\relax \@writefile{toc}{\contentsline {section}{\numberline {1}\bf Tools for Success in ASTR 1120G}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Introduction}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}The Metric System}{1}} \@writefile{lot}{\contentsline {table}{\numberline {1.1}{\ignorespaces Metric System Prefixes}}{2}} \newlabel{prefixes-tab}{{1.2}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Beyond the Metric System}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Changing Units and Scale Conversion}{2}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.1}Map Exercises}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Map of New Mexico.}}{4}} \newlabel{map-fig}{{1.1}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.5}Squares, Square Roots, and Exponents}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6}Scientific Notation}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.7}Calculator Issues}{8}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {1.7.1}Scientific Notation on a Calculator}{8}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {1.7.2}Order of Operations}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.8}Graphing and/or Plotting}{9}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {1.8.1}The Mechanics of Plotting}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces The change in the Dow Jones stock index over one year (from April 2003 to July 2004).}}{10}} \newlabel{stock-fig}{{1.2}{10}} \@writefile{lot}{\contentsline {table}{\numberline {1.2}{\ignorespaces Temperature vs. Altitude}}{10}} \newlabel{mtntemps-tab}{{1.2}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces The change in temperature as you climb in altitude with the data from Table\nobreakspace {}1.2\hbox {}. At sea level (0 ft altitude) the surface temperature is 59$^{\rm o}$F. As you go higher in altitude, the temperature goes down.}}{11}} \newlabel{temps-fig}{{1.3}{11}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {1.8.2}Plotting and Interpreting a Graph}{11}} \@writefile{lot}{\contentsline {table}{\numberline {1.3}{\ignorespaces Hourly Temperature Data from 19 January 2006}}{12}} \newlabel{twotemps-tab}{{1.3}{12}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.9}Does it Make Sense?}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Graph paper for plotting the hourly temperatures in Tucson and Honolulu.}}{13}} \newlabel{graphpaper-fig}{{1.4}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.10}Putting it All Together}{14}} \@writefile{toc}{\contentsline {section}{\numberline {2}\bf Scale Model of the Solar System}{16}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Introduction}{16}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}The Distances of the Planets From the Sun}{17}} \@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces Planets' average distances from Sun.}}{17}} \newlabel{avedisttab}{{2.1}{17}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Sizes of Planets}{18}} \@writefile{lot}{\contentsline {table}{\numberline {2.2}{\ignorespaces Planets' diameters in a football field scale model.}}{19}} \newlabel{football}{{2.3}{19}} \@writefile{lot}{\contentsline {table}{\numberline {2.3}{\ignorespaces Objects that Might Be Useful to Represent Solar System Objects}}{19}} \newlabel{objects}{{2.3}{19}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Questions About the Football Field Model}{20}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}Take Home Exercise (35 points total)}{22}} \@writefile{lot}{\contentsline {table}{\numberline {2.4}{\ignorespaces Planets' average distances from Sun.}}{23}} \newlabel{homework}{{1}{23}} \@writefile{lot}{\contentsline {table}{\numberline {2.5}{\ignorespaces Planets' diameters in a New Mexico scale model.}}{23}} \newlabel{newmexico}{{2}{23}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.6}Possible Quiz Questions}{25}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.7}Extra Credit (ask your TA for permission before attempting, 5 points)}{25}} \@writefile{toc}{\contentsline {section}{\numberline {3}\bf The Origin of the Seasons}{26}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Introduction}{26}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}The Seasons}{26}} \@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces {\bf Season Data for Select Cities}}}{27}} \newlabel{tempdata}{{3.1}{27}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces An ellipse with the two ``foci'' identified. The Sun sits at one focus, while the other focus is empty. The Earth follows an elliptical orbit around the Sun, but not nearly as exaggerated as that shown here!}}{27}} \newlabel{ellipse5}{{3.1}{27}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}The Spinning, Revolving Earth}{30}} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Pointing a camera to the North Star (Polaris, the bright dot near the center) and exposing for about one hour, the stars appear to move in little arcs. The center of rotation is called the ``North Celestial Pole", and Polaris is very close to this position. The dotted/dashed trails in this photograph are the blinking lights of airplanes that passed through the sky during the exposure.}}{31}} \newlabel{circumpole2}{{3.2}{31}} \@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Here is a composite of many different exposures (each about one hour in length) of the night sky over Vienna, Austria taken throughout the year (all four seasons). The images have been composited using a software package like Photoshop to demonstrate what would be possible if it stayed dark for 24 hrs, and you could actually obtain a 24 hour exposure (which can only be truly done north of the Arctic circle). Polaris is the smallest circle at the very center.}}{32}} \newlabel{vienna}{{3.3}{32}} \@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Total Arc Length }}{33}} \newlabel{TotalArc}{{3.2}{33}} \@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Position \#1: Equinox Data Table}}{34}} \newlabel{SEQ}{{3.3}{34}} \@writefile{lot}{\contentsline {table}{\numberline {3.4}{\ignorespaces Position \#1: Length of Night and Day}}{34}} \newlabel{equinox2}{{3.4}{34}} \@writefile{lot}{\contentsline {table}{\numberline {3.5}{\ignorespaces Position \#2: Solstice Data Table}}{35}} \newlabel{Solstice1}{{3.5}{35}} \@writefile{lot}{\contentsline {table}{\numberline {3.6}{\ignorespaces Position \#2: Length of Night and Day}}{35}} \newlabel{sol1hours}{{3.6}{35}} \@writefile{lot}{\contentsline {table}{\numberline {3.7}{\ignorespaces Position \#3: Solstice Data Table}}{35}} \newlabel{Solstice2}{{3.7}{35}} \@writefile{lot}{\contentsline {table}{\numberline {3.8}{\ignorespaces Position \#3: Length of Night and Day}}{36}} \newlabel{sol2hours}{{3.8}{36}} \@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces The Earth's spin axis always points to one spot in the sky, {\it and} it is tilted by 23.5$^{\rm o}$ to its orbit. Thus, as the Earth orbits the Sun, the illumination changes with latitude: sometimes the North Pole is bathed in 24 hours of daylight, and sometimes in 24 hours of night. The exact opposite is occurring in the Southern Hemisphere.}}{37}} \newlabel{earthorbit}{{3.4}{37}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Elevation Angle and the Concentration of Sunlight}{37}} \@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Altitude (``Alt'') is simply the angle between the horizon, and an object in the sky. The smallest this angle can be is 0$^{\circ }$, and the maximum altitude angle is 90$^{\circ }$. Altitude is interchangeably known as elevation.}}{38}} \newlabel{altitude}{{3.5}{38}} \@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces An ellipse with the major and minor axes defined.}}{39}} \newlabel{ellipse2_seasons}{{3.6}{39}} \@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces The Celestial Equator is the circle in the sky that is straight overhead (``the zenith'') of the Earth's equator. In addition, there is a ``North Celestial'' pole that is the projection of the Earth's North Pole into space (that almost points to Polaris). But the Earth's spin axis is tilted by 23.5$^{\circ }$ to its orbit, and the Sun appears to move above and below the Celestial Equator over the course of a year. }}{41}} \newlabel{celestial}{{3.7}{41}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Take Home Exercise (35 total points)}{42}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Possible Quiz Questions}{42}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Extra Credit (make sure to ask your TA for permission before attempting, 5 points)}{42}} \@writefile{toc}{\contentsline {section}{\numberline {4}\bf Phases of the Moon}{43}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Introduction}{43}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Exercise 1 (10 points)}{45}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Exercise 2 (10 points)}{46}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Exercise 3 (10 points)}{47}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Lunar Phases, and When They Are Observable}{48}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.6}Exercise 4 (6 points)}{49}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.7}Exercise 5 (6 points)}{50}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.8}Exercise 6 (6 points)}{51}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.9}Demonstrating Your Understanding of Lunar Phases}{52}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.10}Take-Home Exercise (35 points total)}{53}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.11}Possible Quiz Questions}{53}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.12}Extra Credit (make sure you get permission from your TA before attempting, 5 points)}{53}} \@writefile{toc}{\contentsline {section}{\numberline {5}\bf Surface of the Moon}{55}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Introduction}{55}} \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces The Moon's synchronous orbit. (Not drawn to scale.)}}{55}} \newlabel{syncorbit-fig}{{5.1}{55}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Craters and Maria}{56}} \@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Formation of an impact crater.}}{56}} \newlabel{mooncrater-fig}{{5.2}{56}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Relative Ages on the Moon}{57}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Lab Stations}{57}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.5}The Chemical Composition of the Moon: Keys to its Origin}{63}} \@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces The internal structure of the Earth, showing the dimensions of the crust, mantle and core, as well as their composition and temperatures.}}{65}} \newlabel{layers-fig}{{5.3}{65}} \@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Composition of the Earth \& Moon.}}{65}} \newlabel{earthmoon-tab}{{5.1}{65}} \@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Chemical Composition of the Earth (crust and mantle) and Moon.}}{66}} \newlabel{mantle-tab}{{5.2}{66}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.6}Take Home Exercise (35 points total)}{69}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.7}Possible Quiz Questions}{71}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.8}Extra Credit (ask your TA for permission before attempting, {\bf 5 points})}{71}} \@writefile{toc}{\contentsline {section}{\numberline {6}\bf Reflectance Spectroscopy}{73}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Introduction}{73}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Exercises}{73}} \@writefile{lot}{\contentsline {table}{\numberline {6.1}{\ignorespaces White poster board calibration determination. (Recall that 1 nanometer = 10$^{-9}$ m = 1 billionth of a meter.)}}{75}} \newlabel{voltage-tab}{{6.1}{75}} \@writefile{lot}{\contentsline {table}{\numberline {6.2}{\ignorespaces ALTA Reflectance Spectrometer Values (millivolts)}}{76}} \newlabel{specdata-tab}{{6.2}{76}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Take Home Exercise (35 points total)}{83}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Possible Quiz Questions}{83}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.5}Extra Credit (ask your TA for permission before attempting, 5 points)}{83}} \@writefile{toc}{\contentsline {section}{\numberline {7}\bf The History of Water on Mars}{85}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Water Flow Features on Mars}{85}} \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces A dendritic drainage pattern in Yemen (left), and an anastomosing drainage in Alaska (right).}}{86}} \newlabel{drainage}{{7.1}{86}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.1}Warrego Valles}{86}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.2}Ares and Tiu Valles}{89}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}The Global Perspective}{93}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Take Home Exercise (35 points total)}{95}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.4}Possible Quiz Questions}{95}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.5}Extra Credit (ask your TA for permission before attempting, 5 points)}{96}} \@writefile{toc}{\contentsline {section}{\numberline {8}\bf Density}{97}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.1}Introduction}{97}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.2}Mass versus Weight}{97}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.3}Volume}{98}} \@writefile{lof}{\contentsline {figure}{\numberline {8.1}{\ignorespaces A rectangular solid has sides of length, width, and height.}}{98}} \newlabel{boxdim-fig}{{8.1}{98}} \@writefile{lof}{\contentsline {figure}{\numberline {8.2}{\ignorespaces The rectangular object displaces 10 ml of water. Therefore, it has a volume of 10 ml = 10 cm$^3$.}}{100}} \newlabel{beaker-fig}{{8.2}{100}} \@writefile{lot}{\contentsline {table}{\numberline {8.1}{\ignorespaces The Masses, Volumes, and Densities of the Different Objects.}}{101}} \newlabel{density-tab}{{8.1}{101}} \@writefile{lot}{\contentsline {table}{\numberline {8.2}{\ignorespaces The Masses, Volumes, and Densities of the Metal Cubes.}}{101}} \newlabel{newdensity-tab}{{8.2}{101}} \@writefile{lot}{\contentsline {table}{\numberline {8.3}{\ignorespaces Densities of the Earth and Moon}}{103}} \newlabel{earthden-tab}{{8.3}{103}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.4}Take Home Exercise (35 points total)}{107}} \newlabel{denss-tab}{{1}{107}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.5}Possible Quiz Questions}{109}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.6}Extra Credit (ask your TA for permission before attempting, 5 points)}{109}} \@writefile{toc}{\contentsline {section}{\numberline {9}Estimating the Earth's Density}{110}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.1}Introduction}{110}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2}Determining Earth's Radius}{111}} \@writefile{lot}{\contentsline {table}{\numberline {9.1}{\ignorespaces {\bf Angle Data}}}{112}} \newlabel{den1}{{9.1}{112}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.3}Angle Determination:}{112}} \@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces The geometry of a vertical post sitting in sunlight.}}{112}} \newlabel{den4}{{9.1}{112}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.4}Determining the Earth's Mass}{114}} \@writefile{lof}{\contentsline {figure}{\numberline {9.2}{\ignorespaces The distance a dropped object will fall during a time interval {\it t} is proportional to {\it t$^{\rm 2}$}. A dropped object speeds up as it falls, so it travels faster and faster and falls a greater distance as {\it t} increases.}}{115}} \newlabel{den6}{{9.2}{115}} \@writefile{lot}{\contentsline {table}{\numberline {9.2}{\ignorespaces {\bf Time of Fall Data}}}{116}} \newlabel{den2}{{9.2}{116}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.5}Determining the Earth's Density}{116}} \@writefile{lot}{\contentsline {table}{\numberline {9.3}{\ignorespaces {\bf Data for the Earth}}}{117}} \newlabel{den3}{{9.3}{117}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.6}In-Lab Questions:}{118}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.7}Take Home Exercise (35 points total)}{120}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.8}Possible Quiz Questions}{120}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.9}Extra Credit (ask your TA for permission before attempting, 5 points)}{120}} \@writefile{toc}{\contentsline {section}{\numberline {10}Building a Comet}{122}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.1}Asteroids and Comets}{122}} \@writefile{lof}{\contentsline {figure}{\numberline {10.1}{\ignorespaces Four large asteroids. Note that these asteroids have craters from the impacts of even smaller asteroids!}}{123}} \newlabel{asteroid}{{10.1}{123}} \@writefile{lof}{\contentsline {figure}{\numberline {10.2}{\ignorespaces The Asteroid Belt.}}{123}} \newlabel{belt}{{10.2}{123}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.2}Comets}{124}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.3}Composition and Components of a Comet}{124}} \@writefile{lof}{\contentsline {figure}{\numberline {10.3}{\ignorespaces The main components of a comet.}}{124}} \newlabel{components}{{10.3}{124}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.4}Types of Comets}{125}} \@writefile{lof}{\contentsline {figure}{\numberline {10.4}{\ignorespaces The Oort cloud.}}{125}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.5}The Impacts of Asteroids and Comets}{125}} \@writefile{lof}{\contentsline {figure}{\numberline {10.5}{\ignorespaces The Kuiper belt.}}{126}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.6}Exercise \#1: Creating Impact Craters}{126}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {10.6.1}Impact crater questions}{128}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.7}Crater Illumination}{128}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.8}Exercise \#2: Building a Comet}{129}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {10.8.1}Comets and Light}{130}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {10.8.2}Comet Strength}{130}} \@writefile{lof}{\contentsline {figure}{\numberline {10.6}{\ignorespaces The Impact of ``Fragment K" of Comet Shoemaker-Levy/9 with Jupiter. Note the dark spots where earlier impacts occurred.}}{131}} \newlabel{sl9}{{10.6}{131}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {10.8.3}Comet Questions}{131}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.9}Take Home Exercise (35 points total)}{133}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.10}Possible Quiz Questions}{133}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.11}Extra Credit (ask your TA for permission before attempting, 5 points)}{133}} \@writefile{toc}{\contentsline {section}{\numberline {11}\bf Kepler's Laws}{134}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.1}Introduction}{134}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.2}Gravity}{135}} \@writefile{lof}{\contentsline {figure}{\numberline {11.1}{\ignorespaces The force of gravity depends on the masses of the two objects (M$_{\rm 1}$, M$_{\rm 2}$), and the distance between them (R).}}{136}} \newlabel{fgravity}{{11.1}{136}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.3}Kepler's Laws}{136}} \@writefile{lof}{\contentsline {figure}{\numberline {11.2}{\ignorespaces Four types of curves can be generated by slicing a cone with a plane: a circle, an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also the allowed shapes of the orbits of planets, asteroids, comets and satellites!}}{137}} \newlabel{conic}{{11.2}{137}} \@writefile{lof}{\contentsline {figure}{\numberline {11.3}{\ignorespaces An ellipse with the major and minor axes identified.}}{137}} \newlabel{ellipseK}{{11.3}{137}} \@writefile{lof}{\contentsline {figure}{\numberline {11.4}{\ignorespaces An ellipse with the two foci identified.}}{138}} \newlabel{ellipse2}{{11.4}{138}} \@writefile{lof}{\contentsline {figure}{\numberline {11.5}{\ignorespaces An ellipse with two non-foci points identified.}}{139}} \newlabel{ellipse3}{{11.5}{139}} \newlabel{eq:k3}{{3}{143}} \newlabel{table:properties}{{3}{144}} \@writefile{lot}{\contentsline {table}{\numberline {11.1}{\ignorespaces The Orbital Periods of the Planets}}{144}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.4}Going Beyond the Solar System}{144}} \@writefile{lof}{\contentsline {figure}{\numberline {11.6}{\ignorespaces A diagram of the definition of the center of mass. Here, object one (M$_{\rm 1}$) is twice as massive as object two (M$_{\rm 2}$). Therefore, M$_{\rm 1}$ is closer to the center of mass than is M$_{\rm 2}$. In the case shown here, X$_{\rm 2}$ = 2X$_{\rm 1}$.}}{145}} \newlabel{cm}{{11.6}{145}} \newlabel{eq:massrat}{{6}{146}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.5}Take Home Exercise (35 points total)}{148}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.6}Possible Quiz Questions}{148}} \@writefile{toc}{\contentsline {subsection}{\numberline {11.7}Extra Credit (ask your TA for permission before attempting this, 5 points)}{148}} \@writefile{toc}{\contentsline {section}{\numberline {12}\bf Appendix A: Algebra Review}{150}} \@writefile{toc}{\contentsline {subsection}{\numberline {12.1}Solving for X}{150}} \@writefile{toc}{\contentsline {section}{\numberline {13}Observatory Worksheets}{152}}