°, the circle of constant
latitude has a circumference of 28,333 km. At the arctic circles, the circle has a
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Table 2.2: Position #1: Equinox Data Table
Latitude Length of Daylight Arc | Length of Nightime Arc
Equator
45°N
Arctic Circle
Antarctic Circle

circumference of only 15,979 km. This is simply due to our use of two coordinates
(longitude and latitude) to define a location on a sphere.

Since the Earth is a solid body, all of the points on Earth rotate once every 24 hours.
Therefore, the sum of the daytime and nighttime arcs you measured equals 24 hours! So,
fill in the following table (2 points):

Table 2.3: Position #1: Length of Night and Day
Latitude Daylight Hours | Nighttime Hours
Equator
45°N
Arctic Circle
Antarctic Circle

18) The caption for Table 2.2 was “Equinox data”. The word Equinox means “equal
nights”, as the length of the nighttime is the same as the daytime. While your numbers in
Table 2.3 may not be exactly perfect, what do you conclude about the length of the nights
and days for all latitudes on Earth in this experiment? Is this result consistent with the
term Equinox? (3 points)

Experiment #2: Now we are going to re-orient the globe so that the (top) polar axis
points ezactly away from the Sun and repeat the process of Experiment #1. Fill in the
following two tables (4 points):

Table 2.4: Position #2: Solstice Data Table
Latitude Length of Daylight Arc | Length of Nightime Arc
Equator
45°N
Arctic Circle
Antarctic Circle
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Table 2.5: Position #2: Length of Night and Day
Latitude Daylight Hours | Nighttime Hours
Equator
45°N
Arctic Circle
Antarctic Circle

19) Compare your results in Table 2.5 for +45° latitude with those for Minneapolis in
Table 2.1. Since Minneapolis is at a latitude of +45°, what season does this orientation of
the globe correspond to? (2 points)

20) What about near the poles? In this orientation what is the length of the nighttime at
the North pole, and what is the length of the daytime at the South pole? Is this consistent
with the trends in Table 2.1, such as what is happening at Fairbanks or in Ushuaia? (4
points)

Experiment #3: Now we are going to approximate the Earth-Sun orientation six months
after that in Experiment #2. To do this correctly, the globe and the lamp should now
switch locations. Go ahead and do this if this lab is confusing you—or you can simply
rotate the globe apparatus by 180° so that the North polar axis is tilted exactly towards
the Sun. Try to get a good alignment by looking at the shadow of the wooden axis on the
globe. Since this is six months later, it easy to guess what season this is, but let’s prove it!
Complete the following two tables (4 points):

Table 2.6: Position #3: Solstice Data Table
Latitude Length of Daylight Arc | Length of Nightime Arc
Equator
45°N
Arctic Circle
Antarctic Circle

21) As in question #19, compare the results found here for the length of daytime and
nighttime for the +45° degree latitude with that for Minneapolis. What season does this
appear to be? (2 points)
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Table 2.7: Position #3: Length of Night and Day
Latitude Daylight Hours | Nighttime Hours
Equator
45°N
Arctic Circle
Antarctic Circle

22) What about near the poles? In this orientation, how long is the daylight at the North
pole, and what is the length of the nighttime at the South pole? Is this consistent with the
trends in Table 2.1, such as what is happening at Fairbanks or in Ushuaia? (2 points)

23) Using your results for all three positions (Experiments #1, #2, and #3) can you
explain what is happening at the Equator? Does the data for Quito in Table 2.1 make
sense? Why? Explain. (3 points)

We now have discovered the driver for the seasons: the Earth spins on an axis that is
inclined to the plane of its orbit (as shown in Figure 2.4). But the spin azis always points to
the same place in the sky (towards Polaris). Thus, as the Earth orbits the Sun, the amount
of sunlight seen at a particular latitude varies: the amount of daylight and nighttime hours
change with the seasons. In Northern Hemisphere Summer (approximately June 21%%) there
are more daylight hours; at the start of the Autumn (~ Sept. 20*") and Spring (~ Mar.
21%%), the days are equal to the nights. In the Winter (approximately Dec. 21%*) the nights
are long, and the days are short. We have also discovered that the seasons in the Northern
and Southern hemispheres are exactly opposite. If it is Winter in Las Cruces, it is Summer
in Sydney (and vice versa). This was clearly demonstrated in our experiments and is shown
in Figure 2.4.

The length of the daylight hours is one reason why it is hotter in Summer than in Winter:
the longer the Sun is above the horizon the more it can heat the air, the land and the seas.

27



e '3;% bl \;‘
Wy @

Figure 2.4: The Earth’s spin axis always points to one spot in the sky, and it is tilted by
23.5° to its orbit. Thus, as the Earth orbits the Sun, the illumination changes with latitude:
sometimes the North Pole is bathed in 24 hours of daylight, and sometimes in 24 hours of
night. The exact opposite is occurring in the Southern Hemisphere.

But this is not the whole story. At the North Pole, where there is constant daylight during
the Summer, the temperature barely rises above freezing! Why? We will discover the reason
for this now.

2.4 Elevation Angle and the Concentration of Sunlight

We have found out part of the answer to why it is warmer in summer than in winter: the
length of the day is longer in summer. But this is only part of the story—you would think
that with days that are 22 hours long during the summer, it would be hot in Alaska and
Canada during the summer, but it is not. The other effect caused by Earth’s tilted spin axis
is the changing height that the noontime Sun attains during the various seasons. Before we
discuss why this happens (as it takes quite a lot of words to describe it correctly), we want
to explore what happens when the Sun is higher in the sky. First, we need to define two new
terms: “altitude”, or “elevation angle”. As shown in the diagram in Fig. 2.5.

object

» honzon

Figure 2.5: Altitude (“Alt”) is simply the angle between the horizon, and an object in the
sky. The smallest this angle can be is 0°, and the maximum altitude angle is 90°. Altitude
is interchangeably known as elevation.
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The Sun is highest in the sky at noon everyday. But how high is it? This, of course,
depends on both your latitude and the time of year. For Las Cruces, the Sun has an altitude
of 81° on June 21%*. On both March 21 and September 20", the altitude of the Sun at
noon is 57.5°. On December 21° its altitude is only 34°. Thus, the Sun is almost straight
overhead at noon during near the Summer Solstice, but very low during the Winter Solstice.
What difference can this possibly make? We now explore this using the other apparatus, the
elevation angle device, that accompanies this lab (the one with the protractor and flashlight).

Exercise #4: Using the elevation angle apparatus, we now want to measure what hap-
pens when the Sun is at a higher or lower elevation angle. We mimic this by using a flashlight
mounted on an arm that allows you to move it to just about any elevation angle. It is difficult
to exactly model the Sun using a flashlight, as the light source is not perfectly uniform. But
here we do as well as we can. Play around with the device. Turn on the flashlight and move
the arm to lower and higher angles. How does the illumination pattern change? Does the il-
luminated pattern appear to change in brightness as you change angles? Explain. (2 points)

Ok, now we are ready to begin. Take a blank sheet of graph paper and tape it to the
base so we have a more reflective surface. Now arrange the apparatus so the elevation angle
is 90°. The illuminated spot should look circular. Measure the diameter of this circle using
a ruler.

The diameter of the illuminated circle is cm.

Do you remember how to calculate the area of a circle? Does the formula 7R? ring a bell?

The area of the circle of light at an elevation angle of 90° is cm?. (1
point)

Now, as you should have noticed at the beginning of this exercise, as you move the flash-
light to lower and lower elevations, the circle changes to an ellipse. Now adjust the elevation
angle to be 45°. Ok, time to introduce you to two new terms: the major axis and minor axis
of an ellipse. Both are shown in Fig. 4.4. The minor axis is the smallest diameter, while the
major axis is the longest diameter of an ellipse.
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Figure 2.6: An ellipse with the major and minor axes defined.
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Ok, now measure the lengths of the major (“a”) and minor (“b”) axes at 45°:

The major axis has a length of a = cm, while the minor axis has a

length of b = cm.

The area of an ellipse is simply (7 X a x b)/4. So, the area of

the ellipse at an elevation angle of 45° is: cm? (1 point).

So, why are we making you measure these areas? Note that the black tube restricts the
amount of light coming from the flashlight into a cylinder. Thus, there is only a certain
amount of light allowed to come out and hit the paper. Let’s say there are “one hundred
units of light” emitted by the flashlight. Now let’s convert this to how many units of light
hit each square centimeter at angles of 90° and 45°.

At 90°, the amount of light per centimeter is 100 divided by the area of circle

= units of light per cm? (1 point).

At 45°, the amount of light per centimeter is 100 divided by the area of the ellipse

= units of light per cm? (1 point).

Since light is a form of energy, at which elevation angle is there more energy per square
centimeter? Since the Sun is our source of light, what happens when the Sun is higher in
the sky? Is its energy more concentrated, or less concentrated? How about when it is low
in the sky? Can you tell this by looking at how bright the ellipse appears versus the circle?
(4 points)
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As we have noted, the Sun never is very high in the arctic regions of the Earth. In fact,
at the poles, the highest elevation angle the Sun can have is 23.5°. Thus, the light from
the Sun is spread out, and cannot heat the ground as much as it can at a point closer to
the equator. That’s why it is always colder at the Earth’s poles than elsewhere on the planet.

You are now finished with the in-class portion of this lab. To understand why the Sun
appears at different heights at different times of the year takes a little explanation (and the
following can be read at home unless you want to discuss it with your TA). Let’s go back
and take a look at Fig. 2.3. Note that Polaris, the North Star, barely moves over the course
of a night or over the year—it is always visible. If you had a telescope and could point it
accurately, you could see Polaris during the daytime too. Polaris never sets for people in the
Northern Hemisphere since it is located very close to the spin axis of the Earth. Note that
as we move away from Polaris the circles traced by other stars get bigger and bigger. But
all of the stars shown in this photo are always visible—they never set. We call these stars
“circumpolar”. For every latitude on Earth, there is a set of circumpolar stars (the number
decreases as you head towards the equator).

Now let us add a new term to our vocabulary: the “Celestial Equator”. The Celestial
Equator is the projection of the Earth’s Equator onto the sky. It is a great circle that spans
the night sky that is directly overhead for people who live on the Equator. As you have now
learned, the lengths of the days and nights at the equator are nearly always the same: 12
hours. But we have also learned that during the Equinoxes, the lengths of the days and the
nights everywhere on Earth are also twelve hours. Why? Because during the equinoxes, the
Sun is on the Celestial Equator. That means it is straight overhead (at noon) for people
who live in Quito, Ecuador (and everywhere else on the equator). Any object that is on the
Celestial Equator is visible for 12 hours per day from everywhere on Earth. To try to under-
stand this, take a look at Fig. 2.7. In this figure is shown the celestial geometry explicitly
showing that the Celestial Equator is simply the Earth’s equator projected onto the sky (left
hand diagram). But the Earth is large, and to us, it appears flat. Since the objects in the
sky are very far away, we get a view like that shown in the right hand diagram: we see one
hemisphere of the sky, and the stars, planets, Sun and Moon rise in the east, and set in the
west. But note that the Celestial Equator exactly intersects East and West. Only objects
located on the Celestial Equator rise exactly due East, and set exactly due West. All other
objects rise in the northeast or southeast and set in the northwest or the southwest. Note
that in this diagram (for a latitude of 40°) all stars that have latitudes (astronomers call
them “Declinations”, or “dec”) above 50° never set—they are circumpolar.

What happens is that during the year, the Sun appears to move above and below the Ce-
lestial Equator. On, or about, March 215 the Sun is on the Celestial Equator, and each day
after this it gets higher in the sky (for locations in the Northern Hemisphere) until June 21°.
After that date it retraces its steps until it reaches the Autumnal Equinox (September 20t"),
after which it is then South of the Celestial Equator. It is lowest in the sky on December
215%, This is simply due to the fact that the Earth’s axis is tilted with respect to its orbit,
and this tilt does not change. You can see this geometry by going back to the illuminated
globe model used in Exercise #3. If you stick a pin at some location on the globe away from
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Figure 2.7: The Celestial Equator is the circle in the sky that is straight overhead (“the
zenith”) of the Earth’s equator. In addition, there is a “North Celestial” pole that is the
projection of the Earth’s North Pole into space (that almost points to Polaris). But the
Earth’s spin axis is tilted by 23.5° to its orbit, and the Sun appears to move above and
below the Celestial Equator over the course of a year.

the equator, turn on the halogen lamp, and slowly rotate the entire apparatus around (while
keeping the pin facing the Sun) you will notice that the shadow of the pin will increase and
decrease in size. This is due to the apparent change in the elevation angle of the “Sun”.
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2.5 Summary (35 points)

Summarize the important points covered in this lab. Questions you should answer include:

e Why does the Earth have seasons?
e What is the origin of the term “Equinox”?
e What is the origin of the term “Solstice”?

e Most people in the United States think the seasons are caused by the changing distance
between the Earth and the Sun. Why do you think this is?

e What type of seasons would the Earth have if its spin axis was exactly perpendicular
to its orbital plane? Make a diagram like Fig. 2.4.

e What type of seasons would the Earth have if its spin axis was in the plane of its orbit?
(Note that this is similar to the situation for the planet Uranus.)

e What do you think would happen if the Earth’s spin axis wobbled randomly around
on a monthly basis? Describe how we might detect this.

2.6 Possible Quiz Questions

1) What does the term “latitude” mean?

2) What is meant by the term “Equator”?

3) What is an ellipse?

4) What are meant by the terms perihelion and aphelion?

5) If it is summer in Australia, what season is it in New Mexico?

2.7 Extra Credit (ask your TA for permission before attempting,
5 points)

We have stated that the Earth’s spin axis constantly points to a single spot in the sky. This
is actually not true. Look up the phrase “precession of the Earth’s spin axis”. Describe
what is happening and the time scale of this motion. Describe what happens to the timing
of the seasons due to this motion. Some scientists believe that precession might help cause
ice ages. Describe why they believe this.
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Name(s):
Date:

3 Phases of the Moon

3.1 Introduction

Every once in a while, your teacher or TA is confronted by a student with the question
“Why can I see the Moon today, is something wrong?”. Surprisingly, many students have
never noticed that the Moon is visible in the daytime. The reason they are surprised is
that it confronts their notion that the shadow of the Earth is the cause of the phases—it is
obvious to them that the Earth cannot be causing the shadow if the Moon, Sun and Earth
are simultaneously in view! Maybe you have a similar idea. You are not alone, surveys of
science knowledge show that the idea that the shadow of the Earth causes lunar phases is
one of the most common misconceptions among the general public. Today, you will learn
why the Moon has phases, the names of these phases, and the time of day when these phases
are visible.

Even though they adhered to a “geocentric” (Earth-centered) view of the Universe, it
may surprise you to learn that the ancient Greeks completely understood why the Moon has
phases. In fact, they noticed during lunar eclipses (when the Moon does pass through the
Earth’s shadow) that the shadow was curved, and that the Earth, like the Moon, must be
spherical. The notion that Columbus feared he would fall of the edge of the flat Earth is
pure fantasy—it was not a flat Earth that was the issue of the time, but how big the Earth
actually was that made Columbus’ voyage uncertain.

The phases of the Moon are cyclic, in that they repeat every month. In fact the word
“month”, is actually an Old English word for the Moon. That the average month has 30
days is directly related to the fact that the Moon’s phases recur on a 29.5 day cycle. Note
that it only takes the Moon 27.3 days to orbit once around the Earth, but the changing
phases of the Moon are due to the relative to positions of the Sun, Earth, and Moon. Given
that the Earth is moving around the Sun, it takes a few days longer for the Moon to get to
the same relative position each cycle.

Your textbook probably has a figure showing the changing phases exhibited by the Moon
each month. Generally, we start our discusion of the changing phases of the Moon at “New
Moon”. During New Moon, the Moon is invisible because it is in the same direction as the
Sun, and cannot be seen. Note: because the orbit of the Moon is tilted with respect to the
Earth’s orbit, the Moon rarely crosses in front of the Sun during New Moon. When it does,
however, a spectacular “solar eclipse” occurs.

As the Moon continues in its orbit, it becomes visible in the western sky after sunset a

few days after New Moon. At this time it is a thin “crescent”. With each passing day, the
cresent becomes thicker, and thicker, and is termed a “waxing” crescent. About seven days
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after New Moon, we reach “First Quarter”, a phase when we see a half moon. The visible,
illuminated portion of the Moon continues to grow (“wax”) until fourteen days after New
Moon when we reach “Full Moon”. At Full Moon, the entire, visible surface of the Moon is
illuminated, and we see a full circle. After Full Moon, the illuminated portion of the Moon
declines with each passing day so that at three weeks after New Moon we again see a half
Moon which is termed “Third” or “Last” Quarter. As the illuminated area of the Moon is
getting smaller each day, we refer to this half of the Moon’s monthly cycle as the “waning”
portion. Eventually, the Moon becomes a waning crescent, heading back towards New Moon
to begin the cycle anew. Between the times of First Quarter and Full Moon, and between
Full Moon and Third Quarter, we sometimes refer to the Moon as being in a “gibbous”
phase. Gibbous means “hump-backed”. When the phase is increasing towards Full Moon,
we have a “waxing gibbous” Moon, and when it is decreasing, the “waning gibbous” phases.

The objective of this lab is to improve your understanding of the Moon phases [a topic that
you WILL see on future exams!]. This concept, the phases of the Moon, involves

1. the position of the Moon in its orbit around the Earth,
2. the illuminated portion of the Moon that is visible from here in Las Cruces, and

3. the time of day that a given Moon phase is at the highest point in the sky as seen from
Las Cruces.

You will finish this lab by demonstrating to your instructor that you do clearly understand
the concept of Moon phases, including an understanding of:

e which direction the Moon travels around the Earth

e how the Moon phases progress from day-to-day

e at what time of the day the Moon is highest in the sky at each phase
Materials

e small spheres (representing the Moon), with two different colored hemispheres. The
dark hemisphere represents the portion of the Moon not illuminated by the Sun.

e flashlight (representing the Sun)
e yourself (representing the Earth, and your nose Las Cruces!)

You will use the colored sphere and flashlight as props for this demonstration. Carefully
read and thoroughly answer the questions associated with each of the five Exercises on the
following pages. [Don’t be concerned about eclipses as you answer the questions in these
Exercises|. Using the dual-colored sphere to represent the Moon, the flashlight to represent
the Sun, and a member of the group to represent the Earth (with that person’s nose repre-
senting Las Cruces’ location), ‘walk through’ and ‘rotate through’ the positions indicated in
the Exercise figures to fully understand the situation presented.

Note that there are additional questions at the end.
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Work in Groups of Three People!

3.2 [Exercise 1 (10 points)

The figure below shows a “top view” of the Sun, Earth, and eight different positions (1-8) of
the Moon during one orbit around the Earth. Note that the distances shown are not drawn
to scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s entire
surface that is illuminated for the eight positions (1-8) shown.

Ranking Order: Greatest A B C D E F G H Least

Or, the amount of the entire surface of the Moon illuminated by sunlight is the same at all
the positions. ______ (indicate with a check mark).

Carefully explain the reasoning for your result:
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3.3 Exercise 2 (10 points)

The figure below shows a “top view” of the Sun, Earth, and six different positions (1-6) of
the Moon during one orbit of the Earth. Note that the distances shown are not drawn to
scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s illuminated
surface that is visible from Earth for the six positions (1-6) shown.

Ranking Order: Greatest A B C D E F Least

Or, the amount of the Moon’s illuminated surface visible from Earth is the same at all
the positions. ______ (indicate with a check mark).

Carefully explain the reasoning for your result:

38



3.4 Exercise 3 (10 points)

Shown below are different phases of the Moon as seen by an observer in the Northern
Hemisphere.

A B C D E

Ranking Instructions: Beginning with the wazing gibbous phase of the Moon, rank all
five Moon phases shown above in the order that the observer would see them over the next
four weeks (write both the picture letter and the phase name in the space provided!).

Ranking Order:

1) Waxing Gibbous

Or, all of these phases would be visible at the same time: (indicate with a check mark).
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3.5 Lunar Phases, and When They Are Observable

The next three exercises involve determining when certain lunar phases can be observed.
Or, alternatively, determining the approximate time of day or night using the position and
phase of the Moon in the sky.

In Exercises 1 and 2, you learned about the changing geometry of the Earth-Moon-Sun
system that is the cause of the phases of the Moon. When the Moon is in the same direction
as the Sun, we call that phase New Moon. During New Moon, the Moon rises with the Sun,
and sets with the Sun. So if the Moon’s phase was New, and the Sun rose at 7 am, the Moon
also rose at 7 am—even though you cannot see it! The opposite occurs at Full Moon: at Full
Moon the Moon is in the opposite direction from the Sun. Therefore, as the Sun sets, the
Full Moon rises, and vice versa. The Sun reaches its highest point in the sky at noon each
day. The Full Moon will reach the highest point in the sky at midnight. At First and Third
quarters, the Moon-Earth-Sun angle is a right angle, that is it has an angle of 90° (positions
3 and 6, respectively, in the diagram for exercise #2). At these phases, the Moon will rise or
set at either noon, or midnight (it will be up to you to figure out which is which!). To help
you with exercises 4 through 6, we include the following figure detailing when the observed
phase is highest in the sky.
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3.6 Exercise 4 (6 points)

In the set of figures below, the Moon is shown in the first quarter phase at different times of
the day (or night). Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.
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Time: Time:

P

EAST SOUTH WEST EAST SOUTH WEST

Time: Time:

Instructions: Determine the time at which each view of the Moon would be seen, and write
it on each panel of the figure.
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3.7 Exercise 5 (6 points)

In the set of figures below, the Moon is shown overhead, at its highest point in the sky, but
in different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.
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Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.
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3.8 Exercise 6 (6 points)

In the two sets of figures below, the Moon is shown in different parts of the sky and in
different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

QAST SOUTH WEST EAST SOUTH WEST

Time: Time:

cﬁ: .

EAST SOUTH WEST EAST SOUTH WEST

Time: Time:

A

=

N
EAST SOUTH WEST \ZAST SOUTH WEST

Time: Time:

Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.
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3.9 Demonstrating Your Understanding of Lunar Phases

After you have completed the six Exercises and are comfortable with Moon phases, and how
they relate to the Moon’s orbital position and the time of day that a particular Moon phase
is highest in the sky, you will be verbally quizzed by your instructor (without the Exercises
available) on these topics. You will use the dual-colored sphere, and the flashlight, and a
person representing the Earth to illustrate a specified Moon phase (appearance of the Moon
in the sky). You will do this for three different phases. (17 points)
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Name:
Date:

3.10 Take-Home Exercise (35 points total)

On a separate sheet of paper, answer the following questions:

1. If the Earth was one-half as massive as it actually is, how would the time interval
(number of days) from one Full Moon to the next in this ‘small Earth mass’ situa-
tion compare to the actual time interval of 29.5 days between successive Full Moons?
Assume that all other aspects of the Earth and Moon system, including the Moon’s
orbital semi-major axis, the Earth’s rotation rate, etc. do not change from their cur-
rent values. (15 points)

2. What (approximate) phase will the Moon be in one week from today’s lab? (5 points)

3. If you were on Earth looking up at a Full Moon at midnight, and you saw an astronaut
at the center of the Moon’s disk, what phase would the astronaut be seeing the Earth
in? Draw a diagram to support your answer. (15 points)

3.11 Possible Quiz Questions

1) What causes the phases of the Moon?

2) What does the term “New Moon” mean?

3) What is the origin of the word “Month”?

4) How long does it take the Moon to go around the Earth once?
5) What is the time interval between successive New Moons?

3.12 Extra Credit (make sure you get permission from your TA
before attempting, 5 points)

Write a one page essay on the term “Blue Moon”. Describe what it is, and how it got its
name.
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Name:

Date:

4 Kepler’s Laws and Gravitation

4.1 Introduction

Throughout human history, the motion of the planets in the sky was a mystery: why did
some planets move quickly across the sky, while other planets moved very slowly? Even two
thousand years ago it was apparent that the motion of the planets was very complex. For
example, Mercury and Venus never strayed very far from the Sun, while the Sun, the Moon,
Mars, Jupiter and Saturn generally moved from the west to the east against the background
stars (at this point in history, both the Moon and the Sun were considered “planets”). The
Sun appeared to take one year to go around the Earth, while the Moon only took about 30
days. The other planets moved much more slowly. In addition to this rather slow movement
against the background stars was, of course, the daily rising and setting of these objects.
How could all of these motions occur? Because these objects were important to the cultures
of the time, even foretelling the future using astrology, being able to predict their motion
was considered vital.

The ancient Greeks had developed a model for the Universe in which all of the planets
and the stars were each embedded in perfect crystalline spheres that revolved around the
Earth at uniform, but slightly different speeds. This is the “geocentric”, or Earth-centered
model. But this model did not work very well-the speed of the planet across the sky changed.
Sometimes, a planet even moved backwards! It was left to the Egyptian astronomer Ptolemy
(85 — 165 AD) to develop a model for the motion of the planets (you can read more about
the details of the Ptolemaic model in your textbook). Ptolemy developed a complicated
system to explain the motion of the planets, including “epicycles” and “equants”, that in
the end worked so well, that no other models for the motions of the planets were considered
for 1500 years! While Ptolemy’s model worked well, the philosophers of the time did not
like this model-their Universe was perfect, and Ptolemy’s model suggested that the planets
moved in peculiar, imperfect ways.

In the 1540’s Nicholas Copernicus (1473 — 1543) published his work suggesting that
it was much easier to explain the complicated motion of the planets if the Earth revolved
around the Sun, and that the orbits of the planets were circular. While Copernicus was not
the first person to suggest this idea, the timing of his publication coincided with attempts to
revise the calendar and to fix a large number of errors in Ptolemy’s model that had shown
up over the 1500 years since the model was first introduced. But the “heliocentric” (Sun-
centered) model of Copernicus was slow to win acceptance, since it did not work as well as
the geocentric model of Ptolemy.

Johannes Kepler (1571 — 1630) was the first person to truly understand how the planets
in our solar system moved. Using the highly precise observations by Tycho Brahe (1546 —
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1601) of the motions of the planets against the background stars, Kepler was able to for-
mulate three laws that described how the planets moved. With these laws, he was able to
predict the future motion of these planets to a higher precision than was previously possible.
Many credit Kepler with the origin of modern physics, as his discoveries were what led Isaac
Newton (1643 — 1727) to formulate the law of gravity. Today we will investigate Kepler’s
laws and the law of gravity.

4.2 Gravity

Gravity is the fundamental force governing the motions of astronomical objects. No other
force is as strong over as great a distance. Gravity influences your everyday life (ever drop
a glass?), and keeps the planets, moons, and satellites orbiting smoothly. Gravity affects
everything in the Universe including the largest structures like super clusters of galaxies
down to the smallest atoms and molecules. Experimenting with gravity is difficult to do.
You can’t just go around in space making extremely massive objects and throwing them to-
gether from great distances. But you can model a variety of interesting systems very easily
using a computer. By using a computer to model the interactions of massive objects like
planets, stars and galaxies, we can study what would happen in just about any situation. All
we have to know are the equations which predict the gravitational interactions of the objects.

The orbits of the planets are governed by a single equation formulated by Newton:

G M M,
Fgravity = R2 (1)

A diagram detailing the quantities in this equation is shown in Fig. 4.1. Here F gy is
the gravitational attractive force between two objects whose masses are M; and M. The
distance between the two objects is “R”. The gravitational constant G is just a small number
that scales the size of the force. The most important thing about gravity is that the
force depends only on the masses of the two objects and the distance between
them. This law is called an Inverse Square Law because the distance between the objects is
squared, and is in the denominator of the fraction. There are several laws like this in physics
and astronomy.

Today you will be using a computer program called “Planets and Satellites” by Eugene
Butikov to explore Kepler’s laws, and how planets, double stars, and planets in double star
systems move. This program uses the law of gravity to simulate how celestial objects move.

e (oals: to understand Kepler’s three laws and use them in conjunction with the com-
puter program “Planets and Satellites” to explain the orbits of objects in our solar
system and beyond

e Materials: Planets and Satellites program, a ruler, and a calculator

48



Fgravity

Figure 4.1: The force of gravity depends on the masses of the two objects (M;, My), and the
distance between them (R).

4.3 Kepler’s Laws

Before you begin the lab, it is important to recall Kepler’s three laws, the basic description
of how the planets in our Solar System move. Kepler formulated his three laws in the early
1600’s, when he finally solved the mystery of how planets moved in our Solar System. These
three (empirical) laws are:

[. “The orbits of the planets are ellipses with the Sun at one focus.”
IT. “A line from the planet to the Sun sweeps out equal areas in equal intervals of time.”

IIT. “A planet’s orbital period squared is proportional to its average distance from the Sun
cubed: P? o a®”

Let’s look at the first law, and talk about the nature of an ellipse. What is an ellipse?
An ellipse is one of the special curves called a “conic section”. If we slice a plane through a
cone, four different types of curves can be made: circles, ellipses, parabolas, and hyperbolas.
This process, and how these curves are created is shown in Fig. 4.2.

Before we describe an ellipse, let’s examine a circle, as it is a simple form of an ellipse.
As you are aware, the circumference of a circle is simply 27R. The radius, R, is the distance
between the center of the circle and any point on the circle itself. In mathematical terms, the
center of the circle is called the “focus”. An ellipse, as shown in Fig. 4.3, is like a flattened
circle, with one large diameter (the “major” axis) and one small diameter (the “minor” axis).
A circle is simply an ellipse that has identical major and minor axes. Inside of an ellipse,
there are two special locations, called “foci” (foci is the plural of focus, it is pronounced
“fo-sigh”). The foci are special in that the sum of the distances between the foci and any
points on the ellipse are always equal. Fig. 4.4 is an ellipse with the two foci identified, “F;”
and “Fy”.

Exercise #1: On the ellipse in Fig. 4.4 are two X’s. Confirm that that sum of the dis-
tances between the two foci to any point on the ellipse is always the same by measuring
the distances between the foci, and the two spots identified with X’s. Show your work. (2
points)
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hyperbola

Figure 4.2: Four types of curves can be generated by slicing a cone with a plane: a circle,
an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also the allowed
shapes of the orbits of planets, asteroids, comets and satellites!

Axis = "b"

Major

Minor

Figure 4.3: An ellipse with the major and minor axes identified.

Exercise #2: In the ellipse shown in Fig. 4.5, two points (“P;” and “Py”) are identified
that are not located at the true positions of the foci. Repeat exercise #1, but confirm that
P; and Py are not the foci of this ellipse. (2 points)

Now we will use the Planets and Satellites program to examine Kepler’s laws. It is
possible that the program will already be running when you get to your computer. If not,
however, you will have to start it up. If your TA gave you a CDROM, then you need to
insert the CDROM into the CDROM drive on your computer, and open that device. On
that CDROM will be an icon with the program name. It is also possible that Planets and
Satellites has been installed on the computer you are using. Look on the desktop for an
icon, or use the start menu. Start-up the program, and you should see a title page window,
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Figure 4.4: An ellipse with the two foci identified.

Figure 4.5: An ellipse with two non-foci points identified.

with four boxes/buttons (“Getting Started”, “Tutorial”, “Simulations”, and “Exit”). Click
on the “Simulations” button. We will be returning to this level of the program to change
simulations. Note that there are help screens and other sources of information about each
of the simulations we will be running—do not hesitate to explore those options.

Exercise #3: Kepler’s first law. Click on the “Kepler’'s Law button” and then the “First
Law” button inside the Kepler’'s Law box. A window with two panels opens up. The panel
on the left will trace the motion of the planet around the Sun, while the panel on the right
sums the distances of the planet from the foci. Remember, Kepler’s first law states “the
orbit of a planet is an ellipse with the Sun at one focus”. The Sun in this simulation sits
at one focus, while the other focus is empty (but whose location will be obvious once the
simulation is run!).

At the top of the panel is the program control bar. For now, simply hit the “Go” button.
You can clear and restart the simulation by hitting “Restart” (do this as often as you wish).
After hitting Go, note that the planet executes an orbit along the ellipse. The program
draws the “vectors” from each focus to 25 different positions of the planet in its orbit. It
draws a blue vector from the Sun to the planet, and a yellow vector from the other focus to
the planet. The right hand panel sums the blue and yellow vectors. [Note: if your computer
runs the simulation too quickly, or too slowly, simply adjust the “Slow down/Speed Up”
slider for a better speed.]

Describe the results that are displayed in the right hand panel for this first simulation. (2
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points).

Now we want to explore another ellipse. In the extreme left hand side of the control bar
is a slider to control the “Initial Velocity”. At start-up it is set to “1.2”7. Slide it up to the
maximum value of 1.35 and hit Go.

Describe what the ellipse looks like at 1.35 vs. that at 1.2. Does the sum of the vectors
(right hand panel) still add up to a constant? (3 points)

Now let’s put the Initial Velocity down to a value of 1.0. Run the simulation. What is
happening here? The orbit is now a circle. Where are the two foci located? In this case,
what is the distance between the focus and the orbit equivalent to? (4 points)

The point in the orbit where the planet is closest to the Sun is called “perihelion”, and
that point where the planet is furthest from the Sun is called “aphelion”. For a circular
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orbit, the aphelion is the same as the perihelion, and can be defined to be anywhere! Exit
this simulation (click on “File” and “Exit”).

Exercise #4: Kepler’s Second Law: “A line from a planet to the Sun sweeps out equal areas
in equal intervals of time.” From the simulation window, click on the “Second Law” after en-
tering the Kepler’s Law window. Move the Initial Velocity slide bar to a value of 1.2. Hit Go.

Describe what is happening here. Does this confirm Kepler’s second law? How? When the
planet is at perihelion, is it moving slowly or quickly? Why do you think this happens? (4
points)

Look back to the equation for the force of gravity. You know from personal experience
that the harder you hit a ball, the faster it moves. The act of hitting a ball is the act of
applying a force to the ball. The larger the force, the faster the ball moves (and, generally,
the farther it travels). In the equation for the force of gravity, the amount of force generated
depends on the masses of the two objects, and the distance between them. But note that
it depends on one over the square of the distance: 1/R2 Let’s explore this “inverse square
law” with some calculations.

e If R = 1, what does 1/R? = ?
e If R = 2, what does 1/R? = ?
e If R = 4, what does 1/R? = ?

23



What is happening here? As R gets bigger, what happens to 1/R?? Does 1/R? de-
crease/increase quickly or slowly? (2 points)

The equation for the force of gravity has a 1/R? in it, so as R increases (that is, the two
objects get further apart), does the force of gravity felt by the body get larger, or smaller?
Is the force of gravity stronger at perihelion, or aphelion? Newton showed that the speed of
a planet in its orbit depends on the force of gravity through this equation:

V = \J(G(Maun + Mytaae) (2/7 = 1/a) 2)

where “r” is the radial distance of the planet from the Sun, and “a” is the mean orbital
radius (the semi-major axis). Do you think the planet will move faster, or slower when it
is closest to the Sun? Test this by assuming that r = 0.5a at perihelion, and r = 1.5a at
aphelion, and that a=1! [Hint, simply set G(Mgun + Mpianet) = 1 to make this comparison
very easy!]

Does this explain Kepler’s second law? (4 points)

What do you think the motion of a planet in a circular orbit looks like? Is there a definable
perihelion and aphelion? Make a prediction for what the motion is going to look like—how
are the triangular areas seen for elliptical orbits going to change as the planet orbits the Sun
in a circular orbit? Why? (3 points)
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Now let’s run a simulation for a circular orbit by setting the Initial Velocity to 1.0. What
happened? Were your predictions correct? (3 points)

Exit out of the Second Law, and start-up the Third Law simulation.

Exercise 4: Kepler’s Third Law: “A planet’s orbital period squared is proportional to its
average distance from the Sun cubed: P? o< a®”. As we have just learned, the law of gravity
states that the further away an object is, the weaker the force. We have already found that
at aphelion, when the planet is far from the Sun, it moves more slowly than at perihelion.
Kepler’s third law is merely a reflection of this fact—the further a planet is from the Sun
(“a”), the more slowly it will move. The more slowly it moves, the longer it takes to go
around the Sun (“P”). The relation is P? oc @, where P is the orbital period in years, while
a is the average distance of the planet from the Sun, and the mathematical symbol for pro-
portional is represented by “oc”. To turn the proportion sign into an equal sign requires the
multiplication of the a® side of the equation by a constant: P? = C' x a3. But we can get
rid of this constant, “C"”, by making a ratio. We will do this below.

In the next simulation, there will be two planets: one in a smaller orbit, which will rep-
resent the Earth (and has a = 1), and a planet in a larger orbit (where a is adjustable).
Start-up the Third Law simulation and hit Go. You will see that the inner planet moves
around more quickly, while the planet in the larger ellipse moves more slowly. Let’s set-up
the math to better understand Kepler’s Third Law. We begin by constructing the ratio of
of the Third Law equation (P? = C' x a?) for an arbitrary planet divided by the Third Law
equation for the Earth:

P2 C xa?
- Oxad (3)
Pr; Cxay
In this equation, the planet’s orbital period and average distance are denoted by Pp and
ap, while the orbital period of the Earth and its average distance from the Sun are Pgr and

ag. As you know from from your high school math, any quantity that appears on both the
top and bottom of a fraction can be canceled out. So, we can get rid of the pesky constant
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“C”, and Kepler’s Third Law equation becomes:

P:  al
Pl .

But we can make this equation even simpler by noting that if we use years for the orbital
period (Pg = 1), and Astronomical Units for the average distance of the Earth to the Sun
(ap = 1), we get:

2 3
r _ or P}=al (5)
1 1

(Remember that the cube of 1, and the square of 1 are both 1!)

Let’s use equation (5) to make some predictions. If the average distance of Jupiter from
the Sun is about 5 AU, what is its orbital period? Set-up the equation:

P}=a%=5"=5x5x5=125 (6)

So, for Jupiter, P? = 125. How do we figure out what P is? We have to take the square
root of both sides of the equation:

VP?2=P=+125=11.2 years (7)

The orbital period of Jupiter is approximately 11.2 years. Your turn:

If an asteroid has an average distance from the Sun of 4 AU, what is its orbital period? Show
your work. (2 points)

In the Third Law simulation, there is a slide bar to set the average distance from the Sun
for any hypothetical solar system body. At start-up, it is set to 4 AU. Run the simulation,
and confirm the answer you just calculated. Note that for each orbit of the inner planet, a
small red circle is drawn on the outer planet’s orbit. Count up these red circles to figure out
how many times the Earth revolved around the Sun during a single orbit of the asteroid.
Did your calculation agree with the simulation? Describe your results. (2 points)

o6



If you were observant, you noticed that the program calculated the number of orbits that
the Earth executed for you (in the “Time” window), and you do not actually have to count
up the little red circles. Let’s now explore the orbits of the nine planets in our solar system.
In the following table are the semi-major axes of the nine planets. Note that the “average
distance to the Sun” (a) that we have been using above is actually a quantity astronomers
call the “semi-major axis” of a planet. a is simply one half the major axis of the orbit ellipse.
Fill in the missing orbital periods of the planets by running the Third Law simulator for
each of them. (3 points)

Table 4.1: The Orbital Periods of the Planets

Planet | a (AU) | P (yr)
Mercury | 0.387 0.24

Venus 0.72
Earth 1.000 1.000
Mars 1.52

Jupiter 5.20
Saturn 9.54 29.5
Uranus 19.22 84.3
Neptune | 30.06 | 164.8
Pluto 39.5 248.3

Notice that the further the planet is from the Sun, the slower it moves, and the longer it
takes to complete one orbit around the Sun (its “year”). Neptune was discovered in 1846,
and Pluto was discovered in 1930 (by Clyde Tombaugh, a former professor at NMSU). How
many orbits (or what fraction of an orbit) have Neptune and Pluto completed since their
discovery? (3 points)

4.4 Going Beyond the Solar System

One of the basic tenets of physics is that all natural laws, such as gravity, are the same ev-
erywhere in the Universe. Thus, when Newton used Kepler’s laws to figure out how gravity
worked in the solar system, we suddenly had the tools to understand how stars interact, and

57



how galaxies, which are large groups of billions of stars, behave: the law of gravity works
the same way for a planet orbiting a star that is billions of light years from Earth, as it does
for the planets in our solar system. Therefore, we can use the law of gravity to construct
simulations for all types of situations—even how the Universe itself evolves with time! For
the remainder of the lab we will investigate binary stars, and planets in binary star systems.

First, what is a binary star? Astronomers believe that about one half of all stars that
form, end up in binary star systems. That is, instead of a single star like the Sun, being
orbited by planets, a pair of stars are formed that orbit around each other. Binary stars
come in a great variety of sizes and shapes. Some stars orbit around each other very slowly,
with periods exceeding a million years, while there is one binary system containing two white
dwarfs (a white dwarf is the end product of the life of a star like the Sun) that has an orbital
period of 5 minutes!

To get to the simulations for this part of the lab, exit the Third Law simulation (if you
haven’t already done so), and click on button “7”, the “Two-Body and Many-Body” simu-
lations. We will start with the “Double Star” simulation. Click Go.

In this simulation there are two stars in orbit around each other, a massive one (the blue
one) and a less massive one (the red one). Note how the two stars move. Notice that the
line connecting them at each point in the orbit passes through one spot—this is the location
of something called the “center of mass”. In Fig. 4.6 is a diagram explaining the center of
mass. If you think of a teeter-totter, or a simple balance, the center of mass is the point
where the balance between both sides occurs. If both objects have the same mass, this point
is halfway between them. If one is more massive than the other, the center of mass/balance
point is closer to the more massive object.

Most binary star systems have stars with similar masses (M; ~ My), but this is not
always the case. In the first (default) binary star simulation, M; = 2M,. The “mass ratio”
(“¢”) in this case is 0.5, where mass ratio is defined to be ¢ = My/M;. Here, My = 1, and
M; = 2,50 ¢ = My/M; = 1/2 = 0.5. This is the number that appears in the “Mass Ratio”
window of the simulation.

Exercise 5: Binary Star systems. We now want to set-up some special binary star orbits
to help you visualize how gravity works. This requires us to access the “Input” window on
the control bar of the simulation window to enter in data for each simulation. Clicking on
Input brings up a menu with the following parameters: Mass Ratio, “Transverse Velocity”,
“Velocity (magnitude)”, and “Direction”. Use the slide bars (or type in the numbers) to set
Transverse Velocity = 1.0, Velocity (magnitude) = 0.0, and Direction = 0.0. For now, we
simply want to play with the mass ratio.

Use the slide bar so that Mass Ratio = 1.0. Click “Ok”. This now sets up your new simula-
tion. Click Run. Describe the simulation. What are the shapes of the two orbits? Where is
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M.X, = MJX

Figure 4.6: A diagram of the definition of the center of mass. Here, object one (M;) is twice
as massive as object two (Ms). Therefore, M; is closer to the center of mass than is M,. In
the case shown here, Xy = 2X;.

the center of mass located relative to the orbits? What does ¢ = 1.0 mean? Describe what
is going on here. (4 points)
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Ok, now we want to run a simulation where only the mass ratio is going to be changed. Go
back to Input and enter in the correct mass ratio for a binary star system with M; = 4.0,
and My = 1.0. Run the simulation. Describe what is happening in this simulation. How are
the stars located with respect to the center of mass? Why? [Hint: see Fig. 4.6.] (4 points)

Finally, we want to move away from circular orbits, and make the orbit as elliptical as
possible.  You may have noticed from the Kepler’s law simulations that the Transverse
Velocity affected whether the orbit was round or elliptical. When the Transverse Velocity =
1.0, the orbit is a circle. Transverse Velocity is simply how fast the planet in an elliptical
orbit is moving at perihelion relative to a planet in a circular orbit of the same orbital
period. The maximum this number can be is about 1.3. If it goes much faster, the ellipse
then extends to infinity and the orbit becomes a parabola. Go back to Input and now set
the Transverse Velocity = 1.3. Run the simulation. Describe what is happening. When do
the stars move the fastest? The slowest? Does this make sense? Why/why not? (4 points)
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The final exercise explores what it would be like to live on a planet in a binary star system—
not so fun! In the “Two-Body and Many-Body” simulations window, click on the “Dbl.
Star and a Planet” button. Here we simulate the motion of a planet going around the less
massive star in a binary system. Click Go. Describe the simulation—what happened to the
planet? Why do you think this happened? (4 points)

In this simulation, two more windows opened up to the right of the main one. These are
what the simulation looks like if you were to sit on the surface of the two stars in the binary.
For a while the planet orbits one star, and then goes away to orbit the other one, and then
returns. So, sitting on these stars gives you a different viewpoint than sitting high above the
orbit. Let’s see if you can keep the planet from wandering away from its parent star. Click on
the “Settings” window. As you can tell, now that we have three bodies in the system, there
are lots of parameters to play with. But let’s confine ourselves to two of them: “Ratio of
Stars Masses” and “Planet—Star Distance”. The first of these is simply the ¢ we encountered
above, while the second changes the size of the planet’s orbit. The default values of both at
the start-up are ¢ = 0.5, and Planet—Star Distance = 0.24. Run simulations with ¢ = 0.4
and 0.6. Compare them to the simulations with ¢ = 0.5. What happens as ¢ gets larger,
and larger? What is increasing?” How does this increase affect the force of gravity between
the star and its planet? (4 points)
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See if you can find the value of ¢ at which larger values cause the planet to “stay home”,
while smaller values cause it to (eventually) crash into one of the stars (stepping up/down
by 0.01 should be adequate). (2 points)

Ok, reset ¢ = 0.5, and now let’s adjust the Planet—Star Distance. In the Settings window, set
the Planet—Star Distance = 0.1 and run a simulation. Note the outcome of this simulation.
Now set Planet-Star Distance = 0.3. Run a simulation. What happened? Did the planet
wander away from its parent star? Are you surprised? (4 points)

Astronomers call orbits where the planet stays home, “stable orbits”. Obviously, when
the Planet—Star Distance = 0.24, the orbit is unstable. The orbital parameters are just right
that the gravity of the parent star is not able to hold on to the planet. But some orbits, even
though the parent’s hold on the planet is weaker, are stable—the force of gravity exerted by
the two stars is balanced just right, and the planet can happily orbit around its parent and
never leave. Over time, objects in unstable orbits are swept up by one of the two stars in
the binary. This can even happen in the solar system. If you have done the comet lab, then
you saw some images where a comet ran into Jupiter. The orbits of comets are very long
ellipses, and when they come close to the Sun, their orbits can get changed by passing close
to a major planet. The gravitational pull of the planet changes the shape of the comet’s
orbit, it speeds up, or slows down the comet. This can cause the comet to crash into the
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Sun, or into a planet, or cause it to be ejected completely out of the solar system. (You
can see an example of the latter process by changing the Planet—Star Distance = 0.4 in the
current simulation.)

63



4.5 Summary (35 points)

Please summarize the important concepts of this lab. Your summary should include:

e Describe the Law of Gravity and what happens to the gravitational force as a) as the
masses increase, and b) the distance between the two objects increases

e Describe Kepler’s three laws in your own words, and describe how you tested each one
of them.

e Mention some of the things which you have learned from this lab

e Astronomers think that finding life on planets in binary systems is unlikely. Why do
they think that? Use your simulation results to strengthen your argument.

Use complete sentences, and proofread your summary before handing in the lab.

4.6 Possible Quiz Questions

1) Briefly describe the contributions of the following people to understanding planetary
motion: Tycho Brahe, Johannes Kepler, Isaac Newton.

2) What is an ellipse?

3) What is a “focus”?

4) What is a binary star?

5) Describe what is meant by an “inverse square law”.

6) What is the definition of “semi-major axis”?

4.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Derive Kepler’s third law (P? = C' x a*) for a circular orbit. First, what is the circumference
of a circle of radius a? If a planet moves at a constant speed “v” in its orbit, how long does
it take to go once around the circumference of a circular orbit of radius a? [This is simply
the orbital period “P”.] Write down the relationship that exists between the orbital period
“P” and “a” and “v”. Now, if we only knew what the velocity (v) for an orbiting planet
was, we would have Kepler’s third law. In fact, deriving the velocity of a planet in an
orbit is quite simple with just a tiny bit of physics (go to this page to see how it is done:
http://www.go.ednet.ns.ca/~larry/orbits/kepler.html). Here we will simply tell you that
the speed of a planet in its orbit is v = (GM/a)'/2, where “G” is the gravitational constant
mentioned earlier, “M” is the mass of the Sun, and «a is the radius of the orbit. Rewrite your
orbital period equation, substituting for v. Now, one side of this equation has a square root
in it—get rid of this by squaring both sides of the equation and then simplifying the result.
Did you get P2 = C' x a3? What does the constant “C” have to equal to get Kepler’s third
law?
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Date:

5 The Orbit of Mercury

5.1 Introduction

Of the five planets known since ancient times (Mercury, Venus, Mars, Jupiter, and Saturn),
Mercury is the most difficult to see. In fact, of the 7 billion people on the planet Earth it
is likely that fewer than 1,000,000 (0.0002%) have knowingly seen the planet Mercury. The
reason for this is that Mercury orbits very close to the Sun, about one third of the Earth’s
average distance. Therefore it is always located very near the Sun, and can only be seen for
short intervals soon after sunset, or just before sunrise. It is a testament to how carefully the
ancient peoples watched the sky that Mercury was known at least as far back as 3,000 BC.
In Roman mythology Mercury was a son of Jupiter, and was the god of trade and commerce.
He was also the messenger of the gods, being “fleet of foot”, and commonly depicted as
having winged sandals. Why this god was associated with the planet Mercury is obvious:
Mercury moves very quickly in its orbit around the Sun, and is only visible for a very short
time during each orbit. In fact, Mercury has the shortest orbital period (“year”) of any of
the planets. You will determine Mercury’s orbital period in this lab. [Note: it is very helpful
for this lab exercise to review Lab #1, subsection 1.3.]

e Goals: to learn about planetary orbits

e Materials: a protractor, a straight edge, a pencil and calculator

Mercury and Venus are called “inferior” planets because their orbits are interior to that
of the Earth. While the planets Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto are
called “superior” planets, as their orbits lie outside that of the Earth. Because the orbits
of Mercury and Venus are smaller than the Earth’s, these planets can never be located very
far from the Sun as seen from the Earth. As discovered by Galileo in 1610 (see Fig. 5.1),
the planet Venus shows phases that look just like those of the Moon. Mercury also shows
these same phases. As can be envisioned from Figure 5.1, when Mercury or Venus are on
the far side of the Sun from Earth (a configuration called “superior” conjunction), these
two planets are seen as “full”. Note, however, that it is almost impossible to see a “full”
Mercury or Venus because at this time the planet is very close to, or behind the Sun. When
Mercury or Venus are closest to the Earth, a time when they pass between the Earth and the
Sun (a configuration termed “inferior” conjunction), we would see a “new” phase. During
their new phases, it is also very difficult to see Mercury or Venus because their illuminated
hemispheres are pointed away from us, and they are again located very close to the Sun in
the sky.

The best time to see Mercury is near the time of “greatest elongation”. At the time of
greatest elongation, the planet Mercury has its largest angular separation from the Sun as
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Figure 5.1: A diagram of the phases of Venus as it orbits around the Sun. The planet
Mercury exhibits the same set of phases as it too is an “inferior” planet like Venus.

seen from the Earth. There are six or seven greatest elongations of Mercury each year. At
the time of greatest elongation, Mercury can be located up to 28° from the Sun, and sets
(or rises) about two hours after (or before) the Sun. In Figure 5.2, we show a diagram for
the greatest elongation of Mercury that occurred on August 14, 2003. In this diagram, we
plot the positions of Mercury and the Sun at the time of sunset (actually just a few minutes
before sunset!). As this diagram shows, if we started our observations on July 24" Mercury
would be located close to the Sun at sunset. But as the weeks passed, the angle between
Mercury and the Sun would increase until it reached its maximum value on August 14"
After this date, the separation between the Sun and Mercury quickly decreases as it heads
towards inferior conjunction on September 11,

You can see from Figure 5.2 that Mercury is following an orbit around the Sun: it was
“behind” the Sun (superior conjunction) on July 5", and quickly races around its orbit
until the time of greatest elongation, and then passes between the Earth and the Sun on
September 11", If we used a telescope and made careful drawings of Mercury throughout
this time, we would see the phases shown in Figure 5.3. On the first date in Figure 5.2 (July
24th) Mercury was still on the far side of the Sun from the Earth, and almost had a full
phase (which it only truly has at the time of superior conjunction). The disk of Mercury
on July 24%" is very small because the planet is far away from the Earth. As time passes,
however, the apparent size of the disk of Mercury grows in size, while the illuminated portion
of the disk decreases. On August 14", Mercury reaches greatest elongation, and the disk
is half-illuminated. At this time it looks just like the first quarter Moon! As it continues
to catch up with the Earth, the distance between the two planets shrinks, so the apparent
size of Mercury continues to grow. As the angular separation between Mercury and the
Sun shrinks, so does the amount of the illuminated hemisphere that we can see. Eventually
Mercury becomes a crescent, and at inferior conjunction it becomes a “new” Mercury.
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Figure 5.2: The eastern elongation of August, 2003. Mercury was at superior conjunction
on July 5", and quickly moved around its orbit increasing the angular separation between it
and the Sun. By July 24", Mercury could be seen just above the Sun shortly after sunset.
As time passed, the angular separation between the Sun and Mercury increased, reaching
its maximum value on August 14", the time of greatest Eastern elongation. As Mercury
continued in its orbit it comes closer to the Earth, but the angular separation between it and
the Sun shrinks. Eventually, on September 11", the time of inferior conjunction, Mercury
passed directly between the Earth and the Sun.

5.1.1 Eastern and Western Elongations

The greatest elongation that occurred on August 14, 2003 was a “greatest Eastern elonga-
tion”. Why? As you know, the Sun sets in the West each evening. When Mercury is visible
after sunset it is located to the East of the Sun. It then sets in the West after the Sun has set.
As you can imagine, however, the same type of geometry can occur in the morning sky. As
Mercury passed through inferior conjunction on September 11**, it moved into the morning
sky. Its angular separation from the Sun increased until it reached “greatest Western elonga-
tion” on September 27" 2003. During this time, the phase of Mercury changed from “new”
to “last quarter” (half). After September 27" the angular separation between the Sun and
Mercury shrinks, as does the apparent size of the disk of Mercury, as it reverses the sequence
shown in Figure 5.3. A diagram showing the geometry of eastern and western elongations
is shown in Figure 5.4. [Another way of thinking about what each of these means, and an
analogy that might come in useful when you begin plotting the orbit of Mercury, is to think
about where Mercury is relative to the Sun at Noon. At Noon, the Sun is due south, and
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Figure 5.3: A diagram showing the actual appearance of Mercury during the August 2003
apparition. As Mercury comes around its orbit from superior conjunction (where it was
“full”), it is far away from the Earth, so it appears small (as on July 24'"). As it approaches
greatest elongation (August 14*") it gets closer to the Earth, so its apparent size grows, but
its phase declines to half (like a first quarter moon). Mercury continues to close its distance
with the Earth so it continues to grow in size-but note that the illuminated portion of its
disk shrinks, becoming a thin crescent on August 30*". As Mercury passes between the Earth
and Sun it is in its “new” phase, and is invisible.

when facing the Sun, East is to the left, and West is to the right. Thus, during an Eastern
elongation Mercury is to the left of the Sun, and during a Western elongation Mercury is to
the right of the Sun (as seen in the Northern Hemisphere).]

5.1.2 Why Greatest Elongations are Special

We have just spent a lot of time describing the greatest elongations of Mercury. We did this
because the time of greatest elongation is very special: it is the only time when we know
where an inferior planet is in its orbit (except in the rare cases where the planet “transits”
across the face of the Sun!). We show why this is true in the next figure. In this figure, we
have represented the orbits of Mercury and the Earth as two circles (only about one fourth
of the orbits are plotted). We have also plotted the positions of the Earth, the Sun, and
Mercury. At the time of greatest elongation, the angle between the Earth, Mercury and the
Sun is a right angle. If you were to plot Mercury at some other position in its orbit, the angle
between the Earth, Mercury and the Sun would not be a right angle. Therefore, the times
of greatest elongation are special, because at this time we know the exact angle between the
Earth, Mercury, and the Sun. [You can also figure out from this diagram why Mercury has
only one-half of its disk illuminated (a phase of “first quarter”).]

Of course, plotting only one elongation is not sufficient to figure out the orbit of Mercury—
you need to plot many elongations. In today’s lab exercise, you will plot thirteen greatest
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Figure 5.4: A diagram showing the geometry of greatest Western elongations (left side), and
greatest Eastern elongations (right side). If you see Mercury—or any other star or planet—
above the Western horizon after sunset, that object is located to the East of the Sun. The
maximum angular separation between Mercury and the Sun at this time is called the greatest
Eastern elongation. A greatest Western elongation occurs when Mercury is seen in the Fast
before sunrise.

elongations of Mercury, and trace-out its orbit. There are a lot of angles in this lab, so you
need to get comfortable with using a protractor. Your TA will help you figure this out. But
the most critical aspect is to not confuse eastern and western elongations. Look at Figure
5.5 again. What kind of elongation is this? Well, as seen from the Earth, Mercury is to the
left of the Sun. As described earlier (in the square brackets at the end of subsection 5.1.1),
if Mercury is to the left of the Sun, it is an eastern elongation.

5.2 The Orbits of Earth and Mercury

As shown in the previous diagram, both the Earth and Mercury are orbiting the Sun. That
means that every single day they are at a different position in their orbits. Before we can
begin this lab, we must talk about how we can account for this motion! A year on Earth,
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Figure 5.5: A diagram showing the orbital geometry of the Earth and Mercury during a
greatest Eastern elongation. The orbits of the Earth and Mercury are the two large circles.
The line of sight to Mercury at the time of greatest elongation is indicated. Note that at
this time the angle between the Earth, Mercury, and the Sun is a right angle. The direction
of motion of the two planets is shown by the arrows on the orbits.

the time it takes the Earth to complete one orbit around the Sun, is 365 days. If we assume
that the Earth’s orbit is a perfect circle, then the Earth moves on that circle by about 1
degree per day. Remember that a circle contains 360 degrees (360°). If it takes 365 days
to go 360°, the Earth moves 360°/365 = 0.986 degrees per day (°/day). For this lab, we
will assume that the Earth moves exactly one degree per day which, you can see, is very
close to the truth. How far does the Earth move in 90 days? 90 degrees! How about 165 days?

5.2.1 The Data

In Table 5.1, we have listed the thirteen dates of the greatest elongations of Mercury, as well
as the angle of each greatest elongation. Note that the elongations are either East
or West! In the third column, we have listed something called the Julian date. Over long
time intervals, our common calendar is very hard to use to figure out how much time has
elapsed. For example, how many days are there between March 13", 2001 and December
17*h 20047 Remember that 2004 is a leap year! This is difficult to do in your head. To
avoid such calculations, astronomers have used a calendar that simply counts the days that
have passed since some distant day #1. The system used by astronomers sets Julian date
1 to January 1%, 4713 BC (an arbitrary date chosen in the sixteenth century). Using this
calendar, March 13", 2001 has a Julian date of 2451981. While December 17" 2004 has a
Julian date of 2453356. Taking the difference of these two numbers (2453356 — 2451981) we
find that there are 1,375 days between March 13*", 2001 and December 17" 2004.

Exercise #1: Fill-in the Data Table
The fourth and fifth columns of the table are blank, and must be filled-in by you. The fourth
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column is the number of days that have elapsed between elongations in this table (that is,
simply subtract the Julian date of the previous elongation from the following elongation).
We have worked the first one of these for you as an example. The last column lists how
far the Earth has moved in degrees. This is simply the number of days times the number
1.0!' As the Earth moves one degree per day. (If you wish, instead of using 1.0, you could
multiply this number by 0.986 to be more accurate. You will get better results doing it that
way.) So, if there are 42 days between elongations, the Earth moves 42 degrees in its orbit
(or 41.4 degrees using the correct value of 0.986 °/day). (10 points)

Table 5.1: Elongation Data For Mercury

# Date Elongation Angle | Julian Date | Days Degrees
#1 | Sep. 1, 2002 | 27.2 degrees east 2452518 — —
#2 | Oct. 13, 2002 | 18.1 degrees west 2452560 42 42

#3 | Dec. 26, 2002 | 19.9 degrees east 2452634
#4 | Feb. 4, 2003 | 25.4 degrees west 2452674
#5 | Apr. 16, 2003 | 19.8 degrees east 2452745
#6 | Jun. 3, 2003 | 24.4 degrees west 2452793
#7 | Aug. 14, 2003 | 27.4 degrees east 2452865
#8 | Sep. 27, 2003 | 17.9 degrees west 2452909
#9 | Dec. 09, 2003 | 20.9 degrees east 2452982
#10 | Jan. 17, 2004 | 23.9 degrees west 2453021
#11 | Mar. 29, 2004 | 18.8 degrees east 2453093
#12 | May 14, 2004 | 26.0 degrees west 2453139
#13 | Jul. 27,2004 | 27.1 degrees east 2453213

Exercise #2: Plotting your data.

Before we describe the plotting process, go back and review Figure 5.5. Unlike that diagram,
you do not know what the orbit of Mercury looks like—this is what you are going to figure
out during this lab! But we do know two things: the first is that the Earth’s orbit is nearly a
perfect circle, and two, that the Sun sits at the exact center of this circle. On the next page
is a figure containing a large circle with a dot drawn at the center to represent the Sun. At
one position on the large circle we have put a little “X” as a reference point. The large circle
here is meant to represent the Earth’s orbit, and the “X” is simply a good starting point.

To plot the first elongation of Mercury from our data table, using a pencil, draw a line
connecting the X, and the Sun using a straight edge (ruler or protractor). The first elon-
gation in the table (September 1, 2002) is 27.2 degrees East. Using your protractor, put
the “X” that marks the Earth’s location at the center hole/dot on your protractor. Looking
back to Figure 5.5, that elongation was also an eastern elongation. So, using that diagram
as a guide, measure an angle of 27.2 degrees on your protractor and put a small mark on
the worksheet. Now, draw a line from the Earth’s location through this mark just like the
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“line of sight” arrow in Figure 5.5. Now, rotate your protractor so that the 90 degree mark
is on this line and towards the position of the Earth, while the reference hole/dot is on
the same line. Slide the protractor along the line until the 0° (or 180°) reference line inter-
sects the center of the Sun. Mark this spot with a dark circle. This is the position of Mercury!

This is the procedure that you will use for all of the elongations, so if this is confusing
to you, have your TA come over and clarify the technique for you so that you don’t get lost
and waste time doing this incorrectly.

Ok, now things become slightly more difficult—the Earth moves! Looking back to Figure
5.5, note the arrows on the orbits of Earth and Mercury. This is the direction that both plan-
ets are moving in their orbits. For the second elongation, the Earth has moved 42 degrees.
We have to locate where the Earth is in its orbit before we can plot the next elongation. So,
now put the center hole/dot of your protractor on the Sun. Line up the 0/180 degree mark
with the first line that connected the Earth and Sun. Measure an angle of 42 degrees (in
the correct direction) and put a small mark. Draw a line through this mark that intersects
the position of the Sun, the mark, and the orbit of the Earth. Put an X where this line
intersects the Earth’s orbit. This is the spot from where you will plot the next elongation of
Mercury.

Now, repeat the process for plotting this next elongation angle. Note, however, that this
elongation is a western elongation, so that the line of sight arrow this time will be to the
right of the Sun. It is extremely important to remember that on eastern elongations the line
of sight arrow to Mercury goes to the left of the Sun, while during western elongations it
goes to the right of the Sun.

[Hints: It is helpful to label each one of the X’s you place on the Earth’s orbit with the
elongation number from Table 5.1. This will allow you to go back and fix any problems you
might find. Note that you will have a large number of lines drawn in this plot by the time
you get finished. Use a sharp pencil so that you can erase some/all/pieces of these lines to
help clean-up the plot and reduce congestion. You might also find it helpful to simply put
a “left” or a “right” each time you encounter East and West in Table 5.1 to insure you plot
your data correctly.]

Now, plot all of the data (28 points)!
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Exercise #3: Connecting the dots.

Note that planets move on smooth, almost circular paths around the Sun. So try to connect
the various positions of Mercury with a smooth arc. Do all of your points fit on this closed
curve? If not, identify the bad points and go back and see what you did wrong. Correct any
bad elongations.

1) Is Mercury’s orbit circular? Describe its shape. (5 points)

Exercise #4: Finding the semi-major axis of Mercury’s orbit.

Using a ruler, find the position on Mercury’s orbit that is closest to the Sun (“perihelion”)
and mark this spot with an “X”. Now find the point on the orbit of Mercury that is furthest
from the Sun (“aphelion”) and mark it with an “X”. Draw a line that goes through the Sun
that comes closest to connecting these two positions—note that it is likely that these two
points will not lie on a line that intercepts the Sun. Just attempt to draw the best possible
line connecting these two points that passes through the Sun.

2) Measure the length of this line. Astronomers call this line the major axis of the planet’s
orbit. Divide the length you have just measured by two, to get the “semi-major” axis of

Mercury’s orbit: (mm). Measure the diameter of the Earth’s orbit and divide
that number by two to get the Earth’s semi-major axis: . __ (mm).
Divide the semi-major axis of Mercury by that of the Earth: AU. Since the

semi-major axis of the Earth’s orbit is defined to be “one astronomical unit”, this ratio tells
us the size of Mercury’s semi-major axis in astronomical units (AU). (5 points)

3) As you have probably heard in class, the fact that the orbits of the planet’s are ellipses,
and not circles, was discovered by Kepler in about 1614. Mercury and Pluto have the most
unusual orbits in the solar system in that they are the most non-circular. Going back to the

line you drew that went through the Sun and that connected the points of perihelion and
aphelion, measure the lengths of the two line segments:

Perihelion (p) = mm. Aphelion (q) = mim.

Astronomers use the term eccentricity (“e”) to measure how out-of-round a planet’s orbit is,
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and the eccentricity is defined by the equation:

e=(@-p)/p+ad) =

Plug your values into this equation and calculate the eccentricity of Mercury’s orbit. (5
points)

4) The eccentricity for the Earth’s orbit is e = 0.017. How does your value of the eccentricity
for Mercury compare to that of the Earth? Does the fact that we used a circle for the Earth’s
orbit now seem justifiable? (5 points)

Exercise #5: The orbital period of Mercury. Looking at the positions of Mercury at
elongation #1, and its position at elongation #2, approximately how far around the orbit
did Mercury move in these 42 days? Estimate how long you think it would take Mercury to
complete one orbit around the Sun: ________________ days. (2 points)

Using Kepler’s laws, we can estimate the orbital period of a planet (for a review of Kepler’s
laws, see lab #5). Kepler’s third law says that the orbital period squared (P?) is proportional
to the cube of the semi-major axis (a®): P? oc @3. This is a type of equation you might not
remember how to solve (if you have not done so already, review Lab #1, subsection 1.3).
But let’s take it in pieces:

Plug-in your value of a for Mercury and find its cube.

To find the period of Mercury’s orbit, we now need to take the square root of the number
you just calculated (see your TA if you do not know whether your calculator can perform
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this operation). (3 points)

P=vVa3=_______ . (8)

Now, the number you just calculated probably means nothing to you. But what you have
done is calculate Mercury’s orbital period as a fraction of the Earth’s orbital period (that
is because we have been working in AU, a unit that is defined by the Earth-Sun distance).
Since the Earth’s orbital period is exactly 365.25 days, find Mercury’s orbital period by
multiplying the number you just calculated for Mercury by 365.25:

Pon(Mercury) = days.

5) How does the orbital period you just calculated using Kepler’s laws compare to the one
you estimated from your plot at the beginning of this exercise? (2 points)
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5.3 Summary (35 points)

Before you leave lab, your TA will give you the real orbital period of Mercury, as well as its
true semi-major axis (in AU) and its orbital eccentricity.

e Compare the precisely known values for Mercury’s orbit with the ones you derived.
How well did you do?

e What would be required to enable you to do a better job?

e Describe how you might go about making the observations on your own so that you
could create a data table like the one in this lab. Do you think this could be done with
just the naked eye and some sort of instrument that measured angular separation?
What else might be necessary?

5.4 Possible Quiz Questions

e What does the term “inferior planet” mean?
e What is meant by elongation angle?

e Why do Mercury and Venus show phases like the Moon?

5.5 Extra Credit (ask your TA for permission before attempting,
5 points)

In this lab you have measured three of the five quantities that completely define a planet’s
orbit. The other two quantities are the orbital inclination, and the longitude of perihelion.
Determining the orbital inclination, the tilt of the plane of Mercury’s orbit with respect to
the Earth’s orbit, is not possible using the data in this lab. But it is possible to determine
the longitude of perihelion. Astronomers define the zero point of solar system longitude as
the point in the Earth’s orbit at the time of the Vernal Equinox (the beginning of Spring
in the northern hemisphere). In 2004, the Vernal Equinox occurred on March 20. If you
notice, one of the elongations in the table (#11) occurs close to this date. Thus, you can
figure out the true location of the Vernal Equinox by moving back from position #11 by the
right number of degrees. The longitude of Mercury’s perihelion is just the angle measured
counterclockwise from the Earth’s vernal equinox. You should find that your angle is larger
than 180 degrees. Subtract off 180 degrees. How does your value compare with the precise
value of 77°7

7
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6 Scale Model of the Solar System

6.1 Introduction

The Solar System is large, at least when compared to distances we are familiar with on a
day-to-day basis. Consider that for those of you who live here in Las Cruces, you travel
2 kilometers (or 1.2 miles) on average to campus each day. If you go to Albuquerque on
weekends, you travel about 375 kilometers (232.5 miles), and if you travel to Disney Land
for Spring Break, you travel ~ 1,300 kilometers (~ 800 miles), where the ‘~’ symbol means
“approximately.” These are all distances we can mentally comprehend.

Now, how large is the Earth? If you wanted to take a trip to the center of the Earth
(the very hot “core”), you would travel 6,378 kilometers (3954 miles) from Las Cruces down
through the Earth to its center. If you then continued going another 6,378 kilometers you
would ‘pop out’ on the other side of the Earth in the southern part of the Indian Ocean.
Thus, the total distance through the Earth, or the diameter of the Earth, is 12,756 kilome-
ters (~ 7,900 miles), or 10 times the Las Cruces-to-Los Angeles distance. Obviously, such
a trip is impossible—to get to the southern Indian Ocean, you would need to travel on the
surface of the Earth. How far is that? Since the Earth is a sphere, you would need to travel
20,000 km to go halfway around the Earth (remember the equation Circumference = 27R?).
This is a large distance, but we’ll go farther still.

Next, we’ll travel to the Moon. The Moon, Earth’s natural satellite, orbits the Earth at
a distance of ~ 400,000 kilometers (~ 240,000 miles), or about 30 times the diameter of the
Earth. This means that you could fit roughly 30 Earths end-to-end between here and the
Moon. This Earth-Moon distance is ~ 200,000 times the distance you travel to campus each
day (if you live in Las Cruces). So you can see, even though it is located very close to us, it
is a long way to the Earth’s nearest neighbor.

Now let’s travel from the Earth to the Sun. The average Farth-to-Sun distance, ~ 150
million kilometers (~ 93 million miles), is referred to as one Astronomical Unit (AU).
When we look at the planets in our Solar System, we can see that the planet Mercury, which
orbits nearest to the Sun, has an average distance of 0.4 AU and Pluto, the planet almost
always the furthest from the Sun, has an average distance of 40 AU. Thus, the Earth’s dis-
tance from the Sun is only 2.5 percent of the distance between the Sun and planet Pluto!!
Pluto is very far away!

The purpose of today’s lab is to allow you to develop a better appreciation for the distances
between the largest objects in our solar system, and the physical sizes of these objects rela-
tive to each other. To achieve this goal, we will use the length of the football field in Aggie
Memorial Stadium as our platform for developing a scale model of the Solar System. A scale
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model is simply a tool whereby we can use manageable distances to represent larger distances
or sizes (like the road map of New Mexico used in Lab #1). We will properly distribute our
planets on the football field in the same relative way they are distributed in the real Solar
System. The length of the football field will represent the distance between the Sun and the
planet Pluto. We will also determine what the sizes of our planets should be to appropriately
fit on the same scale. Before you start, what do you think this model will look like?

Below you will proceed through a number of steps that will allow for the development
of a scale model of the Solar System. For this exercise, we will use the convenient unit of
the Earth-Sun distance, the Astronomical Unit (AU). Using the AU allows us to keep our
numbers to manageable sizes.

SUPPLIES: a calculator, Appendix E in your textbook, the football field in Aggie Memorial
Stadium, and a collection of different sized spherical-shaped objects

6.2 The Distances of the Planets From the Sun

Fill in the first and second columns of Table 6.1. In other words, list, in order of increasing
distance from the Sun, the planets in our solar system and their average distances from
the Sun in Astronomical Units (usually referred to as the “semi-major axis” of the planet’s
orbit). You can find these numbers in back of your textbook. (21 points)

Table 6.1: Planets” average distances from Sun.

Average Distance From Sun
Planet AU | Yards
Earth 1
Pluto 40 100

Next, we need to convert the distance in AU into the unit of a football field: the yard. This is
called a “scale conversion”. Determine the SCALED orbital semi-major axes of the planets,
based upon the assumption that the Sun-to-Pluto average distance in Astronomical Units
(which is already entered into the table, above) is represented by 100 yards, or goal-line to
goal-line, on the football field. To determine similar scalings for each of the planets, you
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must figure out how many yards there are per AU, and use that relationship to fill in the
values in the third column of Table 6.1.

6.3 Sizes of Planets

You have just determined where on the football field the planets will be located in our scaled
model of the Solar System. Now it is time to determine how large (or small) the planets
themselves are on the same scale.

We mentioned in the introduction that the diameter of the Earth is 12,756 kilometers,
while the distance from the Sun to Earth (1 AU) is equal to 150,000,000 km. We have also
determined that in our scale model, 1 AU is represented by 2.5 yards (= 90 inches).

We will start here by using the largest object in the solar system, the Sun, as an exam-
ple for how we will determine how large the planets will be in our scale model of the solar
system. The Sun has a diameter of ~ 1,400,000 (1.4 million) kilometers, more than 100
times greater than the Earth’s diameter! Since in our scaled model 150,000,000 kilometers
(1 AU) is equivalent to 2.5 yards, how many inches will correspond to 1,4000,000 kilometers
(the Sun’s actual diameter)? This can be determined by the following calculation:

Scaled Sun Diameter = Sun’s true diameter (km) x % = 0.84 inches
So, on the scale of our football field Solar System, the scaled Sun has a diameter of only 0.84
inches!! Now that we have established the scaled Sun’s size, let’s proceed through a similar
exercise for each of the nine planets, and the Moon, using the same formula:

Scaled object diameter (inches) = actual diameter (km) x %

Using this equation, fill in the values in Table 6.2 (8 points).

Now we have all the information required to create a scaled model of the Solar System.
Using any of the items listed in Table 6.3 (spheres of different diameter), select the ones that
most closely approximate the sizes of your scaled planets, along with objects to represent
both the Sun and the Moon.

Designate one person for each planet, one person for the Sun, and one person for the
Earth’s Moon. Each person should choose the model object which represents their solar
system object, and then walk (or run) to that object’s scaled orbital semi-major axis on the
football field. The Sun will be on the goal line of the North end zone (towards the Pan Am
Center) and Pluto will be on the south goal line.

Observations:

On Earth, we see the Sun as a disk. Even though the Sun is far away, it is physically so
large, we can actually see that it is a round object with our naked eyes (unlike the planets,

81



Table 6.2: Planets’ diameters in a football field scale model.
| Object | Actual Diameter (km) | Scaled Diameter (inches) |

Sun ~ 1,400,000 0.84
Mercury 4,878
Venus 12,104
Earth 12,756 0.0075
Moon 3,476
Mars 6,794
Jupiter 142,800
Saturn 120,540
Uranus 51,200
Neptune 49,500
Pluto 2,200 0.0013

Table 6.3: Objects that Might Be Useful to Represent Solar System Objects

Object Diameter (inches)
Basketball 15
Tennis ball 2.5
Golf ball 1.625
Marble 0.5
Peppercorn 0.08
Sesame seed 0.07
Poppy seed 0.04
Sugar grain 0.02
Salt grain 0.01
Ground flour 0.001
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where we need a telescope to see their tiny disks). Let’s see what the Sun looks like from
the other planets! Ask each of the “planets” whether they can tell that the Sun is a round
object from their “orbit”. What were their answers? List your results here: (5 points):

Note that because you have made a “scale model”, the results you just found would be
exactly what you would see if you were standing on one of those planets!

6.4 Questions About the Football Field Model

When all of the “planets” are in place, note the relative spacing between the planets, and
the size of the planets relative to these distances. Answer the following questions using the
information you have gained from this lab and your own intuition:

1) Is this spacing and planet size distribution what you expected when you first began
thinking about this lab today? Why or why not? (10 points)

2) Given that there is very little material between the planets (some dust, and small bits of
rock), what do you conclude about the nature of our solar system? (5 points)
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3) Which planet would you expect to have the warmest surface temperature? Why? (2
points)

4) Which planet would you expect to have the coolest surface temperature? Why? (2
points)

5) Which planet would you expect to have the greatest mass? Why? (3 points)

6) Which planet would you expect to have the longest orbital period? Why? (2 points)

7) Which planet would you expect to have the shortest orbital period? Why? (2 points)

8) The Sun is a normal sized star. As you will find out at the end of the semester, it will
one day run out of fuel (this will happen in about 5 billion years). When this occurs, the
Sun will undergo dramatic changes: it will turn into something called a “red giant”, a cool
star that has a radius that may be 100x that of its current value! When this happens,
some of the innermost planets in our solar system will be “swallowed-up” by the Sun.
Which ones? (5 points).
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6.5 Take Home Exercise (35 points total)

Now you will work out the numbers for a scale model of the Solar System for which the size
of New Mexico along Interstate Highway 25 will be the scale.

Interstate Highway 25 begins in Las Cruces, just southeast of campus, and continues north
through Albuquerque, all the way to the border with Colorado. The total distance of 1-25
in New Mexico is 455 miles. Using this distance to represent the Sun to Pluto distance (40
AU), and assuming that the Sun is located at the start of [-25 here in Las Cruces and Pluto
is located along the Colorado-New Mexico border, you will determine:

e the scaled locations of each of the planets in the Solar System; that is, you will deter-
mine the city along the highway (I-25) each planet will be located nearest to, and how
far north or south of this city the planet will be located. If more than one planet is
located within a given city, identify which street or exit the city is nearest to.

e the size of the Solar system objects (the Sun, each of the planets) on this same scale,
for which 455 miles (~ 730 kilometers) corresponds to 40 AU. Determine how large
each of these scaled objects will be (probably best to use feet; there are 5280 feet per
mile), and suggest a real object which well represents this size. For example, if one of
the scaled Solar System objects has a diameter of 1 foot, you might suggest a soccer
ball as the object that best represents the relative size of this object.

1. List the planets in our solar system and their average distances from the Sun in units
of Astronomical Units (AU). Then, using a scale of 40 AU = 455 miles (1 AU = 11.375
miles), determine the scaled planet-Sun distances and the city near the location of this
planet’s scaled average distance from the Sun. Insert these values into Table 6.4, and
draw on your map of New Mexico (on the next page) the locations of the solar system
objects. (20 points)

2. Determine the scaled size (diameter) of objects in the Solar System for a scale in which
40 AU = 455 miles, or 1 AU = 11.375 miles). Insert these values into Table 6.5. (15
points)

11.4 mi. x 5280 ft/mile)
150,000,000 km

Scaled diameter (feet) = actual diameter (km) x |
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Table 6.4: Planets’ average distances from Sun.

Average Distance from Sun
Planet in AU | in Miles Nearest City
Earth 1 11.375
Jupiter 5.2
Uranus 19.2
Pluto 40 455 3 miles north of Raton

Table 6.5: Planets’ diameters in a New Mexico scale model.

| Object | Actual Diameter (km) | Scaled Diameter (feet) | Object

Sun ~ 1,400,000 561.7

Mercury 4,878

Venus 12,104

Earth 12,756 5.1 height of 12 year old
Mars 6,794

Jupiter 142,800

Saturn 120,540

Uranus 51,200

Neptune 49,500

Pluto 2,200 0.87 soccer ball

86




- L, ePuae E
FLr TN TR il \uﬁlam‘r! sl

LICET T Tt Hirading Post
3

v } I
o i - i i # : 4 motus FORES Sah CLARA F; i 3 3 Ty ""E:,h .‘_.
2| RESERVATION] [ : ; o Pt v Cna — Mante 3T Tk o i oS

5 9, & : _ % - s A Y A
" Tohatchi Standing

e Rogk

8

WEDELER 3
TomATL  TES 1
snun' IND._RESE iV

Los %
Marilayas &hamﬂb’
Apache "

Sorings

wane Blpewate .‘

"
g o

.
3
3
1

GR ddeer :
Ao e i o
I [ = o » - % 1 g a2
: @3
- RESERVATICN !
1 Hush Mo s Pastura
i :

daliu N 4

e

g

~

e samnnd 1

FVES

2% Raman f.f
o ,«‘A

MESCALERD
4
[ (AN 4

., Bant sinboyl

o Fugariaarl T
% 7% Truth or Gonsequences sy oo,
m — itk Eln 3
= :mw Wnll-amsbu ,\_}E:mﬁn’&ﬂm
L Aveche erak o Ladder o Las Paomas | " ) i WHITE
s G v RANGE SANDS ™ aak

. P

oo S Ragium Springs T4

pr— 3 Leasbﬁ oy
eabines i [N Wy
Dofla Ang
Los Corralitos ., P43

o2
U wesits "2

saszacwr 0
wivs
A

Lava
Frow

L



6.6 Possible Quiz Questions
1. What is the approximate diameter of the Earth?
2. What is the definition of an Astronomical Unit?

3. What value is a “scale model”?

6.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Later this semester we will talk about comets, objects that reside on the edge of our Solar
System. Most comets are found either in the “Kuiper Belt”, or in the “Oort Cloud”. The
Kuiper belt is the region that starts near Pluto’s orbit, and extends to about 100 AU. The
Oort cloud, however, is enormous: it is estimated to be 40,000 AU in radius! Using your
football field scale model answer the following questions:

1) How many yards away would the edge of the Kuiper belt be from the northern goal
line at Aggie Memorial Stadium?

2) How many football fields does the radius of the Oort cloud correspond to? If there

are 1760 yards in a mile, how many miles away is the edge of the Oort cloud from the north-
ern goal line at Aggie Memorial Stadium?
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Name:
Date:

7 Density

7.1 Introduction

As we explore the objects in our Solar System, we quickly find out that these objects come in
all kinds of shapes and sizes. The Sun is the largest object in the Solar System and is so big
that more than 1.3 million Earths could fit inside. But the mass of the Sun is only 333,000
times that of the Earth. If the Sun were made of the same stuff as the Earth, it should have
a mass that is 1.3 million times the mass of the Earth—obviously, the Sun and the Earth
are not composed of the same stuff! What we have just done is a direct comparison of the
densities of the Sun and Earth. Density is extremely useful for examining what an object is
made of, especially in astronomy, where nearly all of the objects of interest are very far away.

In today’s lab we will learn about density, both how to measure it, and how to use it
to gain insight into the composition of objects. The average or “mean” density is defined
as the mass of the object divided by its volume. We will use grams (g) for mass and cubic
centimeters (cm?) for volume. The mass of an object is a measure of how many protons
and neutrons (the “building blocks” of atoms) the object contains. Denser elements, such as
gold, possess many more protons and neutrons within a cubic centimeter than do less dense
materials such as water.

7.2 Mass versus Weight

Before we go any further, we need to talk about mass versus weight. The weight of an object
is a measure of the force exerted upon that object by the gravitational attraction of a large,
nearby body. An object here on the Earth’s surface with a mass of 454 grams (grams and
kilograms are a measure of the mass of an object) has a weight of one pound. If we do not
remove or add any protons or neutrons to this object, its mass and density will not change
if we move the object around. However, if we move this object to some other location in the
Solar System, where the gravitational attraction is different then what it is at the Earth’s
surface, than the weight of this object will be different. For example, if you weigh 150 Ibs on
Earth, you will only weigh 25 Ibs on the Moon, but would weigh 355 lbs on Jupiter. Thus,
weight is not a useful measurement when talking about the bulk properties of an object—
we need to use a quantity that does not depend on where an object is located. One such
property is mass. So, even though you often see conversions between pounds (unit of weight)
and kilograms (unit of mass), those conversions are only valid on the Earth’s surface (the
astronauts floating around inside the International Space Station obviously still have mass,
even though they are “weightless”).
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7.3 Volume

Now that we have discussed mass, we need to talk about the other quantity in our equation
for density, and that is volume. Volume is pretty easy to calculate for objects with regular
shapes. For example, you probably know how to calculate the volume of a cube: V= s x s
x s = s3, where s is the length of a side of the cube. Let us generalize this to any rectan-
gular solid. In Figure 7.1 we show a drawing for a box that has sides labeled with “length,”
“width,” and “height.” What is its volume? Its volume is V = length x width x height.
If we told you that the length = 10 c¢m, the height = 5 cm, and the depth = 5 cm, what is
the box’s volume? V =10 cm x 5 cm x 5 cm = 250 cubic cm = 250 cm®. Do you now see
why volume is measured in cm?®? This where that comes from—everyday objects are “three
dimensional” in that they have volume (cm®, m?, km3, inches®, miles?).

HEIGHT

\
J LENGTH
B

WIDTH

Figure 7.1: A rectangular solid has sides of length, width, and height.

Now that we understand how volume is calculated, how do we do it for objects that
have more complicated shapes, like a coke bottle, a car engine, or a human being? You
may have heard the story of Archimedes. Archimedes was asked by the King of Syracuse
(in ancient Greece) to find out if the dentist making a gold crown for one of his teeth had
embezzled some of the gold the king had given him to make this crown (by adding lead, or
another cheaper metal to the crown while keeping some of the gold for himself). Archimedes
pondered the problem for a while and hit on the solution while taking a bath. Archimedes
became so excited he ran out into the street naked shouting “Eureka!” What Archimedes
realized was that you can use water to figure out a solid object’s volume. For example, you
could fill a teacup to the brim with water and drop an object in the teacup. The amount of
water that overflows and collects in the saucer has the same volume as that object. All you
need to know to figure out the object’s volume is the conversion from the amount of liquid
water to its volume in cm®. An example of the process is shown in Fig. 7.2.

In the metric system a gram was defined to be equal to one cubic cm of water, and one
cubic cm of water is identical to 1 ml (where “ml” stands for milliliter, i.e., one thousandth
of a liter). Today we will measure the water displacement for a variety of objects, and use
this conversion directly: 1 ml = 1 cm?.
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In this lab you will first determine the densities of ten different natural substances, and
then we will show you how astronomers use density to give us insight into the nature of
various objects in our Solar System.

Exercise #1: Measuring Masses, Volumes and Densities

First, we measure the masses of objects using a triple beam balance. At your table, your
TA has given you a plastic box with a number of compartments containing ten different
substances, a triple beam balance, several graduated cylinders, digital calipers, a “Eureka”
can (or overflow vessel), a container of water, and an empty plastic cup. Our first task is
to measure the masses of all ten of the objects using the triple beam balance. Note: these
balances are very sensitive, and quite expensive, so treat them with care. The first thing
you should do is make sure all of the weights! are moved to their leftmost positions so that
their pointers are all on zero. When this is done, and there is no mass on the steel “pan,”
the lines on the right hand part of the scale should line-up with each other exactly. The
scale must be balanced before you begin, and the TA, or their helper, has already done this
for you. If the two lines do not line-up, ask your TA for help.

To measure the mass of one of the objects, put it on the pan and slide the weights over
to the right. Note that for this lab, none of our objects require movement of the largest
weight, just the two smaller weights. You should attempt to read the mass of the object to
two significant figures—it is possible, but quite unlikely, that an object will have a mass of
exactly 10.0 or 20.0 g. If the sliding weight on the “10 g” beam falls between units, estimate
exactly where it is so that you get more precise numbers like 22.15 g (all of your masses
should be measured to two places beyond the decimall!).

Task #1: Fill in column #2 (“Mass”) of Table 7.1 by measuring the masses of your ten
objects. (10 points)

Now we are going to measure the volumes of these ten objects using the method of
Archimedes, and the Eureka can. Fill the tin can with water until it comes out of the spout
(you might use one of your graduated cylinders to collect the overflow). Take your finger
and pass it under the bottom of the spout to remove the drop of water that (usually) clings
to the spout. Now, hold the appropriate sized, empty, dry, graduated cylinder under the
spout and drop in the first object. Read the graduated cylinder to find how much water was
displaced, the volume, and record this value in the table. Repeat the process for all of your
objects. Note that the smaller the object, the smaller the graduated cylinder you should use.
Using a big cylinder with a small object will lead to errors, as the big cylinders are harder to

I This is the historical name for these sliding masses, as the first scales like these were used to measure
weight.
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20 ml

10 ml _

- 4 -

Figure 7.2: The rectangular object displaces 10 ml of water. Therefore, it has a volume of
10 ml = 10 cm?.

read to high precision. Ask your TA about how to “read the miniscus” if you do not know
what that means.

Task #2: Fill in columns 3 and 4 (again, remember for column #4, that 1 ml = 1 cm?).
(10 points)

Task #3: Fill in the Density column in Table 7.1. (5 points)

Question # 1: Think about the process you used to determine the volume. How accurate
do you think it is? Why? How could we improve this technique? (5 points)

We chose to supply you with several rectangular solids so that we could check on how
well you measured the volume using the Archimedes method. Now we want you to actually
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Table 7.1: The Masses, Volumes, and Densities of the Different Objects.

Object Mass (g)

Column #1 #2

Volume of Water
(ml)
#3

Volume

cm?

#4

Density
g/cm®

45

Obsidian

Gabbro

Pumice?

Silicon

Magnesium

Copper

Iron (Steel)

Zinc

Mystery

Aluminum

21t is tricky to measure the volume of Pumice, but find a way to submerge the entire stone.

measure the volume of the five metal “cubes” (do not assume they are perfect cubes!) using
the digital caliper. You will measure the lengths of their sides in mm, but remember to
convert to cm (1 em = 10 mm). The digital caliper is easy to operate, but requires two
actions: 1) there is a button that switches between inches and millimeters, we want mm,
and 2) they must be “zeroed”. To zero the caliper, use the thumbwheel to insure the jaws
are closed, and then hit the “zero” button. Open the caliper slowly to the width necessary
to measure the cube, and then close them tight. Read off the number. It is not a bad idea
to zero the caliper before each object, as repeated motion can cause small errors to creep-in.

Task #4: Fill in Table 7.2. Copy the mass measurements from Table 7.1 for the five metal

“cubes”. Calculate the volumes of these “cubes” using the caliper. (5 points)

Table 7.2: The Masses, Volumes, and Densities of the Metal Cubes.

Object Mass (g) Ix wx h = | Volume cm

3

Density g/cm?

Copper

Iron (Steel)

Zinc

Mystery

Aluminum

Question #2: Compare the two sets of densities you found for each of the five metal

cubes. How close are they? Assuming the second method was better, which substance had

the biggest error? Why do you think that happened? (5 points)
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Question #3: One of the objects in our table was labeled as a “mystery” metal. This
particular substance is composed of two metals, called an “alloy.” You have already
measured the density of the two metals that compose this alloy. We now want you to figure
out which of these two metals are in this alloy. Note that this particular alloy is a 50-50
mixture! So its mean density is (Metal A + Metal B)/2.0. What are these two metals? Did
its color help you decide? (3 points)

You have just used density to attempt to figure out the composition of an unknown object.
Obviously, we had to tell you additional information to allow you to derive this answer.
Scientists are not so lucky, they have to figure out the compositions of objects without such
hints (though they have additional techniques besides density to determine what something
is made of-you will learn about some of these this semester).

Exercise #2: Using Density to Understand the Composition of Planets.

We now want to show you how density is used in astronomy to figure out the composi-
tions of the planets, and other astronomical bodies. As part of Exercise #1, you measured
the density of three rocks: Obsidian, Gabbro, and Pumice. All three of these rocks are the
result of volcanic eruptions. Even though they are volcanic in origin (“igneous rocks”), both
Obsidian and Gabbro have densities similar to most of the rocks on the Earth’s surface. So,
what elements are found in Obsidian and Gabbro? Their chemistries are quite similar. Ob-
sidian is 75% Silicon dioxide (SiO,), with a little bit (25%) of Magnesium (Mg) and Iron (Fe)
oxides (MgO, and Fe30,). Gabbro has the same elements, but less Silicon dioxide (~ 50%),
and more Magnesium and Iron.

Question #4: You measured the densities of (pure) silicon, iron and magnesium in
Exercise #1. Compare the density of Gabbro and Obsidian to that of pure silicon. Can
you tell that there must be some iron and/or magnesium in these minerals? How? Which
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of these two elements must dominate? Were your density measurements good enough to
demonstrate that Gabbro has less silicon than Obsidian? (4 points)

Now let’s compare the densities of these rocks to two familiar objects: the Earth and the
Moon. We have listed the mean densities of the Earth and Moon in Table 7.3, along with
the density of the Earth’s crust. As you can see, the mean density of the Earth’s crust is
similar to the value you determined for Gabbro and/or Obsidian-it better be, as these rocks
are from the Farth’s crust!

Table 7.3: Densities of the Earth and Moon

Object Density ¢/cm?
Earth 5.5
Moon 3.3

Earth’s Crust 3.0

Question #5: Compare the mean densities of the Earth’s crust and the Moon. The
leading theory for the formation of the Moon is that a small planet crashed into the Earth
4.3 billion years ago, and blasted off part of the Earth’s crust. This material went into
orbit around the Earth, and condensed to form the Moon. Do the densities of the Earth’s
crust and the Moon support this idea? How? (4 points)
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Question #6: If you were asked “What are the main elements that make-up the Moon?”,
what would your answer be? Why? (2 points)

It is clear from Table 7.3, that the mean density of the whole Earth is much higher than
the density of its crust. There must be denser material below the crust, deep inside the Earth.

Question #7: Given that the mean density of the Earth’s crust is 3.0 g/cm?, and the
mean density of the whole Earth is 5.5 g/cm?, what (common) element do you suppose is
partially responsible for the higher mean density of the whole Earth? If we guess, and say
that the Earth is a 50-50 mixture of this element, and the crust material, what density do
you calculate? Does the resulting density compare with that for the whole Earth? (4
points)

Now let’s return to the rocks in our set of objects. We included Pumice into this set to
show you that nature can sometimes surprise you—have you ever seen a rock that floats?
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Would it surprise you to find out that Pumice has almost the same composition as Gabbro
and Obsidian? It is mostly SiO5! So how can this rock float?! Let’s try to answer this.

Question #8: If Pumice has the same basic composition as Gabbro, how might it have
such a low density? [Hint: think about a boat. As you have found out, cubes of pure
metals do not float. But then how does a boat made of iron (steel) or aluminum actually
float? What is found in the boat that fills most of its volume?] (2 points)

Question #9: Dry air has a density of 0.0012 g/cm3, let’s make an estimate for how
much air must be inside Pumice to give it the density you measured. Note: this is like the
alloy problem you worked on above, but the densities of one of the two components in the
alloy is essentially zero. (6 points)

You measured the volume of the piece of Pumice along with its mass, and then calculated
its density. We stated that density = mass/volume. But you could re-arrange this equation
to read volume = mass/density. Assume that the density of the material that
comprises the solid parts of Pumice is the same as that for Gabbro.

a) What would be the volume of a piece of Gabbro that has the same mass as your piece of
Pumice?

Volume(Gabbro) = Mass(Pumice)/Density(Gabbro) = cm?

b) Now take the value of the volume you just calculated and divide it by the volume of the
Pumice stone that you measured:

r = Volume(Gabbro) /Volume(Pumice) = %

This ratio, “r”, shows you how much of the volume of Pumice is occupied by rocky
material. The volume of Pumice occupied by “air” is:

Pumice is formed when lava is explosively ejected from a volcano. Deep in the volcano the
liquid rock is under high pressure and mixed with gas. When this material is explosively
ejected, it is shot into a low pressure environment (air!) and quickly expands. Gas bubbles
get trapped inside the rock, and this leads to its unusually low density.
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Name:
Date:

7.4 Take Home Exercise (35 points total)

For the take-home part of this lab, we are going to explore the densities and compositions
of other objects in the Solar System.

1. Use your textbook, class notes, or other sources to fill in the following table (10
points):

’ Object \ Average Density (g/cm?) ‘

Sun
Mercury
Venus
Mars
Ceres (largest asteroid) 2.0
Jupiter

Saturn

Titan (Saturn’s largest moon)
Uranus

Neptune

Pluto

Comet Halley (nucleus) 0.1

2. Mercury, Venus, Earth, and Mars are classified as Terrestrial planets (“Terrestrial”
means Earth-like). Do they have similar densities? Do you think they have similar
compositions? Why/Why not? (3 points)

3. Jupiter, Saturn, Uranus and Neptune are classified as Jovian planets (“Jovian” means
Jupiter-like). Why do you think that is? Compare the densities of the Jovian planets
to that of the Sun. Do you think they are made of similar materials? Why/why not?
(6 points)
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4. Saturn has an unusual density. What would happen if you could put Saturn into a
huge pool/body of water?? (Remember water has a density of 1 g/cm?, and recall the
density and behavior of Pumice.) (2 points)

5. The densities of Ceres, Titan and Pluto are very similar. Most astronomers believe
that these three bodies contain large quantities of water ice. If we assume roughly half
of the volume of these bodies is due to water (density = 1 g/cm?) and half from some
other material, what is the approximate mean density of this other material? Hint:
this is identical to the alloy problem you worked-on in lab:

Density(Ceres) = (1.0 g/cm?® + X g/cm?)/2.0

Just solve for “X” (if this hard for you, see the section “Solving for X” in Appendix
A at the end of this manual). What material have we been dealing with in this lab
that has a density with a value similar to “X”7 What do you conclude about the
composition of Ceres, Titan and Pluto? (8 points)

6. The nucleus of comet Halley has a very low density. We know that comets are mostly
composed of water and other ices, but those other ices still have a higher density than
that measured for Halley’s comet. So, how can we possibly explain this low density?
[Hint: Look back at Question #9. Why is Pumice so light, even though it is a silicate
rock?] What does this imply for the nucleus of comet Halley?!!] (6 points)
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7.5 Possible Quiz Questions

1. What is the difference between mass and weight?
2. How do you calculate density?

3. What are the physical units on density?

4. How do astronomers use density to study planets?

5. Does the shape of an object affect its density?

7.6 Extra Credit (ask your TA for permission before attempting,
5 points)

Look up some information about the element Mercury (chemical symbol “Hg”). Note that
at room temperature, Mercury is a liquid. You found out above that, depending on density;,
some objects will float in water (like pumice). What is the density of Mercury? So, if you
had a beaker full of Mercury, which of the metals you experimented with in this lab do you
think would float in Mercury? In Question # 7, we discussed that the core of the Earth is
much more dense than its crust, and concluded that there must be a lot of iron at the center
of the Earth. Given what you have just found out about rather dense materials floating in
Mercury, apply this knowledge to discuss why the Earth’s core is made of molten (=liquid)
iron, while the crust is made of silicates.
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Name:
Date:

8 Estimating the Earth’s Density

8.1 Introduction

We know, based upon a variety of measurement methods, that the density of the Earth is
5.52 grams per cubic centimeter. [This value is equal to 5520 kilograms per cubic meter.
Your initial density estimate in Table 8.3 should be a value similar to this.] This density value
clearly indicates that Earth is composed of a combination of rocky materials and metallic
materials.

With this lab exercise, we will obtain some measurements, and use them to calculate our
own estimate of the Earth’s density. Our observations will be relatively easy to obtain, but
they will involve contacting someone in the Boulder, Colorado area (where the University of
Colorado is located) to assist with our observations. We will then do some calculations to
convert our measurements into a density estimate.

As we have discussed in class, and in previous labs this semester, we can calculate the
density of an object (say, for instance, a planet, or more specifically, the Earth) by knowing
that object’s mass and volume. It is a challenge, using equipment readily available to us,
to determine the Earth’s mass and its volume directly. [There is no mass balance large
enough upon which we can place the Earth, and if we could what would we have available to
“balance” the Earth?] But we have through the course of this semester discussed physical
processes which relate to mass. One such process is the gravitational attraction (force) one
object exerts upon another.

The magnitude of the gravitational force between two objects depends upon both the
masses of the two objects in question, as well as the distance separating the centers of the
two objects. Thus, we can use some measure of the Earth’s gravitational attraction for an
object upon its surface to ultimately determine the Earth’s mass. However, there is another
piece of information that we require, and that is the distance from the Earth’s surface to its
center: the Earth’s radius.

We will need to determine both the MASS of the Earth and the RADIUS of the Earth.
Since we will use the magnitude of Earth’s gravitational attraction to determine Earth’s
mass, and since this magnitude depends upon the Earth’s radius, well first determine Earth’s
circumference (which will lead us to the Earth’s radius and then to the Earth’s volume) and
then determine the Earth’s mass.
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8.2 Determining Earth’s Radius

Earlier this semester you read (or should have read!) in your textbook the description
of Eratosthenes’” method, implemented two-thousand plus years ago, to determine Earth’s
circumference. Since the Earth’s circumference is related to its radius as:

Circumference = 2 x 7 x RADIUS (with 7 = “pi” = 3.141592)

and the Earth’s volume is a function of its radius:
VOLUME = (4/3) x m x RADIUS?

We will implement Eratosthenes’ circumference measurement method and end up with an
estimate of the Earth’s radius.

Now, what measurements did Eratosthenes use to estimate Earth’s circumference? Er-
atosthenes, knowing that Earth is spherical in shape, realized that the length of an object’s
shadow would depend upon how far in latitude (north-or-south) the object was from being
directly beneath the Sun. He measured the length of a shadow cast by a vertical post in
Egypt at local noon on the day of the northern hemisphere summer solstice (June 20 or so).
He made a measurement at the point directly beneath the Sun (23.5 degrees North, at the
Egyptian city Syene), and at a second location further north (Alexandria, Egypt). The two
shadow lengths were not identical, and it is that difference in shadow length plus the knowl-
edge of how far apart the the two posts were from each other (a few hundred kilometers),
that permitted Eratosthenes to calculate his estimate of Earth’s circumference.

As we conduct this lab exercise we are not in Egypt, nor is today the seasonal date of the
northern hemisphere summer solstice (which occurs in June), nor is it locally Noon (since
our lab times do not overlap with Noon). But, nonetheless, we will forge ahead and estimate
the Earth’s circumference, and from this we will estimate the Earth’s radius.

TASKS:

e Take a post outside, into the sunlight, and measure the length of the post with the
tape measure.

e Place one end of the post on the ground, and hold the post as vertical as possible.

e Using the tape measure provided, measure to the nearest 1/2 centimeter the length of
the shadow cast by the post; this shadow length should be measured three times, by
three separate individuals; record these shadow lengths in Table 8.1.

e You will be provided with the length of a post and its shadow measured simultaneously
today in Boulder, Colorado.

e Proceed through the calculations described after Table 8.1, and write your answers in
the appropriate locations in Table 8.1. (10 points)
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Table 8.1: Angle Data
Location Post Height | Shadow Length Angle
(cm) (cm) (Degrees)

Las Cruces Shadow #1
Las Cruces Shadow #2
Las Cruces Shadow #3

Average Las Cruces Angle:
Boulder, Colorado

8.3 Angle Determination:

With a bit of trigonometry we can transform the height and shadow length you measured
into an angle. As shown in Figure 8.1 there is a relationship between the length (of your
shadow in this situation) and the height (of the shadow-casting pole in this situation), where:

TANGENT of the ANGLE = far-side length/ near-side length

Since you know the length of the post (the near-side length, which you have measured)
and the length of the shadow (the far-side length, which you have also measured, three
separate times), you can determine the shadow angle from your measurements, using the
ATAN, or TAN~! capability on your calculator (these functions will give you an angle if you
provide the ratio of the height to length):

ANGLE = ATAN (shadow length / post length)
or

ANGLE = TAN~!(shadow length / post length)

SHADOW

Figure 8.1: The geometry of a vertical post sitting in sunlight.

Calculate the shadow angle for each of your three shadow-length measure-
ments, and also for the Boulder, Colorado shadow-length measurement. Write
these angle values in the appropriate locations in Table 8.1. Then calculate the average of the
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three Las Cruces shadow angles, and write the value on the “Average Las Cruces Angle” line.

The angles you have determined are: 1) an estimate of the angle (latitude) difference be-
tween Las Cruces and the latitude at which the Sun appears to be directly overhead (which
is currently ~ 12 degrees south of the equator since we are experiencing early northern au-
tumn), and 2) the angle (latitude) difference between Boulder, Colorado and the latitude
at which the Sun appears to be directly overhead. The difference (Boulder angle minus Las
Cruces angle) between these two angles is the angular (latitude) separation between Las
Cruces and Boulder, Colorado.

We will now use this information and our knowledge of the actual distance (in kilometers)
between Las Cruces’ latitude and Boulder’s latitude. This distance is:

857 kilometers north-south distance between Las Cruces and Boulder, Colorado

In the same way that Eratosthenes used his measurements (just like those you have made
today), we can now determine an estimate of the Earth’s circumference. Using your calcu-
lated Boulder Shadow Angle and your Average Las Cruces Shadow Angle values, calculate
the corresponding EARTH CIRCUMFERENCE value, and write it below:

Average Earth Circumference (kilometers) =

857 kilometers x (360°)/(Boulder angle —Avg LC Angle) =
857 x [360°/( - )] = km (2 points)

The CIRCUMFERENCE value you have just calculated is related to the RADIUS via the
equation:

EARTH CIRCUMFERENCE = 2 x 7 x EARTH RADIUS

which can be converted to RADIUS using:

EARTH RADIUS = Ry = EARTH CIRCUMFERENCE / (2 x )

For your calculated CIRCUMFERENCE, calculate that value of the Radius (in units of
kilometers) in the appropriate location below:

AVERAGE EARTH RADIUS VALUE = Ry =
kilometers (3 points)
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Convert this radius (Rg) from kilometers to meters, and enter that value in Table
8.3. (Note we will use the radius in meters the rest of this lab.)

You have now obtained one important piece of information (the radius of the Earth)
needed for determining the density of Earth. We will, in a bit, use this radius value to
calculate the Earth’s volume. Next, we will determine Earth’s mass, since we need to know
both the Earth’s volume and its mass in order to be able to calculate the Earth’s density.

8.4 Determining the Earth’s Mass

The gravitational acceleration (increase of speed with increase of time) that a dropped object
experiences here at the Earth’s surface has a magnitude defined by the Equation (thanks to
Sir Isaac Newton for working out this relationship!) shown below:

Acceleration (meters per second per second) = G x Mg/Rg?

Where Mg is the mass of the Earth in kilograms, Rg is the radius of the Earth in units
of meters, and the Gravitational Constant, G = 6.67 x 10~!" meters®/(kg-seconds?). You
have obtained several estimates, and calculated an average value of Rg, above. However, you
currently have no estimate for Mg. You can estimate the Earth’s mass from the measured
acceleration of an object dropped here at the surface of Earth; you will now conduct such
an exercise.

A falling object, as shown in Figure 8.2, increases its downward speed at the constant
rate “X” (in units of meters per second per second). Thus, as you hold an object in your
hand, its downward speed is zero meters per second. One second after you release the object,
its downward speed has increased to X meters per second. After two seconds of falling, the
dropped object has a speed of 2X meter per second, after 3 seconds its downward speed is
3X meters per second, and so on. So, if we could measure the speed of a falling object at
some point in time after it is dropped, we could determine the object’s acceleration rate,
and from this determine the Earth’s mass (since we know the Earth’s radius). However, it
is difficult to measure the instantaneous speed of a dropped object.

We can, however, make a different measurement from which we can derive the dropped
object’s acceleration, which will then permit us to calculate the Earth’s mass. As was pointed
out above, before being dropped the object’s downward speed is zero meters per second. One
second after being dropped, the object’s downward speed is X meters per second. During
this one-second interval, what was the object’s AVERAGE downward speed? Well, if it was
zero to begin with, and X meters per second after falling for one second, its average fall
speed during the one-second interval is:

Average Fall speed during first second = (Zero + X) / 2 = X /2 meters per
second, which is just the average of the initial (zero) and final (X) speeds.
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Time=0 Time = 1 second Time = 2 seconds

Top of Building
. Object being dropped

?

Speed = X meters per second = | sec x X m/s/s

Distance fallen = X/2 meters = 1/2x X x I’

Speed = 2 x X meters per second = 2 sec x X m/s/s
Distance fallen = 2X meters = 1/2 x X x 2°

X = magnitude of acceleration (9.8 meters per second per second at Earth's surface)

Figure 8.2: The distance a dropped object will fall during a time interval ¢ is proportional
to #2. A dropped object speeds up as it falls, so it travels faster and faster and falls a greater
distance as t increases.

At an average speed of X/2 meters per second during the first second, the distance traveled
during that one second will be:

(X/2) (meters per second) x 1 second = (X/2) meters,
since:

DISTANCE = AVERAGE SPEED x TIME = 1/2 x ACCELERATION x TIME?

So, if we measure the length of time required for a dropped object to fall a certain distance,
we can calculate the object’s acceleration.

Tasks:

e Using a stopwatch, measure the amount of time required for a dropped object (from
the top of the Astronomy Building) to fall 9.0 meters (28.66 feet). Different members
of your group should take turns making the fall-time measurements; write these fall
time values for two “drops” in the appropriate location in Table 8.2. (10 points for
a completed table)

e Use the equation: Acceleration = [2.0 x Fall Distance] / [(Time to fall)?]

and your measured Time to Fall values and the measured distance (9.0 meters) of Fall
to determine the gravitational acceleration due to the Earth; write these acceleration
values (in units of meters per second per second) in the proper locations in Table 8.2.
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e Now, knowing the magnitude of the average acceleration that Earth’s gravity imposes
upon a dropped object, we will now use the “Gravity” equation to get Mg:

Gravitational acceleration = G x Mg/Rg? (where Rg must be in meters!)

Table 8.2: Time of Fall Data

Time to Fall | Fall Distance | Acceleration
Object Drop #1 9 meters
Object Drop #2 9 meters
Average =

By rearranging the Gravity equation to solve for Mg, we can now make an estimate of the
Earth’s mass:

Mg = Average Acceleration x (Rg)? / G = (5 points)
Write the value of Mg (in kilograms) in Table 8.3 below.

8.5 Determining the Earth’s Density

Now that we have estimates for the mass (Mg) and radius (Rg) of the Earth, we can easily
calculate the density: Density = Mass/Volume. You will do this below.

Tasks:

e Calculate the volume (Vg) of the Earth given your determination of its radius in
meters!:

Vi = (4/3) x ™ x Rg?

and write this value in the appropriate location in Table 8.3 below.

e Divide your value of Mg (that you entered in Table 8.3) by your estimate of Vg that
you just calculated (also written in Table 8.3): the result will be your estimate of the
Average Earth Density in units of kilograms per cubic meter. Write this value in the
appropriate location in Table 8.3.

o Diwvide your AVERAGE ESTIMATE OF FEARTH’S DENSITY walue that you just
calculated by the number 1000.0; the result will be your estimated Earth density value
in units of grams per cubic centimeter (the unit in which most densities are tabulated).
Write this value in the appropriate location in Table 8.3.
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Table 8.3: Data for the Earth

Estimate of Earth’s Radius:
Estimate of Earth’s Mass:
Estimate of Earth’s Volume:

Estimate of Earth’s Density:

Converted Density of the Earth:

m (4 points)

kg (4 points)

m?® (4 points)

kg/m? (4 points)

gm/cm? (4 points)
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8.6 In-Lab Questions:

1. Is your calculated value of the (Converted) Earth’s density GREATER THAN, or
LESS THAN, or EQUAL TO the actual value (see the Introduction) of the Earth’s
density? If your calculated density value is not identical to the known Earth density
value, calculate the “percent error” of your calculated density value compared to the
actual density value (2 points):

PERCENT ERROR =

100% x (CALCULATED DENSITY — ACTUAL DENSITY)
ACTUAL DENSITY

2. You used the AVERAGE Las Cruces shadow angle in calculating your estimate of the Earth’s
density (which you wrote down in Table 8.3). If you had used the LARGEST of the three
measured Las Cruces shadow angles shown in Table 8.1, would the Earth density value that
you would calculate with the LARGEST Las Cruces shadow angle be larger than or smaller
than the Earth density value you wrote in Table 8.37 Think before writing your answer!
Explain your answer. (5 points)

3. If the Las Cruces to Boulder, Colorado distance was actually 200 km in length, but your
measured fall times did not change from what you measured, would you have calculated a
larger or smaller Earth density value? Explain the reasoning for your answer. (3 points)
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4. If we had conducted this experiment on the Moon rather than here on the Earth, would
your measured values (fall time, angles and angle difference between two locations separated
north-south by 857 kilometers) be the same as here on Earth, or different? Clearly explain
your reasoning. [It might help if you draw a circle representing Earth and then draw a circle
with 1/4%" of the radius of the Earth’s circle to represent the Moon.] (5 points)
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Name:
Date:

8.7 Take Home Exercise (35 points total)
1. Type a 1.5-2 page Lab Report in which you will address the following topics:

a) The estimated density value you arrived at was likely different from the actual Earth
density value of 5.52 grams per cubic centimeter; describe 2 or 3 potential errors in your
measurements that could possibly play a role in generating your incorrect estimated
density value.

b) Describe 2-3 ways in which you could improve the measurement techniques used
in lab; keep in mind that NMSU is a state-supported school and thus we do not have
infinite resources to purchase expensive sophisticated equipment, so your suggestions
should not be too expensive.

¢) Describe what you have learned from this lab, what aspects of the lab surprised you,
what aspects of the lab worked just as you thought they would, etc.

8.8 Possible Quiz Questions

1. What is meant by the “radius” of a circle? (Drawing ok)

2. What does the term “circumference of a circle” mean?

3. How do you calculate the circumference of a circle if given the radius?
4. What is “pi” (or m)? What is the value of pi?

5. What is the volume of a sphere?

6. What does the term “density” mean?

8.9 Extra Credit (ask your TA for permission before attempting,
5 points)

Astronomers use density to segregate the planets into categories, such as “Terrestrial” and
“Jovian”. Using your book, or another reference, look up the density of the Sun and Jupiter
(or, if you have completed the previous lab, use the data table you constructed for Take-
Home portion of that lab). Compare the densities of the Sun and Jupiter. Do you think
they are composed of same elements? Why/why not? What are the two main elements in
the periodic table that dominate the composition of the Sun? If the material that formed
the Sun (and the Sun has 99.8% of the mass of the solar system) was the original “stuff”
from which all of the planets were formed, how did planets like Earth end up with such
high densities? What do you think might have happened in the distant past to the lighter
elements? (Hint: think of a helium balloon, or a glass of water thrown out onto a Las Cruces
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parking lot in the summer!).
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Date:

9 Reflectance Spectroscopy

9.1 Introduction

With this lab, we will look at the wavelength dependence of the visible reflectance of var-
ious objects, and learn what this can tell us about the composition of those objects. This
is one technique by which we determine the composition of various solar system objects
(e.g. Martian rocks, asteroids, clouds on Jupiter). We will specifically apply this method
of investigation, using a hand-held reflectance spectrometer, to the reflectance characteris-
tics of several different colored sheets of construction paper. We will then use these known
spectra for different colors to identify some “mystery” objects for which we know only their
reflectance as a function of wavelength.

We will use an ALTA reflectance spectrometer for this lab. This is an instrument that
can quantitatively measure the reflectance in nine wavelength channels covering visible and
near infrared wavelengths. The ALTA reflectance spectrometer provides measurements in
units of millivolts. As the intensity of the measured (reflected) light changes, the displayed
number (voltage) will change in the same proportion. That is, if the intensity of measured
reflected light decreases by a factor of two, the displayed value will also decrease by a factor
of two. What we will ultimately be interested in for each wavelength and for each object
is the percentage of incident light that is reflected. That is, if all the light of a particular
wavelength is reflected, that object has a 100% reflectance at that wavelength. If none of
the incident light is reflected (it is all absorbed), the object has a zero-percent reflectance at
that wavelength.

When we apply reflectance spectroscopy to solar system objects, the Sun is the source of the
light that is reflected. Thus, if we know the spectral characteristics (intensity as a function
of wavelength) of the Sun, we can measure the intensity of reflectance at our chosen wave-
lengths accurately. With the ALTA reflectance spectrometer, we do not use sunlight as our
‘source’. Rather, the spectrometer itself has nine bulbs (arranged in a circular pattern) that
emit light of specified wavelengths (indicated on the buttons on the front of the instrument)
and one detector which measures reflected radiation. The emitted light reflects off the object
of interest and is measured by the detector located at the center of the circular pattern of
bulbs. By proceeding through the nine wavelengths, we obtain the intensity of reflected light
at each wavelength, and from this we can determine the reflectance spectrum of our objects
of interest.

9.2 Exercises

Start by pressing one of the wavelength buttons on the front of the spectrometer and while
depressing this button, turn the spectrometer over. You should see one of the bulbs ar-
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ranged in a circular pattern illuminated (unless you are pressing one of the two near-infrared
wavelength buttons). Release the button you are holding and press a different button; you
should now see a different bulb illuminated. Remember, the ‘bulb’ at the center is actually
the detector, which measures the reflected light.

1. Our first order of business is to determine what the instrument signal is when no light
is available. This is called the dark voltage value and must be subtracted from all
subsequent measurements with the spectrometer. Turn the spectrometer on and set it
down on the table; the value currently in the display area is the dark voltage. Write
this number down, as it will be subtracted from all subsequent measured values. Also
write the unit number or letter of the spectrometer. (2 points)

DARK VOLTAGE READING =
SPECTROMETER # or Letter =
(located in the upper right corner on the front of the spectrometer)

2. Now, since our spectrometer is not calibrated (we do not know what millivolt values
to expect for 100 percent reflection, and there is no reason why this value must be
the same for each wavelength), we will use a piece of white poster board to determine
the ‘standard’ against which our reflectance spectra of several colored papers will be
compared. In order to do this, we will measure the value (in millivolts) of reflected
light from the white poster board for each of the nine wavelength channels of the spec-
trometer. Do this by:

e Placing the spectrometer onto the white poster board
e Sequentially pressing the nine wavelength buttons on the spectrometer

e While pressing each button, note the millivolt value that appears in the display
and write this value down in Measured Value column of Table 9.1 for the appro-
priate wavelength

Remember, we are measuring the intensity of the light that has been: a) emitted by the
spectrometer bulb, then b) reflected off the poster board, and then finally, ¢) measured
by the spectrometer.

Since it is a white surface that we are measuring the reflectance from, we will ex-
pect that the reflectance (percent of light reflected) will not vary too much among the
nine wavelengths (since ‘white’ is the combination of all wavelengths). We will assume
that each wavelength is 100 percent reflected from the white surface. After determin-
ing the measured ‘calibration’ values for each wavelength, subtract the ‘Dark Voltage’
value from these calibration values to obtain the ‘standard’ value for each wavelength,
and write these values in the right-hand column of Table 9.1. (9 points)
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Wavelength | Measured Value Standard

(nanometers) (millivolts) (Measured - Dark Voltage)
470
555
585
605
635
660
695
880
940

Table 9.1: White poster board calibration determination. (Recall that 1 nanometer = 10~
m = 1 billionth of a meter.)

3. Rather than comparing the reflectance spectra of rocks on Mars, as the Mars Pathfinder
camera did, or clouds on Jupiter (as the Voyager and Galileo spacecraft have done),
you will obtain and compare the reflectance spectra of several different colors of con-
struction paper. When you have measured the spectra of the three pieces of colored
paper, you will plot their spectra.

For each piece of colored paper,

e Measure the reflectance of that piece of paper at each wavelength in the same
manner as you determined the spectrometer’s ‘Measured Value’ above, writing
the corresponding millivolt value for each wavelength in the Meas. column in
Table 9.2.

e For each wavelength for each piece of paper, calculate the Measured minus Dark
Voltage value. To do this, subtract your instrument’s Dark Voltage value from
the Meas. column value at each wavelength for each colored piece of paper.

e Determine the Reflectance value of each colored sheet of paper at each wavelength
using the formula below, in which ‘STANDARD Value’ is the value in the right-
most column of Table 9.1 at the appropriate wavelength. The REFLECTANCE
values you arrive at should have values between 0 and 1. Write your calculated
reflectance values in the “Reflect.” columns of Table 9.2 for the appropriate colored
piece of paper. (20 points)

Measured Value—DarkValue
STANDARDValue

Reflectance =

4. On the sheets of graph paper at the end of this lab, plot the Reflectance values [column
3 Reflect. values in Table 9.2] you have calculated for each of the 3 colored pieces of
paper. For each piece of colored paper and the calculated Reflectance values, draw a
dot at the appropriate Reflectance value (y-axis) and appropriate wavelength point (x-
axis). After you have drawn all 9 dots for a single sheet of colored paper, connect the
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Red Paper

Green Paper

Blue Paper

Meas. | Meas.-Dark ‘ Reflect.

Meas. | Meas.-Dark ‘ Reflect. || Meas. | Meas.-Dark ‘ Reflect.

Table 9.2: ALTA Reflectance Spectrometer Values (millivolts)

dots. This curve you have drawn is a Reflectance Spectrum. Repeat this procedure
for your Reflectance results for the other two sheets of colored paper. Clearly label
your three resulting curves. (15 points)

Compare your three curves (reflectance spectra of the colored sheets of paper) with the
spectra of the two mystery objects (A and B). The two mystery curves are the spectra
for two separate objects. These objects are included among those listed below. Using
your knowledge of the color of the objects in the list below, a) determine which object
each of the mystery spectra corresponds to, and b) describe below how you have made
this determination. You may find it useful to refer to Figure 6.6 on page 157 of your
text to relate wavelength to color. (7 points each)

Tomato

blade of grass

White Paper

Black Paper

Eggplant

Navel Orange

Pink Flamingo

Neptune (page 215 of text)

Lemon

Object #

Object #
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Mystery Planet:

The last graph in this lab shows a reflectance spectrum for a newly discovered planet
that was just visited by a NASA spacecraft. Does this planet have vegetation on its
surface? Justify your answer. (5 points)
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Reflectance Units

Reflectance Spectrum

RED Construction Paper

09 f

08 [

07 |

06 [

05 f

04 [

03 f

02 [

0.1

Wavelength (nm)
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Reflectance Units

Reflectance Spectrum

GREEN Construction Paper

09 f

08 [

07 |

06 [

05 f

04 [

03 f

02 [

0.1

Wavelength (nm)
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Reflectance Units

Reflectance Spectrum

BLUE Construction Paper

09 f

08 [

07 |

06 [

05 f

04 [

03 f

02 [

0.1

Wavelength (nm)
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Reflectance Units

1400 —
1200
1000
800
600
400 |

200 |

Mystery Planet Reflectance Spectrum

Wavelength (nm)
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Name:
Date:

9.3 Take Home Exercise (35 points total)

On a separate sheet of paper, answer the following questions:

1. Why does the planet Jupiter appear brighter in the night sky than Mars, even though
Mars is much closer to Earth than Jupiter? [Hint: the third column in Table 8.1 on
page 200 of your textbook might be helpful.] (10 points)

2. Imagine that the colored lightbulbs in the Alta reflectance spectrometers emitted twice
as much light as they actually do. In this brighter bulb situation, would you determine
“Reflect.” values that are the same as those you have written in Table 9.2, or would
you determine different (larger, smaller) Reflect. values with these brighter bulbs?
Why? (10 points)

3. Clearly describe a concept you have learned in this lab, or last week in class, during our
discussions about radiation. Describe something that you have not already addressed
by answering other questions in this lab. (15 points)

9.4 Possible Quiz Questions
1. What is meant by the term “wavelength of light”?

2. What are the physical units of wavelength?

w

. What is the definition of the word “spectroscopy”?

W

. If a blade of grass is “green”, why does it look green?

9.5 Extra Credit (ask your TA for permission before attempting,
5 points)

Look up the spectrum of chlorophyll. Note that a spectrum can either be a “reflection” spec-
trum or an “absorption” spectrum. One is simply the inverse of the other. So, depending
on the author’s preference, they will plot one or the other type of spectrum for chlorophyll.
Chlorophyll is why most plants look green. Describe how chlorophyll interacts with light.
What does chlorophyll do for plants? Why do you think it works this way? Rocks, ices,
and gases all have complicated spectra, absorbing some wavelengths of light, and reflecting
(or transmitting) others. The uniqueness of the spectra of these items allows astronomers
to determine the composition of an object by using spectroscopy.
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10 Locating Earthquakes

10.1 Introduction

Because of convective motions in the mantle of the Earth, which are driven by heat transfer
from the hotter interior regions up through the cooler crust, stresses build up in the outer
rigid crust. Sometimes these stresses are relieved by abrupt slippages, or earthquakes, that
generate shock waves that propagate outward from the quake site. Earthquakes can result
in loss of lives and considerable damage to buildings as well as transportation and commu-
nication systems.

The actual slippage in Earth’s crust usually occurs miles below the surface. The exact
site is called the focus of the earthquake. The point on the Earth’s surface directly above
the focus is called the epicenter.

The shock waves generated by the quake are called seismic waves (from the Greek word
“seismos,” which means to shake). There are three types of waves. The first type is called L
waves, which travel only on the Earth’s surface and are similar to water waves on the ocean.
Next are P waves, which are compressional waves, and can travel through gases, liquids or
solids. The motion associated with S waves, which are shear waves, is perpendicular to the
direction of motion. The S waves dissipate quickly in liquids and gases.

‘Wave Direction
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Figure 6-17. Three Types of Waves. Eartlu.;uaks produce three types of waves.
L-waves travel on the earth’s surface. S-waves and P-waves wravel through the
earth.

Figure 10.1: Different types of waves.

The P waves travel almost twice as fast as S waves, thus the P wave shock will arrive at a
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remote station before the S wave shock will. A seismometer is an instrument that consists of
a massive base and a detector that picks up seismic waves. If the speed of the waves through
the local crust is known and you have a seismometer so you can record the shocks, then at
any single station you can determine how far you are from the focus of the quake.

Use the following graph to determine the average speed of the P and S waves for a typ-
ical Earth crust. Assume that we are going to be dealing with shallow earthquakes in the
state of New Mexico, i.e., those that have depths of 20 km or less. Put the wave speed values
you read off of Figure 10.2 into Table 10.1. (4 points)

Wave Speed (km/sec)
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Figure 10.2: Wave speeds as a function of depth.
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Type of Wave | Speed of Wave (km/sec)

P Wave

S Wave

Table 10.1: Comparison of P and S wave travel times.

10.2 Locating an Earthquake

10.2.1 Finding the Distances

Consider the problem of locating a small local quake. We will use real earthquake data from
seismic stations in Alamogordo, Albuquerque, El Paso, Las Cruces, Santa Fe, and Socorro.
The data for five different earthquakes that took place in New Mexico can be found at the
end of this lab. Choose an earthquake for your group to analyze (tell your TA, as they might
want different groups to do different earthquakes!). Write down which earthquake you are
analyzing (numbers 1-5) in the space below:

Earthquake #:

Copy the P and S wave onset times from your data sheet for your earthquake into Table 10.2.

Table 10.2: P and S wave arrival times at six seismic stations.
Station Onset of P wave | Onset of S wave Jt (sec) dist. to focus (km)

Alamogordo

Albuquerque

El Paso

Las Cruces

Santa Fe

Socorro, NM

ot (“delta-t”) is the difference between the arrival time of a P wave and the arrival time of
an S wave at any given seismic station. Calculate dt for each of the six stations and place
these values in Table 10.2. (12 points)
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Now we must calculate the distance that the wave traveled from the earthquake’s focus
to each recording station. If X is the distance between the focus and the seismograph and
vp = speed of P wave and vg = speed of S wave, then:

X
— =tp = time of travel for P wave 9)
vp

and
— =tg = time of travel for S wave. (10)
vs

Since 0t = tg — tp, substituting from Equations (1) and (2) above gives us
X X
0t =———. (11)
(S vp
Equation (3) can be rewritten as
(vp X X) — (vg X X)
Vg X Up

5t = (12)

If we factor out X, multiply both sides by vp X vg, and divide by vs — vp, we find that the
distance between the earthquake focus and any given seismic station is

UVp X Vs

X =6t x (13)

Up — Vs

Compute the distances to the six stations using Equation (5) and insert these values into
Table 10.2 (12 points).

10.2.2 Determining the Location

Now you will use the map to determine the site of the quake. First, figure out the number
of centimeters that correspond to 1 km by measuring the scale bar on your map (lower left
corner of map) with a ruler.

140.8 km = cm

1 km = the above number /140.8, = cm = .S, the scale factor

Copy the distances from Table 10.2 into the second column of Table 10.3. Then convert
the true distances in Table 10.3 from km to scaled distances in cm:

scaled distance = true distance x S

Insert these numbers into Table 10.3 (6 points).

Set the compass for each scaled distance and place the point of the compass at the station
and draw an arc on the map located at the end of the lab (10 points). When you are done,
you will use your results in conjunction with the information on the last page of the lab
regarding the geology of New Mexico to answer the following questions.
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Table 10.3: Distance from each seismic station to earthquake focus.
Station Dist. to focus (km) | Scaled Dist. to focus (cm)
Alamogordo
Albuquerque
El Paso

Las Cruces
Santa Fe
Socorro, NM

10.3 In-Lab Questions

1. What was the site of this local quake? What might be the cause of small quakes in
this region? (10 points)

2. What is your best estimate of the time the quake occurred? (5 points)

3. Based on the size of the intersecting region of your diagram, what can you say about
the depth of the quake? (6 points)
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10.4 Take Home Exercise (35 points total)

On a separate sheet of paper, answer the following questions:

1. When large earthquakes occur, stations within a few thousand km of the focus detect
both P and S waves. On the opposite side of the Earth only P waves are detected.
Review the nature of the P and S waves and argue that there is a molten region at
about 3500 km from the center of the Earth (compared to the Earth’s 6378 km radius).
[A figure will be helpful here.] How might you detect a smaller solid central core if
there were one? (20 points)

2. a) Clearly describe how you would design a spacecraft mission to Mars to determine
whether or not Mars has molten metal in its core, including what properties of Mars
you would want to measure. b) Would you want one or more than one lander? c)
If you could only have an orbiter mission to Mars (no landers), what measurements
would you want it to make to help you determine whether or not Mars has a molten
metal core. [Hint: the measurement will not be the reflected sunlight or blackbody
radiation.] (15 points)

10.5 Possible Quiz Questions
1. What is an earthquake?

2. How are earthquakes generated?
3. What is an “L-wave”?

4. What is an “S-wave”?

5. What is a “P-wave”?

6. Do all the different kinds of waves travel at the same speeds?

10.6 Extra Credit (ask your TA for permission before attempting,
5 points)

Below is a brief summary about the geology of New Mexico. Using this guide, and additional
research, describe why we have earthquakes in New Mexico. Why are the earthquakes in New
Mexico usually so much smaller (less intense) than those that are common to California?
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This Geological summary is from the 1990
New Mezico Magazine Vacation Guide.

Geology
New Mexico’s geology is as diverse and col-
orful as its culture, history and people. From
the low-lying flatlands of the south to the
soaring peaks of the northern mountains, the
state’s terrain climbs 10,000 feet in altitude
creating a landscape of dramatic contrasts.

The creation of New Mexico’s present land-
scape began some 70 million years ago during
the Cenozoic era. About this time the Rocky
Mountains were born during the Lara-mide
Revolution, a general uplifting of the Earth’s
crust.

The ancient seas that covered most of New
Mexico in earlier times slowly disappeared,
and along with them went the dinosaurs and
abundant marine life of the Triassic, Jurassic
and Cretaceous periods.

Volcanic activity has played an integral
role in shaping New Mexico’s terrain. Evi-
dence of centuries of volcanism is apparent
across the state. Rising well over 1,700 feet
above the surrounding land, Shiprock is a vol-
canic neck—the core of all that remains of a
long-eroded volcano.

Valle Grande, located in the center of the
Jémez Mountains, is one of the world’s largest
calderas. The violent eruption that created it
released over 75 cubic miles of molten rock,
which slowly cooled as it lowed over the land.
Today the crater contains 176 square miles
of meadow land where wildflowers bloom and
cattle graze peacefully.

To the south, Little Black Peak in Val-
ley of Fires State Park erupted barely 1,000
years ago, emitting what is now 44 miles of
ropey pa hoe hoe lava flows, more than 150
feet thick in some places. As it spread and
cooled, the lava formed domes, tubes, caves
and fissures. This area is among the most re-
cent and best preserved examples of such lava
flows in the continental U.S.

Seismic activity continues to alter the land.
Tension in the Earth’s crust along a pair of
parallel fault lines running down the center of
New Mexico has resulted in the formation of
the great Rio Grande Rift Valley. This huge
trough, which contains the Rio Grande, is 30
miles across at Albuquerque and widens con-
siderably to the south.

Many of the state’s mountains, including
the Sandia, Manzano and Sacramento ranges,
were formed from fault blocks that were tilted
and raised as the Earth’s crust was uplifted.

In New Mexico’s arid environment, water
is a scarce and precious resource that is, nev-
ertheless, a powerful force in the sculpting of
geological features.

Circulating underground water dissolves
salt, gypsum and limestone deposits to form
subterranean realms such as Carlsbad Cav-
erns, one of the largest cave systems in the
world.

When the roofs of such caverns collapse,
sink holes are formed and lakes develop. Bot-
tomless Lakes State Park near Roswell plays
on a harmless exaggeration of the depth of
these unique features, the deepest of which is
about 90 feet.

Winds blowing in from gypsiferous Lake
Lu-cero have built up what is now White Sands
National Monument. Here, sparkling snow-
white sand crests in dunes up to 50 feet high.
The 275 square-mile monument contains more
than 8 billion tons of gypsum and is the largest
dune field of its kind in the world.
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Earthquake # 1

Since 1973 (when recording of earthquakes in the US became more precise and organized),
the three most powerful earthquakes to hit New Mexico were all of magnitude 5.0. This
earthquake, the first of these three, occurred during the night of January 4, 1976. In locations
near the earthquake’s epicenter, the event was felt by everybody. Only buildings in poor
repair suffered significant damage. Most other damage was on the level of things falling off
of shelves.

Table 10.4: Data for Earthquake 1.

Reporting Station | P-wave Onset Time (MST) | S-wave Onset Time (MST)
Alamogordo 23:24:37.1 23:25:22.4
Albuquerque 23:24:01.4 23:24:21.1

El Paso 23:24:52.3 23:25:48.5
Las Cruces 23:24:41.4 23:25:29.8
Santa Fe 23:24:08.2 23:24:32.8
Socorro 23:24:12.2 23:24:39.6

Earthquake # 2

This earthquake, the second of the three most powerful felt in New Mexico, occurred during
early in the morning on January 2, 1992. This earthquake was felt by most people in the
area, but did not cause significant damage, aside from knocking over a few small objects like

vases.

Table 10.5: Data for Earthquake 2.

Reporting Station | P-wave Onset Time (MST) | S-wave Onset Time (MST)
Alamogordo 04:46:20.6 04:46:52.9
Albuquerque 04:46:49.0 04:47:41.6

El Paso 04:46:28.9 04:47:07.1
Las Cruces 04:46:32.2 04:47:12.8
Santa Fe 04:46:50.0 04:47:43.4
Socorro 04:46:41.3 04:47:28.3
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Earthquake # 3

Of the three that have been at magnitude 5.0, this earthquake is the most recent: during the
afternoon of August 10, 2005. Reports indicate that this earthquake was powerful enough
to be felt, and caused clearly visible effects (like sloshing liquid, wobbling furniture, parked
cars rocking), but no significant damage.

Table 10.6: Data for Earthquake 3.

Reporting Station | P-wave Onset Time (MDT) | S-wave Onset Time (MDT)
Alamogordo 16:09:38.0 16:10:31.9
Albuquerque 16:09:05.8 16:09:36.7

El Paso 16:10:00.0 16:11:09.7
Las Cruces 16:09:51.6 16:10:55.4
Santa Fe 16:08:50.7 16:09:10.9
Socorro 16:09:23.5 16:10:07.1

Earthquake # 4

This earthquake, one of the most powerful New Mexico earthquakes in recent history, was
of magnitude 4.8. It occurred on the morning of January 29, 1990. In locations near the
earthquake’s epicenter, the event was felt by everybody. Only buildings in poor repair had
significant damage. Most other damage was on the level of broken dishware, or things falling

off of shelves.

Table 10.7: Data for Earthquake 4.

Reporting Station | P-wave Onset Time (MST) | S-wave Onset Time (MST)
Alamogordo 06:16:42.3 06:17:05.0
Albuquerque 06:16:22.7 06:16:31.3

El Paso 06:17:00.1 06:17:35.5
Las Cruces 06:16:49.7 06:17:17.7
Santa Fe 06:16:37.1 06:16:56.0
Socorro 06:16:18.4 06:16:24.0
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Earthquake # 5

This earthquake, among the most powerful New Mexico earthquakes in recent history, was
of magnitude 4.7. It occurred during the night of November 28, 1989. This earthquake was
felt by most people in the area, but did not cause significant damage, aside from knocking

over stuff on shelves.

Table 10.8: Data for Earthquake 5.

Reporting Station | P-wave Onset Time (MST) | S-wave Onset Time (MST)
Alamogordo 23:55:10.2 23:55:32.9
Albuquerque 23:54:50.6 23:54:59.2

El Paso 23:55:27.9 23:56:03.3
Las Cruces 23:55:17.5 23:55:45.5
Santa Fe 23:55:05.0 23:55:24.0
Socorro 23:54:46.3 23:54:51.8
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11 The Surface of the Moon

11.1 Introduction

One can learn a lot about the Moon by looking at the lunar surface. Even before astronauts
landed on the Moon, scientists had enough data to formulate theories about the formation
and evolution of the Earth’s only natural satellite. However, since the Moon rotates once
for every time it orbits around the Earth, we can only see one side of the Moon from the
surface of the Earth. Until spacecraft were sent to orbit the Moon, we only knew half the
story.

The type of orbit our Moon makes around the Earth is called a synchronous orbit. This
phenomenon is shown graphically in Figure 11.1 below. If we imagine that there is one
large mountain on the hemisphere facing the Earth (denoted by the small triangle on the
Moon), then this mountain is always visible to us no matter where the Moon is in its orbit.
As the Moon orbits around the Earth, it turns slightly so we always see the same hemisphere.

g

Figure 11.1: The Moon’s “synchronous” orbit (not drawn to scale). Note how the Moon spins
exactly once during its 27.3 day orbit around the Earth, but keeps the same face pointing
towards the Earth.

On the Moon, there are extensive lava flows, rugged highlands, and many impact craters
of all different sizes. The overlapping of these features implies relative ages. Because of the
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lack of ongoing mountain building processes, or weathering by wind and water, the accumu-
lation of volcanic processes and impact cratering is readily visible. Thus by looking at the
images of the Moon, one can trace the history of the lunar surface. Most of the images in
this lab were taken by NASA spacecraft or by the Apollo Astronauts.

e (Goals: to discuss the Moon’s terrain, craters, and the theory of relative ages; to use
pictures of the Moon to deduce relative ages and formation processes of surface features

e Materials: Moon pictures, ruler, calculator

e Review: Section 1.2.2 in Lab #1

11.2 Craters and Maria

A crater is formed when a meteor from space strikes the lunar surface. The force of the im-
pact obliterates the meteorite and displaces part of the Moon’s surface, pushing the edges of
the crater up higher than the surrounding rock. At the same time, more displaced material
shoots outward from the crater, creating rays of ejecta. These rays of material can be seen
as radial streaks centered on some of the craters in some of the pictures you will be using
for your lab today. As shown in Figure 11.2, some of the material from the blast “Hows”
back towards the center of the crater, creating a mountain peak. Some of the craters in the
photos you will examine today have these “central peaks”. Figure 11.2 also shows that the
rock beneath the crater becomes fractured (full of cracks).

Figure 11.2: Formation of an Impact Crater.

Soon after the Moon formed, its interior was mostly liquid. It was continually being
hit by meteors, and the energy (heat) from this period of intense cratering was enough to
liquify the Moon’s interior. Every so often, a very large meteor would strike the surface, and
crack the Moon's crust. The over-pressured “lava” from the Moon’s molten mantle then
flowed up through the cracks made by the impact. The lava filled in the crater, creating a
dark, smooth “sea”. Such a sea is called a mare (plural: maria). Sometimes the amount of
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lava that came out could overfill the crater. In those cases, it spilled out over the crater’s
edges and could fill in other craters as well as cover the bases of the highlands, the rugged,
rocky peaks on the surface of the Moon.

11.3 Relative Ages on the Moon

Since the Moon does not have rain or wind erosion, astronomers can determine which fea-
tures on the Moon are older than others. It all comes down to counting the number of craters
a feature has. Since there is nothing on the Moon that can erase the presence of a crater, the
more craters something has, the longer it must have been around to get hit. For example, if
you have two large craters, and the first crater has 10 smaller craters in it, while the second
one has only 2 craters in it, we know that the first crater is older since it has been there long
enough to have been hit 10 times. If we look at the highlands, we see that they are covered
with lots and lots of craters. This tells us that in general, the highlands are older than the
maria, which have fewer craters. We also know that if we see a crater on top of a mare, the
mare is older. It had to be there in the first place to get hit by the meteor. Crater counting
can tell us which features on the Moon are older than other features, but it can not tell us
the absolute age of the feature. To determine that, we need to use radioactive dating or
some other technique.

11.4 Lab Stations

In this lab you will be using a 3-ring binder that has pictures organized into separate sub-
sections, or “stations”. At some stations we present data comparing the Moon to the Earth
or Mars. Using your understanding of simple physical processes here on Earth and informa-
tion from the class lecture and your reading, you will make observations and draw logical
conclusions in much the same way that a planetary geologist would.

You should work in groups of two to four, with one notebook for each group. The note-
books contain separate subsections, or “stations”, with the photographs and/or images for
each specific exercise. Each group must go through all of the stations, and consider and
discuss each question and come to a conclusion. Remember to back up your answers
with reasonable explanations, and be sure to answer all of the questions. While
you should discuss the questions as a group, be sure to write down one group answer for
each question. The take-home questions must be done on your own. Answers for the
take-home questions that are exact duplicates of those of other members of your
group will not be acceptable.

11.5 The Surface of the Moon

Station 1: Our first photograph (#1) is that of the full Moon. It is obvious that the Moon
has dark regions, and bright regions. The largest dark regions are the “Maria”, while the
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brighter regions are the “highlands”. In image #2, the largest features of the full Moon are
labeled. The largest of the maria on the Moon is Mare Imbrium (the “Sea of Showers”), and
it is easily located in the upper left quadrant of image #2. Locate Mare Imbrium. Let us
take a closer look at Mare Imbrium.

Image #3 is from the Lunar Orbiter IV. Before the Apollo missions landed humans on
the Moon, NASA sent several missions to the Moon to map its surface, and to make sure
we could safely land there. Lunar Orbiter IV imaged the Moon during May of 1967. The
technology of the time was primitive compared to today, and the photographs were built up
by making small imaging scans/slices of the surface (the horizontal striping can be seen in
the images), then adding them all together to make a larger photograph. Image #3 is one
of these images of Mare Imbrium seen from almost overhead.

Question #1: Approximately how many craters can you see inside the dark circular region
that defines Mare Imbrium? Compare the number of craters in Mare Imbrium to the brighter
regions to the North (above) of Mare Imbrium. (2 points)

Images #4 and #5 are close-ups of small subsections of Mare Imbrium. In image #4,
the largest crater (in the lower left corner) is “Le Verrier” (named after the French mathe-
matician who predicted the correct position for the planet Neptune). Le Verrier is 20 km in
diameter. In image #5, the two largest craters are named Piazzi Smyth (just left of center)
and Kirch (below and left of Piazzi Smyth). Piazzi Smyth has a diameter of 13 km, while
Kirch has a diameter of 11 km.

Question #2: Using the diameters for the large craters noted above, and a ruler, what is
the approximate diameter of the smallest crater you can make out in images #4 and #57 If
the NMSU campus is about 1 km in diameter, compare the smallest crater you can see to
the size of our campus. (2 points)

In image #5 there is an isolated mountain (Mons Piton) located near Piazzi Smyth. It
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is likely that Mons Piton is related to the range of mountains to its upper right.

Question #3: Roughly how much area (in km?) does Mons Piton cover? Compare it to
the area of the Organ mountains that are located to the east of Las Cruces (estimate a width
and a length, and assuming a rectangle, calculate the approximate area of the Organs). How
do you think such an isolated mountain came to exist? [Hint: In the introduction to the lab
exercises, the process of maria formation was described. Using this idea, how might Mons
Piton become so isolated from the mountain range to the northeast?] (5 points)

Station #2: Now let’s move to the “highlands”. In image #6 (which is identical to image
#2), the crater Clavius can be seen on the bottom edge—it is the bottom-most labeled
feature on this map. In image #7, is a close-up picture of Clavius (just below center) taken
from the ground through a small telescope (this is similar to what you would see at the
campus observatory). Clavius is one of the largest craters on the Moon, with a diameter
of 225 km. In the upper right hand corner is one of the best known craters on the Moon,
“Tycho”. In image #1 you can identify Tycho by the large number of bright “rays” that
emanate from this crater. Tycho is a very young crater, and the ejecta blasted out of the
lunar surface spread very far from the impact site.

Question #4: Estimate (in km) the distance from the center of the crater Clavius to the
center of Tycho. Compare this to the distance between Las Cruces, and Albuquerque (375
km). (3 points)
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Images #8 and #9, are two high resolution images of Clavius and nearby regions taken
by Lunar Orbiter IV (note the slightly different orientations from the ground-based picture).

Question #5: Compare the region around Clavius to Mare Imbrium. Scientists now know
that the lunar highlands are older than the Maria. What evidence do you have (using these
photographs) that supports this idea? [Hint: review subsection 2.3 of the introduction.] (5
points)

Station #3: Comparing Apollo landing sites. In images #10 and #11 are close-ups of the
Apollo 11 landing site in Mare Tranquillitatis (the “Sea of Tranquility”). The actual spot
where the “Eagle” landed on July 20, 1969 is marked by the small cross in image 11 (note
that three small craters near the landing site have been named for the crew of this mission:
Aldrin, Armstrong and Collins). [There are also quite a number of photographic defects in
these pictures, especially the white circular blobs near the center of the image to the North
of the landing site.] The landing sites of two other NASA spacecraft, Ranger 8 and Sur-
veyor 5, are also labeled in image #11. NASA made sure that this was a safe place to explore!

Images #12 and #13 show the landing site of the last Apollo mission, #17. Apollo 17
landed on the Moon on December 11th, 1972. Compare the two landing sites.

Question #86: Describe the logic that NASA used in choosing the two landing sites—why
did they choose the Tranquillitatis site for the first lunar landing? What do you think led
them to choose the Apollo 17 site? (5 points)
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The next two sets of images show photographs taken by the astronauts while on the
Moon. The first three photographs (#14, #15, and #16) are scenes from the Apollo 11 site,
while the next three (#17, #18, and #19) were taken at the Apollo 17 landing site.

Question #7: Do the photographs from the actual landing sites back-up your answer to
why NASA chose these two sites? How? Explain your reasoning. (5 points)

Station 4: On the northern-most edge of Mare Imbrium sits the crater Plato (labeled in
images #2 and #6). Photo #20 is a close-up of Plato. Do you agree with the theory that
the crater floor has been recently flooded? Is the mare that forms the floor of this crater
younger, older, or approximately the same age as the nearby region of Mare Imbrium located
just to the South (below) of Plato? Explain your reasoning. (5 points)

Station 5: Images #21 and #22 are “topographical” maps of the Earth and of the Moon. A
topographical map shows the elevation of surface features. On the Earth we set “sea level” as
the zero point of elevation. Continents, like North America, are above sea level. The ocean
floors are below sea level. In the topographical map of the Earth, you can make out the
United States. The Eastern part of the US is lower than the Western part. In topographical
maps like these, different colors indicate different heights. Blue and dark blue areas are below
sea level, while green areas are just above sea level. The highest mountains are colored in
red (note that Greenland and Antarctica are both colored in red—they have high elevations
due to very thick ice sheets). We can use the same technique to map elevations on the Moon.
Obviously, the Moon does not have oceans to define “sea level”. Thus, the definition of zero
elevation is more arbitrary. For the Moon, sea level is defined by the average elevation of
the lunar surface.

145



Image #22 is a topographical map for the Moon, showing the highlands (orange, red,
and pink areas), and the lowlands (green, blue, and purple). [Grey and black areas have
no data.] The scale is shown at the top. The lowest points on the Moon are 10 km below
sea level, while the highest points are about 10 km above sea level. On the left hand edge
(the “y axis”) is a scale showing the latitude. 0° latitude is the equator, just like on the
Earth. Like the Earth, the North pole of the Moon has a latitude of +90°, and the south
pole is at —90°. On the x-axis is the longitude of the Moon. Longitude runs from 0° to 360°.
The point at 0° latitude and longitude of the Moon is the point on the lunar surface that is
closest to the Earth.

It is hard to recognize features on the topographical map of the Moon because of the
complex surface (when compared to the Earth’s large smooth areas). But let’s go ahead and
try to find the objects we have been studying. First, see if you can find Plato. The latitude
of Plato is +52° N, and its longitude is 351°. You can clearly see the outline of Plato if you
look closely.

Question #8: Is Plato located in a high region, or a low region? Is Plato lower than Mare
Imbrium (centered at 32°N, 344°)? [Remember that Plato is on the Northern edge of Mare
Imbrium.](2 points)

Question #9: Apollo 11 landed at Latitude = 1.0°N, longitude = 24°. Did it land in a low
area, or a high area? (2 points)

As described in the introduction, the Moon keeps the same face pointed towards Earth
at all times. We can only see the “far-side” of the Moon from a spacecraft. In image #22,
the hemisphere of the Moon that we can see runs from a longitude of 270°, passing through
0°, and going all the way to 90° (remember 0, 0 is located at the center of the Moon as seen
from Earth). In image #23 is a more conventional topographical map of the Moon, showing
the two hemispheres: near side, and far side.

Question #10: Compare the average elevation of the near-side of the Moon to that of the
far-side. Are they different? Can you make-out the Maria? Compare the number of Maria
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on the far side to the number on the near side. (5 points)

Station 6: With the surface of the Moon now familiar to you, and your perception of the
surface of the Earth in mind, compare the Earth’s surface to the surface of the Moon. Does
the Earth’s surface have more craters or less craters than the surface of the Moon? Discuss
two differences between the Earth and the Moon that could explain this. (5 points)

11.6 The Chemical Composition of the Moon: Keys to its Origin

Station 7: Now we want to examine the chemical composition of the Moon to reveal its
history and origin. The formation of planets (and other large bodies in the solar system like
the Moon) is a violent process. Planets grow through the process of “accretion”: the grav-
ity of the young planet pulls on nearby material, and this material crashes into the young
planet, heating it, and creating large craters. In the earliest days of the solar system, so
much material was being accreted by the planets, that they were completely molten. That
is, they were in the form of liquid rock, like the lava you see flowing from some volcanoes
on the Earth. Just like the case with water, heavier objects in molten rock sink to the
bottom more quickly than lighter material. This is also true for chemical elements. Iron is
one of the heaviest of the common elements, and it sinks toward the center of a planet more
quickly than elements like silicon, aluminum, or magnesium. Thus, near the Earth’s surface,
rocks composed of these lighter elements dominate. In lava, however, we are seeing molten
rock from deeper in the Earth coming to the surface, and thus lava and other volcanic (or
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“igneous”) rock, can be rich in iron, nickel, titanium, and other high-density elements.

Images #24 and 25 present two unique views of the Moon obtained by the spacecraft
Clementine. Using special sensors, Clementine could make maps of the surface composition
of the Moon. In Image #24 is a map of the amount of iron on the surface of the Moon
(redder colors mean more iron than bluer colors). Image #25 is the same type of map, but
for titanium.

Question #11: Compare the distribution of iron and titanium to the surface features of
the Moon (using images #1, #2 or #6, or the topographical map in image #23). Where
are the highest concentrations of iron and titanium found? (4 points)

Question #12: If the heavy elements like iron and titanium sank towards the center of the
Moon soon after it formed, what does the presence of large amounts of iron and titanium in
the maria suggest? [Hint: do you remember how maria are formed?] (5 points)

The structure of the Earth is shown in the diagram, below. There are three main struc-
tures: the crust (where we live), the mantle, and the core. The crust is cool and brittle,
the mantle is hotter, and “plastic” (it flows), and the core is very hot and very dense. The
density of a material is simply its mass (in grams or kilograms) divided by its volume (in
centimeters or meters). Water has a density of 1 gm/cm?®. The density of the Earth’s crust
is about 3 gm/cm?, while the mantle has a density of 4.5 gm/cm?®. The core is very dense: 14
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Table 11.1: Composition of the Earth & Moon
Element Earth | Moon
Iron 34.6% | 3.5%
Oxygen | 29.5% | 60.0%
Silicon 15.2% | 16.5%
Magnesium | 12.7% | 3.5%
Titanium | 0.05% | 1.0%

gm/cm?® (this is partly due to its composition, and partly due to the great pressure exerted
by the mass located above the core). The core of the Earth is almost pure iron, while the
mantle is a mixture of magnesium, silicon, iron and oxygen. The average density of the
Earth is 5.5 gm/cm?.

Core
5200 km
Liquid
Fe,S

O Inner
(=)
Core

Solid Fe

Figure 11.3: The internal structure of the Earth, showing the dimensions of the crust, mantle
and core, as well as their composition and temperatures.

Before the astronauts brought back rocks from the Moon, we did not have a good theory
about its formation. All we knew was that the Moon had an average density of 3.34 gm/cm?.
If the Moon formed from the same material as the Earth, their compositions would be nearly
identical, as would their average densities. In Table 11.1, we present a comparison of the
composition of the Moon to that of the Earth. The data for the Moon comes from analysis
of the rocks brought back by the Apollo astronauts.

Question #13: Is the Moon composed of the same mixture of elements as the Earth?

What are the biggest differences? Does this support a model where the Moon formed out of
the same material as the Earth? (3 points)
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Table 11.2: Chemical Composition of the Earth and Moon

Element Earth’s Crust and Mantle | Moon
Iron 5.0% 3.5%
Oxygen 46.6% 60.0%
Silicon 27.7% 16.5%
Magnesium 2.1% 3.5%
Calcium 3.6% 4.0%

As you will learn in the Astronomy 110 lectures, the inner planets in the solar system
(Mercury, Venus, Earth and Mars) have higher densities than the outer planets (Jupiter,
Saturn, Uranus and Neptune). One theory for the formation of the Moon is that it formed
out near Mars, and “migrated” inwards to be captured by the Earth. This theory arose
because the density of Mars, 3.9 gm/cm?, is similar to that of the Moon. But Mars is rich
in iron and magnesium: 17% of Mars is iron, and more than 15% is magnesium.

Question #14: Given this data, do you think it is likely that the Moon formed out near
Mars? Why? (2 points)

The final theory for the formation of the Moon is called the “Giant Impact” theory. In
this model, a large body (about the size of the planet Mars) collided with the Earth, and
the resulting explosion sent a large amount of material into space. This material eventually
collapsed (coalesced) to form the Moon. Most of the ejected material would have come from
the crust and the mantle of the Earth, since it is the material closest to the Earth’s surface.
In Table 11.6 is a comparison of the composition of the Earth’s crust and mantle compared
to that of the Moon.

Question #15: Given the data in this table, present an argument for why the giant impact
theory is now the favorite theory for the formation of the Moon. Can you think of a reason
why the compositions might not be ezactly the same? (5 points)
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11.7 Summary

(35 points) Please summarize in a few paragraphs what you have learned in this lab. Your
summary should include:

e Explain how to determine and assign relative ages of features on the Moon

e Comment on analyzing pictures for information; what sorts of things would you look
for? what can you learn from them?

e What is a mare and how is it formed?

e How does the composition of the Moon differ from the Earth, and how does this give
us insight into the formation of the Moon?

Use complete sentences and proofread your summary before handing it in.

11.8 Possible Quiz Questions

1. What is an impact crater, and how is it formed?
2. What is a Mare?
Which is older the Maria or the Highlands?
How are the Maria formed?
What is synchronous rotation?
How can we determine the relative ages of different lunar surfaces?

RIS ol

11.9 Extra Credit (ask your TA for permission before attempting,
5 points)

In the past few years, there have been some new ideas about the formation of the Moon, and
why the lunar farside is so different from the nearside (one such idea goes by the name “the
big splat”). In addition, we have recently discovered that the interior of the Moon is highly
fractured. Write a brief (about one page) review on the new computer simulations and/or
observations that are attempting to understand the formation and structure of the Moon.
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Name:

Date:

12 Introduction to the Geology of the Terrestrial Plan-
ets

12.1 Introduction

There are two main families of planets in our solar system: the Terrestrial planets (Earth,
Mercury, Venus, and Mars), and the Jovian Planets (Jupiter, Saturn, Uranus, and Neptune).
The terrestrial planets are rocky planets that have properties similar to that of the Earth. In
contrast, the Jovian planets are giant balls of gas. Table 12.1 summarizes the main properties
of the planets in our solar system (Pluto is an oddball planet that does not fall into either
categories, sharing many properties with the “Kuiper belt” objects discussed in the lab # 16).

Table 12.1: The Properties of the Planets

Planet Mass Radius Density

(Earth Masses) | (Earth Radii) | gm/cm?
Mercury 0.055 0.38 5.5
Venus 0.815 0.95 5.2
Earth 1.000 1.00 5.5
Mars 0.107 0.53 3.9
Jupiter 318 10.8 1.4
Saturn 95 9.0 0.7
Uranus 14.5 3.93 1.3
Neptune 17.2 3.87 1.6
Pluto 0.002 0.178 2.1

It is clear from Table 12.1 that the nine planets in our solar system span a consider-
able range in sizes and masses. For example, the Earth has 18 times the mass of Mercury,
while Jupiter has 318 times the mass of the Earth. But the separation of the planets into
Terrestrial and Jovian is not based on their masses or physical sizes, it is based on their
densities (the last column in the table). What is density? Density is simply the mass of an
object divided by its volume: M/V. In the metric system, the density of water is set to 1.00
gm/cm?®. Densities for some materials you are familiar with can be found in Table 12.2.

If we examine the first table we see that the terrestrial planets all have higher densities
than the Jovian planets. Mercury, Venus and Earth have densities above 5 gm/cm?®, while
Mars has a slightly lower density (~ 4 gm/cm?). The Jovian planets have densities very close
to that of water—in fact, the mean density of Saturn is lower than that of water! The density
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Table 12.2: The Densities of Common Materials

Element or | Density | Element | Density
Molecule | gm/cm? gm/cm?
Water 1.0 Carbon 2.3
Aluminum 2.7 Silicon 2.3
Iron 7.9 Lead 11.3
Gold 19.3 Uranium 19.1

of a planet gives us clues about its composition. If we look at the table of densities for com-
mon materials, we see that the mean densities of the terrestrial planets are about halfway
between those of silicon and iron. Both of these elements are highly abundant throughout
the Earth, and thus we can postulate that the terrestrial planets are mostly composed of
iron, silicon, with additional elements like carbon, oxygen, aluminum and magnesium. The
Jovian planets, however, must be mostly composed of lighter elements, such as hydrogen and
helium. In fact, the Jovian planets have similar densities to that of the Sun: 1.4 gm/cm?3.
The Sun is 70% hydrogen, and 28% helium. Except for small, rocky cores, the Jovian planets
are almost nothing but hydrogen and helium.

The terrestrial planets share other properties, for example they all rotate much more
slowly than the Jovian planets. They also have much thinner atmospheres than the Jovian
planets (which are almost all atmosphere!). Today we want to investigate the geologies of
the terrestrial planets to see if we can find other similarities, or identify interesting differences.

12.2 Topographic Map Projections

In the first part of this lab we will take a look at images and maps of the surfaces of the
terrestrial planets for comparison. But before we do so, we must talk about what you will
be viewing, and how these maps/images were produced. As you probably know, 75% of the
Earth’s surface is covered by oceans, thus a picture of the Earth from space does not show
very much of the actual rocky surface (the “crust” of the Earth). With modern techniques
(sonar, radar, etc.) it is possible to reconstruct the true shape and structure of a planet’s
rocky surface, whether it is covered in water, or by very thick clouds (as is the case for
Venus). Such maps of the “relief” of the surface of a planet are called topographic maps.
These maps usually color code, or have contours, showing the highs and lows of the surface
elevations. Regions of constant elevation above (or below) sea level all will have the same
color. This way, large structures such as mountain ranges, or ocean basins, stand out very
clearly.

There are several ways to present topographic maps, and you will see two versions today.
One type of map is an attempt at a 3D wisualization that keeps the relative sizes of the
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continents in correct proportion (see Figure 12.1, below). But such maps only allow you to
see a small part of a spherical planet in any one plot. More commonly, the entire surface of
the planet is presented as a rectangular map as shown in Figure 12.2. Because the surface
of a sphere cannot be properly represented as a rectangle, the regions near the north and
south poles of a planet end up being highly distorted in this kind of map. So keep this in
mind as you work through the exercises in this lab.

457N, SOPW

Figure 12.1: A topographic map showing one hemisphere of Earth centered on North Amer-
ica. In this 3D representation the continents are correctly rendered.

Figure 12.2: A topographic map showing the entire surface of the Earth. In this 2D repre-
sentation, the continents are incorrectly rendered. Note that Antarctica (the land mass that
spans the bottom border of this map) is 50% smaller than North America, but here appears
massive. You might also be able to compare the size of Greenland on this map, to that of
the previous map.
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12.3 Global Comparisons

In the first part of this lab exercise, you will look at the planets in a global sense, by com-
paring the largest structures on the terrestrial planets.

Exercise #1: At station #1 you will find images of Mercury, Venus, the Earth, the Moon,
and Mars. The images for Mercury, Venus and the Earth and Moon are in “false colors” to
help emphasize different features, including different types of rocks or large-scale
structures. The image of Mars, however, is in “true color”.

Impact craters can come in a variety of sizes, from tiny little holes, all the way up to the
large “maria” seen on the Moon. Impact craters are usually round.

1. On which of the five objects are large meteorite impact craters obvious? (1 point)

2. Does Venus or the Earth show any signs of large, round maria (like those seen on
Mercury or the Moon)? (1 point)

3. Which planet seems to have the most impact craters? (1 point)

4. Compare the surface of Mercury to the Moon. Are they similar? (3 points)

Mercury is the planet closest to the Sun, so it is the terrestrial planet that gets hit by comets,
asteroids and meteoroids more often than the other planets because the Sun’s gravity tends
to collect small bodies like comets and asteroids. The closer you are to the Sun, the more
of these objects there are in the neighborhood. Over time, most of the largest asteroids on
orbits that intersect those of the other planets have either collided with a planet, or have
been broken into smaller pieces by the gravity of a close approach to a large planet. Thus,
only smaller debris is left over to cause impact craters.

5. Using the above information, make an educated guess on why Mercury does not have as
many large maria as the Moon, even though both objects have been around for the same
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amount of time. [Hint: Maria are caused by the impacts of large bodies.] (3 points)

Mercury and the Moon do not have atmospheres, while Mars has a thin atmosphere. Venus
has the densest atmosphere of the terrestrial planets.

6. Does the presence of an atmosphere appear to reduce the number of impact craters?
Justify your answer. (3 points)

Exercise #2: Topography of Mercury, Venus, Earth, and Mars. At station #2 you will
find topographic maps of Mercury, Venus, the Earth, and Mars. The data for Mercury has
not been fully published, so we only have topographic maps for about 25% of its surface.
These maps are color-coded to help you determine the highest and lowest parts of each
planet. You can determine the elevation of a color-coded feature on these maps by using
the scale found on each map. [Note that for the Earth and Mars, the scales of these maps
are in meters, for Mercury it is in km (= 1,000 meters), while for Venus it is in planetary
radius! But the scale for Venus is the same as for Mars, so you can use the scale on the
Mars map to examine Venus.]

7. Which planet seems to have the least amount of relief (relief = high and low
spots/features)? (2 points)

8. Which planet seems to have the deepest/lowest regions? (2 points)

9. Which planet seems to have the highest mountains? (2 points)

On both the Venus and Mars topographic maps, the polar regions are plotted as separate
circular maps so as to reduce distortion.
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10. Looking at these polar plots, Mars appears to be a very strange planet. Compare the
elevations of the northern and southern hemispheres of Mars. If Mars had an abundance of
surface water (oceans), what would the planet look like? (3 points)

12.4 Detailed Comparison of the Surfaces of the Terrestrial Plan-
ets

In this subsection we will compare some of the smaller surface features of the terrestrial
planets using a variety of close-up images. In the following, the images of features on Venus
have been made using radar (because the atmosphere of Venus is so cloudy, we cannot see
its surface). While these images look similar to the pictures for the other planets, they differ
in one major way: in radar, smooth objects reflect the radio waves differently than rough
objects. In the radar images of Venus, the rough areas are “brighter” (whiter) than smooth
areas.

In the Moon lab (lab # 11), we discussed how impact craters form. For large impacts,
the center of the crater may “rebound” and produce a central mountain (or several small
peaks). Sometimes an impact is large enough to crack the surface of the planet, and lava
flows into the crater filling it up, and making the floor of the crater smooth. On the Earth,
water can also collect in a crater, while on Mars it might collect large quantities of dust.

Exercise #3: Impact craters on the terrestrial planets. At station #3 you will find
close-up pictures of the surfaces of the terrestrial planets showing impact craters.

11. Compare the impact craters seen on Mercury, Venus, Earth, and Mars. How are they
alike, how are they different? Are central mountain peaks common to craters on all
planets? Of the sets of craters shown, does one planet seem to have more lava-filled craters
than the others? (4 points)
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12. Which planet has the sharpest, roughest, most detailed and complex craters? [Hint:
details include ripples in the nearby surface caused by the crater formation, as well as
numerous small craters caused by large boulders thrown out of the bigger crater. Also
commonly seen are “ejecta blankets” caused by material thrown out of the crater that
settles near its outer edges.| (2 points)

13. Which planet has the smoothest, and least detailed craters? (2 points)

14. What is the main difference between the planet you identified in question #12 and that
in question #137 [Hint: what processes help erode craters?] (2 points)

You have just examined four different craters found on the Earth: Berringer, Wolfe Creek,
Mistastin Lake, and Manicouagan. Because we can visit these craters we can accurately de-
termine when they were formed. Berringer is the youngest crater with an age of 49,000 years.
Wolf Creek is the second youngest at 300,000 years. Mistastin Lake formed 38 million years
ago, while Manicouagan is the oldest, easily identified crater on the surface of the Earth at
200 million years old.

15. Describe the differences between young and old craters on the Earth. What happens to
these craters over time? (4 points)
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12.5 Erosion Processes and Evidence for Water

Geological erosion is the process of the breaking down, or the wearing-away of surface fea-
tures due to a variety of processes. Here we will be concerned with the two main erosion
processes due to the presence of an atmosphere: wind erosion, and water erosion. With
daytime temperatures above 700°F, both Mercury and Venus are too hot to have liquid wa-
ter on their surfaces. In addition, Mercury has no atmosphere to sustain water or a wind.
Interestingly, Venus has a very dense atmosphere, but as far as we can tell, very little wind
erosion occurs at the surface. This is probably due to the incredible pressure at the surface
of Venus due to its dense atmosphere: the atmospheric pressure at the surface of Venus is
90 times that at the surface of the Earth—-it is like being 1 km below the surface of an Earth
ocean! Thus, it is probably hard for strong winds to blow near the surface, and there are
probably only gentle winds found there, and these do not seriously erode surface features.
This is not true for the Earth or Mars.

On the surface of the Earth it is easy to see the effects of erosion by wind. For residents
of New Mexico, we often have dust storms in the spring. During these events, dust is carried
by the wind, and it can erode (“sandblast”) any surface it encounters, including rocks, boul-
ders and mountains. Dust can also collect in cracks, arroyos, valleys, craters, or other low,
protected regions. In some places, such as at the White Sands National Monument, large
fields of sand dunes are created by wind-blown dust and sand. On the Earth, most large
dunefields are located in arid regions.

Exercise #4: Evidence for wind blown sand and dust on Earth and Mars. At station #4
you will find some pictures of the Earth and Mars highlighting dune fields.

16. Do the sand dunes of Earth and Mars appear to be very different? Do you think you
could tell them apart in black and white photos? Given that the atmosphere of Mars is
only 1% of the Earth’s, what does the presence of sand dunes tell you about the winds on
Mars? (3 points)

Exercise #5: Looking for evidence of water on Mars. In this exercise, we will closely
examine geological features on Earth caused by the erosion action of water. We will then
compare these to similar features found on Mars. The photos are found at Station #B5.

As you know, water tries to flow “down hill”, constantly seeking the lowest elevation. On

Earth most rivers eventually flow into one of the oceans. In arid regions, however,
sometimes the river dries up before reaching the ocean, or it ends in a shallow lake that has
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no outlet to the sea. In the process of flowing down hill, water carves channels that have
fairly unique shapes. A large river usually has an extensive, and complex drainage pattern.

17. The drainage pattern for streams and rivers on Earth has been termed “dendritic”,
which means “tree-like”. In the first photo at this station (#23) is a dendritic drainage
pattern for a region in Yemen. Why was the term dendritic used to describe such drainage
patterns? Describe how this pattern is formed. (3 points)

18. The next photo (#24) is a picture of a sediment-rich river (note the brown water)
entering a rather broad and flat region where it becomes shallow and spreads out. Describe
the shapes of the “islands” formed by this river. (3 points)

In the next photo (#25) is a picture of the northern part of the Nile river as it passes
through Egypt. The Nile is 4,184 miles from its source to its mouth on the Mediterranean
sea. It is formed in the highlands of Uganda and flows North, down hill to the Mediterranean.
Most of Egypt is a very dry country, and there are no major rivers that flow into the Nile,
thus there is no dendritic-like pattern to the Nile in Egypt. [Note that in this image of the
Nile, there are several obvious dams that have created lakes and reservoirs.|

19. Describe what you see in this image from Mars (Photo #26). (2 points)

20. What is going on in this photo (#27)? How were these features formed? Why do the
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small craters not show the same sort of “teardrop” shapes? (2 points)

21. Here are some additional images of features on Mars. The second one (Photo #29) is a
close-up of the region delineated by the white box seen in Photo #28. Compare these to
the Nile. (2 points)

22. While Mars is dry now, what do you conclude about its past? Justify your answer.
What technique can we use to determine when water might have flowed in Mars’ past?
[Hint: see your answer for #20.] (4 points)

12.6 Volcanoes and Tectonic Activity

While water and wind-driven erosion is important in shaping the surface of a planet, there
are other important events that can act to change the appearance of a planet’s surface:
volcanoes, earthquakes, and plate tectonics. The majority of the volcanic and earthquake
activity on Earth occurs near the boundaries of large slabs of rock called “plates”. As shown
in Figure 12.3, the center of the Earth is very hot, and this heat flows from hot to cold, or
from the center of the Earth to its surface (and into space). This heat transfer sets up a
boiling motion in the semi-molten mantle of the Earth.

As shown in the next figure (Fig. 12.4), in places where the heat rises, we get an up-
welling of material that creates a ridge that forces the plates apart. We also get volcanoes
at these boundaries. In other places, the crust of the Earth is pulled down into the mantle
in what is called a subduction zone. Volcanoes and earthquakes are also common along
subduction zone boundaries. There are other sources of earthquakes and volcanoes which
are not directly associated with plate tectonic activity. For example, the Hawaiian islands
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are all volcanoes that have erupted in the middle of the Pacific plate. The crust of the
Pacific plate is thin enough, and there is sufficiently hot material below, to have caused the
volcanic activity which created the chain of islands called Hawaii. In the next exercise we
will examine the other terrestrial planets for evidence of volcanic and plate tectonic activity.

Solid Fe

Figure 12.3: A cut-away diagram of the structure of the Earth showing the hot core, the
mantle, and the crust. The core of the Earth is very hot, and is composed of both liquid and
solid iron. The mantle is a zone where the rocks are partially melted (“plastic-like”). The
crust is the cold, outer skin of the Earth, and is very thin.

Exercise #6: Using the topographical maps from station #2, we will see if you can identify
evidence for plate tectonics on the Earth. Note that plates have fairly distinct boundaries,
usually long chains of mountains are present where two plates either are separating (forming
long chains of volcanoes), or where two plates run into each other creating mountain ranges.
Sometimes plates fracture, creating fairly straight lines (sometimes several parallel features
are created). The remaining photos can be found at Station #6.

23. Identify and describe several apparent tectonic features on the topographic map of the
Earth. [Hint: North and South America are moving away from Europe and Africal. (2
points)

24. Now, examine the topographic maps for Mars and Venus (ignoring the grey areas that
are due to a lack of spacecraft data). Do you see any evidence for large scale tectonic
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Figure 12.4: The escape of the heat from the Earth’s core sets-up a boiling motion in the
mantle. Where material rises to the surface it pushes apart the plates and volcanoes, and
mountain chains are common. Where the material is cooling, it flows downwards (subsides)
back into the mantle pulling down on the plates (“slab-pull’). This is how the large crustal
plates move around on the Earth’s surface.

activity on either Mars or Venus?(3 points)

The fact that there is little large-scale tectonic activity present on the surfaces of either
Mars or Venus today does not mean that they never had any geological activity. Let us
examine the volcanoes found on Venus, Earth and Mars. The first set of images contain
views of a number of volcanoes on Earth. Several of these were produced using space-based
radar systems carried aboard the Space Shuttle. In this way, they better match the data for
Venus. There are a variety of types of volcanoes on Earth, but there are two main classes of
large volcanoes: “shield” and “composite”. Shield volcanoes are large, and have very gentle
slopes. They are caused by low-viscosity lava that flows easily. They usually are rather flat
on top, and often have a large “caldera” (summit crater). Composite volcanoes are more
explosive, smaller, and have steeper sides (and “pointier” tops). Mount St. Helens is one
example of a composite volcano, and is the first picture (Photo #31) at this station (note
that the apparent crater at the top of St. Helens is due to the 1980 eruption that caused
the North side of the volcano to collapse, and the field of devastation that emanates from
there). The next two pictures are also of composite volcanoes while the last three are of the
shield volcanoes Hawaii, Isabela and Miakijima (the last two in 3D).
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25. Here are some images of Martian volcanoes (Photos #37 to #41). What one type of
volcano does Mars have? How did you arrive at this answer? (3 points)

26. In the next set (Photos #42 to #44) are some false-color images of Venusian volcanoes.
Among these are both overhead shots, and 3D images. Because Venus was mapped using
radar, we can reconstruct the data to create images as if we were located on, or near, the
surface of Venus. Note, however, that the vertical elevation detail has been exaggerated by a
factor of ten! It might be hard to tell, but Venus is also dominated by one main type of
Volcano, what is it? (3 points)
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12.7 Summary (35 points)

As we have seen, many of the geological features common to the Earth can be found on the
other terrestrial planets. Fach planet, however, has its own peculiar geology. For example,
Venus has the greatest number of volcanoes of any of the terrestrial planets, while Mars
has the biggest volcanoes. Only the Earth seems to have active plate tectonics. Mercury
appears to have had the least amount of geological activity in the solar system and, in this
way, is quite similar to the Moon. Mars and the Earth share something that none of the
other planets in our solar system do: erosion features due to liquid water. This, of course,
is why there continues to be interest in searching for life (either alive or extinct) on Mars.

e Describe the surfaces of each of the terrestrial planets, and the most important geo-
logical forces that have shaped their surfaces.

e Of the four terrestrial planets, which one seems to be the least interesting? Can you
think of one or more reasons why this planet is so inactive?

e If you were in charge of searching for life on Mars, where would you want to begin your
search?

12.8 Possible Quiz Questions

1. What are the main differences between Terrestrial and Jovian planets?
2. What is density?

3. How are impact craters formed?

4. What is a topographic map?

12.9 Extra Credit (ask your TA for permission before attempting,
5 points)

Since Mars currently has no large bodies of water, what is probably the most important

erosion process there? How can we tell? What is the best way to observe or monitor this

type of erosion? Researching the images from the several small landers and some of the
orbiting missions, is there strong evidence for this type of erosion? What is that evidence?

166



Name:
Date:

13 Heating and Cooling of Planets (and Daytime Ob-
servations)

13.1 Heating and Cooling Introduction

With this lab exercise we will investigate the ability of the radiant energy from the Sun to
heat an object (planet, sidewalk, water-filled can). How rapidly, or how much, an object
warms is dependent upon several factors, which are discussed below. The knowledge you
should gain from this lab includes how the rate of warming depends upon the reflectivity
of an object, and how effectively an object (surface of a planet, for example) can cool via
emission of radiant energy.

The local temperature at a given location on a planet, including the air temperature near
the ground, is dependent upon a number of important factors. Global factors include the
tilt of the planet’s rotational axis relative to its path around the Sun and the eccentricity of
the planet’s orbit. Naturally, local factors can also affect the local temperature.

Several global and local factors that affect a planet’s globally-averaged temperature and
also the local temperature are as follows:

e The length of daylight hours, dependent upon the rotation rate of a planet, determines
the ratio of solar heating during the day and infrared cooling (emitted to space) during
both the day and night.

e The slant angle of the incoming sunlight affects the local sunlight intensity and explains
why sloped parts of your face such as your nose sunburn more easily than the more
vertical regions. This effect is a function of latitude and season on those planets that
have a non-zero axial tilt.

e The degree of ellipticity of a planet’s orbit can affect the seasonal changes or can induce
sunlight intensity variations that are similar to axially-induced seasonal variations.
This has a major impact for Mercury and Pluto and somewhat less for Mars. For the
Earth it only causes about 3% variations in incoming solar intensity throughout a
year.

e The degree to which the atmosphere serves as an insulating blanket (including green-
house effects) can affect the daily averaged temperature and the range of temperature
between the coldest and warmest times of a day.

e For the terrestrial planets, the albedo (percent reflectivity) of the local clouds and
surface can also greatly affect short term temperature variations as well as the planet’s
globally averaged temperature. See Figure 13.1.
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Figure 13.1: The white can has a high albedo and reflects most of the light (80% in this
case). The black can has a low albedo and absorbs most of the light (only 20% reflected
here), and this can will be more likely to heat.

13.2 Heating and Cooling Rates

Divide into groups of 3—4 people. Each of these groups will be provided one soft drink can
that has been painted white and two additional cans that have been painted black. Each
group will also be provided with three thermometers, one for each can. Additionally, each
group will be provided with two pieces of ‘insulating’ cardboard.

Working in the shade of the observatory domes, place your three cans on one of the pieces
of cardboard provided (this will insulate the cans from the cold, or hot, ground). Add 200
milliliters of cold water (colder than the local air temperature) to each of your 3 cans. When
the cans are filled, place a thermometer in each of the cans. The thermometers will have
been in the cold water prior to this, so they will already be at the approximate water tem-
perature. Allow the thermometers to equilibrate with the water in the cans for 3 minutes or
SO.

Now take the cans and place them in the sunlight on the piece of insulating cardboard.
Record the temperatures of these three sunlit cans in Table 13.1. (Be sure to keep track of
which black can is which). Also, record in Table 13.2 the temperatures of the shaded white
and black cans. These two cans, which all four groups will use, will be located on the north
side of the open telescope dome. Each group will record data for the two shaded cans, plus
their three cans, for a total of five cans.

At five minute intervals (use a watch with a second hand or its equivalent), record in the
tables the temperatures indicated on each of the five thermometers (again, taking care to
not mix up the two black sunlit cans). Continue this process through 25 minutes. This will
give you one temperature at time ‘zero’ and 5 subsequent temperature readings.
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After 25 minutes have passed and you have tabulated the minute 25 temperature, place
the ‘can-cozy’ (insulator) on one of the black cans and move your three sunlit cans into the
shade. Continue to measure the temperatures of all five cans at 5-minute intervals through
45 minutes.

Table 13.1: The effect of albedo on local heating and cooling rates. Times 0-25 are during
the sunlit heating phase, and times 30-45 are during the shaded cooling phase. (10 points)
Time | Temp. of White Can | Temp. of Black Can 1 | Temp. of Black Can 2
0
5
10
15
20
25
30
35
40
45

Table 13.2: Heating and cooling rates in the shade. These cans remain in the shade through-

out the course of the entire experiment. (10 points)

Time | Temp. of White Can | Temp. of Black Can
0
5
10
15
20
25
30
35
40
45

169



13.3 Heating and Cooling Questions

1. Plot the values of each of the five temperatures versus time using five different line
styles or symbols on the graph paper provided. Be sure to label each of the curves. (10

points)

Figure 13.2: Plot of temperature (°C) vs. time (minutes) for all five cans.

2. For each can, calculate the average heating rate, using the equation given below, during
the initial 25 minutes of the experiment (the time interval during which the three cans
were in the sunlight). The calculated values will be in units of degrees Centigrade per
minute. Insert your calculated heating rates into Table 13.3. (5 points)

(Temperature after 25 min. — Initial Temperature) (14)
25 minutes

Heating Rate =
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Table 13.3: Heating rate values for different cans.

Can

Heating Rate (°C/min)

White can (in sunlight)

Black can 1 (in sunlight)

Black can 2 (in sunlight)

White can (in shade)

Black can (in shade)

3. Which color can (black or white) has the largest heating rate when in the sunlight?
Did you expect this result?” Why or why not? Can you think of any other processes,
in addition to radiative heating, that might have played a role in heating the water in

these sunlit cans? (3 points)

4. What do you think was the process responsible for any warming or cooling experienced
by the two shaded cans? Is there a color dependence to this temperature change in

the shade? Did you expect this? Why or why not? (5 points)

5. Subtract the heating rate you calculated for the shaded white can from the heating
rate you calculated for the sunlit white can, and write this value below:

White can: sunlit heating rate — shaded heating rate =

Subtract the heating rate you calculated for the shaded black can from the heating

rate you calculated for each of the two sunlit black cans:

Black can Number 1: sunlit heating rate — shaded heating rate =
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Black can Number 2: sunlit heating rate — shaded heating rate =

How do these ‘corrected’ radiative heating rates, which account for other processes
than radiative heating, compare between the one white and two black sunlit cans? Is
this in better or worse agreement with your expectations? (3 points)

. Let’s examine the cooling rates, as indicated by the temperatures measured after
minute 25 of the experiment. Calculate the averaged cooling rates for each of the
five cans, using the minute 45 and 25 temperatures and the twenty minute interval:

(Temp. after 25 min. — Temp. after 45 min.) (15)

Averaged Cooling Rate = ‘
20 minutes

White can (sunlit) : averaged cooling rate =

Black can (insulated): averaged cooling rate =

Black can (bare) : averaged cooling rate =

White can (shaded) : averaged cooling rate =

Black can (shaded) : averaged cooling rate =
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Of the three cans that originally spent 25 minutes in the sunlight, which had the
smallest cooling rate (cooled most slowly)? Why do you think this is the situation?
Did you expect this? Why or why not? (3 points)

7. Of the three sunlit cans, which had the greatest cooling rate (cooled most rapidly)?
What processes do you believe are responsible for the cooling of this can? Do these
processes also play a role in the cooling of the other cans? (3 points)

13.4 Daytime Observing Introduction

Venus is the Earth’s closest planetary neighbor. It has been viewed by civilizations of people
on Earth for centuries, for it shines brightly in the morning or evening sky, earning the name
“morning star” or “evening star.” [At one time, it was thought to be two different objects,
one that appeared in the evening sky and another that appeared in the morning sky.] Venus
shines so brightly in our sky in part because of its proximity to Earth, and in part due to
its highly reflective cloud layers, which completely surround the planet and hide the surface
from our view.

Venus has also played a key role in our understanding of the universe around us. For
centuries, it was believed that the Sun, the Moon, all of the known planets, and the stars
in the sky revolved around the Earth. This belief was known as the geocentric model of the
universe, which placed the Earth at the center of it all. However, it was telescopic observa-
tions of Venus that changed our view of the universe. Galileo Galilei (1564-1642) was the
first person to use a telescope to observe Venus. Over time, he noted that Venus, like the
Moon, exhibited phases, changing from a small, disk-like object to a large crescent shaped
object.

Galileo was aware of a new model that described the universe, the Sun-centered, or he-

liocentric model developed by Nicolaus Copernicus (1473-1543). This model was extremely
controversial because it removed the Earth from its privileged position at the center of the
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universe. Nevertheless, Galileo found that the heliocentric model could completely explain
the observed phases of Venus.

In this lab, you will observe Venus through a telescope, as Galileo did, and deduce in-
formation about Venus’ relative distance from Earth throughout its orbit and its motion
around the Sun. You may also observe Mercury, weather permitting, since it can also be
visible during the daytime.

13.5 Telescopic Observations

Observe Venus and /or Mercury through the telescope at the Tombaugh Campus Observatory
and draw and label what you see on the observation log at the end of this lab. Comment in
the space below on what you saw. What shape were they? Were they what you expected?
Were they disappointing? Did they appear to be a certain color?” The more descriptive
you can be, the better. (3 points)

13.6 Phases of Venus

Figure 13.3: Phases of Venus as recorded through a 16” telescope (slightly larger than the
ones at the Tombaugh Campus Observatory) at Calvin College. These images came from
their web page: http://www.calvin.edu/academic/phys/observatory/venus.html.
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Figure 13.3 shows five telescopic observations of Venus. Using your knowledge of the phases
of the Moon, fill in Table 13.4 with the name of the phase shown in each panel of Fig. 13.3.
[More than one panel can show the same phase.] (5 points)

Table 13.4: Phases of Venus corresponding to Figure 13.3.
Panel Phase

a

o |0 |T

13.7 Heliocentric Model

Figure 13.4 shows a schematic of the orbits of the Earth and Venus in the heliocentric
model. Using Fig. 13.4, label the various Venus circles, labeling each one with the letter
corresponding to the phases seen in panels of Fig. 13.3 (a, b, ¢, d, and e). In other words,
match the pictures of Venus in Figure 13.3 with the orbital locations in Figure 13.4. Shade
in one half of Venus in each location to illustrate which side is receiving sunlight. (5 points)

Orbit of Venus

Figure 13.4: Orbit of Venus around the Sun.
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13.8 Take Home Exercise (35 points total)

In the space provided, answer the following questions:

13.8.1 Heating and Cooling

1. What relationship is there between the ‘can cozy’ and some planetary characteristic of
Venus, or Earth, or Mars? (10 points)

2. If you had conducted this experiment in July, how might your results differ from those
we have obtained during this time of year? What if you had conducted this experiment
in mid-December? (5 points)

13.8.2 Daytime Observations

3. It takes Venus approximately 7 months to complete one orbit around the Sun. However,
we observe Venus through a full set of phases in slightly less than that time. What
other motion needs to be accounted for when predicting when we will see a particular
phase of Venus from Earth? (5 points)
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4. Comment on the role that the telescope played in changing our view of the universe

in the 1600’s. Do you think this role still continues today? Please give an example to
support your viewpoint. (10 points)

5. Summarize the difference between the geocentric and heliocentric models of the uni-

verse and discuss how Galileo’s observations of Venus influenced this debate. (5
points)

13.9 Possible Quiz Questions

1.

2.

Name one factor that could change a planet’s globally averaged temperature.

How does an atmosphere change a planet’s temperature?

. What is meant by the term “albedo”?

How does a hot object cool?

What does the term “inferior planet” mean?

13.10 Extra Credit (ask your TA for permission before attempt-

ing, 5 points)

Consider the image of a crescent Saturn below, taken by the Voyager 1 spacecraft on Novem-
ber 16, 1980.
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Remember that Saturn is about 9.5 AU from the Sun. With a good enough telescope, would
you ever be able to see a similar view of Saturn (that is, in the crescent phase) from Earth?
(1 points)

If so, sketch a diagram similar to Figure 13.4 in the lab, showing a possible arrangement of
the Sun, Earth, and Saturn that would allow you to see a crescent Saturn. (2 points)

If not, explain why we are sometimes able to see a crescent Venus but never a crescent
Saturn. Drawing a diagram may help. (2 points)
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Draw the object as it looks to you through the telescope
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14 The History of Water on Mars

Scientists believe that for life to exist on a planet (or moon), there must be liquid water
available. Thus, one of the priorities for NASA has been the search for water on other objects
in our solar system. Currently, these studies are focused on three objects: Mars, Europa (a
moon of Jupiter), and Enceladus (a moon of Saturn). It is believed that both Europa and
Enceladus have liquid water below their surfaces. Unfortunately, it will be very difficult to
find out if their subsurface oceans harbor lifeforms, as they are below very thick sheets of
ice. Mars is different. Mars was discovered to have polar ice caps more than 350 years ago.
While much of the surface ice of these polar caps is “dry ice”, frozen carbon dioxide, we
believe there is a large quantity of frozen water in the polar regions of Mars.

Mars has many similarities to Earth. The rotation period of Mars is 24 hours and 37
minutes. Martian days are just a little longer than Earth days. Mars also has seasons that
are similar to those of the Earth. Currently, the spin axis of Mars is tilted by 25° to its
orbital plane (Earth’s axis is tilted by 23.5°). Thus, there are times during the Martian year
when the Sun never rises in the northernmost and southernmost parts of the planet (winter
above the “arctic circles”). And times of the year in these same places where the Sun never
sets (northern or southern summer). Mars is also very different from the Earth: its radius
is about 50% that of Earth, the average surface temperature is very cold, —63 °C (= —81
°F), and the atmospheric pressure at the surface is only 1% that of the Earth. The low
temperatures and pressures mean that it is hard for liquid water to currently exist on the
surface of Mars. Was this always true? We will find that out today.

In this lab you will be examining a notebook of images of Mars made by recent space
probes and looking for signs of water. You will also be making measurements of some valleys
and channels on Mars to enable you to distinguish the different surface features left by
small, slow flowing streams and large, rapid outflows. You will calculate the volumes of
water required to carve these features, and consider how this volume compares with other
bodies of water.

14.1 Water Flow Features on Mars

The first evidence that there was once water on Mars was revealed by the NASA spacecraft
Mariner 9. Mariner 9 reached Mars in 1971, and after waiting-out a global dust storm that
obscured the surface of Mars, started sending back images in December of that year. Since
that time a flotilla of spacecraft have been investigating Mars, supplying insight into the
history of water there.
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Figure 14.1: A dendritic drainage pattern in Yemen (left), and an anastomosing drainage in
Alaska (right).

14.1.1 Warrego Valles

The first place we are going to visit is called “Warrego Valles”, where the “Valles” part of
its name indicates valleys (or canyons). The singular of Valles is Vallis. The location of
Warrego is indicated by the red dot on the map of Mars that is the first image (“Image #17)
in the three ring binder.

The following set of questions refer to the images of Warrego Valles. Image #2 is a wide
view of the region, while Image #3 is a close-up.

1. By looking at the morphology, or shape, of the valley, geologists can tell how the valley
was formed. Does this valley system have a dendritic pattern (like the veins in a leaf)
or an anastomosing pattern (like an intertwined rope)? See Figure 14.1. (1 point)

2. Overlay a transparency film onto the close-up image. Trace the valley pattern onto
the transparency. How does a valley like this form? Do you think it formed slowly
over time, or quickly from a localized water source? Why? (3 points)
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3. Now, on the wide-field view, trace the boundary between the uplands and plains on
your close-up overlay (the transparency sheet) and label the Uplands and the Plains.
Is Warrego located in the uplands or on the plains? (2 points)

4. Which terrain is older? Recall that we can use crater counting to help determine the
age of a surface, so let’s do some crater counting. Overlay the transparency sheet on
the wide-view image. Pick out two square regions on the wide view image (#2), each
5 c¢cm X 5 cm. One region should cover the smooth plains (“Icaria Planum”) and the
other should cover the upland region. Draw these two squares on the transparency
sheet. Count all the impact craters greater than 1 millimeter in diameter within each
of the two squares you have outlined. Write these numbers below, with identifications.
Which region is older? What does this exercise tell you about when approximately (or
relatively) Warrego formed? (5 points)

5. To figure out how much water was required to form this valley, we first need to estimate
its volume. The volume of a rectangular solid (like a shoebox) is equal to ¢ X w x h,
where ¢ is the length of the box, h is the height of the box, and w is the width. We
will approximate the shape of the valley as one long shoebox and focus only on the
main valley system. Use the close-up image for this purpose.

First, we need to add up the total length of all the branches of the valley. Note that
in the close-up image there are two well-defined valley systems. A more compact one
near the right edge, and the bigger one to the left of that. Let’s concentrate on the
bigger one that is closer to the middle of the image. Measure the length, in millime-
ters, of each branch and the main trunk. Be careful not to count the same length
twice. Sometimes it is hard to tell where each branch ends. You need to use your own
judgment and be consistent in the way you measure each branch. Now add up all your
measurements and convert the sum to kilometers. In this image 1 mm = 0.5 km. What
is the total length ¢ of the valley system in kilometers? Show your work. (3 points)

183



6. Second, we need to find the average width of the valley. Carefully measure the width
of the valley (in millimeters) in several places. What is the average width? Convert
this to kilometers. Show your work. (2 points)

7. Finally, we need to know the depth. It is hard to measure depths from photographs,
so we will make an estimate. From other evidence that we will not discuss here, the
depth of typical Martian valleys is about 200 meters. Convert this to kilometers. (1
point)

8. Now find the total valley volume in km?, using the relation V' = £ x w x h. This is the
amount of sediment and rocks that was removed by water erosion to form this valley.
We do not know for sure how much water was required to remove each cubic kilometer,
but we can guess. Let’s assume that 100 km? of water was required to erode 1km3 of
Mars. How much water was required to form Warrego Valles? Show your work. (5
points)

Image #4 is a recent image of one small “tributary” of the large valley network you have
just measured (it is the leftmost branch that drains into the big valley system you explored).
In this image the scientists have made identifications of a number of features that are much
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too small to see in image #3. Note that these researchers traced the valley network for this
tributary and note where dust has filled-in some of the valley, or where “faults”, cracks in the
crust of the planet (orange line segments), have occurred. In addition, in the drawing on the
right the dashed circles locate very old craters that have been eroded away. Using all of this
information, you can begin to make good estimates of the age, and the sequences of events.
Near the bottom they note a “crater with lobate ejecta that postdates valleys.” This crater,
which is about 2 km in diameter, was created by a meteorite impact that occurred after the
valley formed. By doing this all along all of the tributaries of the Warrego Valles the age of
this feature can be estimated. Ansan & Mangold (2005) conclude that the Warrego valley
network began forming 3.5 billion years ago, from a period of rain and snow that may have
lasted for 500 million years.

Clean-off transparency for the next section!

14.1.2 Ares and Tiu Valles

We now move to a morphologically different site, the Ares and Tiu Valles. These valleys are
found near the equator of Mars, in the “Margaritifer Terra”. This region can be found in
the upper right quadrant of image #5 and is outlined in red. Note that the famous “Valles
Marineris”, the “grand canyon” of Mars (which dwarfs our Grand Canyon), is connected to
the Margaritifer Terra by a broad, complicated canyon. In the close up, image #6, the two
valles are identified (ignore the numbered white boxes, as they are part of a scientific study
of this region). In this false-color image, elevation is indicated where the highest features
are in white and brown, and the lowest features are pale green.

The next set of questions refer to Ares and Tiu Valles. On the wide scale image, the spot
where the Mars Pathfinder spacecraft landed is indicated. Can you guess why that particular
spot was chosen?

9. First, which way did the water flow that carved the Ares and Tiu Valles? Did water
flow south-to-north, or north-to-south? How did you decide this? [Note that the
latitude is indicated on the right hand side of image #6.] (2 points)

10. In our first close-up image (#7), there are two “teardrop islands”. These two features
can be found close to the “1” in the Pathfinder landing site label in image #6. There
are other features with the same shape elsewhere in the channel. In image #8, we
provide a wide field view of the “flood plains” of Tiu and Ares centered on the two
teardrop islands of image #7. Lay the transparency on this image and make a sketch of
the pattern of these channels. Now add arrows to show the path and direction
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11.

12.

13.

14.

the flowing water took. Look at the pattern of these channels. Are they dendritic
or anastomosing? (3 points)

Now we want to get an idea of the volume of water required to form Ares Valles.
Measure the length of the channel from the top end of the biggest “island” above the
Pathfinder landing site (note there are two islands here, a smaller one with a deep
crater, and a bigger one with a shallow crater. We want you to measure the channel
that goes by this smaller island on the right side and to the left of the big island, and
the channel that goes around the bigger island on the right to where they both join-up
again at the top of this big island) to the bottom right corner of the image. In this
image, 1 mm = 10 km. What is the total length of these channels? Show your work
(3 points)

Measure the channel width in several places and find the average width. On average,
how wide is the channel in km? Show your work (2 points)

The average depth is about 200 m. How much is that in km? (1 point)

Now multiply your answers (in units of km) to find the volume of the channel in
km?. Use the same ratio of water volume to channel volume that we used in Question
3 to find the volume of water required to form the channel. Lake Michigan holds 5,000
km? of water, how does it compare to what you just calculated? Show your work. (4
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points)

15. Obviously, the Ares and Tiu Valles formed in a different fashion than Warrego. We
now want to examine the feature named “Hydaspis Chaos” in image #6. This feature
“drains into” the Tiu Vallis. In image #9, we present a wide view image of this feature.
In image #10, we show a close up of a small part of Hydaspis. Why do you think such
features were given the name “Chaos” regions? (2 points)

16. Scientists believe that Chaos regions are formed by the sudden release of large amounts
of groundwater (or, perhaps, the sudden melting of ice underneath the surface), causing
massive, and rapid flooding. Does such an idea make sense to you? Why? What
evidence for this hypothesis is present in these images to support this idea? (4 points)

17. Inimage #11 is a picture taken at the time of the disembarkation of the little Pathfinder
rover (named “Sojourner”) as it drove down the ramp from its lander. Is the surround-
ing terrain consistent with its location in the flood plain of Ares Vallis? Why /why not?
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(3 points)

18. Recent research into the age of the Ares and Tiu Valles suggest that, while they began
to form around 3.6 billion years ago (like Warrego), water still flowed in these channels
as recently as 2.5 billion years ago. Thus, the flood plains of Ares and Tiu are much
younger than Warrego. Do you agree with this assessment? How did you arrive at this
conclusion? (4 points)

19. You have now studied Warrego and Ares Valles up close. Compare and contrast the
two different varieties of fluvial (water-carved) landforms in as many ways
as you can think of (at least three!). Do you think they formed the same way?
How does the volume of water required to form Ares Valles compare to the volume of
water required to form Warrego Valles? (5 points)
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14.2 The Global Perspective

In image #12 is a topographic map of Mars that is color-coded to show the altitude of the
surface features where blue is low, and white is very high. Note that the northern half of
Mars is lower than the southern half, and the North pole is several km lower than the South
pole. The Ares and Tiu Valles eventually drain into the region labeled “Chryse Planitia”
(longitude 330°, latitude 25°).

20. If there was an abundance of water on Mars, what would the planet look like? How
might we prove if this was feasible? For example, scientists estimate the age of the
northern plains as being formed between 3.6 and 2.5 billion years ago. How does this
number compare with the ages of the Ares and Tiu Valles? Could they be one source
of water for this ocean? (5 points)

One way to test the hypothesis that the northern region of Mars was once covered by an
ocean is to look for similarities to Earth. Over the history of Earth, oceans have covered
large parts of the current land masses/continents (as one once covered much of New Mexico).
Thus, there could be ancient shoreline features from past Earth oceans that we can compare
to the proposed “shoreline” areas of Mars. In image #13 is a comparison of the Ebro river
basin (in Spain) to various regions found on Mars that border the northern plains. The Ebro
river basin shown in the upper left panel was once below sea level, and a river drained into
an ancient ocean. The sediment laid down by the river eventually became sedimentary rock,
and once the area was uplifted, the softer material eroded away, leaving ridges of rock that
trace the ancient river bed. The other three panels show similar features on Mars.

If the northern part of Mars was covered by an ocean, where did the water go? It might
have evaporated away into space, or it could still be present frozen below the surface. In
2006, NASA sent a spacecraft named Phoenix that landed above the “arctic circle” of Mars
(at a latitude of 68° North). This lander had a shovel to dig below the surface as well as
a laboratory to analyze the material that the shovel dug up. Image #14 shows a trench
that Phoenix dug, showing sub-surface ice and how chunks of ice (in the trench shadow)
evaporated (technically “sublimated”, ice changing directly into gas) over time. The slow
sublimation meant this was water ice, not carbon dioxide ice. This was confirmed when
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water was detected in the samples delivered to the onboard laboratory.

21. Given all of this evidence presented in the lab today, Mars certainly once had abundant
surface water. We still do not know how much there was, how long it was present on the
surface, or where it all went. But explain why discovery of large amounts of subsurface
water ice might be important for astronauts that could one day visit Mars (5 points)
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14.3 Take Home Exercise (35 points total)

Answer the following questions on a separate sheet of paper, and turn it in with the rest of
your lab.

1. What happened to all of the water that carved these valley systems? We do not see
any water on the surface of Mars when we look at present-day images of the planet,
but if our interpretation of these features is correct, and your calculated water volumes
are correct (which they probably are), then where has all of the water gone? Discuss
two possible (probable?) fates that the water might have experienced. Think about
discussions we have had in class about the atmospheres of the various planets and
what their fates have been. Also think about how Earth compares to Mars and how
the water abundances on the two planets now differ. (20 points)

2. Scientists believe that life (the first, primitive, single cell creatures) on Earth began
about 1 billion years after its formation, or 3.5 billion years ago. Scientists also believe
that liquid water is essential for life to exist. Looking at the ages and lifetimes of the
Warrego, Ares and Tiu Valles, what do you think about the possibility that life started
on the planet Mars at the same time as Earth? What must have Mars been like at
that time? What would have happened to this life? (15 points)

14.4 Possible Quiz Questions

1. Is water an important erosion process on Mars?
2. What does “dendritic” mean?

3. What does “anastomosing” mean?
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14.5 Extra Credit (ask your TA for permission before attempting,
5 points)

In this lab you have found that dendritic and anastomosing “river” patterns are found on
Mars, suggesting there was free flowing water at some time in Mars’ history. Use web-based
resources to investigate our current ideas about the history of water on Mars. Then find
images of both dendritic and anastomosing features on the Earth (include them in your
report). Describe where on our planet those particular patterns were found, and what type
of climate exists in that part of the world. What does this suggest about the formation of
similar features on Mars?
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Name:
Date:

15 The Volcanoes of Io

15.1 Introduction

During this lab, we will explore Jupiter’s moon lo, the most volcanically active body in the
Solar System. The reason for Io’s extreme level of volcanic activity is due to the intense
tidal ‘stretching’ it experiences because of its proximity to Jupiter, and due to its interaction
with the moons Europa and Ganymede. The regions of the surface where molten lava from
the interior comes up from below are very hot, but in general the rest of the surface is quite
cold (about —172°C = —279°F) since lo is 5.2 AU from the Sun. Regions of different surface
temperatures emit different amounts of thermal (blackbody) radiation, since the amount of
thermal energy emitted is proportional to the temperature raised to the 4th power: T4. We
will use infrared observations, obtained with the Galileo spacecraft in the late 1990’s, to
determine the temperatures of some of the volcanic regions on Io, and estimate the total
amount of energy being emitted by the volcanoes on Io.

Supplies:
1. Exercise squeeze balls and thermometers
2. Visual and thermal images of regions on Io
3. A map of o with various features identified by name

4. A transparency sheet for temperature fitting of blackbodies

15.2 Introduction to lIo

Io (pronounced eye-Oh) is one of the four large moons of Jupiter discovered by Galileo.
Images of these four moons (Io, Europa, Ganymede, and Callisto) are shown in Figure 15.2.
lo, Ganymede and Callisto are all larger than the Earth’s moon, while Europa is slightly
smaller. It is clear from Figure 15.2 that Io appears to be quite different from the other
Galilean satellites (especially when viewed in color!): it has few obvious impact craters, and
has a mottled surface that is unlike any other object in the solar system. Even before the
two Voyager probes first flew past Io back in the late 1970’s, it was already known that it
was an unusual object. The Voyager images of lo certainly suggested that it was covered
with volcanoes and lava flows, but it was not until an image showing an erupting volcano,
also shown in Figure 15.2, that the case was clinched. From the imaging data, astronomers
estimate that there may be as many as 200 volcanoes on Io!

Why does Io have so many volcanoes? It has to do with a process called “tidal heating”.

As you have learned in the lectures this semester, the gravitational pull on one body by a sec-
ond massive body raises tides—an example are those caused by the Moon upon the Earth’s
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7 Ganymasdee

Figure 15.2: Left: The four Galilean moons of Jupiter. Right: An erupting volcano on lo
seen in a Voyager image.

oceans. As we have also found this semester, the orbits of objects in the solar system are
not perfect circles, but ellipses. That means the distance of an object orbiting a larger body
(planet around the Sun, or moon around a planet) is constantly changing. In the case of lo,
we have an object that has about the same mass as the Earth’s moon, but it orbits Jupiter,
an object that has 300 times the mass of the Earth! We have learned that the force of gravity
is directly proportional to the mass of an object, Newton’s second law: F = ma. For gravity,
Newton’s second law is F = (Gmim,)/r? (“G” is the “gravitational constant”). Thus, even
a slightly eccentric orbit, as demonstrated in Figure 15.3, means that large changes in tidal
force are felt as To goes around Jupiter (the 1/r* term in the equation). In fact, the surface
of To rises and falls by about 100 meters over an orbit! This should be compared to the
approximate 0.3 meter rise and fall of the Earth’s surface due to the Moon’s pull.

The reason that Io’s orbit is so eccentric is due to the gravity of Europa and Ganymede.
First, let’s look at the orbital periods (i.e., the time it takes the moon to orbit Jupiter a
single time) of these three moons: Pj, = 1.769 days, Pryopa = 3.551 days, and Pganymede
= 7.155 days. It we take the ratios of these orbital periods we get the following answers:
Pruropa/P1o = 2.0, Pcanymede/P1o = 4.0. What does this mean? Well, it tells you that every
3.551 days Europa and Io will be in the same exact location (relative to each other), and that
every 7.155 days Ganymede, Europa and Io will be in the same relative places! A diagram of
this is shown in Figure 15.3. The term astronomers use for such an arrangement is “orbital
resonance”. Because of these orbital resonances, the gravitational tug on lo is amplified, as
it and Europa (and it and Ganymede) make close approaches on a regular, and repeating
basis. Thus, Europa and Ganymede continually pull on Io, making its orbit more eccentric.
[Note that we believe that Europa also has considerable tidal heating, and this heating may
mean that below its frozen surface, there is a large ocean of liquid water that could support
primitive life. This might even be happening on Ganymede.] The tidal heating causes the
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Figure 15.3: Left: Because Io’s orbit around Jupiter is an ellipse, the distance is constantly
changing, and so is the gravitational force exerted on lo by Jupiter (note that this figure is
not to scale, and the ellipticity of the orbit and the shape of Io have been grossly exaggerated
to demonstrate the effect). This changing force causes o to stretch and relax over each orbit.
Right: The tidal forces exerted by Europa and Ganymede distort the orbit of Io because the
orbits of all three moons are in “resonance”: for every four trips Io makes around Jupiter,
Europa makes two, and Ganymede makes one. This resonance enhances the gravitational
forces of Europa and Ganymede, as these three moons keep returning to the same (relative)
places on a regular basis. This repeated and periodic tugging on Io causes its orbit to be
much more eccentric than it would be if Europa and Ganymede did not exist.

interior of Io to become molten, and this liquid rises to the surface, where it erupts in vol-
canoes. We will return to Io later in this lab, but before we do so, we must cover several
complicated topics that will allow us to better understand what is happening on Ilo.

15.3 The Electromagnetic Spectrum

Before we begin today’s lab, we have to review what is meant by the term “spectrum”, and
“wavelength”. As we have discussed in class, light is an energy wave that travels through
space. For now, we can use the analogy that waves of light are like waves of water: they
have crests, and troughs. The “wavelength” is the distance between two crests, as shown in
Fig. 15.4. The energy contained in light is directly related to the wavelength: low energy
light has long wavelengths, while high energy light has short wavelengths. Thus, scientists
have constructed several categories of light based on wavelength, and which you have cer-
tainly heard about: Gamma-ray, X-ray, Ultraviolet, Visible, Infrared, Microwave and Radio.
Gamma- and X-rays have very short wavelengths and have lots of energy, so they penetrate
through materials, and often damage them as they pass through. Ultraviolet light causes
sunburns and skin cancer. Visible light is what our eyes detect. We feel intense infrared
light as “heat”, microwaves cook our food, while radio waves allow you to listen to music
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and watch television. The common textbook plot of the electromagnetic spectrum is shown
in Fig 15.5. When we break-up light and plot how much energy is coming out at each wave-
length, we construct a “spectrum”. A spectrum of an object supplies a lot of information,
and is the main tool astronomers use to understand the objects they study.

We can also think of the electromagnetic spectrum as a way to represent temperature.
For example, objects that emit X-rays are at temperatures of millions of degrees, while ob-
jects that emit visible light have temperatures of thousands of degrees (like the Sun), while
infrared sources have temperatures of 100’s of degrees. To understand this concept, we must
talk about “blackbody” radiation.

Wavelength

Figure 15.4: The wavelength is the distance between two crests.

gamma ray ultraviolet infrared radio
s
X-ray Avisible i microwave
LB
shorter wavelength longer wavelength
higher frequency g ———p» lower frequency
higher energy lower energy

TN VAVAVANPZERN

Figure 15.5: The electromagnetic spectrum.

15.4 Blackbody Radiation Review

Let us review the properties of blackbody radiation. A blackbody is an object that ex-
actly satisfies the Stefan-Boltzmann law (named for the two scientists who first figured it
out), and has a spectrum that is always the same shape, no matter what temperature the
source has, as shown in Fig. 15.6. While real objects do not exactly behave like this, many
objects come very close and in general we assume that most solar system objects (including
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lo) are blackbodies.

The Stefan-Boltzmann law states that the total amount of energy at all wavelengths
emitted by a blackbody at temperature T is proportional (“x”) to the fourth power of its
temperature, which can be written in equation form as:

Eoc T (16)

Here F is the amount of energy emitted by each square meter of the object each second.
You might be wondering to yourself why we write E oc T%, instead of E = T%. In fact, the
real blackbody equation is E = sT%, where “s” is the “Stefan-Boltzmann constant.” The
Stefan-Boltzmann constant is a special number that makes the equation work, and insures
that the output energy is in Watts (or another appropriate energy unit), instead of °F*. You
measure the energy of a light bulb in Watts, not the fourth power of degrees Fahrenheit.
The actual value of s is 5.6703 x 10~%. This is a horrible number to deal with, so we will

use a technique that does not require us to remember it!

As noted in Fig. 15.6, the Wein displacement law relates the temperature of a blackbody,
and the wavelength () of its maximum emission: A\yax X T = 3670, where 3670 is the value
of “Wien’s constant” when wavelength is measured in micrometers, and radiant energy in
Watts/m? (as we will use in this lab).

Definition of Temperature

Before we go any further in understanding blackbodies, we must define the temperature
scale that is used in the Stefan-Boltzmann formula, and in Wien’s law. In the United States,
our weather forecasts use the Fahrenheit scale. This scale was developed around the idea that
in our everyday experience, a big number like “100° F” would be “hot”, and “0° F” would be
“very cold.” On this scale water boils at 212° F, and freezes at 32° F. The Fahrenheit scale
is not very easy to work with, in that it has 180° F between the boiling and freezing point
of water (two processes that are easy to observe, allowing accurate calibration). With the
development of the metric system, based on powers of 10, a temperature scale was developed
where the freezing point of water was defined to be 0°, and the boiling point was set to 100°.
This is the “Celsius” scale (denoted by “° C”), predominantly used outside the United States.

Both the Fahrenheit and Celsius scales, however, cannot be used with the blackbody
energy equation. Why? Because both scales have “zeroes” and negative temperatures. Even
in Las Cruces, the temperature often goes to 0° C or below on the Celsius scale during
winter (and once in a while, as in 2010, it goes below zero on the Fahrenheit scale!). Look
at our equation again, E oc T%. If the temperature changes from 3° C to 0° C, the amount
of energy emitted by a blackbody would go from positive to zero. If this object got colder
and colder, however, its emitted energy would increase! For example, if its temperature had
now dropped to —3° C, the emitted energy would be the same as it was at +3° C: E = —3
X —3 X =3 x =3 =281 =3 x 3 x 3 x 3. Do you see why this is? The fourth power (or any
even power in the exponent) means that a negative number will turn out positive: (10)* =
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Figure 15.6: The spectra of blackbodies always have the same shape, but the wavelength
where the peak emission occurs depends on temperature, and can be calculated using the
“Wien displacement law” (since Wien is a German name, it is properly pronounced “Veen”).
In this particular plot the unit of wavelength is the micrometer, 10~% meter, symbolized by
“um.” Note also that the x-axis is plotted as the log of wavelength, and the y-axis is the log
of the radiant energy. We have to use this type of “log-log” plot since blackbodies cover a
large range in radiant energy and wavelength, and we need an efficient way to compress the
axes to make compact plots. We will be using these types of plots for the volcanoes of Io.
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(—10)* = 10,000, because every time you multiply two negative numbers together, the result
is a positive number.

If we were to use the Fahrenheit or Celsius temperature scales, our equation would
produce nonsensical answers, since it is obvious that a hotter object has more energy than
a colder one. Thus, scientists use a scale that has no negative numbers, the “Kelvin” scale.
On the Kelvin scale, the temperature at which water freezes is 273 K, and it boils at 373 K
(Kelvin has the same size degrees as the Celsius scale, and note also that the little degree
symbol, “°” is not used with Kelvin). In our example, 3° C = 276 K, and 0° C = 273
K. Now, a drop in temperature by 3 degrees does not cause the emitted energy to go from
positive to zero, the energy simply decreases. There is a 0 K, but that temperature is so cold
that any object with that temperature would emit zero energy (that, in fact, is the definition
of 0 K!).

Working with the Stefan-Boltzmann Law

An equation like the Stefan-Boltzmann law is scary to many Astronomy 105 students.
Nearly all of you have heard about “squares”, such as the area of a circle being 7R2. But,
there are many equations in science when the exponent is larger than 2. All an exponent says
is that you must multiply the number by itself that many times: R? = R x R. Or, R® = R x
R x R x R x R. Other than the large numbers that come out of the Stefan-Boltzmann law
(it is astronomy after all!), there is nothing difficult about understanding how to deal with T*.

Ok, let’s see how to use equation (1) so we can compare the energy emitted by each
square meter of the surface of two different objects, A and B. We will construct the ratio so
we do not have to worry about the value of the Stefan-Boltzmann constant:

Ey  sTY  (Ta\' an
Eg  sTE \Tp
Do you understand what happened? We had an s on the top and bottom of our equation,

but s = s, so it cancels out! We also use the property where T4 + Tg = (T4/Tg)* (in math
this is called the “Power of a Quotient property”).

Let’s work an example. Object P has a temperature of 43 K, and object Q has a tem-
perature of 33 K. The objects have the same area. How many times greater is the energy
emitted by P compared to the energy emitted by Q7 Set-up the equation:

B 33

Ep  s(43)* (43
By~ s(33)1 ‘(

4
) —(13)*=13x13x13x1.3=286 (18)

Now it is your turn:
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1. Assume that T, the surface temperature of Object A, is 200 K, and Tz, the surface
temperature of Object B, is 100 K. The objects have the same area. How many times
greater is the energy emitted by A compared to the energy emitted by B? (2 points)

2. Object R and Object S have the same temperature. But object R has an area of 4
square meters, and object S has an area of 2 square meters. How much more energy
does object R emit compared to Object S? (2 points)

3. Now we are going to go backwards (much harder!): assume that we receive 81 times
more energy from Object X than from Object Y. Object X and Y have the same areas.
How many times hotter is the surface of X compared to the surface of Y? [Hint: what
number multiplied by itself 4 times = 817] (2 points)

We know that the last problem was hard! How does one solve such equations? The key to
understanding this is to realize that for every mathematical operation that uses exponents,
there is the reverse process of “taking the root”. For example, two squared: 2% = 4. What is
the square root of 4?7 /4 = 2. The square root can also be written as a fractional exponent:
(4)1/2 = 2. This is how we solve the problem above. Here is an example: What is Q, if Q*
= 6561? On a fancy scientific calculator, we just enter this: (6561)'/* = 9. But the fourth
root is really just two successive square roots: /6561 = 81, V8l =9 = (6561)1/4. So you
do not need a fancy calculator, got it?

Working with Wien’s Law

Unlike the Stefan-Boltzmann law, Wien’s Law is very simple. So simple we do not think you
need an example on how to use it! [Here is Wien’s law again: Apa.x X T = 3670]
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4. If the temperature of a black body is 1000 K, at what wavelength (Ayax) does it emit
its peak amount of energy? (Remember to include the wavelength unit!) (2 points)

5. An object is observed to have a blackbody spectrum that peaks at A\ = 37 pm, what
temperature is this object? (Remember to include the temperature unit!) (2 points)

15.5 Simulating Tidal Heating

As we noted above, the process of tidal heating is what causes Io to be covered in active
volcanoes. In this exercise we are going to simulate tidal heating, where you are the source
of the energy input. First off, however, have you ever tried to break a piece of wire with your
hands? You cannot simply pull it apart with your hands, it is too strong. But we can break
it by adding heat. We do this by first folding the wire to create a kink, and then rapidly
bending the wire back and forth. The wire becomes very, very hot at the kink, and will
eventually snap. What you have done is transfer energy your body generates and focused it
on a tiny region of the wire. The intense heat weakens the wire and it snaps (you should try
this with a paper clip). This process is what is going on in lo, a stretching/bending of the
rock that generates heat.

Exercise #1:

Io is not a wire, it is a sphere! While the repeated bending of a wire is exactly like the
process that is heating lo, it is not very realistic. Let’s take this concept to a slightly more
realistic level by “stretching” a sphere. Among the materials you were given were two, small
exercise squeeze balls and a digital thermometer. We will now use these. To start this exper-
iment, insert the thermometer into each of the balls and record the Start Temperature.
Make sure the tip of the metal probe reaches the center of the ball (and no further!). Note
that it also takes a certain amount of time for the temperature to stabilize at the correct
value. Enter these values into Table 15.1.

Now, one member of your group should take a ball in each hand. One of these will be
the “control ball”, let’s call that Ball #1. You will not do anything to Ball #1, except hold
it in your hand. But for Ball #2, repeatedly, as rapidly as possible, squeeze this ball as
tightly as possible, release, and repeat. Do this for four straight minutes (one group member
needs to be the time keeper!). At the end of four minutes, as quickly as you can, insert the
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thermometer into the ball you have been squeezing and record the temperature. Note that it
takes quite a few seconds for the temperature to read the correct value, continue to squeeze
this ball with the thermometer inserted, until the temperature no longer rises. Record this
value in the “End Temperature” column for Ball #2. Now, do the same for Ball #1, but do
not squeeze, simply continue to quietly hold it in your hand while the thermometer rises to
its maximum temperature. Put this value in Table 15.1. [If you cannot repeatedly squeeze
Ball #2 for four straight minutes in one hand, go ahead and switch hands, as long as the
same ball is the one that continues to get squeezed.|

Take the difference between the End and Start temperatures and enter it into the final
column of Table 15.1. (6 points)

Table 15.1: Exercise Ball Temperatures
Start Temperature | End Temperature | Change in Temperature

Ball #1
Ball #2

Answer the following questions: Are the start and end temperatures for both balls
different? Why do you think we had you hold onto Ball #1 the entire time you were
squeezing Ball #27 Which ball showed the greater temperature rise? Why did this happen,
and where did this energy come from? (6 points)

15.6 Investigating the Volcanoes of Io

Now to the main part of today’s lab, the volcanoes of Io. Along with the other lab materials,
we have supplied you with a three ring binder containing images of lo, along with a large
laminated map of Io. Please do not write on any of these items! The first section contains
some images of o taken with the Galileo spacecraft. Just page through them to get familiar
with Io (including color versions of the Figures in the introduction of this lab). Io is an
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unusual place!

Today we are going to look at images and data obtained with three different instruments
of the Galileo spacecraft: the Solid State Imager (SSI), the Near-Infrared Mapping Spec-
trometer (NIMS), and the Photopolarimeter-Radiometer (PPR). The SSI is simply a (“0.6
megapixel”) digital camera not unlike the one in your smart phone, and only can detect
visible light (technically wavelengths from 0.4 to 1.1 pm). NIMS is also an imager, but it
detects near-infrared light, having wavelengths from 0.7 to 5.2 ym (your TA will demonstrate
a version of this type of infrared camera during lab). The PPR measures the heat output
of objects (not really an imager, though you could make coarse pictures with it), and could
detect light with wavelengths from 17 to 110 pm.

Let’s go back and look at Fig. 15.6. Do you understand why these instruments were
included on a mission to Jupiter? The Sun has a blackbody temperature of about 6,000
K, what is the wavelength of peak emission for such a blackbody? This is the light that
illuminates the Earth during the day, and all of the other objects in our solar system. Thus,
to see these objects, we only need a regular camera (the SSI). But Jupiter is very far from
the Sun, and thus it is very cold place. For example, at the surfaces of the Galilean satellites,
the temperatures are about 100 K. To measure such cold objects, we need an instrument
like the PPR. If there are hot spots on Jupiter or any of its moons (like Io!), they might
have temperatures between 500 and 2000 K, and we will need a “near-infrared” camera like
NIMS to detect this light.

In the second section of the three ring binder are some NIMS images. The first set of im-
ages shows a color picture of lo obtained with the SSI, and two images obtained with NIMS
(at 1.593 and 4.133 um). Note that in the SST image there are bright and dark regions all
over lo. In the NIMS images, however, lo begins to look quite different. In image #b5a, at
1.593 pm there is still some reflected sunlight (since this is a daytime NIMS image), but by
4.133 pm thermal (blackbody) emission from Io is now strong.

Exercise #2

6. In image #ba, we see that at 4.133 pum there are many bright spots. Returning to Fig.
15.6 (above), estimate the temperature of these bright spots. [Hint: can you see the
bright spots at 1.593 ym? What is the hottest blackbody in this figure that has a lot
of emission at 4.133 pm, but (almost) none at 1.593 pym?] (4 points)
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7. In image #5b, around the dark spot near the center of the 1.3 pum image, there is a
bright ring. But this ring is very dark at 4.2 pym, suggesting it is very cold. How can it
be bright at 1.3 um, and dark at 4.2 ym? These are daytime images. Can you explain
this feature? [Hint: think about snow| (4 points)

8. In Fig. 15.7, below, are plotted two blackbodies (energy emitted in Watts vs. wave-
length in micrometers). Using Wien’s law, what are the approximate temperatures of
each of these blackbodies (one solid line, one dashed) in “K”? Which one is emitting
more total energy? How do you explain this? (4 points)

Exercise #3

In section 3 of the binder, we have some NIMS images of active regions on Io. On these
images are some small, numbered boxes, we will be looking at the NIMS + PPR spectra
of some of these boxed regions to determine their temperatures. The names of the features
on o are from a variety of mythologies that have to do with deities of fire, volcanoes, the
Sun, thunder and characters and places from Dante’s Inferno. Named mountains, plateaus,
layered terrain, and shield volcanoes are given the terms mons, mensa, planum, and tholus,
respectively. The term “Patera” (plural = Paterae) means a bowl, and brighter, whitish
regions go by the name “Regio”.

9. Region #1 (Image #6) is a night time NIMS image of a region on Io. In this image,
you can see lines of longitude and latitude. It basically runs from 125°W to 132°W in
longitude, and from +59° to 4+71° in latitude. Using the big map of Io, what is the
name of this active region? [Note: an SSI image of this region is shown in binder image
#4!] (2 points)
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Figure 15.7: The energy vs. wavelength, the “spectra” (spectra is plural of spectrum),
produced by two blackbodies with different temperatures.
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11. Tt is clear the NIMS instrument does not make very pretty pictures, it has “poor reso-
lution”. When this camera was built, infrared imaging technology was just becoming
possible. The infrared camera that your TA has demonstrated today in class is as
good, or better than NIMS! In these NIMS images, redder colors mean hot, and bluer
colors mean cool. Compare the Region #1 NIMS image to Image #4 in the binder
from the SSI (they have totally different orientations!!!). Can you figure out what is
happening? Can you figure out which boxes in the NIMS image cover the hot, glowing
lava feature in the SSI image? (6 points)

12. The NIMS image of Region #2 is shown as Image #7. Using the large map, what is
the name of this region? (2 points)

13. In fact, the NIMS image of Region #2 does not cover all of this large feature, does it?
In Fig. 15.8 we present the NIMS + PPR spectra of the six boxes shown identified
in Image #7. Using the plastic blackbody overlay, measure the temperatures for only
boxes 1 and 4. [If you are having trouble doing this, ask your TA for help.| (4 points)

Table 15.2: Region #2 Box Temperatures
Box | Maximum Wavelength (ym) | Temperature (K)
Box #1
Box #4

14. The radius of lo is 1,821.3 km, that means that the circumference of o is (C = 27R)
11,443.6 km. Since there are 360° in a circle, each degree of latitude represents 31.79
km. Assuming the northern half of this glowing ring has the same size as the southern
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half, what is the total area covered by the hot material of this feature? [Hint: The
latitude increases from the bottom to the top of the image (approximately the y-axis
of the figure), while the horizontal (x-axis) direction is longitude. Note that the white
grid lines are identical in size in the vertical and horizontal directions, thus you can
measure both sides of the box in degrees of latitude (note that degrees of longitude
only equal degrees of latitude at the equator, and this region is not at the equator!).
The degrees of latitude are the small white numbers that run from 9 to 13.]

The area of a square is simply side x side = s2. Calculate the area in square kilometers
of one white grid box (not the tiny little boxes you measured the temperatures for!).
Next, estimate the number of such grid squares fully covered by the “hot” reddish
regions for the southern half of this feature (this will be a fraction of a grid box for
some spots). The total area in square kilometers is the number of boxes covered times
the area of one box—find this number. Multiply that result by two, and you have the
approximate area of the entire feature. (6 points)

15. Now we want to figure out the total energy output of all of the volcanoes on Io. Step
1: In the large map of lo, the paterae are the brown regions. You can see that the
volcano you just measured is just about the largest such feature on Io. The average
patera appears to have about 5% (= 0.05) the area of this feature. Estimate the total
area covered by all of the paterae on To. [Hint: note what we said in the introduction
about the estimated number of volcanoes on lo.] (4 points)

Total Volcano Area = Average area x number of volcanoes = ?77? km?

Total Volcano Area = X = km

16. Step 2: Figure out the total area of To. The area of a sphere is 47R?. (3 points)
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Figure 15.8: The blackbody spectra of the six boxes shown in Image #7. Be careful, these
plots have [og wavelength on the x-axis.
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17. Step 3: We will assume that the average surface temperature of the non-volcanic
regions on lo is the same as that of box #4 on Image #7 that you found above. We
will assume that the average temperature of the paterae is the same as that of box #1
on Image #7 that you found above. Now, we are going to use the Stephan-Boltzmann
law to calculate how much energy the volcanoes on Io put out compared to the rest of
lo. Remember, the Stephan-Boltzmann law was the amount of energy output per unit
area (m?):

By sTh (T’ "
EB STé TB

Since in this problem we have two different emitting areas (total lo area, and area covered
by volcanoes), we have to modify this law to explicitly include the area terms:

(T'otal Emitted Energy)a  Arean " Ts ! (20)
(Total Emitted Energy)s  Areap Tg
So,
(Total Emitted Energy)volcano _ (Area)volcano " Ty 4 1)
(Total Emitted Energy)y, (Area)r, Ty
(Total Emitted Energy)volcano _ (22)

(Total Emitted Energy)r,

The volcanoes on To put out how much more energy than the total for all of Io? Do you
find this surprising? Note that the Sun is far away (5.2 AU), and cannot heat-up lo very
much. Thus, gravitational heating can be very important. This process is probably going
on elsewhere in the solar system (such as with the moons of Saturn). What does this mean
for the possibility of life existing on/inside these moons? (4 points)
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15.7 Take-Home Exercise (35 points total)

1. In the graph below, draw two curves indicating the blackbody curves (energy as a
function of wavelength) emitted by i) a hot object (T = 6,000 K), and ii) a cool
object (T = 1,000 K). Both objects have the same area. You will be graded on the
relative positions of these two curves with respect to one another, as well as which one
emits more energy. Label the y-axis with the appropriate numbers, and identify the

blackbody curves! (10 points)

Amount of Energy

Wavelength
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2. If Europa and Ganymede were further from Jupiter (had larger orbits), but Io remained
where it is, would you still expect Io to experience volcanism? Explain. (10 points)

3. The colorful volcanic features we have studied in this lab involve the chemical element
sulfur. It is not expected that molten sulfur gets any hotter than ~ 350 Kelvin or so
on lo’s surface. As you have found out, however, many spots on Io’s surface have been
determined to possess temperatures that are much hotter, some as hot as 1800 K! It
is believed that such regions must consist of molten rock (silicates, like lava here on
Earth) and not molten sulfur.

a) How many times greater would the flux from such a rock-lava region be compared

to the flux emitted by the colder regions of Io (such as you measured in Exercise #3,
question #13). (3 points)

b) At what wavelength would the maximum (peak) energy emission occur from this
1,800 K region? (2 points)
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¢) Returning to Figure 15.6, would this very hot lava be detectable with the SSI?
Explain. (5 points)

4. Jupiter has several moons that are much, much smaller than Io and that orbit even
closer to Jupiter than Io. Give a brief explanation of why these moons do NOT show
evidence of volcanism [Hint: think of a man-made satellite in Earth orbit, even a big
one such as the International Space Station]. (5 points)

15.8 Possible Quiz Questions
1. Why does Io have volcanoes?
2. What does the term “orbital resonance” mean?
3. What is a “blackbody”?
4. What is Wien’s law?

5. What does the term “patera” mean?

15.9 Extra Credit (ask your TA for permission before attempting,
5 points)

Orbital resonances are found elsewhere in the solar system. For example, the shaping of
Saturn’s ring system, or the relationship between Neptune and Pluto. Type-up a one page
discussion of how orbital resonances affect the appearance of Saturn’s rings, or how the
Neptune-Pluto orbital resonance gives us insight into the processes that shaped the formation
of our solar system.
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16 Shaping Surfaces in the Solar System: The Impacts
of Comets & Asteroids

16.1 Introduction

In the lab exercise on exploring the surface of the Moon, there is a brief discussion on how
impact craters form. Note that every large body in the solar system has been bombarded
by smaller bodies throughout all of history. In fact, this is one mechanism by which plan-
ets grow in size: they collect smaller bodies that come close enough to be captured by the
planet’s gravity. If a planet or moon has a rocky surface, the surface can still show the scars
of these impact events—even if they occurred many billions of years ago! On planets with
atmospheres, like our Earth, weather can erode these impact craters away, making them
difficult to identify. On planets that are essentially large balls of gas (the “Jovian” planets),
there is no solid surface to record impacts. Many of the smaller bodies in the solar system,
such as the Moon, the planet Mercury, or the satellites of the Jovian planets, do not have at-
mospheres, and hence, faithfully record the impact history of the solar system. Astronomers
have found that when the solar system was very young, there were large numbers of small
bodies floating around the solar system impacting the young planets and their satellites.
Over time, the number of small bodies in the solar system has decreased. Today we will
investigate how impact craters form, and examine how they appear under different lighting
conditions. During this lab we will discuss both asteroids and comets, and you will create
your own impact craters as well as construct a “comet”.

e (oals: to discuss asteroids and comets; create impact craters; build a comet and test
its strength and reaction to light

e Materials: A variety of items supplied by your TA

16.2 Asteroids and Comets

There are two main types of objects in the solar system that represent left over material from
its formation: asteroids and comets. In fact, both objects are quite similar, their differences
arise from the fact that comets are formed from material located in the most distant parts
of our solar system, where it is very cold, and thus they have large quantities of frozen water
and other frozen liquids and gases. Asteroids formed closer-in than comets, and are denser,
being made-up of the same types of rocks and minerals as the terrestrial planets (Mercury,
Venus, Earth, and Mars). Asteroids are generally just large rocks, as shown in the Figure
16.1.

The first asteroid, Ceres, was discovered in 1801 by the Italian astronomer Piazzi. Ceres
is the largest of all asteroids, and has a diameter of 933 km (the Moon has a diameter of
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Figure 16.1: Four large asteroids. Note that these asteroids have craters from the impacts
of even smaller asteroids!

3,476 km). There are now more than 40,000 asteroids that have been discovered, ranging in
size from Ceres, all the way down to large rocks that are just a few hundred meters across.
It has been estimated that there are at least 1 million asteroids in the solar system with
diameters of 1 km or more. Most asteroids are harmless, and spend all of their time in
orbits between those of Mars and Jupiter (the so-called “asteroid belt”, see Figure 16.2).
Some asteroids, however, are in orbits that take them inside that of the Earth, and could

The Main
/ Asteroid Belt

Jupiter

[Orbits drawn appraximataly to scals)

Figure 16.2: The Asteroid Belt.

potentially collide with the Earth, causing a great catastrophe for human life. It is now
believed that the impact of a large asteroid might have been the cause for the extinction
of the dinosaurs when its collision threw up a large cloud of dust that caused the Earth’s
climate to dramatically cool. Several searches are underway to insure that we can identify
future “doomsday” asteroids so that we have a chance to prepare for a collision—as the Earth
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will someday be hit by another large asteroid.

16.3 Comets

Comets represent some of the earliest material left over from the formation of the solar
system, and are therefore of great interest to planetary astronomers. They can also be
beautiful objects to observe in the night sky, unlike their darker and less spectacular cousins,
asteroids. They therefore often capture the attention of the public.

16.4 Composition and Components of a Comet

Comets are composed of ices (water ice and other kinds of ices), gases (carbon dioxide,
carbon monoxide, hydrogen, hydroxyl, oxygen, and so on), and dust particles (carbon and
silicon). The dust particles are smaller than the particles in cigarette smoke. In general, the
model for a comet’s composition is that of a “dirty snowball.”

Components Of Comets

Figure 16.3: The main components of a comet.

Comets have several components that vary greatly in composition, size, and brightness.
These components are the following:

e nucleus: made of ice and rock, roughly 5-10 km across

e coma: the “head” of a comet, a large cloud of gas and dust, roughly 100,000 km in
diameter

e gas tail: straight and wispy; gas in the coma becomes ionized by sunlight, and gets
carried away by the solar wind to form a straight blueish “ion” tail. The shape of the
gas tail is influenced by the magnetic field in the solar wind. Gas tails are pointed in
the direction directly opposite the sun, and can extend 10® km.
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e dust tail: dust is pushed outward by the pressure of sunlight and forms a long, curving
tail that has a much more uniform appearance than the gas tail. The dust tail is
pointed in the direction directly opposite the comet’s direction of motion, and can also
extend 108 km from the nucleus.

These various components of a comet are shown in Figure 16.3.

16.5 Types of Comets

Comets originate from two primary locations in the solar system. Omne class of comets,
called the long-period comets, have long orbits around the sun with periods of > 200
years. Their orbits are random in shape and inclination, with long-period comets entering
the inner solar system from all different directions. These comets are thought to originate
in the Oort cloud, a spherical cloud of icy bodies that extends from ~ 20,000 — 150,000
AU from the Sun (see Figure 16.4). Some of these objects might experience only one close
approach to the Sun and then leave the solar system (and the Sun’s gravitational influence)
completely.

- Obitof Uranus L- - ¢

L, _@“ummméto

LR TR

The Qare Comet Dloud

Yeomans

Figure 16.4: The Oort cloud.

In contrast, the short-period comets have periods less than 200 years, and their orbits
are all roughly in the plane of the solar system. Comet Halley has a 76-year period, and
therefore is considered a short-period comet. Comets with orbital periods < 100 years do
not get much beyond Pluto’s orbit at their farthest distance from the Sun. Short-period
comets cannot survive many orbits around the Sun before their ices are all melted away. It
is thought that these comets originate in the Kuiper Belt, a belt of small icy bodies beyond
the large gas giant planets and in the plane of the solar system (see Fig. 16.5). Quite a few
large Kuiper Belt objects have now been discovered, including one (Eris) that is about the
same size as Pluto.
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Neptune

Figure 16.5: The Kuiper Belt.

16.6 The Impacts of Asteroids and Comets

Objects orbiting the Sun in our solar system do so at a variety of speeds that directly
depends on how far they are from the Sun. For example, the Earth’s orbital velocity is 30
km/s (65,000 mph!). Objects further from the Sun than the Earth move more slowly, objects
closer to the Sun than the Earth move more quickly. Note that asteroids and comets near
the Earth will have space velocities similar to the Earth, but in (mostly) random directions,
thus a collision could occur with a relative speed of impact of nearly 60 km/s! How fast is
this? Note that the highest muzzle velocity of any handheld rifle is 1,220 m/s = 1.2 km/s.
Thus, the impact of any solar system body with another is a true high speed collision that
releases a large amount of energy. For example, an asteroid the size of a football field that
collides with the Earth with a velocity of 30 km/s releases as much energy as one thousand
atomic bombs the size of that dropped on Japan during World War IT (the Hiroshima bomb
had a “yield” of 13 kilotons of TNT). Since the equation for kinetic energy (the energy of
motion) is K.E. = 1/2(mv?), the energy scales directly as the mass, and mass goes as the
cube of the radius (mass = density x Volume = density x R?). A moving object with ten
times the radius of another traveling at the same velocity has 1,000 times the kinetic energy.
It is this kinetic energy that is released during a collision.

16.7 Exercise #1: Creating Impact Craters

To create impact craters, we will be dropping steel ball bearings into a container filled with
ordinary baking flour. There are two sizes of balls, one that is twice as massive as the other.
You will drop both of these balls from three different heights (0.5 meters, 1 meters, and 2
meters), and then measure the size of the impact crater that they produce. Then on graph
paper, you will plot the size of the impact crater versus the speed of the impacting ball.

1. Have one member of your lab group take the meter stick, while another takes the
smaller ball bearing.

2. Take the plastic tub that is filled with flour, and place it on the floor.
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3. Make sure the flour is uniformly level (shake or comb the flour smooth)
4. Carefully hold the meter stick so that it is just touching the top surface of the flour.

5. The person with the ball bearing now holds the ball bearing so that it is located exactly
one half meter (50 cm) above the surface of the flour.

6. Drop the ball bearing into the center of the flour-filled tub.

7. Use the magnet to carefully extract the ball bearing from the flour so as to cause the
least disturbance.

8. Carefully measure the diameter of the crater caused by this impact, and place it in the
data table, below.

9. Repeat the experiment for heights of 1 meter and 2 meters using the smaller ball
bearing (note that someone with good balance might have to carefully stand on a chair
or table to get to a height of two meters!).

10. Now repeat the entire experiment using the larger ball bearing. Record all of the data
in the data table.

Height Crater diameter | Crater diameter | Impact velocity
(meters) | (cm) Ball #1 (cm) Ball #2 (m/s)

0.5

1.0

2.0

Now it is time to fill in that last column: Impact velocity (m/s). How can we determine
the impact velocity? The reason the ball falls in the first place is because of the pull of the
Earth’s gravity. This force pulls objects toward the center of the Earth. In the absence of
the Earth’s atmosphere, an object dropped from a great height above the Earth’s surface
continues to accelerate to higher, and higher velocities as it falls. We call this the “accelera-
tion” of gravity. Just like the accelerator on your car makes your car go faster the more you
push down on it, the force of gravity accelerates bodies downwards (until they collide with
the surface!).

We will not derive the equation here, but we can calculate the velocity of a falling body
in the Barth’s gravitational field from the equation v = (2ay)'/2. In this equation, “y” is
the height above the Earth’s surface (in the case of this lab, it is 0.5, 1, and 2 meters). The
constant “a” is the acceleration of gravity, and equals 9.80 m/s?. The exponent of 1/2 means
that you take the square root of the quantity inside the parentheses. For example, if y = 3

meters, then v = (2 x 9.8 x 3)¥2 or v = (58.8)1/2 = 7.7 m/s.
1. Now plot the data you have just acquired on the graph paper attached at the end of
this lab. Put the impact velocity on the z axis, and the crater diameter on the y axis. (10

points)
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16.7.1 Impact crater questions

1. Describe your graph, can the three points for each ball be approximated by a single
straight line? How do your results for the larger ball compare to that for the smaller ball?
(3 points)

2. If you could drop both balls from a height of 4 meters, how big would their craters
be?(2 points)

3. What is happening here? How does the mass/size of the impacting body effect your
results. How does the speed of the impacting body effect your results? What have you just
proven? (5 points)

16.8 Crater Illumination

Now, after your TA has dimmed the room lights, have someone take the flashlight out and
turn it on. If you still have a crater in your tub, great, if not create one (any height more
than 1 meter is fine). Extract the ball bearing.

1. Now, shine the flashlight on the crater from straight over top of the crater. Describe
what you see. (2 points)
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2. Now, hold the flashlight so that it is just barely above the lip of the tub, so that the
light shines at a very oblique angle (like that of the setting Sun!). Now, what do you see?(2
points)

3. When is the best time to see fine surface detail on a cratered body, when it is noon
(the Sun is almost straight overhead), or when it is near “sunset”? [Confirm this at the
observatory sometime this semester!] (1 point)

16.9 Exercise #2: Building a Comet

In this portion of the lab, you will actually build a comet out of household materials. These
include water, ammonia, potting soil, and dry ice (CO, ice). Be sure to distribute the work
evenly among all members of your group. Follow these directions: (12 points)

1. Put a freezer bag in your bucket.
2. Place about 1/3 cup of water in the bag/bucket.

3. Add 2 spoonfuls of sand, stirring well. (NOTE: Do not stir so hard that you rip the
freezer bag!)

4. Add a dash of ammonia.
5. Add a dash of organic material (potting soil). Stir until well-mixed.

6. Your TA will place a block or chunk of dry ice inside a towel and crush the block with
the mallet and give you some crushed dry ice.

7. Add about 1 cup of crushed dry ice to the bucket, while stirring vigorously. (NOTE:
Do not stir so hard that you rip the freezer bag!!)

8. Continue stirring until mixture is almost frozen.

9. Lift the comet out of the bucket, keeping it in the freezer bag, and shape it for a few
seconds as if you were building a snowball (wear gloves!).
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10. If not a solid mass, add small amounts of water and keep working the “snowball” until
the mixture is completely frozen.

11. Unwrap the comet once it is frozen enough to hold its shape.

16.9.1 Comets and Light

Observe the comet as it is sitting on a desk. Make note of some of its physical characteristics,
for example:

e shape
e color
e smell

Now bring the comet over to a high intensity light source (overhead projector), or heat
source (hairdryer) and place it on top. Observe what happens.

16.9.2 Comet Strength

Comets, like all objects in the solar system, are held together by their internal strength.
If they pass too close to a large body, such as Jupiter, their internal strength is not large
enough to compete with the powerful gravity of the massive body. In such encounters, a
comet can be broken apart into smaller pieces. In 1994, we saw evidence of this when Comet
Shoemaker-Levy /9 impacted into Jupiter. In 1992, that comet passed very close to Jupiter
and was fragmented into pieces. Two years later, more than 21 cometary fragments crashed
into Jupiter’s atmosphere, creating spectacular (but temporary) “scars” on Jupiter’s cloud
deck (see Fig. 16.6).

Question: Do you think comets have more or less internal strength than asteroids, which
are composed primarily of rock? [Hint: If you are playing outside with your friends in a
snow storm, would you rather be hit with a snowball or a rock?]

Exercise: After everyone in your group has carefully examined your comet, it is time to

say goodbye. Take a sample rock and your comet, go outside, and drop them both on the
sidewalk. What happened to each object? (2 points)
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P il

Impact of Fragment K of Comet Shoemaker-Levy on Juplter.
The scars of three previcus Impacts ¢can be seen on the planetary disk.

Image fram Peter McGregor and Mark Allen, ANU 2.3m telescope.
Instrument: CASPIR at 2.34pym. Colour Image Mt Stromlc Observatorles.,

Figure 16.6: The Impact of ”Fragment K” of Comet Shoemaker-Levy/9 with Jupiter.

16.9.3 Comet Questions

1. Draw a comet and label all of its components. Be sure to indicate the direction the
Sun is in, and the comet’s direction of motion. (8 points)

2. What are some differences between long-period and short-period comets? Does it make
sense that they are two distinct classes of objects? Why or why not? (5 points)
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3. List some properties of the comet you built. In particular, describe its shape, color,
smell and weight relative to other common objects (e.g. tennis ball, regular snow ball,
etc.). (4 points)

4. Describe what happened when you put your comet near the light source. Were there
localized regions of activity, or did things happen uniformly to the entire comet? (3
points)

5. If a comet is far away from the Sun and then it draws nearer as it orbits the Sun, what
would you expect to happen? (3 points)

6. Which object do you think has more internal strength, an asteroid or a comet, and
why? (3 points)
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16.10 Summary

(35 points) Summarize the important ideas covered in this lab. Questions you may want
to consider are:

e How does the mass of an impacting asteroid or comet affect the size of an impact
crater?

e How does the speed of an impacting asteroid or comet affect the size of an impact
crater?

e Why are comets important to planetary astronomers?
e What can they tell us about the solar system?
e What are some components of comets and how are they affected by the Sun?

e How are comets different from asteroids?

Use complete sentences, and proofread your summary before handing in the lab.

16.11 Possible Quiz Questions

What is the main difference between comets and asteroids, and why are they different?
What is the Oort cloud and the Kuiper belt?

What happens when a comet or asteroid collides with the Moon?

How does weather effect impact features on the Earth?

How does the speed of the impacting body effect the energy of the collision?

Gl W=

16.12 Extra Credit (ask your TA for permission before attempt-
ing, 5 points)

On the 15" of February, 2013, a huge meteorite exploded in the skies over Chelyabinsk,

Russia. Write-up a small report about this event, including what might have happened if

instead of a grazing, or “shallow”, entry into our atmosphere, the meteor had plowed straight
down to the surface.
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Crater Diameter vs. Impact Velocity

Figure 16.7: Plot your impact crater data here.
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17 Characterizing Exoplanets

17.1 Introduction

Exoplanets are a hot topic in astronomy right now. As of January, 2015, there were over 1500
known exoplanets with more than 3000 candidates waiting to be confirmed. These exoplanets
and exoplanet systems are of great interest to astronomers as they provide information on
planet formation and evolution, as well as the discovery of a variety of types of planets
not found in our solar system. A small subset of these planetary systems are of interest
for another reason: They may support life. In this lab you will analyze observations of
exoplanets to fully characterize their nature. At the end, you will then compare your results
with simulated images of these exoplanets to see how well you performed. Note that the
capabilities required to intensely study exoplanets have not yet been built and launched into
space. But we know enough about optics that we can envision a day when advanced space
telescopes, like those needed for the conclusion of today’s lab, will be in Earth orbit and will
directly image these objects, as well as obtain spectra to search for the chemical signatures
of life.

17.2 Types of Exoplanets

As you have learned in class this semester, our solar system has two main types of planets:
Terrestrial (rocky) and Jovian (gaseous). Because these were the only planets we knew
about, it was hard to envision what other kinds of planets might exist. Thus, when the first
exoplanet was discovered, it was a shock for astronomers to find out that this object was a
gas giant like Jupiter, but had an orbit that was even smaller than that of Mercury! This
lead to a new kind of planet called “Hot Jupiters”. In the two decades since the discovery
of that first exoplanet, several other new types of planets have been recognized. Currently
there are six major classes that we list below. We expect that other types of planets will be
discovered as our observational techniques improve.

17.2.1 Gas Giants

Gas giants are planets similar to Jupiter, Saturn, Uranus, and Neptune. They are mostly
composed of hydrogen and helium with possible rocky or icy cores. Gas giants have masses
greater than 10 Earth masses. Roughly 25 percent of all discovered exoplanets are gas giants.

17.2.2 Hot Jupiters

Hot Jupiters are gas giants that either formed very close to their host star or formed farther
out and “migrated” inward. If there are multiple planets orbiting a star, they can interact
through their gravity. This means that planets can exchange energy, causing their orbits to
expand or to shrink. Astronomers call this process migration, and we believe it happened
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early in the history of our own solar system. Hot Jupiters are found within 0.05-0.5 AU of
their host star (remember that the Earth is at 1 AU!). As such, they are extremely hot (with
temperatures as high as 2400 K), and are the most common type of exoplanet found; about
50 percent of all discovered exoplanets are Hot Jupiters. This is due to the fact that the
easiest exoplanets to detect are those that are close to their host star and very large. Hot
Jupiters are both.

17.2.3 Water Worlds

Water worlds are exoplanets that are completely covered in water. Simulations suggest that
these planets actually formed from debris rich in ice further from their host star. As they
migrated inward, the water melted and covered the planet in a giant ocean.

17.2.4 Exo-Earths

Exo-Earths are planets just like the Earth. They have a similar mass, radius, and temper-
ature to the Earth, orbiting within the “habitable zone” of their host stars. Only a very
small number of Exo-Earth candidates have been discovered as they are the hardest type of
planet to discover.

17.2.5 Super-Earths

Super-Earths are potentially rocky planets that have a mass greater than the Earth, but no
more than 10 times the mass of the Earth. “Super” only refers to the mass of the planet
and has nothing to do with anything else. Therefore, some Super Earths may actually be
gas planets similar to (slightly) smaller versions of Uranus or Neptune.

17.2.6 Chthonian Planets

“Chthonian” is from the Greek meaning “of the Earth.” Chthonian Planets are exoplanets
that used to be gas giants but migrated so close to their host star that their atmosphere was
stripped away leaving only a rocky core. Due to their similarities, some Super Earths may
actually be Chthonian Planets.

17.3 Detection Methods

There are several methods used to detect exoplanets. The most useful ones are listed below.

17.3.1 Transit Method/Light Curves

The transit method attempts to detect the “eclipse” of a star by a planet that is orbiting it.
Because planets are tiny compared to their host stars, these eclipses are very small, requiring
extremely precise measurements. This is best done from space, where observations can be
made continuously, as there is no night or day, or clouds to get in the way. This is the
detection method used by the Kepler Space Telescope. Kepler stared at a particular patch
of sky and observed over a hundred thousand stars continuously for more than four years.
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It measured the amount light coming from each star. It did this over and over, making a
new measurement every 30 minutes. Why? If we were looking back at the Sun and wanted
to detect the Earth, we would only see one transit per year! Thus, you have to continuously
stare at the star to insure you do not miss this event (as you need at least three of these
events to determine that the exoplanet is real, and to measure its orbital period). The end
result is something called a “light curve”, a graph of the brightness of a star over time. The
entire process is diagrammed in Figure 17.8. We will be exclusively using this method in lab
today.
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Figure 17.8: The diagram of an exoplanet transit. The planet, small, dark circle, crosses
in front of the star as seen from Earth. In the process, it blocks out some light. The light
curve, shown on the bottom, is a plot of brightness versus time, and shows that the star
brightness is steady until the exoplanet starts to cover up some of the visible surface of the
star. As it does so, the star dims. It eventually returns back to its normal brightness only
to await the next transit.

In Figure 17.8, there is a dip in the light curve, signifying that an object passed between
the star and our line of sight. If, however, Kepler continues to observe that star and sees
the same sized dip in the light curve on a periodic basis, then it has probably detected an
exoplanet (we say “probably” because a few other conditions must be met for it to be a
confirmed exoplanet). The amount of star light removed by the planet is very small, as all
planets are much, much smaller than their host stars (for example, the radius of Jupiter is
11 times that of the Earth, but it is only 10% the radius of the Sun, or 1% of the area = how
much the light dims). Therefore, it is much easier to detect planets that are larger because
they block more of the light from the star. It is also easier to detect planets that are close
to their host star because they orbit quickly so Kepler could observe several dips in the light
curve each year.

17.3.2 Direct Detection

Direct detection is exactly what it sounds like. This is the method of imaging (taking a pic-
ture) of the planets around another star. But we cannot simply point a telescope at a star
and take a picture because the star is anywhere from 100 million (10%) to 100 billion (10'!)
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times brighter than its exoplanets. In order to combat the overwhelming brightness of a star,
astronomers use what is called a “coronagraph” to block the light from the star in order to
see the planets around it. You may have already seen images made with a coronagraph to
see the “corona” of the Sun in the Sun lab.

Fomalhaut System Hubble Space Telescope « STIS

NASA and ESA STScl-PRC13-01a

Figure 17.9: A coronagraphic image of an exoplanet orbiting the star Fomalhaut (inside
the box, with the arrow labeled “2012”). This image was obtained with the Hubble Space
Telescope, and the star’s light has been blocked-out using a small metal disk. Fomalhaut is
also surrounded by a dusty disk of material—the broad band of light that makes a complete
circle around the star. This band of dusty material is about the same size as the Kuiper belt
in our solar system. The planet, “Fomalhaut B”, is estimated to take 1,700 years to orbit
once around the star. Thus, using Kepler’s third law (P? oc a?), it is roughly about 140 AU
from Fomalhaut (remember that Pluto orbits at 39.5 AU from the Sun).

So if astronomers can block the light from the Sun to see its corona, they should be
able to block the light from distant stars to see the exoplanets right? While this is true,
directly seeing exoplanets is difficult. There are two problems: the exoplanet only shines
by reflected light, and it is located very, very close to its host star. Thus, it takes highly
specialized techniques to directly image exoplanets. However, for some of the closest stars
this can be done. An example of direct exoplanet detection is shown in Figure 17.9. A
new generation of space-based telescopes that will allow us to do this for many more stars is
planned. Eventually, we should be able to take both spectra (to determine their composition)
and direct images of the planets themselves. We will pretend that we can obtain good images
of exoplanets later in lab today.

17.3.3 Radial Velocity (Stellar Wobble)

The radial velocity or “stellar wobble” method involves measuring the Doppler shift of the
light from a particular star and seeing if the lines in its spectrum oscillate periodically

230



between a red and blue shift. As a planet orbits its star, the planet pulls on the star gravi-
tationally just as the star pulls on the planet. Thus, as the planet goes around and around,
it slightly tugs on the star and makes it wobble, causing a back and forth shift in its radial
velocity, the motion we see towards and away from us. Therefore, if astronomers see a star
wobbling back and forth on a repeating, periodic timescale, then the star has at least one
planet orbiting around it. The size of the wobble allows astronomers to calculate the mass
of the exoplanet.

17.4 Characterizing Exoplanets from Transit Light Curves

Quite a bit of information about an exoplanet can be gleaned from its transit light curve.
Figure 17.10 shows how a little bit of math (from Kepler’s laws), and a few measurements,
can tell us much about a transiting exoplanet.

a za, R. of transit, corresponding to a phase angle

RY  P(RcosS+R RY (a ’
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F R b p R

1|7, cosz’) Jl1-¢? P 12 . 4t Pis the orbital period of the planet
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(R, + RP) l+ecosg| 27GM. GM. iis the inclination of the planet's orbit
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Star
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Figure 17.10: An exoplanet transit light curve (bottom) can provide a useful amount of
information. The most important attribute is the radius of the exoplanet. But if you know
the mass and radius of the exoplanet host star, you can determine other details about the
exoplanet’s orbit. As the figure suggests, by observing multiple transits of an exoplanet, you
can actually determine whether it has a moon! This is because the exoplanet and its moon
orbit around the center of mass of the system (“barycenter”), and thus the planet appears
to wobble back and forth relative to the host star.

The equations shown in Figure 17.10 are complicated by the fact that exoplanets do not

orbit their host stars in perfect circles, and that the transit is never exactly centered. Today
we are going to only study planets that have circular orbits, and whose orbital plane is edge-
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on. Thus, all of the terms with “cosi” (“i” is the inclination of the orbit to our sight line, and
i = 0° for edge on), cosd or sind (9 is the transit latitude, here 6 = 90°), and “e” (which is
the eccentricity, the same orbital parameter you have heard about in class for our solar sys-
tem planets, or in the orbit of Mercury lab, for circular orbits e= 1.0) are equal to “1” or “0”.

First, let’s remember Kepler’s third law P? o a®, where P is the orbital period, and a
is the semi-major axis. For Earth, we have P = 1 yr, a = 1 AU. By taking ratios, you can
figure out the orbital periods and semi-major axes of other planets in our solar system. Here
we cannot do that, and we need to use Isaac Newton’s reformulation of Kepler’s third law:

4m2a3 (1)
G<Msta7° + Mplanet)

“G” in this equation is the gravitational constant (G = 6.67 x 10~'! Newton-m?/kg?),
and ™ = 3.14.

We also have to estimate the size of the planet. As detailed in Fig. 17.10, the depth of
the “eclipse” gives us the ratio of the radius of the planet to that of the star:

2
AF Ryiane

— pl t (2>
F Rstar

Now we have everything we need to use transits to characterize exoplanets. We will

have to re-arrange equations 1 and 2 so as to extract unknown parameters where the other
variables are known from measurements.

pP? =

17.5 Deriving Parameters from Transit Light Curves

The orbital period of the exoplanet is the easiest parameter to measure. In Figure 17.11 is
the light curve of “Kepler 1b”, the first of the exoplanets examined by the Kepler mission.
Kepler 1b is a Hot Jupiter, so it has a deep transit. You can see from the figure that transits
recur every 2.5 days. That is the orbital period of the planet. It is very easy to figure out
orbital periods, so we will not be doing that in this lab today.

In the following eight figures are the light curves of eight different transiting exoplanets.
Today you will be using these light curves to determine the properties of transiting exoplan-
ets. To help you through this complicated process, the data for exoplanet #8 will be worked
out at each step below. You will do the same process for one of the other seven transiting
exoplanets. Your TA might assign one to you, or you will be left to choose one. Towards
the end of today’s exercise your group will classify both of these exoplanets. Each panel lists
the orbital period of the exoplanets (“xxx day orbit”), ranging from 3.89 days for exoplanet
#3, to 3.48 years for exoplanet #2. You should be able to guess what that means already:
one is close to its host star, the other far away. The other information contained in these
figures is a measurement of “t”, the total time of the transit (“eclipse takes xxx hours”).
When working with the equations below, all time units must be in seconds! Remember, 3600
seconds per hour, 24 hours per day, 365 days per year (there are 3.15 x 107 seconds per year).
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Figure 17.11: The light curve of Kepler 1b as measured by the Kepler satellite. The num-
bers on the y-axis are the total counts (how much light was measured), while the x-axis is
“modified Julian days”. This is a system that simply makes it easy to figure out periods of
astronomical events since it is a number that increases by 1 every day (instead of figuring
out how many days there were between June 6 and November 3¢). Thus, to get an orbital
period you just subtract the MJD of one event from the MJD of the next event.

Exercise #1:

1. The first quantity we need to calculate is the size of the planet with respect to the host
star. How do we do that? Go back to Figure 17.10. We need to measure “AF/F”.
The data points in the exoplanet light curves have been fit with a transit model (the
solid line fit to the data points) to make it easy to measure the minimum. For both
of the transits, take a ruler and determine the value on the y axis by drawing a line
across the model fit to the light curve minimum. Estimate this number as precisely as
possible, then subtract this number from 1, and you get AF/F. (2 points)

AF/F for transit # =

AF/F for transit #8 = 0.00153
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Figure 17.12: Transiting exoplanet #1. The vertical line in the center of the plot simply
identifies the center of the eclipse.
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Figure 17.13: Transiting exoplanet #2.
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Figure 17.14: Transiting exoplanet #3.
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Figure 17.15: Transiting exoplanet #4.
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Figure 17.17: Transiting exoplanet #6.

236



1.00005

= - .
T et .
1.00000 —:E'—'-r—'r—-i'-l —-.—,-.-.'—
4 = L l L
; 0.99995
o ] ! [
T 0.99990 3
o ]
N ] '
T 0.99985 3 '
E :
8 0.99980 3 | i
= 3 . = = . . ol
0.99975 I R 2 L
E NCELIAL B¢ | [ AC
0.99970 . " Sy "
eclipse takes 9.42 hours of 256 day orbit
Figure 17.18: Transiting exoplanet #7.
1 - S . |
Tor "a™, ™ "
1.0000 {5371 -
i . ed - h
5 ] ', 1
L 0.9995 - 1
= - ] [
L i
[} 7 [ [
E 0.9990 b
L - [ ]
=] i | - |
z ] . - ) ¢ . =
i | " -; . = r" . L P " 'II
0.9985 L P LI W LALLM & P
: .... " gt F o I;'F.'. . f L - K g .

eclipse takes 2.34 hours of 7.59 day orbit

Figure 17.19: Transiting exoplanet #8.
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Going back to equation #4, we have:

2 1/2
AF R lanet AF
I = ( ]gsmr > or Rplanet = (T) (>< Rstm“)

2. Taking the square roots of the AF /F from above, fill in the following blanks (4 points):

Ryjanet for transit # = (X Rstar)

Rpianet for transit 0.0391

( X Rstar)

#8 =

You just calculated the relative sizes of the planets to their host stars. To turn these into
real numbers, we have to know the sizes of the host stars. Astronomers can figure out the
masses, radii, temperatures and luminosities of stars by combining several techniques (pho-
tometry, parallax, spectroscopy, and interferometry). Note that stars can have dramatically
different values for their masses, radii, temperatures and luminosities, and these directly
effect the parameters derived for their exoplanets. The data for the eight exoplanet host
stars are listed in Table 17.1. The values for our Sun are M, = 2 x 103 kg, Rp, = 7 x 108
m, Lo = 4 x 10*® Watts.

Table 17.1: Exoplanet Host Star Data

Object | Mass Radius | Temperature | Luminosity
(kg) (meters) (K) (Watts)
#1 2.0x10% | 7.00x10% 5800 4.0x10%
#2 1.3x10% | 4.97x108 4430 2.8x10%
#3 2.2x10% | 7.56x 108 6160 1.2x10%
#4 2.0x10% | 7.00x10° 5800 4.0x10%
#5 1.6x10%0 | 5.88x10% 5050 2.4x10%
#6 2.0x10% | 7.00x 108 5800 4.0x10%
H#7 1.4x10% | 5.25x 108 4640 4.8x10%
#8 1.0x10% | 3.99x108 3760 4.0x10%

3. Now that you calculated the radius of the exoplanet with respect to the host star ra-
dius, use the data in Table 17.1 to convert the radii of your planet into meters, and
put this value in the correct row and column in Table 17.2. (5 points)

4. Astronomer Judy, and her graduate student Bob, used the spectrograph on the Keck
telescope in Hawaii to measure the masses of your planets using the radial velocity
technique mentioned above. So we have entered their values for the masses for all of
the exoplanets in Table 17.2. You need to calculate the density of your exoplanet and
enter it in the correct places in Table 17.2. Remember that density = mass/volume,
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Table 17.2: Exoplanet Data

Object Radius Semi-major Mass Density | Temperature
(m) axis (m) (kg) (kg/m?) (K)

#1 1.9 x 10%

#2 1.9 x 108

#3 5.7 x 107

#4 6.0 x 10%

#5 1.5 x 10%

#6 8.0 x 10%

HT 4.0 x 10*

#8 1.6x107 9.0x10° 5.5 x 10% 3205 555
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and the volume of all of the planets is V = 47R?/3, as we know that they all must be
spherical. (5 points)

. By calculating the density, you already know something about your planets. Remember
that the density of Jupiter is 1326 kg/m?® and the density of the Earth is 5514 kg/m?.
If you did the Density lab this semester, we used the units of gm/cm?, where water
has a density of 1.00 gm/cm3. This is the “cgs” system of units. To get from kg/m3 to
gm/cm?, you simply divide by 1000. Describe how the densities of your two exoplanets
compare with the Earth and/or Jupiter. (5 points)

The next parameter we want to calculate is the semi-major axis “a”. While we now
know the size and densities of our planets, we do not know how hot or cold they are.
We need to figure out how far away they are from their host stars. To do this we
re-arrange equation #1, and we get this:

M ane 1/3
a= ol t>) = (1.69 x 1072 P2 M, )'/?

472

<P2G(Mstar +

. You must use seconds for P, and kg for the mass of the star (note: you can ignore
the mass of the planet since it will be very small compared to the star). We have
simplified the equation by bundling G and 47? into a single constant. Note that you
have to take the cube root of the quantity inside the parentheses. We write the cube
root as an exponent of “1/3”. Ask your TA for help on this step. Fill in the column
for semi-major axis in Table 17.2 for your exoplanet. (5 points)

17.6 The Habitable Zone

The habitable zone is the region around a star in which the conditions are just right for a
planet to have liquid water on its surface. Here on Earth, all life must have access to liquid
water to survive. Therefore, a planet is considered “habitable” if it has liquid water. This
zone is also colloquially know as the “Goldilocks Zone”.
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To figure out the temperature of a planet is actually harder than you might think. We
know how much energy the exoplanet host stars emit, as that is what we call their luminosi-
ties. We also know how far away your exoplanets are from this energy source (the semi-major
axis). The formula to estimate the “equilibrium temperature” of an exoplanet with a semi-
major axis of a around a host star with known parameters is:

R 1/2
Tt = Taar(10 = )" (2_) ®)

The “A” in this equation is the “Albedo”, how much of the energy intercepted by a planet is
reflected back into space. Equation #3 is not too hard to derive, but we do not have enough
time to explain how it arises. You can ask your professor, or search Wikipedia using the term
“Planetary equilibrium temperature” to find out where this comes from. The big problem
with using this equation is that different atmospheres create different effects. For example,
Venus reflects 67% of the visible light from the Sun, yet is very hot. The Earth reflects 39%
of the visible light from the Sun and has a comfortable climate. It is how the atmosphere
“traps heat” that helps determine the surface temperature. Alternatively, a planet might not
even have an atmosphere and could be bright or dark with no heat trapping (for example,
the Albedo of the moon is 0.11, as dark as asphalt, and the surface is boiling hot during the
day, and extremely cold at night).

Let’s demonstrate the problem using the Earth. If we use the value of A = 0.39 for Earth,
equation #3 would predict a temperature of Ty, = 247 K. But the mean temperature on
the Earth is actually Tgan = 277 K. Thus, the atmosphere on Earth keeps it warmer than
the equilibrium temperature. This is true for just about any planet with a significant atmo-
sphere. To account for this effect, let’s go backwards and solve for “A”. With Ry = 7.0 x
108 m, @ = 1.50 x 10" m, Tga = 277 K, and T, = 5800 K, we find that A = 0.05. Thus,
the Earth’s atmosphere makes it seem like we absorb 95% of the energy from the Sun. We
will presume this is true for all of our planets.

If we assume A = 0.05, equation #3 simplifies to:

. 1/2
Tplanet =0.70 < Sta?“) Tstar (4>
a

[To understand what we did here, note that (1.0 — A) = 0.95. The fourth root of 0.95 =
0.95Y/4 = 0.99 (remember the fourth root is two successive square roots: 1/0.95 = 0.95Y/2 =
0.97, and 0.97'/2 = 0.99). We then divided 0.99 by v/2 (= 1.41) to have a single constant
out front.]

7. Calculate the temperature of your exoplanet using equation #4 and enter it into Table
17.2. (5 points)
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As we said, the habitable zone is the region around a star of a particular luminosity
where water might exist in a liquid form somewhere on a planet orbiting that star. The
Earth (¢ = 1 AU) sits in the habitable zone for the Sun, while Venus is too close to the
Sun (a = 0.67 AU) to be inside the habitable zone, while Mars (a = 1.52 AU) is near the
outer edge. As we just demonstrated, the atmosphere of a planet can radically change the
location of the habitable zone. Mars has a very thin atmosphere, so it is very cold there and
all of its water is frozen. If Mars had the thick atmosphere of Venus, it would probably have
abundant liquid water on its surface. As we noted, the mean temperature of Earth is 277 K,
but the polar regions have average temperatures well below freezing (32°F = 273 K) with
an average annual temperature at the North pole of 263 K, and 228 K at the South pole.
The equatorial regions of Earth meanwhile have average temperatures of 300 K. So for just
about every planet there will be wide ranges in surface temperature, and liquid water could
exist somewhere on that planet.

8. Given that your temperature estimates are not very precise, we will consider your
planet to be in the habitable zone if its temperature is between 200K and 350 K. Is
either of your planets in the habitable zone? (4 points)

17.7 Classifying Your Exoplanets

At the beginning of today’s lab we described the several types of exoplanet classes that
currently exist. We now want you to classify your exoplanet into one of these types. To help
you decide, in Table 17.3 we list the parameters of the planets in our solar system. After
you have classified them, you will ask your TA to see “images” of your exoplanets to check
to see how well your classifications turned out.

9. Compare the radii, the semi-major axes, the masses, densities and temperatures you
found for your two exoplanets to the values found in our solar system. For example,
if the radius of one of your exoplanets was 8 x 107, and its mass was 2.5 x 10%7 it is
similar in “size” to Jupiter. But it could have a higher or lower density, depending on
composition, and it might be hotter than Mercury, or colder than Mars. Fully describe
your two exoplanets. (10 points)
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Table 17.3: Solar System Data

Object Radius Semi-major Mass Density | Temperature
(m) axis (m) (kg) (kg/m?) (K)
Mercury 2.44 x 106 5.79 x 10%° 3.3 x 10% 5427 445
Venus 6.05 x 106 1.08 x 10 4.9 x 10% 5243 737
Earth 6.37 x 106 1.49 x 10! 5.9 x 10%4 5514 277
Mars 3.39 x 106 2.28 x 104 6.4 x 10% 3933 210
Jupiter 6.99 x 107 7.78 x 104 1.9 x 1077 1326 122
Saturn 6.03 x 107 1.43 x 102 5.7 x 10% 687 90
Uranus 2.54 x 107 2.87 x 10'2 8.7 x 10% 1270 63
Neptune 2.46 x 107 4.50 x 1012 1.0 x 10% 1638 50
Pluto 1.18 x 108 5.87 x 10'2 1.3 x 10?2 2030 43

As Table 17.3 shows you, there are two main kinds of planets in our solar system: the
rocky Terrestrial planets with relatively thin atmospheres, and the Jovian planets, which
are gas giants. Planets with high densities (> 3000 kg/m3) are probably like the Terrestrial
planets. Planets with low densities (< 3000 kg/m?3) are probably mostly gaseous or have
large amounts of water (Pluto has a large fraction of its mass in water ice).

10. Given your discussion from the previous question, and the discussion of the types of
exoplanets in the introduction, classify your two exoplanets into one of the following
categories: 1) Gas giant, 2) Hot Jupiter, 3) Water world, 4) Exo-Earth, 5) Super-Earth,
or 6) Chthonian. What do you expect them to look like? (10 points)
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11. Your TA has images for all eight exoplanets of this lab obtained from NASA’s “Exo-
planet Imager” mission that was successfully launched in 2040. Were your predictions
correct? Yes/no. If no, what went wrong? [The TA also has the data for all of the
exoplanets to help track down any errors.] (10 points)
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Name:
Date:

17.8 Take Home Exercise (35 points total)

Please summarize the important concepts discussed in this lab. Your summary should in-
clude:

e Discuss the different types of exoplanets and their characteristics.

e What are the measurements required for you to determine the most important param-
eters of an exoplanet?

e What requirement for an exoplanet gives it the possibility of harboring life?

Use complete sentences, and proofread your summary before handing in the lab.

17.9 Possible Quiz Questions

1. What are some of the different types of exoplanets?
2. What are some different exoplanet detection methods?

3. What is the habitable zone?

17.10 Extra Credit (ask your TA for permission before attempt-
ing, 5 points )

Your TA has the data for all of the exoplanets for today’s lab. With that data, go back and
answer questions #8 and #9 for all of the exoplanets.

Acknowledgement: This lab was made possible using the Extrasolar Planets Module of
the Nebraska Astronomy Applet Project.
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Date:

18 Our Sun

18.1 Introduction

The Sun is a very important object for all life on Earth. The nuclear reactions which occur
in its core produce the energy which plants and animals need to survive. We schedule our
lives around the rising and setting of the Sun in the sky. During the summer, the Sun is
higher in the sky and thus warms us more than during the winter, when the Sun stays low in
the sky. But the Sun’s effect on Earth is even more complicated than these simple examples.

The Sun is the nearest star to us, which is both an advantage and a disadvantage for
astronomers who study stars. Since the Sun is very close, and very bright, we know much
more about the Sun than we know about other distant stars. This complicates the picture
quite a bit since we need to better understand the physics going in the Sun in order to com-
prehend all our detailed observations. This difference makes the job of solar astronomers in
some ways more difficult than the job of stellar astronomers, and in some ways easier! It’s
a case of having lots of incredibly detailed data. But all of the phenomena associated with
the Sun are occurring on other stars, so understanding the Sun’s behavior provides insights
to how other stars might behave.

The Sun

Chromosphere

Prominence

Radiation Zone ~ Sunspot

Convection Zo

,.::} Granulation

— Spicules

Corona Solar Wind

Figure 18.1: A diagram of the various layers/components of the Sun, as well as the appear-
ance and location of other prominent solar features.

e Goals: to discuss the layers of the Sun and solar phenomena; to use these concepts
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in conjunction with pictures to deduce characteristics of solar flares, prominences,
sunspots, and solar rotation

e Materials: You will be given a Sun image notebook, a bar magnet with iron filings and
a plastic tray. You will need paper to write on, a ruler, and a calculator

18.2 Layers of the Sun

One of the things we know best about the Sun is its overall structure. Figure 18.1 is a
schematic of the layers of the Sun’s interior and atmosphere. The interior of the Sun is made
up of three distinct regions: the core, the radiative zone, and the convective zone. The core
of the Sun is very hot and dense. This is the only place in the Sun where the temperature
and pressure are high enough to support nuclear reactions. The radiative zone is the region
of the sun where the energy is transported through the process of radiation. Basically, the
photons generated by the core are absorbed and emitted by the atoms found in the radiative
zone like cars in stop and go traffic. This is a very slow process. The convective zone is
the region of the Sun where energy is transported by rising “bubbles” of material. This is
the same phenomenon that takes place when you boil a pot of water. The hot bubbles rise
to the top, cool, and fall back down. This gives the the surface of the Sun a granular look.
Granules are bright regions surrounded by darker narrow regions. These granules cover the
entire surface of the Sun.

The atmosphere of the Sun is also comprised of three layers: the photosphere, the chro-
mosphere, and the corona. The photosphere is a thin layer that forms the visible surface
of the Sun. This layer acts as a kind of insulation, and helps the Sun retain some of its
heat and slow its consumption of fuel in the core. The chromosphere is the Sun’s lower
atmosphere. This layer can only be seen during a solar eclipse since the photosphere is so
bright. The corona is the outer atmosphere of the Sun. It is very hot, but has a very low
density, so this layer can only be seen during a solar eclipse (or using specialized telescopes).
More information on the layers of the Sun can be found in your textbook.

18.3 Sunspots

Sunspots appear as dark spots on the photosphere (surface) of the Sun (see Figure 18.2).
They last from a few days to over a month. Their average size is about the size of the Earth,
although some can grow to many times the size of the Earth! Sunspots are commonly found
in pairs. How do these spots form?

The formation of sunspots is attributed to the Sun’s differential rotation. The Sun is
a ball of gas, and therefore does not rotate like the Earth, or any other solid object. The
Sun’s equator rotates faster than its poles. It takes roughly 25 days for material to travel
once around the equator, but about 35 days for it to travel once around near the north or
south poles. This differential rotation acts to twist up the magnetic field lines inside the
Sun. At times, the lines can get so twisted that they pop out of the photosphere. Figure
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Figure 18.2: A large group of Sunspots. The “umbra” is the darker core of a sunspot, while
the “penumbra’” is its lighter, frilly edges.

18.3 illustrates this concept. When a magnetic field loop pops out, the places where it leaves
and re-enters the photosphere are cooler than the rest of the Sun’s surface. These cool places
appear darker, and therefore are called “sunspots”.

Prominence

Figure 18.3: Sunspots are a result of the Sun’s differential rotation.

The number of sunspots rises and falls over an 11 year period. This is the amount of time
it takes for the magnetic lines to tangle up and then become untangled again. This is called
the Solar Cycle. Look in your textbook for more information on sunspots and the solar cycle.

18.4 Solar Phenomenon

The Sun is a very exciting place. All sorts of activity and eruptions take place in it and
around it. We will now briefly discuss a few of these interesting phenomena. You will be
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analyzing pictures of prominences during this lab.

Prominences are huge loops of glowing gas protruding from the chromosphere. Charged
particles spiral around the magnetic field lines that loop out over the surface of the Sun, and
therefore we see bright loops above the Sun’s surface. Very energetic prominences can break
free from the magnetic field lines and shoot out into space.

Flares are brief but bright eruptions of hot gas in the Sun’s atmosphere. These erup-
tions occur near sunspot groups and are associated with the Sun’s intertwined magnetic field
lines. A large flare can release as much energy as 10 billion megatons of TNT! The charged
particles that flares emit can disrupt communication systems here on Earth.

Another result of charged particles bombarding the Earth is the Northern Lights. When
the particles reach the Earth, they latch on to the Earth’s magnetic field lines. These lines
enter the Earth’s atmosphere near the poles. The charged particles from the Sun then excite
the molecules in Earth’s atmosphere and cause them to glow. Your textbook will have more
fascinating information about these solar phenomena.

18.5 Lab Exercises

There are three main exercises in this lab. The first part consists of a series of “stations” in
a three ring binder where you examine some pictures of the Sun and answer some questions
about the images that you see. Use the information that you have learned from lectures and
your book to give explanations for the different phenomena that you see at each station. In
the second exercise you will learn about magnetic fields using a bar magnet and some iron
filings. Finally, for those labs that occur during daylight hours (i.e., starting before 5 pm!),
you will actually look at the Sun using a special telescope to see some of the phenomena
that were detailed in the images in the first exercise of this lab (for those students in night-
time labs, arrangements might be made so as to observe the Sun during one of your lecture
sessions). During this lab you will use your own insight and knowledge of basic physics
and astronomy to obtain important information about the phenomena that we see on the
Sun, just as solar astronomers do. As with all of the other exercises in this lab manual, if
there is not sufficient room to write in your answers into this lab, do not hesitate to use
additional sheets of paper. Do not try to squeeze your answers into the tiny blank spaces
in this lab description if you need more space then provided! Don’t forget to SHOW ALL
OF YOUR WORK.

One note of caution about the images that you see: the colors of the pictures (especially
those taken by SOHO) are not true colors, but are simply colors used by the observatories’
image processing teams to best enhance the features shown in the image.
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18.5.1 Exercise #1: Getting familiar with the Size and Appearance of the Sun

Station 1: In this first station we simply present some images of the Sun to familiarize your-
self with what you will be seeing during the remainder of this lab. Note that this station has
no questions that you have to answer, but you still should take time to familiarize yourself
with the various features visible on/near the Sun, and get comfortable with the specialized,
filtered image shown here.

e The first image in this station is a simple “white light” picture of the Sun as it would
appear to you if you were to look at it in a telescope that was designed for viewing the
Sun. Note the dark spots on the surface of the Sun. These are “sunspots”, and are
dark because they are cooler than the rest of the photosphere.

e When we take a very close-up view of the Sun’s photosphere we see that it is broken
up into much smaller “cells”. This is the “solar granulation”, and is shown in picture
#2. Note the size of these granules. These convection cells are about the size of New
Mexico!

e To explore what is happening on the Sun more fully requires special tools. If you have
had the spectroscopy lab, you will have seen the spectral lines of elements. By choosing
the right element, we can actually probe different regions in the Sun’s atmosphere. In
our first example, we look at the Sun in the light of the hydrogen atom (“H-alpha”).
This is the red line in the spectrum of hydrogen. If you have a daytime lab, and the
weather is good, you will get to see the Sun just like it appears in picture #3. The
dark regions in this image is where cool gas is present (the dark spot at the center is
a sunspot). The dark linear, and curved features are “prominences”, and are due to
gas caught in the magnetic field lines of the underlying sunspots. They are above the
surface of the Sun, so they are a little bit cooler than the photosphere, and therefore
darker.

e Picture #4 shows a “loop’ prominence located at the edge (or “limb”) of the Sun (the
disk of the Sun has been blocked out using a special telescope called a “coronograph”
to allow us to see activity near its limb). If the Sun cooperates, you may be able to
see several of these prominences with the solar telescope. You will be returning to this
image in Exercise #2.

Station 2: Here are two images of the Sun taken by the SOHO satellite several days
apart (the exact times are at the top of the image). (8 points)

e Look at the sunspot group just below center of the Sun in image 1, and then note
that it has rotated to the western (right-hand) limb of the Sun in image 2. Since the
sunspot group has moved from center to limb, you then know that the Sun has rotated
by one quarter of a turn (90°).

e Determine the precise time difference between the images. Use this information plus
the fact that the Sun has turned by 90 degrees in that time to determine the rotation
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rate of the Sun. If the Sun turns by 90 degrees in time ¢, it would complete one
revolution of 360 degrees in how much time?

e Does this match the rotation rate given in your textbook or in lecture? Show your
work.

In the second photograph of this station are two different images of the Sun: the one on
the left is a photo of the Sun taken in the near-infrared at Kitt Peak National Observatory,
and the one on the right is a “magnetogram” (a picture of the magnetic field distribution
on the surface of the Sun) taken at about the same time. (Note that black and white areas
represent regions with different polarities, like the north and south poles of the bar magnet
used in the second part of this lab.) (7 points)

e What do you notice about the location of sunspots in the photo and the location of the
strongest magnetic fields, shown by the brightest or darkest colors in the magnetogram?

e Based on this answer, what do you think causes sunspots to form? Why are they
dark?

Station 3: Here is a picture of the corona of the Sun, taken by the SOHO satellite in
the extreme ultraviolet. (An image of the Sun has been superimposed at the center of the
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picture. The black ring surrounding it is a result of image processing and is not real.) (10
points)

e Determine the diameter of the Sun, then measure the minimum extent of the corona
(diagonally from upper left to lower right).

e If the photospheric diameter of the Sun is 1.4 million kilometers (1.4 x 10 km), how
big is the corona? (HINT: use unit conversion!)

e How many times larger than the Earth is the corona? (Earth diameter=12,500 km)

Station 4: This image shows a time-series of exposures by the SOHO satellite showing an
eruptive prominence. (15 points)

e As in station 3, measure the diameter of the Sun and then measure the distance of
the top of the prominence from the edge of the Sun in the first (earliest) image. Then
measure the distance of the top of the prominence from the edge of the Sun in the last
image.
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e Convert these values into real distances based on the linear scale of the images. Re-
member the diameter of the Sun is 1.4 x 10° kilometers.

e The velocity of an object is the distance it travels in a certain amount of time (vel=dist/time).

Find the velocity of the prominence by subtracting the two distances and dividing the
answer by the amount of time between the two images.

In the most severe of solar storms, those that cause flares, and “coronal mass ejections”
(and can disrupt communications on Earth), the material ejected in the prominence
(or flare) can reach velocities of 2,000 kilometers per second. If the Earth is 150 x

10® kilometers from the Sun, how long (hours or days) would it take for this ejected
material to reach the Earth?

Station 5: This is a plot of where sunspots tend to occur on the Sun as a function of latitude
(top plot) and time (bottom plot). What do you notice about the distribution sunspots?

How long does it take the pattern to repeat? What does this length of time correspond to?
(3 points)
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18.5.2 Exercise #2: Exploring Magnetic Fields

The magnetic field of the Sun drives most of the solar activity. In this subsection we compare
the magnetic field of sunspots to that of a bar magnet (and an optional exercise that shows
that a magnetic field is generated by an electric current). During this exercise you will be
using a plastic tray in which you will sprinkle iron filings (small bits of iron) to trace the
magnetic field of a bar magnet. This can be messy, so be careful as we only have a finite
supply of these iron filings, and the other lab subsections will need to re-use the ones supplied
to you.

e First, let’s explore the behavior of a compass in the presence of a magnetic field. Grab
the bar magnet and wave the “north pole” (the red end of the bar magnet with the
large “N”) of the magnet by the compass. Which end of the compass needle (or arrow)
seems to be attracted by the north pole of the magnet? (1 point)

e Ok, reverse the bar magnet so the south pole (white end) is the one closest to the
compass. Which end of the compass needle is attracted to the south pole of the bar
magnet? (1 point)

e The compass needle itself is a little magnet, and the pointy, arrow end of the compass
needle is the north pole of this little magnet. Knowing this, what does this say about
magnets? Which pole is attracted to which pole (and vice versa)? (1 point)

e As you know, a compass can be used to find your way if you are lost because the
needle always points towards the North Pole of the Earth. The Earth has its own
magnetic field generated deep in its molten iron core. This field acts just like that of a
bar magnet. But given your answer to the last question, and the fact that the “north
pole” of the compass needle points to the North Pole of the Earth, what is the actual
“polarity” of the Earth’s “magnetic North” pole? (1 point)
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We have just demonstrated the power of attraction of a magnetic field. What does a mag-
netic field look like? In this subsection we use some iron filings, a plastic tray, and the bar
magnet to explore the appearance of a magnetic field, and compare that to what we see on
the Sun.

e Place the bar magnet on the table, and center the plastic tray on top of the bar magnet.
Gently sprinkle the iron filings on to the plastic tray so that a thin coating covers the
entire tray. Sketch the pattern traced-out by the magnetic filings below, and describe
this pattern. (2 points)

e The iron filings trace the magnetic field lines of the bar magnet. The field lines sur-
round the magnet in all dimensions (though we can only easily show them in two
dimensions). Your TA will show you a device that has a bar magnet inside a plastic
case to demonstrate the three dimensional nature of the field. Compare the pattern of
the iron filings around the bar magnet to the picture of the sunspot shown in Figure
18.4. They are similar! What does this imply about sunspots? (3 points)

256



Figure 18.4: The darker region of this double sunspot is called the “umbra”, while the less
dark, filamentary region is called the “penumbra”. For this sunspot, one umbra has a “North
polarity”, while the other has a “South polarity”.

e Now, lets imagine what a fully three dimensional magnetic field looks like. The pattern
of the iron filings around the bar magnet would also exist into the space above the bar
magnet, but we cannot suspend the iron filings above the magnet. Complete Figure
18.5 by drawing-in what you imagine the magnetic field lines look like above the bar
magnet. (3 points)

2 N

Figure 18.5: Draw in the field lines above this bar magnet.

e Compare your drawing, above, to the image of the loop prominence seen in station #1
of Exercise #1. What are their similarities—imagine if the magnetic field lines emitted
light, what would you expect to see? (2 points)
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If a sunspot pair is like a little bar magnet on the surface of the Sun, the field extends up into
the atmosphere, and along the magnetic field charged particles can collect, and we see light
emitted by these moving particles (mostly ionized hydrogen). Note that we do not always
see the complete set of field lines in prominences because of the lack of material high in the
Sun’s atmosphere—but the bases of the prominences are visible, and are located just above
the sunspot.

oo T the weather is clear, and your TA is ready, you can proceed to Exercise
#3 to look at the Sun with a special solar telescope. *H#HHHksck*

18.5.3 Optional Exercise: Generating a magnetic field with an electric current

If yours is a nighttime lab, or the weather is poor, you may not be able to complete exercise
#3. If this is the case, we offer this alternative exercise on how magnetic fields are created.

How are magnetic fields generated? There are two general categories of magnetism, one
is due to intrinsically magnetic materials such as the bar magnet you have been playing
with, and the other are magnetic fields generated by electric currents. The mechanism
for why some materials are magnetic is complicated, and requires an understanding of the
atomic/molecular structure of materials, and is beyond the scope of this class. The second
type of magnetism, that caused by electric currents, is more relevant for understanding solar
activity.

Electricity and magnetism are intimately related, in fact, scientists talk about the theory
of “Electromagnetism”. An electric current, which is (usually) composed of moving elec-
trons, generates a magnetic field. A moving magnetic field, can generate an electric current.
The magnetic fields of both the Earth and the Sun are generated because they have regions
deep inside them that act as electromagnetic fluids. In the Earth’s core, it is very hot, and
the iron there is molten. Due to the rotation of the Earth, this molten iron fluid is rotating
very quickly. Thus, the liquid iron core acts like a current flowing around a wire and can
generate a magnetic field. A similar process occurs in the Sun. The gas in the interior of the
Sun is “ionized” (the electrons are no longer bound to the protons), and thus the rotation of
the Sun spins this ionized gas around generating an electric current that, in turn, generates
a magnetic field.

In this exercise you will be using a voltage source (either a battery or low voltage trans-
former) to generate an electric current to produce a magnetic field. For our “electromagnet”
we will simply use a bolt wound with wire. The current flows through the wire, which gen-
erates a magnetic field that is carried by the nail. (Warning: the wire and/or bolt can
get fairly hot if you leave the current on too long, so be careful!)

e Take the two ends of the wire that is wound around the bolt and hook them to the
terminals of the lantern battery (or 6V transformer). You now have an electromagnet.
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Move the compass slowly around the electromagnet. Describe its behavior, does it act
like the bar magnet? (2 points)

e Using the experience gained from Exercise #2, which end of the nail is the “North”
pole of the electromagnet? Switch the wire leads so that they wires are connected in
an opposite way. What happens? (2 points).

e Just as you did for the bar magnet, place the white plastic tray on top of the electro-
magnet and gently sprinkle the iron filings into the tray (sprinkle them very lightly,
and gently tap the white tray to get them to align—your electro-magnet is not quite as
strong as the bar magnet). Draw the resulting pattern below. (2 points)

e Does the pattern you have just drawn resemble the one generated by the magnetic
field? Describe your results. (2 points)
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18.5.4 Exercise #3: Looking at the Sun

The Sun is very bright, and looking at it with either the naked eye or any optical device is
dangerous—special precautions are necessary to enable you to actually look at the Sun. To
make the viewing safe, we must eliminate 99.999% of the light from the Sun to reduce it to
safe levels. In this exercise you will be using a very special telescope designed for viewing the
Sun. This telescope is equipped with a hydrogen light filter. It only allows a tiny amount
of light through, isolating a single emission line from hydrogen (“H-alpha”). In your lecture
session you will learn about the emission spectrum of hydrogen, and in the spectroscopy
lab you get to see this red line of hydrogen using a spectroscope. Several of the pictures
in Exercise #1 were actually obtained using a similar filter system. This filter system gives
us a unique view of the Sun that allows us to better see certain types of solar phenomena,
especially the “prominences” you encountered in Exercise #1.

e In the “Solar Observation Worksheet” below, draw what you see on and near the Sun
as seen through the special solar telescope. (8 points)

Note: Kitt Peak Vacuum Telescope images are courtesy of KPNO/NOAO. SOHO Extreme
Ultraviolet Imaging Telescope images courtesy of the SOHO/EIT consortium. SOHO Michelson
Doppler Imager images courtesy of the SOHO/MDI consortium. SOHO is a project of international
cooperation between the European Space Agency (ESA) and NASA.
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Solar Observation Worksheet

Name: Lab Sec.:

Date: TA:
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18.6 Summary (35 points)

Please summarize the important concepts discussed in this lab.
e Discuss the different types of phenomena and structures you looked at in the lab

e Explain how you can understand what causes a phenomenon to occur by looking at
the right kind of data

e List the six layers of the Sun (in order) and give their temperatures.
e What causes the Northern (and Southern) Lights, also known as “Aurorae”?

Use complete sentences and, proofread your summary before turning it in.

Possible Quiz Questions
1) What are sunspots, and what leads to their formation?
2) Name the three interior regions of the Sun.
3) What is differential rotation?
4) What is the “photosphere”?
)

5) What are solar flares?

18.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Look-up a plot of the number of sunspots versus time that spans the last four hundred years.
For about 50 years, centered around 1670, the Sun was unusually “quiet”, in that sunspots
were rarely seen. This event was called the “Maunder minimum” (after the discoverer). At
the same time as this lack of sunspots, the climate in the northern hemisphere was much
colder than normal. The direct link between sunspots and the Earth’s climate has not
been fully established, but there must be some connection between these two events. Near
1800 another brief period of few sunspots, the “Dalton minimum” was observed. Looking
at recent sunspot numbers, some solar physicists have suggested the Sun may be entering
another period like the Dalton minimum. Search for the information these scientists have
used to make this prediction. Describe the climate in the northern hemisphere during the
last Dalton minimum. Are there any good ideas on the link between sunspot number and
climate that you can find?
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Name:
Date:

19 Review for Final Exam

19.1 Introduction

This lab is designed to start preparing you for the final exam in this class. You will be
responsible for the material you learned in lab on the final exam! Today you will revisit the
most important points from each lab by answering these questions, which you will go over
at the end of today’s lab. Thus, by the end of lab today you should know what kind of
questions to expect about the labs, as well as the answers to those questions. The questions
are broken down by lab, so it should be clear where you can find the answers if you do
not remember them. Make the most of this class period by making sure you understand the
important points from all of the labs!

19.2 Lab Review Questions
Lab 2: Scale Model of the Solar System

1. Based on the scale model of the solar system that we built on the football field,
describe the spacing of the planets relative to the Sun and to one another.

2. If the entire solar system were scaled down to 100 yards in size, how big would
the Sun be? How about a giant planet (e.g. Jupiter)? How about a terrestrial
planet (e.g. Earth)?

Lab 3: Phases of the Moon

1. What is the shape of the 3rd-quarter Moon’s appearance, what time of day does
it rise, and what time of day is this phase of the Moon at its highest point in the
sky?
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2. The Moon was most recently at its Full Moon phase on April 13th. When will/did
the next New Moon occur? When will the next Full Moon occur?

Lab 4: Density

1. What is the definition of density?

2. List the following in order of decreasing density: lead, ice, styrofoam, silicate
rock, iron

Lab 5: Reflectance Spectroscopy

1. Describe how the distinction between a red tee-shirt and a blue tee-shirt is different
from a red star vs. a blue star. [Think about what causes a star to be red or blue;
is this the same cause for a tee-shirt color?]

2. Describe the color difference between Mars and Venus in the context of this lab.
Why does one (which one?) appear to be much redder in color?

Lab 6: Locating Earthquakes

1. How is the study of earthquakes used to learn about the interior of the Earth?
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2. What causes earthquakes on the Earth?

3. Would you expect to detect earthquakes on any of the other terrestrial planets if
you dropped seismometers on them today? Why or why not?

4. Describe how geologists use seismic measurements to determine the exact location
of an earthquake’s epicenter.

Lab 7: Surface of the Moon

1. By looking at images of the Moon’s surface, how can you tell which area is older
and which area is younger?

2. What caused the highlands and the maria to look as they do today?

3. Do you think it is a coincidence that the average density and composition of the
Moon is a very close match to that of the Earth’s mantle? Why or why not?

Lab 8: Heating and Cooling of Planets/Daytime Observations

1. Explain how the following factors can affect a planet’s average surface tempera-
ture: axial tilt, ellipticity of a planet’s orbit, and the rotation rate of a planet.
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How does the presence of greenhouse gases in an atmosphere affect a planet’s
surface temperature?

If you spend a lot of time in your car in Las Cruces in the summer, would it be
better to have light or dark color upholstery? Why?

. Why does Venus have phases?

How did the observations of the phases of Venus help Galileo demonstrate the
strength of the heliocentric model of the universe?

Lab 9: Surface Features on Mars

Lab 10:

. What is the evidence that Mars probably had liquid water on its surface in the

past?

Mars certainly does not have water on its surface today — where did it go?

Heat Loss from lo

. What is the source of the internal heat that powers Io’s volcanoes?
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Lab 11:

Lab 12:

If Object 2 is twice as hot as Object 1, will it emit more or less radiation than
Object 1?7 [Bonus question: how much more or less?|

Building a Comet

. Draw a picture of a comet, labeling all of its parts.

. What causes the tails of a comet, and are they always visible?

Describe the two reservoirs of comets. Where are they located?

How does the internal strength of a comet compare to that of an asteroid? Why
are they different?

Extra-Solar Planets

. Describe the technique that has been employed to detect the presence of nearly

all of the extrasolar planets that we know to be orbiting other stars in our Galaxy.

. Even if an Earth-like planet exists in orbit around another star, the technique

described above would not currently indicate the presence of that Earth-type
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planet. Why not?

Lab 13: The Sun

1. What are sunspots, and what leads to their formation?

2. List and describe the three interior regions of the Sun.

3. What is differential rotation?
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Name:
Date:
Object:
Telescope:

Draw the object as it looks to you through the telescope
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Name:
Date:
Object:
Telescope:

Draw the object as it looks to you through the telescope

271



272



Name:
Date:
Object:
Telescope:

Draw the object as it looks to you through the telescope
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Name:
Date:
Object:
Telescope:

Draw the object as it looks to you through the telescope
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Name:
Date:

20 Apendix A: Algebra Review

Because this is a freshman laboratory, we do not use high-level mathematics. But we do
sometimes encounter a little basic algebra and we need to briefly review the main concepts.
Algebra deals with equations and “unknowns”. Unknowns, or “variables”, are usually rep-

(AP [A9)]

resented as a letter in an equation: y = 3z 4+ 7. In this equation both “z” and “y” are
variables. You do not know what the value of y is until you assign a value to x. For example,
if v =2, then y = 13 (y = 3x2 + 7 = 13). Here are some additional examples:

y = bx + 3, if x=1, what is y? Answer: y =5x1 +3=5+3=38
q=3t+ 9, if t=5, what is q7 Answer: q =3x5+9=15+9=24
y = 5x? + 3, if x=2, what is y? Answer: y = 5x(2?) + 3 =5x4 +3 =20 + 3 = 23

What is y if x = 6 in this equation: y = 3x + 13 =

20.1 Solving for X

These problems were probably easy for you, but what happens when you have this equation:
y = 7x + 14, and you are asked to figure out what x is if y = 217 Let’s do this step by step,
first we re-write the equation:

y=7Tx+ 14
We now substitute the value of y (y = 21) into the equation:

21 =Tx+ 14

Now, if we could get rid of that 14 we could solve this equation! Subtract 14 from both
sides of the equation:

21 — 14 =7x+ 14 — 14 (this gets rid of that pesky 14!)
7="Tx  (divide both sides by 7)

x=1

Ok, your turn: If you have the equation y = 4x 4 16, and y = 8, what is x7
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We frequently encounter more complicated equations, such as y= 3x? + 2x — 345, or p? =
a%. There are ways to solve such equations, but that is beyond the scope of our introduction.
However, you do need to be able to solve equations like this: y* = 3x + 3 (if you are told
what “x” is!). Let’s do this for x = 11:

Copy down the equation again:
yv2=3x+3

Substitute x = 11:

y2 =3x11+3=33+3=236
Take the square root of both sides:

()72 = (36)"

y=2©6

Did that make sense? To get rid of the square of a variable you have to take the square
root: (y*)1/2 =y. So to solve for y%, we took the square root of both sides of the equation.
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