\relax \@writefile{toc}{\contentsline {section}{\numberline {0.1}Introduction}{1}} \@writefile{toc}{\contentsline {section}{\numberline {0.2}Gravity}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The force of gravity depends on the masses of the two objects (M$_{\rm 1}$, M$_{\rm 2}$), and the distance between them (R).}}{3}} \newlabel{fig:fgravity}{{1}{3}} \@writefile{toc}{\contentsline {section}{\numberline {0.3}Kepler's Laws}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Four types of curves can be generated by slicing a cone with a plane: a circle, an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also the allowed shapes of the orbits of planets, asteroids, comets and satellites!}}{4}} \newlabel{fig:conic}{{2}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces An ellipse with the major and minor axes identified. }}{4}} \newlabel{fig:ellipse}{{3}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces An ellipse with the two foci identified.}}{5}} \newlabel{fig:ellipse2}{{4}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces An ellipse with two non-foci points identified.}}{5}} \newlabel{fig:ellipse3}{{5}{5}} \newlabel{table:properties}{{0.3}{11}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces The Orbital Periods of the Planets}}{11}} \@writefile{toc}{\contentsline {section}{\numberline {0.4}Going Beyond the Solar System}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces A diagram of the definition of the center of mass. Here, object one (M$_{\rm 1}$) is twice as massive as object two (M$_{\rm 2}$). Therefore, M$_{\rm 1}$ is closer to the center of mass than is M$_{\rm 2}$. In the case shown here, X$_{\rm 2}$ = 2X$_{\rm 1}$.}}{13}} \newlabel{fig:cm}{{6}{13}}