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A B S T R A C T   

The New Horizons flyby of the cold classical Kuiper Belt object MU69 showed it to be a contact binary. The 
existence of other contact binaries in the 1–10 km range raises the question of how common these bodies are and 
how they evolved into contact. Here we consider that the pre-contact lobes of MU69 formed as a binary 
embedded in the Solar nebula, and calculate its subsequent orbital evolution in the presence of gas drag. We find 
that the sub-Keplerian wind of the disk brings the drag timescales for 10 km bodies to under 1 Myr for quadratic- 
velocity drag, which is valid in the asteroid belt. In the Kuiper belt, however, the drag is linear with velocity and 
the effect of the wind cancels out as the angular momentum gained in half an orbit is exactly lost in the other 
half; the drag timescales for 10 km bodies remain ≳10 Myr. In this situation we find that a combination of 
nebular drag and Kozai-Lidov oscillations is a promising channel for collapse. We analytically solve the hier-
archical three-body problem with nebular drag and implement it into a Kozai cycles plus tidal friction model. The 
permanent quadrupoles of the pre-merger lobes make the Kozai oscillations stochastic, and we find that when gas 
drag is included the shrinking of the semimajor axis more easily allows the stochastic fluctuations to bring the 
system into contact. Evolution to contact happens very rapidly (within 104 yr) in the pure, double-average 
quadrupole, Kozai region between �85 � 95∘, and within 3 Myr in the drag-assisted region beyond it. The 
synergy between J2 and gas drag widens the window of contact to 80∘ � 100∘ initial inclination, over a larger 
range of semimajor axes than Kozai and J2 alone. As such, the model predicts a low initial occurrence of binaries 
in the asteroid belt, and an initial contact binary fraction of about 10% for the cold classicals in the Kuiper belt. 
The speed at contact is the orbital velocity; if contact happens at pericenter at high eccentricity, it deviates from 
the escape velocity only because of the oblateness, independently of the semimajor axis. For MU69, the 
oblateness leads to a 30% decrease in contact velocity with respect to the escape velocity, the latter scaling with 
the square root of the density. For mean densities in the range 0.3–0.5 g cm� 3, the contact velocity should be 3.3 
� 4.2 m s� 1, in line with the observational evidence from the lack of deformation features and estimate of the 
tensile strength.   

1. Introduction 

On Jan 1st 2019 the New Horizons spacecraft flew past 2014 MU69 
(hereafter referred to as MU69), a small (�30 km) trans-Neptunian 
object, recently renamed “Arrokoth”. Its low-eccentricity and low- 
inclination orbit identifies it as a “cold classical” Kuiper Belt object 
(CCKBO, Brown, 2001; Kavelaars et al., 2008; Petit et al., 2011). Unlike 
the heavily processed comet 67P/Churyumov-Gerasimenko visited by 
the Rosetta mission, MU69 is presumably a pristine planetesimal kept 
undisturbed for the entirety of its 4.6 Gyr residence in the Kuiper belt. 

The flyby showed MU69 to be a contact binary where the two lobes 
have dimensions 20.6 � 19.9 � 9.4 km and 15.4 � 13.8 � 9.8 km 
(�0.5�0.5�2, Stern et al., 2019). Their similar colors and composition, 
as well as axial alignment indicate that the individual lobes formed close 
to one another, and underwent orbital evolution that led to contact. The 
close formation is backed by observational data suggesting a high binary 
fraction among CCKBOs (30%, and possibly larger due to observational 
limitation, Noll et al., 2008a; Veillet et al., 2002; Petit et al., 2008; 
Grundy et al., 2011; Fraser et al., 2017). Nearly equal-sized contact bi-
naries represent 10%–25% of cold classicals (Thirouin and Sheppard, 
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Table 1 
Symbols used in this work.  

Symbol Definition Description Symbol Definition Description 

a  semimajor axis of inner binary Δv v � u velocity of flow past object 
aout  semimajor axis of outer binary dF  force differential 
h  inner binary angular momentum r

^
cylindrical rotation of e

^

hout  outer binary angular momentum 
ϕ
^

cylindrical rotation of q
^

H h þ hout total angular momentum R  dF⋅r
^ radial force 

t  time T  dF⋅ϕ
^ azimuthal force 

I cos� 1(hz/h) mutual inclination of inner binary N  dF⋅h
^ vertical force 

e  eccentricity of inner binary f  true anomaly 
Hk cosI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p Kozai constant E M ¼ E � e sin E eccentric anomaly 

ω  longitude of pericenter M nt mean anomaly 
m1  mass of primary R  Rotation matrix 
m2  mass of secondary mb m1 þ m2 sum of masses of bodies 
M� solar mass Rb R1 þ R2 sum of radii of bodies 
RH 

a
�

m1 þm2

3M�

�1=3  Hill radius μ Gmb  

e
^ e/e unit eccentricity vector Ω  longitude of ascending node 

h
^ h/h unit angular momentum vector T  temperature 

q
^

h
^

� e
^ λmfp μmol mH

ρσcoll  

mean free path 

Ω1  spin of primary Tout 2π/nout period of outer binary 
Ω2  spin of secondary μmol  mean molecular weight 
μr m1m2

m1 þm2  

reduced mass mH  atomic mass unit 

I 1  2
5
m1

�
R2

x1 þR2
y1

� inertia moment of primary σcoll  collisional cross section 

I 2  2
5
m2

�
R2

x2 þR2
y2

� inertia moment of secondary μvisc  dynamical viscosity 

T 2π/n period of inner binary cs  sound speed 
Rx  principal semiaxis of ellipsoid P ρcs

2 pressure 
Ry  principal semiaxis of ellipsoid Σ 

R
ρdz column density 

Rz  principal semiaxis of ellipsoid p  power law of column density 
R (RxRyRz)1/3 equivalent radius of ellipsoid Ma ∣Δv ∣ /cs Mach number 
J2 1

10
R2

x þ R2
y � 2R2

z

R2  

quadrupole potential Kn λmfp

2R  
Knudsen number 

τ1 8
3CD

R1

∣Δv∣
ρ�
ρ  

drag time of the primary τw τ1τ2

τ1 � τ2  

wind drag timescale 

τ2 8
3CD

R2

∣Δv∣
ρ�
ρ  

drag time of the secondary τm τeff orbital drag timescale 

τeff τ1τ2ðm1 þm2Þ

τ2m2 þ τ1m1  

effective drag time of binary eout ∣E∣ eccentricity of outer binary 

ρ� internal density x xx
^
þ yy

^
þ zz

^ local Hill coordinates 

G  gravitational constant xcart xce
^
þ ycq

^
þ zch

^ Cartesian coords. on orbital frame 

nout 
ffiffiffiffiffiffiffiffiffiffiffi
GM�
a3

out

s mean motion of outer binary xcyl Rh(� f)xcart Cylindrical coords. on orbital frame 

vout noutaout circular velocity of outer binary E  eccentricity vector of outer orbit 
a1 m2

m1 þm2
a  semimajor axis of primary Q  tidal dissipation factor 

a2 m1

m1 þm2
a  semimajor of secondary s1  distance origin-primary 

v1 na1 circular velocity of primary s2  distance origin-secondary 
v2 na2 circular velocity of secondary r1 �

m2

m1 þm2
r  distance barycenter-primary 

η  sub-Keplerian parameter r2 m1

m1 þm2
r  distance barycenter-secondary 

u ηvout wind velocity scm  distance barycenter-origin 
ueff u

ðτ2 � τ1Þðm1 þm2Þ

ðm2τ2 þm1τ1Þ

effective wind Mout noutt mean anomaly of outer orbit 

ρ  gas density tkozai Eq. (30) timescale of Kozai-Lidov cycle 
CD Eq. (23) drag coefficient fH a/RH semimajor axis in Hill radii 
Re 2Rρ ∣ Δv ∣ /μvisc Reynolds number past the object bc  impact parameter 
n ffiffiffiffiffiffiffiffiffiffi

Gmb

a3

r mean motion of inner binary fD bc=D  impact parameter in binary diameters 

vesc 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gðm1 þm2Þ=R

p escape velocity ν 16
3

n
nout  

normalized ratio of mean motions 

q a(1-e) pericenter distance β 16
3ν2  

normalized ratio of mean motions 

μb  rigidity Mβ βM scaled mean anomaly 
r  separation of inner binary Ψ Ω � νMβ modified longitude of ascending node 
D  �

8
π

m1 þm2

ρ�

�1=3  effective combined diameter     
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2019). Given the lack of major deformations and estimates of the tensile 
strength (Jutzi and Asphaug, 2015; McKinnon et al., 2019; Wandel et al., 
2019), the contact must have happened at low speeds, below the escape 
velocity (≲6 m/s). Simulations by Marohnic et al. (2020) show that the 
impact must have been at speeds ≲5 m/s and grazing (≲75∘) to not 
produce a disruptive or damaging collision out of rubble pile progenitor 
lobes. 

The formation of the individual lobes could be the result of a grav-
itational instability of solids in the disk midplane (Goldreich and Ward, 
1973; Youdin and Shu, 2002), and indeed Nesvorný et al. (2010) showed 
that gravitational collapse can produce binaries with order unity mass 
ratios. The collapse model predicts that the composition and colors of 
binary partners should match, which is confirmed by observations of 
(non-contact) Kuiper Belt binaries Benecchi et al., 2009 as well as MU69. 
More specifically, gravitationally collapse can be seeded by the 
streaming instability (Youdin and Goodman, 2005; Johansen et al., 
2007; Youdin and Johansen, 2007; Johansen and Youdin, 2007), which 
has been recently shown to lead preferentially to binary planetesimals, 
also matching the ratio of prograde to retrograde mutual inclination 
among Kuiper belt binaries (Nesvorný et al., 2019). In this paper we 
consider the lobes already formed, and examine the subsequent orbital 
evolution. 

Immediately after formation as a binary, if the system has a high 
enough inclination with respect to the ecliptic, Kozai-Lidov oscillations 
(Lidov, 1962; Kozai, 1962) could lead to binary coalescence (Mazeh and 
Shaham, 1979; Nesvorný et al., 2003; Perets and Naoz, 2009; Naoz et al., 
2010). The Kozai-Lidov effect is a well-studied resonance occurring in 
triple systems (for a recent review, see Naoz, 2016), whereby eccen-
tricity and inclination undergo periodic oscillations. The system is 
considered hierarchical in scale if the triple system is composed of two 
binaries with clear separation of scales, with two of the bodies 
composing a tight inner binary (semimajor axis a; the mathematical 
symbols used in this work are listed in Table 1.), and the inner binary and 
third body composing a wide outer binary (semimajor axis aout ≫ a). In 
the case of MU69, the two pre-merger lobes are the inner binary (a 
presumably of the order of 103 � 104 km), and their center of mass 
orbiting the distant Sun is the outer binary (aout¼45 AU). The angular 
momentum of the system is the sum of the angular momenta of the inner 
(h) and outer (hout) binaries. Considering the vertical z direction to be 
along the direction of total angular momentum H ¼ h þ hout, then 
conservation of H implies that the z-projected angular momentum (hz þ

hout, z) is conserved. If we make the further approximation that hout is 
conserved, then hz must be conserved as well. The z-component is pro-
portional to Hk � cosI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

, dubbed Kozai constant, where e is the 
eccentricity of the inner binary and I is its inclination with respect to the 
outer binary; because Hk is constant but not e or I, there exists the 
possibility of exchanging I for e and vice-versa. 

For highly inclined orbits, the Kozai-Lidov resonance can drive very 
high eccentricity. This mechanism has been invoked to explain why no 

irregular satellites have inclinations in the range 50�–140� (Nesvorný 
et al., 2003): such satellites would be driven by Kozai cycles either to 
pericenters that impact the planets (or massive inner moons), or to 
apocenters that lie outside the Hill sphere (Carruba et al., 2002). Thomas 
and Morbidelli (1996), applying it to a triple system of Sun-Jupiter- 
comet, showed that Kozai-Lidov oscillations can make cometary orbits 
become Sun-grazing. 

All of the above assumes that the bodies are point masses. Yet tidal 
friction cannot be ignored for �10 km objects, not only because these 
bodies are deformable, but also because their significant deviations from 
spherical symmetry mean that they have permanent quadrupoles. As the 
orbiters approach each other, tidal friction should drive circularization 
and orbital decay for retrograde orbiters. However, during Kozai cycles 
the longitude of pericenter ω librates about either 90∘ or 270∘ (Naoz, 
2016); if the magnitude J2 of the quadrupole potential is strong enough, 
it will cause precession and unlock ω from the libration, frustrating the 
resonance. Porter and Grundy (2012) conclude that, in the presence of 
tides, Kozai cycles can collapse high inclination binaries only if the 
semimajor axis is above a critical value that depends on the strength of 
J2. This value is placed at the critical semimajor axis at acrit>0.05RH, 
where RH is the radius of the Hill sphere, based on the observation that 
many known Kuiper Belt binaries with a<0.05RH have mutual inclina-
tion around 90∘. 

In this work we are concerned with the effect of nebular drag on a 
freshly formed binary planetesimal. We ask if nebular drag can by itself 
collapse a binary or, in the negative, if it can affect the Kozai cycles that 
would or would not lead to contact in the absence of gas. If formation 
was triggered by the streaming instability as models suggest (Nesvorný 
et al., 2019), then MU69 formed while the Solar Nebula was still present, 
and nebular drag should have impacted its orbital evolution. 

Evidence that MU69 formed in the presence of gas is shown by Lisse 
et al. (2019), studying the stability of ices in its surface. The ices in 
spectrum of MU69 show presence of water ice, methanol, and HCN. 
Pluto, on the other hand, shows CH4, N2, and CO, which were searched 
for in MU69 and not found. Lisse et al. (2019) explored the thermody-
namics of laboratory ices, showing that at the temperature of MU69 
(with a night-day range of 16 K–58 K, and average 35 K, Umurhan et al., 
2019) the near-vacuum sublimation rate of the main volatiles is such 
that only highly refractory, hydrogen bonded species such as water and 
methanol survive for 4.5 Gyr. The hypervolatiles CH4, N2, and and CO 
should be lost in under 1 Myr and should never have been incorporated 
into small KBOs unless the temperature at formation was much colder 
than the present equilibrium temperature (but see Krijt et al., 2018). For 
N2 in particular, the temperature must have been � 15 K. Their presence 
on the surface of Pluto is due to gravitational retention; yet, if Pluto was 
formed out of millions of MU69-like bodies, then these bodies must have 
had these hypervolatiles. The contradiction can be resolved if MU69 was 
formed in an environment of much lower temperatures, as it should be 
expected if it was formed in the optically thick confines of a 

Fig. 1. Orientation of the vectors for the Kozai cycles plus tidal friction model. The model solves for the eccentricity vector e, the angular momentum h of the inner 
binary, and the spin angular momentum of each body, Ω1 and Ω2. The vectors e, h, and q ¼ h � e define a system of time-varying orthogonal bases. The eccentricity 
and angular momentum vectors of the outer orbit, E, and H, remain constant. The orbital inclination is the angle between h and H. 

W. Lyra et al.                                                                                                                                                                                                                                    



Icarus xxx (xxxx) xxx

4

protoplanetary disk. 
We therefore explore the orbital evolution of the pre-merger lobes 

under nebular drag, mutual gravitational interaction, and solar tides. 
We implement a Kozai cycle plus tidal friction model, following the 
formalism of Eggleton and Kiseleva-Eggleton (2001) (see also Fabrycky 
and Tremaine, 2007; Perets and Fabrycky, 2009; Porter and Grundy, 
2012). In addition to these processes we add the permanent J2 quad-
rupole as derived by Ragozzine (2009) and our implementation of 
nebular drag from the Solar Nebula, that we derive in this work. We call 
the full model KTJD, for Kozai cycles plus tidal friction plus J2 plus drag. 

This paper is structured as follows. In Section 2, we describe the 
model, in Section 3, the results. We conclude in Section 4 with a dis-
cussion and summary of these results. Involved mathematical details are 
shown in appendices. 

2. Model 

In this work we use two different codes. The first is a N-body model 
that solves for position and velocities of point masses under mutual 
gravitational interaction. The second is a Kozai cycle plus tidal friction 
model, which evolves the eccentricity vector and the orbital angular 
momentum of the binary, along with the spin angular momenta of the 
two bodies, while keeping the external, heliocentric, orbit constant (see 
Fig. 1). Both use a standard 3rd order Runge-Kutta, i.e., the accumulated 
error is proportional to the cube of the timestep. 

2.1. The KTJD model 

We follow the equations of Eggleton and Kiseleva-Eggleton (2001) in 
the reference frame of the orbit of the binary. The (time-varying) 

orientation is given by the unit vectors e
^

pointing to pericenter, h
^

pointing to the direction of orbital angular momentum, and q
^
¼ h

^

�e
^

along the latus rectum (see Fig. 1). 
We split the model equations for the eccentricity and angular mo-

mentum vectors into equations for their moduli and unit vectors, 
respectively. The full model including the evolution of the spin vectors 
consists of 14 coupled equations 

de
dt
¼ � e

�
V1þV2þVd þ 5

�
1 � e2�Seq

�
; (1)  

dh
dt
¼ � h

�
W1þW2þWd � 5e2Seq

�
; (2)  

de^

dt
¼
�
Z1 þ Z2 þ

�
1 � e2�� 4See � Sqq

� �
q^

�
�
Y1 þ Y2 þ

�
1 � e2�Sqh

�
h
^

;

(3)  

dh
^

dt
¼
�
Y1 þ Y2 þ

�
1 � e2�Sqh

�
e^

�
�
X1 þ X2 þ

�
4e2 þ 1

�
Seh
�
q^ ;

(4)  

dΩ1

dt
¼

μrh
I 1
ð � Y1e^þX1q^ þW1h

^

Þ; (5)  

dΩ2

dt
¼

μrh
I 2
ð � Y2e^þX2q^ þW2h

^

Þ (6) 

Here the indices 1 and 2 refer to each orbiter of the inner binary. The 
quantities Vi and Wi (i¼1,2) are dissipative functions related to how a 
deformable body responds to a tidal field. The quantities X, Y, Z give 
precession and apsidal motion. The tensor Sij relates to the 3rd body and 
is responsible for the Kozai cycles, here added up to the quadrupole level 
of approximation (Kiseleva et al., 1998) and keeping the outer orbit 
exactly constant (aout¼45 AU and eout¼0.04 for MU69). In the model, 
the outer orbit is specified by the time-independent vectors H and E, the 
angular momentum and eccentricity vectors of the outer orbit, 
respectively. 

We refer the reader to Eggleton and Kiseleva-Eggleton (2001) for the 
detailed mathematical form of the parameters X, Y, Z, V, W, and Sij, and 
to Ragozzine (2009) to how the planetary permanent quadrupole im-
pacts these parameters, depending also on the rigidity μb of the body and 
the tidal dissipation quality factor Q. The parameter 

I i ¼ 0:4mi

�
R2

xi þR2
yi

�
is the moment of inertia of body i about its spin 

axis, and we do not consider non-principal axis rotators; mi is the mass of 
body i; Rxi and Ryi are the principal semiaxes of body i perpendicular to 
the spin axis. Finally, μr ¼ m1m2/(m1 þ m2) is the reduced mass. 

The integration timestep is adaptive with semimajor axis and ec-
centricity, 

Δt ¼ CT
ffiffiffiffiffiffiffiffiffiffiffi
1 � e
1þ e

r

(7)  

where T is the orbital period of the inner binary, updated as it hardens. 
The factor in the square root is the velocity at pericenter normalized by 
the circular velocity. We find this important to conserve energy and 
angular momentum during the high-eccentricity excursions. We test a 
non-dissipative, purely Kozai cycle model, to 10 Myr, and find that with 
C¼10� 2 the semimajor axis and the Kozai constant are conserved and 
bounded to one part in 1011 (Fig. 2). We test that decreasing C to 10� 3 

Fig. 2. Conservation of the semimajor axis and of the Kozai constant Hk ¼ cosI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

related to the vertical angular momentum. With an adaptative timestep 
responding to period and eccentricity, we achieve conservation down to 10� 11 over 10 Myr. 

W. Lyra et al.                                                                                                                                                                                                                                    



Icarus xxx (xxxx) xxx

5

does not improve conservation, and for C¼10� 1 the error grows. We use 
thus C¼10� 2 in all integrations. The code, written in Fortran90, is made 
public and can be downloaded from https://github.com/wlyra/yosh 
ikozai. 

2.2. Nebular drag 

Gas drag enters the equations as the dissipation parameters Vd and 
Wd in eccentricity and angular momentum, respectively. Notice that 
while Wi are related to spin-orbit coupling, with the orbit and spin 
angular momenta equations having equal and opposite terms, Wd has no 
such symmetry. This is because the angular momentum taken from the 
orbital motion by the drag is not conserved by converting it into rota-
tional angular momentum, but given to the nebular gas. 

To find the values of Vd and Wd, we work out the orbital solution in 
the presence of drag, which is shown in detail in appendix A. The so-
lution, despite a lengthy and laborious derivation, turns out to be 
remarkably simple. If a0, e0, and h0 are the initial semimajor axis, ec-
centricity and angular momentum of the inner binary, the solution at a 
time t is given by 

~a ¼ a0e� 2t=τeff (8)  

~e ¼ e0 (9)  

~h ¼ h0e� t=τeff (10)  

where tilde represents average over the solar orbit, and 

τeff ¼
τ1τ2ðm1 þ m2Þ

τ2m2 þ τ1m1
(11)  

is the effective drag time. Here τ1 and τ2 are the drag times on the pri-
mary and secondary, respectively. The eccentricity is constant, while the 
angular momentum decays exponentially in an e-folding time equal to 
the effective drag time. As consequence, the energy decays at twice the 
rate of the angular momentum. Equations Eq. (9) and Eq. (10) lead to the 
coefficients 

Vd ¼ 0; (12)  

Wd ¼ �
1

τeff
: (13)  

2.3. Parameters of MU69 

We consider that MU69 was a binary system that came into contact, 
the lobes being the primary and secondary masses m1 and m2. The di-
mensions of the lobes denote a volume ratio of roughly 2:1. The 
equivalent radius of spheres of same volume are R1¼7.8 km and R2¼6.4 
km. The parameter J2 for each lobe, assuming a homogeneous triaxial 
ellipsoid (Scheeres, 1994), is given by 

J2 ¼
1
10

�
R2

x þ R2
y � 2R2

z

�

R2 (14)  

where Rx, Ry, and Rz are the principal semi-axes. For the lobes of MU69, 
the observed values of Rx,Ry, and Rz lead to J2 ¼ 0.26 and 0.14 (�0.07) 
for the larger and smaller lobes, respectively. Assuming an internal 
density of ρ� ¼ 0.5 g/cm3, the masses are m1¼1.01 � 1018g and 
m2¼5.45 � 1017 g. At the distance of aout¼45 AU, the center of mass 
orbits the Sun at the velocity of vout ¼ noutaout� 4.5 km/s, where nout is 
the mean motion of the heliocentric orbit. The Hill radius of the com-
bined masses is RH ¼ aout[mb/(3M�)]1/3, where mb ¼ m1 þ m2 is the sum 
of the masses of the primary and secondary and M� is the solar mass. 
Substituting the masses obatined above yields RH � 2.8 � 10� 4 AU, or 
4.3 � 104 km. 

For a representative semimajor axis a¼0.1RH � 4300km the period is 
T¼5.6yr. The semimajor axes of the orbits around the barycenter and 
respective circular orbital velocities are a2¼2785km, a1¼1505km, and 
v2¼10cms� 1, v1¼5.5cms� 1. 

These orbital velocities are very small.1 The velocity of the center of 
mass around the Sun, vout¼4.5 km/s, is over 40000 times larger. For the 
minimum-mass Solar nebula (MMSN, Weidenschilling, 1977; Hayashi, 
1981) at 45 AU, the gas is sub-Keplerian by ngas ¼ nout(1 � η), where nout 
is the Keplerian value and η ~ 0.01. The wind that the binary is expe-
riencing is then 

u ¼ ηvout � 50ms� 1: (15) 

i.e., about 500 times faster than the circular velocity of the binary. 
The sub-Keplerian wind cannot in principle be ignored. We find in ap-
pendix A that in the reference frame of motion around the primary, the 
effective wind is 

ueff ¼ u
ðτ2 � τ1Þðm1 þ m2Þ

ðm2τ2 þ m1τ1Þ
: (16) 

The model is fully specified if the drag times are known. These are 
considered in the next section. 

2.3.1. Drag time 
Solid particles and gas exchange momentum due to interactions that 

happen at the surface of the solid body. The many processes that can 
occur are generally described by the collective name of “drag” or 
“friction”. Consider a solid body of cross section σ travelling through a 
fluid medium of uniform density ρ with velocity v with respect to the 
fluid. In a time interval dt, it sweeps a volume dV ¼ σvdt. In the reference 
frame of the particle, the gas molecules are travelling with velocity � v. If 
all their momentum is transferred to the particle, the force is 

Fdrag ¼ ρdV
dv
dt
¼ � ρσvv: (17) 

In aerodynamics it is usual to define a dimensionless factor CD that 
takes into account the deviations from this idealized picture 

Fdrag ¼ �
1
2

CDρσvv: (18) 

The factor half comes in because it is common to define the drag 
force in terms of kinetic energy instead of momentum. Considering 
spheres of radius R, their cross section is σ ¼ πR2; the acceleration fdrag in 
the equation of motion is found upon dividing Fdrag by the mass of the 
object m¼4πR3ρ�/3, where ρ� is the material density 

fdrag ¼ �

�
3ρCDv
8Rρ�

�

v: (19) 

The quantity in parentheses has dimension of time� 1, defining the 
drag time of an embedded object 

τ � 8
3CD

R
v

ρ�
ρ : (20) 

The drag time represents the timescale within which the object 
couples to the gas flow. The parameter CD can be calculated from first 
principles or derived from experiments, depending on the drag regime of 
interest. When the object radius exceeds the mean free path of the 
particle, the approximation of ballistic collisions ceases to apply and the 
frequent intermolecular collisions lead to the emergence of viscous 

1 In fact small enough that impacts, perturbations by other KBOs, or other 
dynamical effects could easily ionize the binary. This is either an indication that 
these effects did not play a significant role, or that the lobes formed at closer 
separation, or both. We cannot assess the latter, but that MU69 is not signifi-
cantly cratered indeed points to a low-collision environment, as expected for 
the Kuiper belt. 
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behaviour. It is a well-known result that ideal fluids exert no drag 
(d’Alembert’s paradox). When the kinematic viscosity μvisc is consid-
ered, Stokes drag law on a large sphere (large meaning bigger than the 

mean free path of the gas) is recovered 

FðStkÞ
drag ¼ � 6πμviscRv; (21) 

a lengthy proof of which can be found in Landau and Lifshitz (1987). 
Dividing Eq. (21) by the mass of the object and expressing it in the form 
of Eq. (18), one finds 

CðStkÞ
D ¼

12μvisc

Rρv
¼

24
Re

(22) 

On obtaining this equation, the inertia of the fluid is neglected, so it 
only holds for low Reynolds numbers. Empirical corrections to Stokes’ 
law were worked out (e.g., Arnold, 1911; Millikan, 1911; Millikan, 
1923), Arnold, 1911 but a general case derived from first principles is 
difficult to obtain. The major complication resides at the boundary layer 
immediately over the surface of the particle, where the velocity of the 
viscous fluid has to be zero. If the fluid has inertia, a sharp velocity 
gradient develops in the flow past the object as the velocity goes to zero 
at the solid surface. At this boundary layer, the viscous term is important 
even at high Reynolds numbers (Prandtl, 1905). It can be seen experi-
mentally that in such cases, the flow past the particle develops into a 
turbulent wake (von Karman, 1911), with drag coefficients much larger 
than those predicted by Stokes law. 

Experiments with hard spheres (Cheng, 2009) show that the drag 
coefficient CD for large objects and valid in the range Re<2 � 105 can be 
fit by the following empirical formula (Perets and Murray-Clay, 2011) 

Fig. 4. Upper panels: Effective drag time vs distance for bodies the size and mass of MU69 as function of the wind velocity in the MMSN (left) and a solar nebula ten 
times more massive (right). The red curve (50 m/s) corresponds to standard pressure gradients, zero (blue) to a local pressure maximum, and others speeds to 
reduced or enhanced pressure gradients. For the no-wind curve (blue) only the binary velocity is considered. Stokes drag, where the wind has no effect, is valid in the 
Kuiper belt. In the asteroid belt the Reynolds number place the drag force in the quadratic regime, and the wind brings the effective drag time down to 0.1 Myr. 
Nebular drag can collapse an object like MU69 in the asteroid belt in the lifetime of the Solar Nebula, but not in the Kuiper belt. Lower panels: Drag times as a 
function of distance (x-axis) and body radius (y-axis) in the MMSN (left) and a solar nebular ten times more massive (right), assuming a 50 m/s wind. The color maps 
refers to drag times. The lines to Reynolds numbers. MU69 lies in the transition between linear drag (Re<1) and quadratic drag (Re>1000). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Dependency of the drag regime (Fdrag ∝ CDRe2) on Reynolds number. 
The drag is linear in the viscous regime (Stokes law) and quadratic in the 
turbulent (ram pressure) regime, with a smooth transition in between. MU69 in 
the MMSN lies at Re � 10, closer to the linear range. 
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CD ¼
24
Re
ð1þ 0:27Þ0:43

þ 0:47
�
1 � exp

�
� 0:04Re0:38�� (23) 

The value of CD varies non-monotonically, being CD � 26 for Re¼1, 
reaching a minimum of CD � 0.25 at Re¼103 and rising to CD � 0.45 at 
Re¼105. The drag times for the pre-merger lobes of MU69 are τ1¼2.87 
� 107 yr and τ2¼2.00 � 107 yr (details of the calculation are shown in 
appendix 6). The system can thus be modeled as going through an 
effective headwind ueff¼166u � 25 m/s with effective friction time 
τeff¼2.24 � 107 yr. 

We highlight that because Fdrag ∝ CDRe2, in the low Reynolds number 
regime, with CD given by Eq. (22), the drag force is linear with velocity 
(Re ∝ v). Conversely, in the regime of high Reynolds number (Re � 103), 
CD asymptotes to a constant value, and Eq. (18) becomes quadratic with 
velocity. This is the regime of turbulent, or ram pressure, drag. The 
different regimes are shown in the left panel of Fig. 3, where the y-axis is 
CDRe2. As seen in the figure, linear drag is valid up to Re � 1, and 
quadratic beyond Re � 1000 with a smooth transition in between. For 
MU69 at 45 AU in the MMSN, the Reynolds number is Re � 10, placing it 
much closer to linear (viscous) than to quadratic (turbulent) drag. This 
distinction has profound consequences for the orbital evolution of the 
pre-merger lobes of MU69. 

3. Results 

3.1. Inability of drag alone to lead to contact in the Kuiper belt 

The drag times for bodies of the size of MU69 as a function of dis-
tance are shown in the upper panels of Fig. 4. In these curves the Rey-
nolds number is calculated by having the velocity being the sum of the 
wind and the orbital velocity (at a representative distance of 0.1 RH from 
the central object with mass equal to the combined mass of MU69). The 
left panel is the MMSN, and the right panel a solar nebula ten times more 
massive than the MMSN. The different lines are different values for the 
wind velocity. The red solid line corresponds to standard pressure gra-
dients, yielding wind velocities of �50 m/s. The blue solid line is no 

wind, corresponding to a pressure maximum. The other lines represent 
reduced or enhanced pressure gradients, for comparison. 

In the outer disk the Reynolds number is low enough that viscous 
linear drag ensues and the presence of the wind does not matter. This is 
because if the drag is linear, the angular momentum gained in half an 
orbit is exactly lost in the other half whereas for quadratic drag the in-
fluence of the wind does not cancel out exactly when averaged over an 
orbit (cf. Sect 3.2 of Perets and Murray-Clay, 2011); as a result, in the 
inner disk where the drag is quadratic, the influence of the wind in the 
drag time is dominant. The upper panels of Fig. 4 shows that the wind- 
enhanced orbital drag alone, with no Kozai cycles, is able to collapse a 
MU69-like binary in the asteroid belt in the timeframe of the lifetime of 
the disk, but not in the Kuiper belt, either in the MMSN or in a nebular 
ten times more massive. 

The lower panels of Fig. 4 show drag time (color coded) and Rey-
nolds numbers (solid lines) as a function of distance in AU and body 
radius in km, for a wind speed of 50 m/s. The regimes of linear (Re < 1) 
and quadratic drag (Re > 103) are shown as thicker solid lines and ar-
rows. The pre-merger lobes of MU69 are shown as red dots in both plots: 
as seen in the figures, they lie in the transition between linear and 
quadratic drag. In the MMSN the Reynolds number is about 10, closer to 
linear, with drag times of �20 Myr; for the more massive model (10�
MMSN) the Reynolds number is closer to 100. In this more massive case 
the drag time is �10 Myr; the effect of the wind, even though closer to 
quadratic than to linear, is still not enough to lower the drag time to 
values within the lifetime of the nebula. 

For the Kuiper belt, the timescales of the problem are, in decreasing 
order: dynamical (n, where n is the orbital mean motion); Coriolis force 
(nout � 10� 2n); centrifugal (nout

2 � 10� 4n); wind (u/τ � 10� 5n); orbital 
drag (1/τ � 10� 7n); shear (nout/τ � 10� 9n). We plot in Fig. 5 the N-body 
evolution of a binary of point masses, subject to gas drag, with initial 
inclination I ¼ 0∘, 60∘, and 90∘, for a range of eccentricities. The lines 
shown are box-averages over a solar period. 

The zero inclination curves show the predicted behavior of semi-
major axis, eccentricity and angular momentum, averaged over a solar 
orbit. The system has an exponential decay of angular momentum and 

Fig. 5. N-body evolution of a binary of initial inclination 0∘ (top panels), 60∘ (middle panels) and 90∘ (bottom panels) for a range of initial eccentricities. The lines are 
box-averaged over a solar period. Time is normalized by the friction time τ. The long-term evolution in zero inclination is well described by the analytical solution for 
a,e, h averaged over a solar orbit. The system comes to contact within the timescale set by τ. This is appropriate for contact within the lifetime of the Solar nebula for 
the range of semimajor axes of the asteroid belt (τeff � 0.1 Myr), but would not lead to contact in the Kuiper Belt (τeff>10 Myr). For I0¼60∘ one Kozai cycle is seen to 
occur. Yet, the eccentricity does not rise high enough to lead to contact. For I0¼90∘ initial inclination rapid evolution to contact happens, even for moderately low 
eccentricities (e ≳ 0.3). The evolution is of very fast fall of angular momentum and increase of eccentricity with nearly constant semimajor axis, plunging the binary 
into contact through a nearly radial trajectory. 
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semimajor axis, with e-folding time defined by the drag time τ. This rate 
of decay is enough to lead to collapse in the asteroid belt, where the 
quadratic drag aided by the wind brings τ to 0.1 Myr timescales. Yet, at 
the Kuiper belt, as discussed above, the timescales remain of the order of 
10 Myr, hindering collapse. 

3.2. Kozai-driven collapse in the Kuiper belt 

The I¼60∘ plots show oscillations of eccentricity and inclination; we 
measure that these oscillations conserve the Kozai constant Hk, char-
acterizing Kozai-Lidov oscillations. Still the excursions into high ec-
centricity are not enough to make the orbit grazing (separation less than 
30 km) even for initial eccentricity e0¼0.9 over 10 Myr. 

The situation changes for I¼90∘. Now, for moderate initial eccen-
tricities, the eccentricity shoots to unity in very short timescales, and the 
orbit becomes grazing, reaching separation r¼30 km in timescales of the 
order of 0.1τ. The collapse happens essentially at constant energy. The 
orbit is forced from initially circular into a progressively elongated el-
lipse and finally into a straight line, leading to contact (Fig. 6). 

Since the orbit is Keplerian, we can analytically calculate the velocity 
at contact. For a head-on collision at pericenter 

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

a

�
1þ e
1 � e

�s

(24)  

where G is the gravitational constant. Writing vesc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gðm1 þm2Þ=R

p

for the escape velocity (R being the effective radius of MU69), we can 
write this equation as 

v
vesc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
q

�
1 �

q
2a

�
s

(25)  

where q is the pericenter distance. If contact happens along the principal 
axes, q ¼ (Rx1 þ Rx2)/2 ≪ a (the subscripts 1 and 2 refer to primary and 
secondary bodies), and we have 

v
vesc
¼

�
Rx1Ry1Rz1 þ Rx2Ry2Rz2

�1=6

ðRx1 þ Rx2Þ
1=2 : (26) 

For the parameters of MU69, this yields v � 0.71vesc, i.e. about 70% 
reduction compared to the escape velocity. The escape velocity depends 
on the bulk density of MU69, which is not well constrained. The velocity 
at contact is 

v � 4:2ms� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρ�
0:5gcm� 3

r

: (27) 

An internal density of 0.3 g cm� 3 leads to contact at velocity 3.3 m 
s� 1. Collision velocities in the range 2–3 m s� 1 happen for internal 
densities in the range 0.12 � 0.25 g cm� 3. Fig. 7 shows a comparison of 
the same simulation with nebular drag switched on and off. Gas drag 
plays a secondary role: the evolution is driven mostly by Kozai-Lidov 
cycles. Just how secondary the role of nebular drag is is explored in 
the next section with our Kozai-Tides-J2-drag model. 

3.3. Gas-enhanced Kozai 

The orbital integrations shown in Fig. 5 treat the bodies as point 
masses, which are gravitational monopoles and impervious to tides. To 
relax this approximation, we make use of the orbit-integrated KTJD 
model described in Section 2. For the tidal model we use rigidity μb¼4 �
1010 g cm� 1 s� 2 and tidal dissipation quality Q¼100, as typically 
assumed for icy bodies (Ragozzine and Brown, 2009). 

Considering small initial eccentricity, the maximum eccentricity 
induced by Kozai is (Perets and Naoz, 2009) 

emax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
5
3
cos2I0

r

: (28) 

We want to find the range of inclinations for which the orbit is 
grazing, i.e., r < Rb, where Rb ¼ R1 þ R2 is the sum of the radii of the 
object. The separation being r ¼ q � a(1 � e), the critical inclination is, 
considering small initial eccentricities, 

Icrit ¼ cos� 1

 ffiffiffiffiffiffiffiffiffi
6
5

Rb

a

r !

: (29) 

The timescale of the Kozai oscillation is given by Kiseleva et al. 
(1998) 

Fig. 7. Comparison between the model shown for 90∘ on Fig. 5 and the same model but switching off nebular drag. The evolution is mainly driven by the Kozai 
oscillations, with gas playing a secondary role and the wind driving the eccentricity and angular momentum oscillation. Notice how nebular drag makes the 
inclination flip between prograde and retrograde, and how the velocity increases to 20–25 times the initial orbital velocity as the eccentricity approaches unity. 

Fig. 6. The trajectory to contact in the reference frame of the primary of the 

inner binary, oriented along the e
^
q
^
h
^

vectors, here fixed. The secondary started 
at (x, y) ¼ (1,0) and ended at the origin. Its trajectory was one of flattening the y 
axis while the magnitude of the semimajor axis remains roughly constant, 
increasing the eccentricity and losing angular momentum. 
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tkozai ¼
2T2

out

3πT
ðm1 þ m2 þM�Þ

M�

�
1 � e2

out

�3=2 (30)  

where Tout and eout are the period and the eccentricity of the orbit 
around the Sun, respectively. For Tout¼350 yr, T ¼ 5 yr, and eout¼0.04, 
yields a timescale for contact via Kozai of tkozai � 5000 yr. 

We ran models with initial eccentricity e0¼0.1 and explored the 
parameter space of semimajor axis and inclination. Fig. 8 shows incli-
nation vs semimajor axis plots with the results of the integrations. The 
lower x-axis is the semimajor axis in units of Rb, which we take to be 30 
km, approximately the principal axis of MU69. The upper x-axis shows 
the semimajor axis in km. A black dashed line shows the Hill radius of 
MU69. We use an upper limit of a¼0.4RH since beyond this semimajor 
axis the orbits are heavily disrupted by the solar tide. Also, if the ec-
centricity goes near unity for a � 0.5RH, the apocenter is outside the Hill 
sphere and the binary is ionized. The semimajor axes sampled are a/ 
RH¼0.01,0.02,0.04,0.1,0.2, and 0.4. 

The different panels show models that consider only Kozai (K, upper- 

left panel, in green); Kozai and tides (KT, upper-right panel, in blue); 
Kozai, tides, and J2 (KTJ, lower left panel, in orange), and finally the full 
model of Kozai, tides, J2, and drag (lower right panel, in red). Each 
integration was done until 10 Myr. Simulations where contact happened 
are shown as filled circles, whereas empty circles denote no contact. We 
consider only retrograde inclinations. 

The solid line in the plots shows the critical inclination for contact 
given by Eq. (29). As seen in the upper left plot, the behavior is very well 
reproduced by the K model. Under the critical inclination it takes half a 
Kozai period to achieve contact, as the maximum eccentricity brings the 
pericenter inside the primary. The Kozai oscillations are periodic and 
regular, so above the critical inclination no contact is possible. 

The critical inclination line is also well reproduced by the KT model 
(upper right), which evidences how weak spin-orbit coupling is. Indeed, 
we find that during the evolution, the spin angular momentum increases 
by less than 0.1%. This justifies, a posteriori, our choice of initializing 
the spin periods at 15 h, the measured rotational period of MU69. 

The situation changes when the permanent quadrupole is included 

Fig. 8. Mapping of the parameter space of semimajor axis and inclination (for fixed eccentricity e0¼0.1) over which contact happens. The upper left plots refers to a 
model with only Kozai oscillations and no dissipation, J2 or drag. For this model, the predicted critical inclination is shown as the solid line. The dots represent the 
simulations we ran. Filled dots represent contact, open dots no contact. The model finds excellent agreement with the prediction (only I0>90deg is shown but the 
results are symmetric for prograde orbiters). The upper right plot shows the model of Kozai and dissipation. Because spin-orbit coupling is weak, not much distinction 
is seen between this and the model of Kozai only. The lower left plot shows a model with Kozai, tides, and J2. The quadrupole disrupts Kozai oscillations inside of 0.07 
RH (vertical grey dashed line), but it extends slightly the critical inclination. The lower right plot shows the full model with Kozai, tides, J2 and drag. The J2-forbidden 
region still exists, but outside this, the range of inclination over which contact happens is significantly increased. 

Fig. 9. Evolution for I0¼99∘ up to 10 Myr, for simulations with different dynamical terms. The simulation with only the solar terms (green line) leads to regular Kozai 
oscillations at constant semimajor axis. Including the induced quadrupole (blue line) has little effect. Inclusion of the permanent quadrupole (orange line) leads to 
irregular Kozai cycles with erratic excursions in inclination and eccentricity. Finally, including the orbital drag leads to a fast decay of semimajor axis, and eventual 
contact shortly after 2 Myr. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(lower left). As found by Porter and Grundy (2012), Kozai cycles are 
thwarted by too strong a J2. Because J2 induces precession, it removes 
the binary from the locked _ω ¼ 0 Kozai resonance. The behavior is 
reproduced in our model, showing a J2-forbidden zone inside the grey- 
dashed line at a/RH¼0.05 (we check that for the parameters of MU69 
the forbidden zone lies within a/rHill � 0.07, with a transition region 
between 0.07<a/rHill<0.1, and Kozai-dominated beyond a/rHill¼0.1). A 
slight increase in the occurrence of contact is seen in the region from 
a¼0.1 to 0.4RH. 

The full KTJD model (lower right) shows that the inclusion of 
nebular drag does not shorten the J2-forbidden zone. The main differ-
ence between KTJ and KTJD is that the occurrence of contact in the J2- 
allowed region increases significantly above the critical inclination. 
Fig. 9 shows the cycles for I¼99∘ and a¼0.1RH. The left panel shows 
semimajor axis, the middle one inclination, and the right one the peri-
center distance. While the simulations K and KT lead to regular cycles in 
a well-defined range of eccentricity and inclination at constant semi-
major axis, including J2 makes the excursions in eccentricity and incli-
nation stochastic. However, over 10 million years the pericenter did not 
reach 30 km (dashed line) for the KTJ model. The inclusion of nebular 
drag does not seem to have a significant effect in inclination, but by 
lowering the semimajor axis over Myr timescales, it lowers the peri-
center distance accordingly when compared to the model without 
nebular drag. Assisted by this effect, random variations are able to bring 
the binary into contact more easily. 

We caution that our model uses the double-averaged secular 
approximation, where the motion is averaged in mean anomaly of both 
the inner and the outer binary. We work out in Appendix C that the 
double-averaged model is applicable up to a � 0.1RH. We compare in 
that appendix the prediction of a pure Kozai (no tides or dissipation) 

double-averaged model with those of a pure Kozai single-averaged 
model, where the motion is averaged over the mean anomaly of the 
inner boundary only, resolving the motion of the outer boundary. As also 
worked out in the appendix, this approximation is applicable up to a �
0.3RH, beyond which N-body is necessary. A comparison between the 
single-average and double-average solutions is shown in Fig. 10, for a/ 
RH ¼ 0.04, 0.1, 0.2, and 0.4. Upper plots show the eccentricity, lower 
plots the inclination. One Kozai-Lidov cycle is shown for each case. The 
simulations show that the single-averaged model has oscillations on top 
of the double-averaged solution, with amplitude increasing with semi-
major axis. These extra oscillations bring the eccentricity beyond the 
maximum nominal eccentricity predicted by the double-averaged 
model, and thus should make contact even more likely. 

A final comment is warranted on the observed inclination of MU69, 
which is I¼99∘. For pure quadrupole double-averaged Kozai the incli-
nation at contact should be 

cosI ¼ cosI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

Rb

�
1 � e2

0

2a � Rb

�s

and only a narrow range of the parameter space of initial semimajor axis, 
inclination, and eccentricity would lead to contact at I¼99∘. However, 
because the inclusion of J2 and drag turns the eccentricity and inclina-
tion excursions stochastic, the equation above is rendered invalid as a 
predictor of final inclination. Yet, as seen in the middle panel of Fig. 9 
the general trend still is of cosI > cos I0, so the final inclination should be 
closer to 180∘ (indeed contact happens in this model at 160∘). Never-
theless, as shown in the lower panels of Fig. 10, the single-averaged 
model allows for cosI < cos I0 at high eccentricities, including 
retrograde-prograde flipping, which is not allowed in the double- 
averaged approximation. Thus, our model does not allow for more 
detailed conclusions on final inclination, but there is indication that the 
observed I¼99∘ inclination of MU69 should be a more likely outcome 
than the double-averaged model permits. 

4. Conclusion 

In this work we present a solution for the two-body problem and for 
the hierarchical three-body problem with nebular drag, implementing 
the latter into a Kozai cycles plus tidal friction model. We divide the 
nebular drag into orbital drag and the sub-Keplerian wind that is 
effected by the large-scale pressure gradient of the Solar Nebula. The 
wind is of the order of 50 m/s, whereas the orbital velocity of 10 km 
bodies is of the order of 10 cm/s. The typical drag timescale for 10 km 
bodies is of the order of 10 Myr, but for quadratic drag the wind brings 
the effective drag timescales down to 0.1 Myr. For linear drag the effect 
of the wind cancels out and the timescale remains 10 Myr. The regime of 
quadratic drag corresponds to distances in the asteroid belt, whereas 
regime of linear drag corresponds to distances in the Kuiper belt. Our 

Fig. 10. Comparison between the single and double-averaged secular approximations, for different values of the semimajor axis, shown as a fraction of the Hill 
radius (0.04, 0.1, 0.2, and 0.4). The upper plots show the eccentricity, the lower plots show the inclination. Where the former is averaged over the mean anomaly of 
the inner binary only, and the latter over the mean anomalies of the inner and outer binaries. The double average is applicable up to 0.1 Hill radii. Beyond that, 
oscillations on top of the double-averaged solution are seen, increasing amplitude with increasing semimajor axis. These oscillations should make contact more likely 
as they bring the eccentricity beyond the maximum predicted by the double-averaged model. 

Fig. 11. Geometry of the orbital problem with nebular drag. The masses orbit a 
common center of mass at distances r1 and r2 from it. We choose an arbitrary 
origin distant s from the center of mass, and s1 and s2 from the masses. We align 

the local Hill coordinate y
^

along the direction of the wind u, and z
^

along the 
direction of the angular momentum of the orbit around the Sun H. 
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Fig. 12. Comparison between the two massive bodies problem (Eq. (31)-Eq. (32), solid blue line), and the equivalent 1-body system with reduced mass and effective 
wind and drag (Eq. (40), dashed red line). The 2-body problem has m1¼0.75 and m2¼0.25, τ1¼3 � 103 and τ2¼103, and u¼30. The one-body equivalent has effective 
friction time τeff¼1200, and effective wind ueff¼24. The terms with nout are ignored. The agreement is excellent, validating the approximation u≫ _scm that motivates 
Eq. (40). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. The evolution of an isolated binary under influence of wind and orbital drag. The wind drives angular momentum loss while it has no effect on the energy 
(which is dissipated via orbital drag). The effect is rapid eccentricity growth at nearly constant semimajor axis. Contact happens when the eccentricity nears one. The 
numerical calculation is in excellent agreement with the analytical solution Eqs. (158)–(160). 

Fig. 14. Evolution considering the orbit around the Sun. As the direction of the wind changes with respected to the fixed eccentricity vector of the binary, for half of 
the solar orbit the eccentricity grows as predicted by the isolated binary solution, and for the other half it decreases by the same amount. Similarly, the angular 
momentum decreases by the wind, and then increases in the other half of the orbit. Averaged over the solar period, the solution is described by a simple orbital drag 
solution a ¼ a0e� 2t/τ, e � const and h ¼ h0e� t/τ. 
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model therefore predicts that the asteroid belt should be significantly 
depleted of pristine binary planetesimals, as nebular drag is effective in 
bringing them to contact. Observations show that the binary fraction 
among asteroids is about 15% (Margot et al., 2015) whereas in the 
Kuiper belt it can be as high as 40% (Noll et al., 2008a, 2008b; Nesvorný, 
2011; Fraser et al., 2017). Unfortunately we cannot draw conclusions 
from these numbers because the asteroid belt is highly collisionally 
evolved and thus the binary population there is not primordial: only the 
cold classical population of the Kuiper belt can be used as a diagnostic 
for initial binary fraction (Morbidelli and Nesvorny, 2019). 

For the Kuiper belt, where the drag timescales are of the order of 10 
Myr, we find that Kozai-Lidov oscillations are paramount to achieve 
contact. If the inclination is near 90∘, the eccentricity of the inner binary 
increases to near unity and the orbits become grazing. The evolution is 
characterized by decreasing angular momentum at constant energy, 
which geometrically means decreasing the semiminor axis while keep-
ing the semimajor axis constant, eventually collapsing the orbit into a 
straight line (Fig. 6). 

The speed at contact is the orbital velocity; if contact happens at 
pericenter at high eccentricity, it deviates from the escape velocity only 
because of the oblateness, independently of the semimajor axis. For 
MU69, the oblateness leads to a 30% decrease in contact velocity with 
respect to the escape velocity, the latter scaling with the square root of 
the density. For mean densities in the range 0.3–0.5 g cm� 3, the contact 
velocity should be 3.3 � 4.2 m s� 1. 

The timescale for Kozai cycles for MU69 in the range of semimajor 
axes of 0.05 to 0.5 Hill radii are at maximum 20,000 years (and as low as 
500 years), so contact in this model should have happened right after 
formation. Considering that the permanent quadrupole J2 prevents 
Kozai oscillations for semimajor axes shorter than 0.05 Hill radii, 
excluding this “J2 forbidden zone” confines contact to a narrow window 
of the parameter space, in a range of initial inclinations between 85∘ and 
95∘. Formation by streaming instability (Nesvorný et al., 2019) results in 
a broad inclination distribution at birth; so the narrow 10∘ window 
means that this model predicts that the fraction of contact binaries 
should be about 5%, which is too on the low end of the observed incli-
nation distribution of KBO binaries (Grundy et al., 2011). 

We find that gas drag significantly alters this picture. The permanent 
quadrupole also has the effect of making the Kozai oscillations stochastic 
in the range of semimajor axes where they are allowed. This leads to the 
possibility that the Kozai cycles, previously regular and periodic, can 
now achieve contact by stochastic fluctuations that nudge the body 
beyond the allowed region for pure Kozai. Indeed we see this behavior, 

but very limited when only the quadrupole but no gas is included. The 
stochastic fluctuations push the window of contact by 1 or 2� beyond the 
critical inclination of pure Kozai, but no further. When gas drag is 
included, the window is pushed to the range from 80∘ to 100∘. This 
happens because of a combination of the stochastic fluctuations caused 
by J2 and the fact that gas drag is shrinking the semimajor axis. After a 
few million years (still within the lifetime of the disk), the semimajor 
axis has shrunk enough to bring the contact pericenter within reach of 
the stochastic fluctuations. Together, gas drag and J2 can achieve what 
neither could in isolation. The synergy widens the window of contact to 
over 10% of the range of inclinations. If the disk is long-lived enough, 
the window could be pushed to even higher inclinations. 

We underscore that our solution naturally provides an explanation to 
one of the main questions posed by MU69’s nature as a contact binary, in 
constrast to many cold classicals in the 100 km range that are detached 
binaries. If the drag time for MU69 is of the order of 10 Myr, an object 10 
times bigger would have drag time of 1 Gyr: the effect of nebular drag 
would be negligible. The situation for 100 km bodies is that of the lower 
left plot of Fig. 8, that depicts Kozai cycles, tides, and the permanent 
qudrupole, excluding nebular drag, with a narrower window of contact. 

As limitations of the work, our KTJD model is accurate only up to the 
quadrupole approximation. Including the octupole would make the cy-
cles even more chaotic (Naoz, 2016). Also, we use the double-averaged 
secular approximation, where the motion is averaged in mean anomaly 
of both the inner and the outer binary. This approximation un-
derestimates the maximum eccentricity and inclination range when 
compared to the single-average approximation (averaging only in the 
mean anomaly of the inner binary but resolving the motion of the outer 
binary) and of course also compared to the exact solution. Both situa-
tions potentially increase the region of the parameter space over which 
contact happens, so our solution may be seen as a conservative lower 
bound. 
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Appendix A. Orbital solution with nebular drag 

We consider a binary system of masses m1 and m2, at distances s1 and s2, respectively, from an arbitrary origin (see Fig. 11). The bodies are 
immersed in uniform gas and suffer drag as they orbit. The drag force acts on timescales τ1 and τ2, respectively. We consider that while the binary’s 
center of mass orbits the Sun at the Keplerian rate nout, the gas moves at sub-Keplerian velocity, leading to a uniform headwind on the binary with 

velocity u. We distinguish between the orthogonal coordinate systems e
^
q
^
h
^

defined by the orbit and x
^
y
^
z
^
, the local Cartesian Hill coordinates where x

^

points away from the Sun, and z
^

to the angular momentum vector of the orbit around the Sun. The equations of motion are 

€s1 ¼ � 2nout

�

z^� _s1

�

� Gm2
ðs1 � s2Þ

∣s1 � s2∣3
þ 3n2

outx1x^ �
ð _s1 þ 3=2noutx1y^ � uÞ

τ1
(31)  

€s2 ¼ � 2nout

�

z^� _s2

�

� Gm1
ðs2 � s1Þ

∣s1 � s2∣3
þ 3n2

outx2x^ �
ð _s2 þ 3=2noutx2y^ � uÞ

τ2
(32)  

where G is the gravitational constant. This system can be reduced to a single particle equivalent as detailed below. 

A.1. Single particle equivalent system 

We subtract Eq. (31) from Eq. (32), i.e., centering at the primary, and substitute r ¼ s2 � s1 for the distance between the masses. With these 
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operations, the system is 

€r ¼ � 2noutðz
^
� _rÞ �

μr
r3 þ 3n2

outxx^ �
_s2

τ2
þ

_s1

τ1
�

3nouty
^

2

�
x2

τ2
�

x1

τ1

�

þ u
�

1
τ2
�

1
τ1

�

(33)  

where μ ¼ G(m1 þ m2). The bodies’ positions s1 and s2 with respect to the origin relate to the barycenter position scm (also with respect to the origin) 
and the bodies’ positions relative to the barycenter r1 and r2 by 

s1 ¼ r1þ scm and s2 ¼ r2þ scm (34)  

which, given the definition of the barycenter, yields 

r1 ¼ �
m2

m1 þ m2
r; r2 ¼

m1

m1 þ m2
r; (35)  

now substituting r1 and r2 as given by Eq. (34) we have 

€r ¼ � 2noutðz
^
� _rÞ �

μr
r3 þ 3n2

outxx^ �
_r

τm
�

3=2noutxy^

τm
þ

u � _scm

τw
(36)  

with the drag timescales 

τm ¼
τ1τ2 ðm1 þ m2Þ

τ2m2 þ τ1m1
(37)  

and 

τw ¼
τ1τ2

τ1 � τ2
: (38) 

Notice that Eq. (36) is not yet a single particle equation, as it depends on the motion of the center of mass of the binary. We consider u≫ _scm to drop 
the last term. With this approximation, we can further simplify Eq. (36) by writing 

_r
τm
�

u
τw
¼

_r � uτmτ� 1
w

τm
(39)  

i.e., the equation of motion becomes a simpler drag equation for a single body, given by 

€r ¼ �
μr
r3 �

_r � ueff

τeff
� 2noutðz

^
� _rÞþ 3n2

outxx^ �
3noutxy^

2τeff
(40)  

with effective wind 

ueff ¼ u
τm

τw
¼ u
ðτ2 � τ1Þðm1 þ m2Þ

ðm2τ2 þ m1τ1Þ
(41)  

and effective drag time τeff ¼ τm. 

A.2. Numerical validation of the single particle equivalent 

We show in Fig. 12 the evolution of the system Eq. (31)-Eq. (32) and that of Eq. (40). We model the system in a 2D Cartesian box with a wind u ¼

uy
^
, and ignoring nout. In code units we consider 

G ¼ 1; m1þm2 ¼ 1; a0 ¼ 1; n0 ¼ 1: (42)  

where a0 is the initial semimajor axis and n0 the initial angular frequency of the binary. We solve the N-body with a standard Runge-Kutta scheme 3rd 
order accurate in time. We take timesteps of Δt¼10� 3T, with the period T ¼ 2π/n dynamically updated as the binary hardens. 

To test the code, we consider a binary system of arbitrary masses m1¼0.75 and m2¼0.25, drag times τ1¼3 � 103 and τ2¼103, and a wind u¼30. The 
masses’ starting positions are given by Eq. (35) with ∣r ∣ ¼ a. The initial orbit is circular with velocities v0i ¼ n0a0i. 

The simulation is centered at the center of mass and at every full timestep the center of mass position and velocity are reset. The numerical solution 
of this system, given by Eq. (31) - Eq. (32), is shown by the blue solid line in Fig. 12. 

With these parameters, the one body equivalent (Eq. 40) has effective friction time τeff¼1200 as given by Eq. (37), and effective wind ueff¼24, as 
given by Eq. (41). The numerical solution of this system, is shown by the red dashed line in Fig. 12. 

The only difference between these systems is that the single body equivalent is missing the indirect term from the acceleration of the center of mass. 
As evidenced by the similarity of the solutions, this term is negligible, leading to but a minute deviation in angular momentum and eccentricity toward 
contact (when the relative distance goes to zero). 

Finally, we notice that because the center of mass is accelerated, even though initially the system may have u≫ _scm, this assumption may not be 
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maintained during the course of the whole simulation. The effect of the wind drag is to try to bring the center of mass velocity to the same velocity as 
the wind, the situation where the wind drag would cease to exist. The acceleration of the center of mass is given by the center of mass equation 

€scm ¼
m1€s1 þ m2 €s2

ðm1 þ m2Þ

¼ u
τ1m2 þ τ2m1

τ1τ2ðm1 þ m2Þ
� _s1

m1

ðm1 þ m2Þτ1
� _s2

m2

ðm1 þ m2Þτ2
(43) 

If u≫ _s1;2, the wind dominates; the center of mass will accelerate, reaching velocity u within the timescale τm. 

A.3. Orbital solution 

Since gravity dominates, we can treat the problem as a Keplerian orbit perturbed by the orbital drag, the wind drag, the Coriolis force, the 
centrifugal force, and the shear. We use the formalism of Murray and Dermott (1999) to solve for the evolution of semimajor axis, angular momentum, 
and eccentricity under these forces. Treating the perturbation as 

dF ¼ Rr^þ Tϕ
^

þNh
^

(44)  

where r
^
, ϕ

^

are the (cylindrical) unit vectors in the plane of the orbit and ϕ¼0 points at pericenter; that is, ½r
^
;ϕ

^

� is ½e
^
; q

^
� rotated by the true anomaly. The 

solutions for the orbital elements given by (Murray and Dermott, 1999, Eqs. 2.145, 2.149, 2.150, and 2.157), following Burns (1976) 

da
dt
¼

2
n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p χa (45)  

dh
dt
¼ χh (46)  

de
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
χe (47)  

dI
dt
¼ χI (48)  

dΩ
dt
¼ χΩ (49)  

dω
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

ane
χω � χΩcosI: (50)  

with the functions χ given by 

χa ¼ Resinf þ Tð1þ ecosf Þ; (51)  

χh ¼ rT; (52)  

χe ¼ Rsinf þTðcosf þ cosEÞ; (53)  

χI ¼ rN
cosðωþ f Þ

h
; (54)  

χΩ ¼ rN
sinðωþ f Þ

hsinI
; (55)  

χω ¼ � Rcosf þ Tsinf
�

2þ ecosf
1þ ecosf

�

; (56)  

where f is the true anomaly and E is the eccentric anomaly. We work out the functions R, T, and N for the several terms involved. 

A.3.1. Orbital drag 
The orbital drag is 

2

4
R
T
N

3

5

drag

¼ �
1
τ

2

4
_r

r _ϕ
0

3

5; (57)  

for which we will need the solutions for _r and r _ϕ, 
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_r ¼
na
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p esinf ; (58)  

r _ϕ ¼
na
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ð1þ ecosf Þ (59) 

These functions contain terms dependent on the true anomaly, so we take orbital averages to find the secular evolution. We define orbital averages 
as averages in mean anomaly M ¼ nt according to 

hXi ¼
1

2π

Z 2π

0
X dM (60) 

The series for sinf and cosf are, to 4th order in eccentricity, 

sinf ¼ sinM þ esin2M þ e2
�

9
8
sin3M �

7
8

sinM
�

þ e3
�

4
3
sin4M �

7
6

sin2M
�

þe4
�

17
192

sinM �
207
128

sin3M þ
625
384

sin5M
�

þ O
�
e5�

(61)  

cosf ¼ cosM þ eðcos2M � 1Þ þ
9e2

8
ðcos3M þ cosMÞ þ

4e3

3
ðcos4M � cos2MÞ

þe4
�

25
192

cosM �
225
128

cos3M þ
625
384

cos5M
�

þ O
�
e5�

(62) 

Clearly all terms except � e are periodic, so hcosfi ¼ � e and hsinfi¼0. The solution for cosE will also be needed, also shown to fourth order in 
eccentricity 

cosE ¼ cosM þ
e
2
ðcos2M � 1Þ þ

3e2

8
ðcos3M � cosMÞ þ

e3

3
ðcos4M � cos2MÞ

þe4
�

5
192

cosM �
45
128

cos3M þ
125
384

cos5M
�

þ O

�

e5
� (63) 

All terms except � e/2 average out over an orbital period, so hcosEi ¼ � e/2. 
Next we write each perturbation term and find their effect on the evolution of the orbital elements. 

A.3.1.1. Semimajor axis. Substituting Eq. (58) and Eq. (59) into Eq. (57), and plugging into Eq. (51) yields 

χa;drag ¼ �
na

τ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

�
1þ 2ecosf þ e2� (64) 

Now taking the orbital average using Eq. (62), we find the contribution of the orbital drag to the evolution of the semimajor axis 

hχaidrag ¼ �
na
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

(65)  

A.3.1.2. Angular momentum. The angular momentum evolution is given by Eq. (46), depending only on the azimuthal part T of the perturbation. 
Considering the drag 

dh
dt
¼ �

h
τ (66)  

A.3.1.3. Eccentricity. The evolution of eccentricity is given by Eq. (47) and Eq. (53). The effect of the drag on the eccentricity is, given Eq. (57) 

χe;drag ¼ �
na
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

1
τ ðeþ cosf þ cosEþ ecosEcosf Þ (67)  

taking the average, hcosfi ¼ � e cancels with e. The average hcosEi ¼ � e/2, so we have 

hχeidrag ¼ �
na
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

1
τ ð � e=2þ ehcosEcosf i Þ (68)  

the average hcosE cos fi is found from the equation of the orbit 

r ¼ að1 � ecosEÞ (69) 

Multiplying by cosf 

rcosf ¼ aðcosf � ecosEcosf Þ (70)  

given xc ¼ r cos f and averaging 
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hxci ¼ aðhcosf i � ehcosEcosf iÞ (71) 

since hcosfi ¼ � e and hxci ¼ � 3ae/2, this results in 

hcosEcosf i ¼
1
2
: (72) 

The term in parentheses in Eq. (68) thus cancels out exactly, so hχeidrag ¼ 0 and the orbital drag does not affect the eccentricity. 

A.3.1.4. Inclination. The evolution of inclination is given by Eq. (48). The orbital drag does not have a normal component, so it cannot affect the 
inclination. 

A.3.1.5. Longitude of ascending node. The expression for the evolution of the longitude of the ascending node is similar to the one for the inclination. 
The orbital drag does not have a normal component and thus has no effect. 

A.3.1.6. Argument of pericenter. The evolution of the argument of pericenter is given by Eq. (50) and Eq. (56). For the orbital drag, the contribution is 

χω;drag ¼
2ansinf

τ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p (73)  

which integrates to zero. The orbital drag does not lead to precession. 

A.3.1.7. Orbital drag: summary. The orbital drag contribution is 

hχaidrag ¼ �
na
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

(74)  

hχhidrag ¼ �
h
τ (75)  

hχeidrag ¼ 0 (76)  

hχIidrag ¼ 0 (77)  

hχΩidrag ¼ 0 (78)  

hχωidrag ¼ 0 (79)  

A.3.2. Wind 

As for the wind, it is always blowing from the y
^

direction in Hill Cartesian coordinates x. We transform between these coordinates and the 

(Cartesian) orbital plane coordinates xcart ¼ xce
^
þycq

^
þzch

^

according to 

xcart ¼ RhðωÞReðIÞRhðΩÞx (80) 

Where Rj is the rotation matrix about axis j. To pass to the orbital plane in cylindrical coordinates r
^
ϕ
^

h
^

, we rotate clockwise around h
^

by the true 
anomaly, i.e., xcyl ¼ Rh(� f)xcart. We thus have 

xcyl ¼ Rx ¼ Rhðω � f ÞReðIÞRhðΩÞx (81)  

where R ¼ Rh(ω � f)Re(I)Rh(Ω) is the full rotation matrix for the transformation. For the wind, the vector is in the y
^

direction; for completeness we give 

the transformations of the local Hill coordinate unit vectors x
^
¼ ½1;0; 0�T, y

^
¼ ½0; 1;0�T, and z

^
¼ ½0; 0;1�T to the coordinate system r

^
ϕ
^

h
^

of the binary 
orbit 

Rx^ ¼

2

4
cosIsinΩsinðf � ωÞ þ cosðf � ωÞcosΩ
� cosΩsinðf � ωÞ þ cosIsinΩcosðf � ωÞ

sinΩsinI

3

5; (82)  

Ry^ ¼

2

4
cosIcosΩsinðf � ωÞ � cosðf � ωÞsinΩ
sinΩsinðf � ωÞ þ cosIcosΩcosðf � ωÞ

cosΩsinI

3

5; (83)  

and 

Rz^ ¼

2

4
� sinIsinðf � ωÞ
� sinIcosðf � ωÞ

cosI

3

5 (84) 

Thus, for the wind 
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2

4
R
T
N

3

5

wind

¼ �
u
τ

2

4
cosIcosΩsinðf � ωÞ � cosðf � ωÞsinΩ
sinΩsinðf � ωÞ þ cosIcosΩcosðf � ωÞ

cosΩsinI

3

5 (85)  

A.3.2.1. Semimajor axis. The influence on the semimajor axis, given by Eq. (51), is 

χa;wind
¼ cosIcosΩ½cosðf � ωÞþ ecosω � þ sinΩ½sinðf � ωÞ � esinω � (86) 

Taking the orbital average, 

hcosðf � ωÞ i ¼ hcosf icosωþhsinf icosω ¼ � ecosω; (87)  

hsinðf � ωÞ i ¼ hsinf icosω � hcosf isinω ¼ esinω: (88) 

Averaged in the inner orbit, all terms in Eq. (86) cancel, i.e. 

hχaiwind ¼ 0 (89) 

The external wind has no secular effect on the semimajor axis. 

A.3.2.2. Angular momentum. For the wind 

dh
dt
¼ �

u
τ r½sinΩsinðf � ωÞþ cosIcosΩcosðf � ωÞ � (90)  

¼ �
u
τ ½sinΩðycosω � xsinωÞþ cosIcosΩðxcosωþ ysinωÞ� (91)  

where x ¼ r cos f and y ¼ r sin f are the Cartesian coordinates in the reference frame of the orbit. Given the Keplerian solution, they are x ¼ a(cos E � e) 
and y ¼ a sin E. Using the expansion for E, it results in hxi ¼ � 3ae/2 and hyi¼0. So, 

dhhi
dt
¼ � ae

3u
2τ ðcosIcosΩcosω � sinΩsinωÞ (92)  

A.3.2.3. Eccentricity. For the wind, according to Eq. (85) 

χe;wind ¼
u
τ fcosIcosΩ½cosEcosðf � ωÞþ cosω � þ sinΩ½cosEsinðf � ωÞ � sinω � g (93)  

given hcosE cos fi ¼ 1/2 and hcosE sin fi ¼ 0, the average over f is 

hχeiwind ¼
3u
2τ ðcosIcosΩcosω � sinΩsinωÞ (94) 

The evolution of the orbitally-averaged eccentricity is thus due to the wind only, according to 

dhei
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
3u
2τ ðcosIcosΩcosω � sinΩsinωÞ (95)  

A.3.2.4. Inclination. The evolution of inclination is given by Eq. (48). For the wind 

dI
dt
¼ �

u
hτ acosΩsinI½cosðf þωÞ �ð1 � ecosEÞ (96) 

This expression expands to 

dI
dt
¼ �

u
hτ acosΩsinIðcosωcosf � sinωsinf � ecosωcosEcosf þ esinωcosEsinf Þ (97) 

On averaging, the second and last terms in parentheses cancel out. The first and third terms add up to � 3/2ae cos ω. The evolution of the orbit- 
averaged inclination due to the wind is thus 

dhIi
dt
¼

3u
2τ

ae
h

cosΩcosωsinI (98)  

A.3.2.5. Longitude of ascending node. The effect of the wind is 

dΩ
dt
¼ �

u
hτ acosΩsinðf þωÞð1 � ecosEÞ (99)  

which expands to 
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dΩ
dt
¼ �

u
hτ acosΩðcosωsinf þ sinωcosf � ecosωcosEsinf � esinωcosEcosf Þ (100) 

On averaging, the first and third terms in parentheses cancel out. The second and last terms add up to � 3/2ae sin ω. The evolution of the orbit- 
averaged longitude of ascending node is thus 

dhΩi
dt
¼

3u
2τ

ae
h

cosΩsinω (101)  

A.3.2.6. Argument of pericenter. The evolution of the argument of pericenter is given by Eq. (50) and Eq. (56). For the wind 

χω ¼
u
τ

n
cosf ½cosIcosΩsinðf � ωÞ � cosðf � ωÞsinΩ �

�

�
2þ ecosf
1þ ecosf

�

sinf ½sinΩsinðf � ωÞ þ cosIcosΩcosðf � ωÞ �
� (102)  

we expand and group the terms as 

χω ¼
u
τ

�

�

�

cosIcosΩsinωþ cosωsinΩ
��

cos2f þ sin2f
�

2þ ecosf
1þ ecosf

��

þ

�

cosIcosΩcosω � sinΩsinω
��

1 �
�

2þ ecosf
1þ ecosf

��

cosfsinf
� (103)  

upon integration the second term is periodic in M and cancels. We are left with 

χω ¼
u
τ ðcosIcosΩsinωþ cosωsinΩÞA

�
e
�

(104)  

where 

A
�

e
�

¼ �
�
cos2f

�
�

�

sin2f
�

2þ ecosf
1þ ecosf

��

(105)  

a function of the eccentricity alone. The orbital evolution of the argument of pericenter is thus 

dhωi
dt
¼

u
τ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

ane

��

A
�

e
�

�
3
2

ae
h

�

cosIcosΩsinωþA
�

e
�

cosωsinΩ
�

(106)  

A.3.2.7. Wind: summary. The external wind contribution is 

hχaiwind ¼ 0 (107)  

hχhiwind ¼ � ae
3u
2τ ðcosIcosΩcosω � sinΩsinωÞ (108)  

hχeiwind ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
3u
2τ ðcosIcosΩcosω � sinΩsinωÞ (109)  

hχIiwind ¼
3u
2τ

ae
h

cosΩcosωsinI (110)  

hχΩiwind ¼
3u
2τ

ae
h

cosΩsinω (111)  

hχωiwind ¼
u
τ ðcosIcosΩsinωþ cosωsinΩÞAðeÞ (112)  

A.3.3. Coriolis force 
The Coriolis force, being an inertial force, cannot alter the energy or angular momentum of the orbit. As a consequence, eccentricity is also un-

modified. Its effect is to lead to an apparent precession of the orbit in the Hill co-rotating coordinate frame. We work out the perturbations introduced 
by the Coriolis Given Eqs. (84) 
2

4
R
T
N

3

5

Coriolis

¼ 2nout

2

4
r _ϕcosI
� _rcosI

r _ϕsinIsinðf � ωÞ � _rsinIcosðf � ωÞ

3

5 (113)  
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A.3.3.1. Semimajor axis. For the semimajor axis, using Eq. (51), 

χh;Coriolis ¼ 2noutcosI½r _ϕesinf � _rð1þ ecosf Þ � (114)  

and given Eq. (58) and Eq. (59) the two terms cancel identically: χa ¼ 0. 

A.3.3.2. Angular momentum. The influence of the Coriolis force on angular momentum is 

χh;Coriolis ¼ �
2noutna2ecosI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ð1 � ecosEÞsinf (115)  

which is a periodic function of M and integrates to zero. 

A.3.3.3. Eccentricity. The influence of the Coriolis force on eccentricity is 

χe;Coriolis ¼
2noutnacosI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ð1 � ecosEÞsinf (116)  

which is a periodic function of M and integrates to zero. 

A.3.3.4. Inclination. The influence of the Coriolis force on inclination is 

χI ;Coriolis ¼ �
2noutna2sinI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ½esinω � sinðf � ωÞ �cosðf þωÞð1 � ecosEÞ (117) 

The product sin(f � ω) cos (f þ ω) ¼ cos f sin f � cos ω sin ω, so 

χI ;Coriolis ¼ �
2noutna2sinI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ψI (118)  

where 

ψI ¼
�
ð1þ ecosf Þsinωcosω � esinω2sinf � cosfsinf

�
ð1 � ecosEÞ (119) 

And, expanding these terms, 

ψI ¼
�
1þ ecosf � ecosE � e2cosfcosE

�
sinωcosω

� esinω2sinf � cosfsinf þ e2sinω2cosEsinf � ecosEcosfsinf (120) 

Integrating, all terms but the first one cancel out, leaving only 

hψIi ¼
�
1 � e2�sinωcosω (121) 

The evolution of inclination due to the Coriolis force is thus 

χI ;Coriolis ¼ � 2noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

sinIsinωcosω (122)  

A.3.3.5. Longitude of ascending node. The influence of the Coriolis force on the longitude of the ascending node is 

χΩ;Coriolis ¼ �
2noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ½esinω � sinðf � ωÞ �sinðf þωÞð1 � ecosEÞ (123) 

The product sin(f � ω) sin (f þ ω) ¼ � 1/2 cos 2f þ 1/2 cos 2ω, so 

χΩ;Coriolis ¼ �
2noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ψΩ (124)  

where ψΩ ¼ (e sin f cos ω sin ω þ esin2ω cos f þ 1/2 cos 2f � 1/2 cos 2ω)(1 � e cos E)expanding these terms, 

ψΩ ¼ esinωcosωsinf þ esin2ωcosf þ 1
�

2cos2f � 1
�

2cos2ω
� e2sinωcosωsinfcosE � e2sin2ωcosfcosE � ecosEcos2f

�
2þ ecosEcos2ω

�
2 (125) 

Integrating, we are left with 

hψΩi ¼
1
2

�

� 3e2sin2ω �
�

1þ
e2

2

�

cos2ωþ
Dr

a
cos2f

E�

(126)  

writing 
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B
�

e
�
¼
Dr

a
cos2f

E
(127) 

the evolution of longitude of ascending node due to the Coriolis force is 

χΩ;Coriolis ¼ �
noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

�

� 3e2sin2ω �
�

1þ
e2

2

�

cos2ωþB
�

e
��

(128)  

A.3.3.6. Argument of pericenter. The evolution of the argument of pericenter is given by 

χω;Coriolis ¼ �
2noutnacosI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p ψω (129)  

with 

ψω ¼ cosf þ ecos2f þ esin2f
�

2þ ecosf
1þ ecosf

�

(130)  

upon integration 

hψωi ¼ � eþ e
�
cos2f

�
þ e
�

sin2f
�

2þ ecosf
1þ ecosf

��

(131)  

a function of the eccentricity alone. The evolution of the argument of pericenter is thus 

χω;Coriolis ¼ �
2noutnacosI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p C

�

e
�

(132)  

where C(e) ¼ hψωi. 

A.3.3.7. Coriolis force: summary. The Coriolis force contribution is 

hχaiCoriolis ¼ 0 (133)  

hχhiCoriolis ¼ 0 (134)  

hχeiCoriolis ¼ 0 (135)  

hχIiCoriolis ¼ � 2noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

sinIsinωcosω (136)  

hχΩiCoriolis ¼ �
noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

�

� 3e2sin2ω �
�

1þ
e2

2

�

cos2ωþB
�

e
��

(137)  

hχωiCoriolis ¼ �
2noutnacosI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p C

�

e
�

(138)  

A.4. Orbital evolution 

Putting it all together (ignoring centrifugal force and shear) 

dhai
dt
¼ �

2hai
τ ; (139)  

dhei
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
3u
2τ ðcosIcosΩcosω � sinΩsinωÞ; (140)  

dhhi
dt
¼ �

hhi
τ � ae

3u
2τ ðcosIcosΩcosω � sinΩsinωÞ; (141)  

dhIi
dt
¼

3u
2τ

ae
h

cosΩcosωsinI � 2noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

sinIsinωcosω; (142)  

dhΩi
dt
¼

3u
2τ

ae
h

cosΩsinω � noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

�

� 3e2sin2ω �
�

1þ
e2

2

�

cos2ωþB
�

e
��

; (143)  
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dhωi
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

ane

(
u
τ

�

A
�

e
�

�
3
2

ae
h

�

½cosIcosΩsinωþ AðeÞcosωsinΩ�

�
2noutnacosI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p C

�

e
�

þ
2noutna2cosI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

�

�
3
2
e2sin2ω � 1

2

�

1þ
e2

2

�

cos2ωþ BðeÞ
2

��
(144) 

The system is over-specified because a and h define the eccentricity. Still we keep the equation for h for physical insight. 
A.4.1. Isolated binary (nout¼0) 

Let us consider first the case where nout¼0, i.e., an isolated binary not in orbit around the Sun. The equations reduce to 

dhai
dt
¼ �

2hai
τ ; (145)  

dhei
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
3u
2τ ðcosIcosΩcosω � sinΩsinωÞ; (146)  

dhhi
dt
¼ �

hhi
τ � ae

3u
2τ ðcosIcosΩcosω � sinΩsinωÞ; (147)  

dhIi
dt
¼

3u
2τ

ae
h

cosΩcosωsinI; (148)  

dhΩi
dt
¼

3u
2τ

ae
h

cosΩsinω; (149)  

dhωi
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

ane

��

A
�

e
�

�
3u
2τ

ae
h

�

cosIcosΩsinωþA
�

e
�

cosωsinΩ
�

(150) 

For an orbit originally at Ω ¼ ω¼0, the derivatives of hΩi, and hωi vanish. This is a remarkable effect: there is no precession of the argument of 
pericenter or longitude of the ascending node for this choice of parameters. The system reduces to 

dhai
dt
¼ �

2hai
τ ; (151)  

dhei
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
3u
2τcosI; (152)  

dhhi
dt
¼ �

hhi
τ � ae

3u
2τcosI; (153)  

dhIi
dt
¼

3u
2τ

ae
h

sinI; (154)  

which is not decoupled because eccentricity and inclination depend on each other. For zero initial inclination the derivative of hIi also cancels, and the 
system further reduces to 

dhai
dt
¼ �

2hai
τ ; (155)  

dhei
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

na
3u
2τ; (156)  

dhhi
dt
¼ �

hhi
τ � ae

3u
2τ: (157) 

This is a system that loses energy in a slow timescale given by τ/2, whereas the angular momentum decreases (thus eccentricity increases) in the 
faster timescale given by the wind. The general solution for I ¼ Ω ¼ ω¼0 is 

haðtÞi ¼ a0e� 2t=τ; (158)  

heðtÞi ¼ cos
�

cos� 1ðe0Þþ
3u
2

ffiffiffiffiffi
a0

μ

r
�
1 � e� t=τ�

�

; (159)  

hhðtÞi ¼ e� t=τ
�

h0 � 1þ cos
�

3
2
a0u
�
1 � e� t=τ�

��

; (160)  

which we show graphically in Fig. 13, the agreement between the analytical and numerical solutions is excellent. 

A.4.2. Hierarchical binary (nout 6¼ 0) 
For an orbit originally at Ω ¼ ω¼0, the derivatives of hΩi, and hωi are 
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dhΩi
dt
¼

noutna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p D

�

e
�

; (161)  

dhωi
dt
¼ noutF

�

e
�

cosI: (162)  

D
�

e
�

¼

��

1þ
e2

2

�

� B
�

e
��

(163)  

F
�

e
�

¼
1
e

�

�

�

1þ
e2

2

�

þB
�

e
��

þC
�

e
�

(164)  

if e and I are slow-growing, then ω ¼ F(e) cos Inoutt. The mean anomaly of the outer orbit Mout ¼ noutt is thus related to the argument of pericenter. 

ω ¼ FðeÞcosI Mout (165) 

Thus, if eccentricity and inclination are slow growing in comparison to Mout we can approximate 

dω � FðeÞcosI dMout (166)  

if we define an average over the solar period, 

~X ¼
1

2π

Z 2π

0
XdMout (167) 

This average can be related to an average in argument of pericenter 

~X ¼
1

2πFðeÞcosI

Z 2π

0
Xdω (168) 

Thus, averaging over a precession period (related to the solar period), the equations for the other parameters reduce to 

d~a
dt
¼ �

2~a
τ (169)  

d~e
dt
¼ 0 (170)  

d~h
dt
¼ �

~h
τ (171)  

d~I
dt
¼ 0 (172) 

The eccentricity and inclination variation cancel out, as well as the wind term in the angular momentum evolution. During a solar orbit period, the 
wind makes the eccentricity grow and angular momentum decay for half the orbit, and then decrease by the same amount in the other half. Energy and 
angular momentum decay at the timescale of orbital drag τ while keeping the eccentricity constant. This behavior is shown in Fig. 14. Averaged over 
orbital and solar period, only the orbital drag remains and the solution is simply 

~a ¼ a0e� 2t=τ; (173)  

~e ¼ e0; (174)  

~h ¼ h0e� t=τ; (175)  

~I ¼ I0: (176)  

Appendix B. Drag time 

When the mean free path of the gas is much smaller than the object, the gas can be treated like a fluid and viscous interactions at the surface of the 
body lead to the emergence of drag. The mean free path is 

λmfp ¼
μmolmH

ρσcoll
(177)  

where σcoll ¼ 2 � 10� 15cm2 is the collisional cross section of molecular hydrogen, μmol ¼ 2.3 is the mean molecular weight for a 5:2 hydrogen to helium 
mixture, ρ is the gas volume density, and mH stands for the atomic mass unit. 

Using the MMSN temperature and column density (Weidenschilling, 1977; Hayashi, 1981; Chiang and Goldreich, 1997) 

T ¼ 280K
� r

1AU

�� 0:5
(178) 
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Σ ¼ 1700g cm� 2
� r

1AU

�� 1:5
; (179)  

one finds λmfp ¼ 0.5 km at 45 AU in the MMSN, and the drag regime of continuous flow is valid. This regime splits into two regimes depending on the 
Reynolds number, linear and quadratic, with a smooth transition in between. Stokes drag happens for small Reynolds number (Re ≲ 1), where the drag 
is dominated by viscosity at the surface of the body. The transition to quadratic drag happens at high Reynolds numbers (Re ≳ 800), where ram 
pressure dominates. The Reynolds number is 

Re ¼ 2Rρ∣Δv∣=μvisc; (180)  

where Δv is the relative velocity between the body and the gas and 

μvisc ¼

ffiffiffiffiffi
8

9π

r

ρcsλmfp (181)  

is the dynamical viscosity, with cs being the sound speed. Substituting this expression into Re, with Δv ¼ ηvk for the wind, leads to 

Re ¼
3
4
∣
∂lnP
∂lnr

∣
σcoll

mH

R
μmol

Σ
r

� 3∣
∂lnP
∂lnr

∣
�

R
10km

��μmol

2

�� 1
�

Σ
5gcm� 2

�� r
45AU

�� 1� p
(182)  

where p � � ∂ ln Σ/∂ ln r is the power law of the column density, positively defined. For the MMSN, Re � 10 at 45 AU, and thus we are very close to 
Stokes law. The drag time is 

τ ¼ 4λmfpρ�
3ρCDcs

1
MaKn

(183)  

where Kn ¼ λmfp/2R is the Knudsen number and Ma ¼ ∣ Δv ∣ /cs the flow Mach number. For Stokes flow at low Reynolds number CD¼24/Re, leading to 

τ ¼ 16
18

ρ�R2

cs

σcoll

μmH
: (184) 

The resulting drag times are τ1¼4.72 � 107 yr and τ2¼3.13 � 107 yr for the pre-merger lobes of MU69 in the low Reynolds number regime. For 
arbitrary Reynolds number the drag coefficient CD is given by Eq. (23), leading to the values of τ1¼2.87 � 107 yr and τ2¼2.00 � 107 yr quoted in 
Section 2.3.1. 

Appendix C. Single vs double averaged secular dynamics 

Here we consider the applicability of secular dynamics, specifically Kozai-Lidov oscillations, for KBO binaries. The standard formulae for Kozai 
oscillations occur in the double-averaged (in time) approximation, taken to quadrupole order (in distance). For KBOs the binary separation a is much 
less than the distance to the Sun aout ’ 44.5 AU (numerical value for MU69 adopted). Thus the quadrupole approximation should be more than 
sufficiently accurate. 

As for the double-averaged approximation we consider the criterion given in (Liu et al., 2019, see their Eq. (20), and references therein) which 
states that the eccentricity change timescale should be longer than the outer period (thus making is appropriate to take the secular average over the 
outer orbit): 

tkozai
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

≳Tout (185)  

where no subscript refers to the inner binary and the subscript ‘out’ refers to the outer (object 3) orbit. 

tkozai ¼ n� 1ðm1 þ m2Þ

m3

�aout

a

�3�
1 � e2

out

�3=2 

¼
n

n2
out

�
1 � e2

out

�3=2 (186) 

We ignore eout ~ 0.04. We want to express Eq. (185) as a condition on 

fH �
a

RH
¼

a
aout

�
3m3

m1 þ m2

�1=3

¼ 31=3
�nout

n

�2=3
(187)  

with RH the inner binary Hill radius. 
The largest eccentricity of the inner orbit, e, is given by the collision condition at perihelion: 

1 � e ¼ bc=a≪1: (188) 

The collisional impact parameter bc will depend in detail on the sizes and shapes of the two bodies. We thus define an order unity radius ratio fD �

W. Lyra et al.                                                                                                                                                                                                                                    



Icarus xxx (xxxx) xxx

24

bc=D where ðm1þm2Þ ¼ ðπ=8Þρ�D
3 defines the effective diameter of the binary assuming equal densities. For a large sphere and a much smaller body, 

fD ¼ 1/2, and for two equal size spheres, fD ¼ 1/21/3. From Porter et al. (2019) for the dimensions of MU69 fD ¼ 1 for a collision along the long axis. 
Using 1 þ e ’ 2, we calculate 

1 � e2
max ’

2bc

a
¼

2fDD
fHRH

¼
4fD

fH

�
3
π

�1=3�n2
out

Gρ�

�1=3

: (189) 

We can express (again ignoring eout): 

Tout

tkozai
¼

2πf 3=2
Hffiffiffi
3
p (190)  

and thus from Eq. (185) the double averaged approximation should be valid for 

fH≲
31=3

π7=12fD
1=4
�

n2
out

Gρ�

�1=12

’ 0:09
�

0:5g cm� 3

ρ�

�1=12�44:5 AU
aout

�1=4
(191) 

So double-average secular dynamics should be applicable to approximately fH ≲ 0.1. 
By comparison the single-averaged approximation is valid for 

tkozai
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2
p

≳T (192)  

or in Hill units and again for eout ¼ 0 

fH≲
�

3
π

�1=3

f 1=7
D

�
n2

out

Gρ�

�1=21

’ 0:3
�

0:5g cm� 3

ρ�

�1=21�44:5AU
aout

�1=7
(193) 

We show in Fig. 10 a comparison between the double-averaged model and the single-averaged model for four values of the Hill radius fraction: 
0.04, 0.1, 0.2, and 0.4. The upper panels show the eccentricity, and the lower panels the inclination. One full Kozai-Lidov cycle is shown for each 
semimajor axis. The double-averaged model is as presented in Eq. (1) to Eq. (4), ignoring the tides and dissipation terms. The single-averaged 
equations are (Vashkov’Yak, 2005; Shevchenko, 2017) 

da
dMβ

¼ 0 (194)  

de
dMβ

¼ 10e
�
1 � e2�1=2�sin2Isin2ωþ

�
2 � sin2I

�
sin2ωcos2Ψ þ 2cosIcos2ωsin2Ψ

�
(195)  

dI
dMβ

¼ � 2sinI
�
1 � e2�� 1=2�5e2cosIsin2ωð1 � cos2ΨÞ �

�
2þ e2ð3þ 5cos2ωÞ

�
sin2Ψ

�
(196)  

dω
dMβ

¼ 2
�
1 � e2�� 1=2

�

4þ e2 � 5sin2Iþ 5
�
sin2I � e2�cos2ωþ 5

�
e2 � 2

�
cosIsin2ωsin2Ψ  

þ
�
5
�
2 � e2 � sin2I

�
cos2ω � 2 � 3e2þ 5sin2I

�
cos2Ψ

�
(197)  

dΨ
dMβ

¼ � ν � 2
�
1 � e2�� 1=2��2þ e2ð3 � 5cos2ωÞ

�
cosIð1 � cos2ΨÞ � 5e2sin2ωsin2Ψ

�
(198)  

where ν � 16/3(n/nout), and the quantity Mβ � βM is a scaled mean anomaly where β � 3/16(nout/n)2. The quantity Ψ is related to the longitude of the 
ascending node via Ψ � Ω � νMβ. 

We reproduce that the double-averaged model is applicable up to 0.1 RH. Beyond this radius the single-averaged model starts to show oscillations 
on top of the double-average prediction, of increasing amplitude as we increase the semimajor axis. These extra oscillations, reaching values of ec-
centricity beyond the predicted by the double-averaged model, will make contact more likely. Our solution based on the double-averaged model is 
thus a conservative estimate of contact. Notice also that the bound of the inclination oscillations also changes, allowing for values lower than the 
original inclination, which is not possible in the double-average model. As a result we cannot draw conclusions on final inclination based on the 
double-averaged model. 

W. Lyra et al.                                                                                                                                                                                                                                    



Icarus xxx (xxxx) xxx

25

References 

Arnold, H.D., 1911. Limitations Imposed by Slip and Inertia Terms upon Stokes’s Law for 
the Motion of Spheres through Liquids. Phys. Rev. Ser. I32, 233. https://doi.org/ 
10.1103/PhysRevSeriesI.32.233. 

Benecchi, S.D., Noll, K.S., Grundy, W.M., Buie, M.W., Stephens, D.C., Levison, H.F., 2009. 
The correlated colors of transneptunian binaries. Icarus 200, 292–303. https://doi. 
org/10.1016/j.icarus.2008.10.025 arXiv:0811.2104.  

Brown, M.E., 2001. The Inclination Distribution of the Kuiper Belt, AJ 121, 
pp. 2804–2814. https://doi.org/10.1086/320391. 

Burns, J.A., 1976. Elementary derivation of the perturbation equations of celestial 
mechanics. Am. J. Phys. 44, 944–949. https://doi.org/10.1119/1.10237. 

Carruba, V., Burns, J.A., Nicholson, P.D., Gladman, B.J., 2002. On the inclination 
distribution of the Jovian irregular satellites. Icarus 158, 434–449. https://doi.org/ 
10.1006/icar.2002.6896. 

Cheng, N.S., 2009. 2009 comparison of formulas for drag coefficient and settling velocity 
of spherical particles. In: Powder Technology, 189, pp. 395–398. https://doi.org/ 
10.1016/j.powtec.2008.07.006. 

Chiang, E.I., Goldreich, P., 1997. Spectral energy distributions of T Tauri stars with 
passive circumstellar disks. ApJ 490, 368–376. https://doi.org/10.1086/304869 
(arXiv:astro-ph/9706042).  

Eggleton, P.P., Kiseleva-Eggleton, L., 2001. Orbital Evolution in Binary and Triple Stars, 
with an Application to SS Lacertae, ApJ 562, pp. 1012–1030. https://doi.org/ 
10.1086/323843 arXiv:astro-ph/0104126.  

Fabrycky, D., Tremaine, S., 2007. Shrinking binary and planetary orbits by Kozai cycles 
with tidal friction. ApJ 669, 1298–1315. https://doi.org/10.1086/521702 arXiv: 
0705.4285.  

Fraser, W.C., Bannister, M.T., Pike, R.E., Marsset, M., Schwamb, M.E., Kavelaars, J.J., 
Lacerda, P., Nesvorný, D., Volk, K., Delsanti, A., Benecchi, S. Lehner, M.J., Noll, K., 
Gladman, B., Petit, J.M., Gwyn, S., Chen, Y.T., Wang, S.Y., Alexand ersen, M., 
Burdullis, T., Sheppard, S., Trujillo, C., 2017. All planetesimals born near the Kuiper 
belt formed as binaries. Nature Astronomy 1, 0088. doi: https://doi.org/10.10 
38/s41550-017-0088, arXiv:1705.00683. 

Goldreich, P., Ward, W.R., 1973. The formation of planetesimals. ApJ 183, 1051–1062. 
https://doi.org/10.1086/152291. 

Grundy, W.M., Noll, K.S., Nimmo, F., Roe, H.G., Buie, M.W., Porter, S.B., Benecchi, S.D., 
Stephens, D.C., Levison, H.F., Stansberry, J.A., 2011. Five new and three improved 
mutual orbits of transneptunian binaries. Icarus 213, 678–692. doi: https://doi.org 
/10.1016/j.icarus.2011.03.012, arXiv:1103.2751. 

Hayashi, C., 1981. Structure of the solar nebula, growth and decay of magnetic fields and 
effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 
70, 35–53. https://doi.org/10.1143/PTPS.70.35. 

Johansen, A., Youdin, A., 2007. Protoplanetary disk turbulence driven by the streaming 
instability: nonlinear saturation and particle concentration. ApJ 662, 627–641. 
https://doi.org/10.1086/516730 (arXiv:astro-ph/0702626).  

Johansen, A., Oishi, J.S., Mac Low, M.M., Klahr, H., Henning, T., Youdin, A., 2007. Rapid 
planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025. 
doi: https://doi.org/10.1038/nature06086, arXiv:0708.3890. 

Jutzi, M., Asphaug, E., 2015. The shape and structure of cometary nuclei as a result of 
low-velocity accretion. Science 348, 1355–1358. https://doi.org/10.1126/science. 
aaa4747. 

Kavelaars, J., Jones, L., Gladman, B., Parker, J.W., Petit, J.M., 2008. The Orbital and 
Spatial Distribution of the Kuiper Belt, p. 59. 

Kiseleva, L.G., Eggleton, P.P., Mikkola, S., 1998. Tidal friction in triple stars. MNRAS 
300, 292–302. https://doi.org/10.1046/j.1365-8711.1998.01903.x. 

Kozai, Y., 1962. Secular perturbations of asteroids with high inclination and eccentricity. 
AJ 67, 591. https://doi.org/10.1086/108790. 

Krijt, S., Schwarz, K.R., Bergin, E.A., Ciesla, F.J., 2018. Transport of CO in Protoplanetary 
Disks: Consequences of Pebble Formation, Settling, and Radial Drift, ApJ 864, p. 78. 
https://doi.org/10.3847/1538-4357/aad69b arXiv:1808.01840.  

Landau, L.D., Lifshitz, E.M., 1987. Fluid Mechanics.. 
Lidov, M.L., 1962. The evolution of orbits of artificial satellites of planets under the 

action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 
719–759. https://doi.org/10.1016/0032-0633(62)90129-0. 

Lisse, C., Young, L., Cruikshank, D., 2019. Icarus. 
Liu, B., Lai, D., Wang, Y.H., 2019. Binary mergers near a supermassive black hole: 

relativistic effects in triples. ApJL 883, L7. https://doi.org/10.3847/2041-8213/ 
ab40c0 arXiv:1906.07726.  

Margot, J.L., Pravec, P., Taylor, P., Carry, B., Jacobson, S., 2015. Asteroid Systems: 
Binaries, Triples, and Pairs, pp. 355–374. https://doi.org/10.2458/azu_uapress_ 
9780816532131-ch019. 

Marohnic, J., Richardson, D.C., McKinnon, W.B., Agrusa, H., J.V., D., Cheng, A., Stern, S., 
Olkin, C., Weaver, H., Spencer, J., the New Horizons Science team, 2020. the New 
Horizons Science team. In: Constraining the final merger of contact binary (486958) 
Arrokoth with soft-sphere discrete element simulations. Icarus. 

Mazeh, T., Shaham, J., 1979. The orbital evolution of close triple systems: the binary 
eccentricity. A&A 77, 145. 

McKinnon, W.B., Stern, S.A., Weaver, H.A., Spencer, J.R., Buie, M.W., Beyer, R.A., 
Bierson, C.J., Binzel, R.P., Britt, D., Cruikshank, D.P., Hamilton, D.P., Howett, C.J.A., 
Keane, J.T., Lauer, T.R., Kavelaars, J.J., Parker, A.H., Parker, J.W., Porter, S.B., 
Robbins, S.J., Schenk, P.M., Showalter, M.R., Singer, K.N., Umurhan, O.M., White, O. 
L., Moore, J.M., Grundy, W.M., Gladstone, G.R., Olkin, C.B., Verbiscer, A.J., New 
Horizons Science Team, 2019. A pristine “contact binary” in the Kuiper Belt: 
implications from the new horizons encounter with 2014 MU69 (“Ultima Thule”). In: 
Lunar and Planetary Science Conference, p. 2767. 

Millikan, R.A., 1911. The Isolation of an Ion, a Precision Measurement of its Charge, and 
the Correction of Stokes’s Law. Phys. Rev. Ser. I32, 349–397. https://doi.org/ 
10.1103/PhysRevSeriesI.32.349. 

Millikan, R.A., 1923. Coefficients of Slip in Gases and the Law of Reflection of Molecules 
from the Surfaces of Solids and Liquids. Phys. Rev. 21, 217–238. https://doi.org/ 
10.1103/PhysRev.21.217. 

Morbidelli, A., Nesvorny, D., 2019. Kuiper Belt: Formation and Evolution arXiv e-prints, 
arXiv:1904.02980 arXiv:1904.02980.  

Murray, C.D., Dermott, S.F., 1999. Solar System Dynamics. 
Naoz, S., 2016. The eccentric Kozai-Lidov effect and its applications. ARA&A 54, 

441–489. https://doi.org/10.1146/annurev-astro-081915-023315 arXiv: 
1601.07175.  

Naoz, S., Perets, H.B., Ragozzine, D., 2010. The observed orbital properties of binary 
minor planets. ApJ 719, 1775–1783. https://doi.org/10.1088/0004-637X/719/2/ 
1775. arXiv:1001.2558.  

Nesvorný, D., 2011. Young solar system’s fifth giant planet? ApJL 742, L22. https://doi. 
org/10.1088/2041-8205/742/2/L22 arXiv:1109.2949.  

Nesvorný, D., Alvarellos, J.L.A., Dones, L., Levison, H.F., 2003. Orbital and collisional 
evolution of the irregular satellites. AJ 126, 398–429. https://doi.org/10.1086/ 
375461. 

Nesvorný, D., Youdin, A.N., Richardson, D.C., 2010. Formation of Kuiper Belt Binaries by 
Gravitational Collapse, AJ 140, pp. 785–793. https://doi.org/10.1088/0004-6256/ 
140/3/785 arXiv:1007.1465.  

Nesvorný, D., Li, R., Youdin, A.N., Simon, J.B., Grundy, W.M., 2019. Trans-Neptunian 
binaries as evidence for planetesimal formation by the streaming instability. Nature 
Astronomy 349. https://doi.org/10.1038/s41550-019-0806-z. 

Noll, K.S., Grundy, W.M., Chiang, E.I., Margot, J.L., Kern, S.D., 2008a. Binaries in the 
Kuiper Belt, p. 345. 

Noll, K.S., Grundy, W.M., Stephens, D.C., Levison, H.F., Kern, S.D., 2008b. Evidence for 
two populations of classical transneptunian objects: the strong inclination 
dependence of classical binaries. Icarus 194, 758–768. https://doi.org/10.1016/j. 
icarus.2007.10.022 arXiv:0711.1545.  

Perets, H.B., Fabrycky, D.C., 2009. On the triple origin of blue stragglers. ApJ 697, 
1048–1056. https://doi.org/10.1088/0004-637X/697/2/1048 arXiv:0901.4328.  

Perets, H.B., Murray-Clay, R.A., 2011. Wind-shearing in gaseous protoplanetary disks 
and the evolution of binary Planetesimals. ApJ 733, 56. https://doi.org/10.1088/ 
0004-637X/733/1/56 arXiv:1103.1629.  

Perets, H.B., Naoz, S., 2009. Kozai cycles, tidal friction, and the dynamical evolution of 
binary minor planets. ApJL 699, L17–L21. https://doi.org/10.1088/0004-637X/ 
699/1/L17 arXiv:0809.2095.  

Petit, J.M., Kavelaars, J.J., Gladman, B.J., Margot, J.L., Nicholson, P.D., Jones, R.L., 
Parker, J.W., Ashby, M.L.N., Campo Bagatin, A., Benavidez, P., Coffey, J., 
Rousselot, P., Mousis, O., Taylor, P.A., 2008. The extreme Kuiper Belt binary 2001 
QW322. Science 322, 432. https://doi.org/10.1126/science.1163148. 

Petit, J.M., Kavelaars, J.J., Gladman, B.J., Jones, R.L., Parker, J.W., Van Laerhoven, C., 
Nicholson, P., Mars, G., Rousselot, P., Mousis, O., Marsden, B., Bieryla, A., 
Taylor, M., Ashby, M.L.N., Benavidez, P., Campo Bagatin, A., Bernabeu, G., 2011. 
The Canada-France ecliptic plane survey—full data release: the orbital structure of 
the Kuiper Belt. AJ 142, 131. https://doi.org/10.1088/0004-6256/142/4/131 
arXiv:1108.4836.  

Porter, S.B., Grundy, W.M., 2012. KCTF evolution of trans-neptunian binaries: 
connecting formation to observation. Icarus 220, 947–957. https://doi.org/ 
10.1016/j.icarus.2012.06.034 arXiv:1206.5841.  

Porter, S., Beyer, R., Keane, J., Umurhan, O., Bierson, C., Grundy, W., Buie, M., 
Showalter, M., Spencer, J., Stern, A., Weaver, H., Olkin, C., Parker, J., Verbiscer, A., 
2019. The shape and pole of (486958) 2014 MU69. In: EPSC-DPS Joint Meeting 
2019 (pp. EPSC–DPS2019–311).  

Prandtl, L., 1905. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen 
des dritten internationalen Mathematiker-Kongresses in Heidelberg. Teubner, 
Leipzig, Germany, pp. 484–491. 

Ragozzine, D., Brown, M.E., 2009. Orbits and masses of the satellites of the dwarf planet 
Haumea (2003 EL61). AJ 137, 4766–4776. https://doi.org/10.1088/0004-6256/ 
137/6/4766 arXiv:0903.4213.  

Ragozzine, D.A., 2009. Orbital Dynamics of Kuiper Belt Object Satellites, a Kuiper Belt 
Family, and Extra-Solar Planet Interiors (Ph.D. thesis. -).  

Scheeres, D.J., 1994. Dynamics about uniformly rotating triaxial ellipsoids: applications 
to asteroids. Icarus 110, 225–238. https://doi.org/10.1006/icar.1994.1118. 

Shevchenko Ivan, I., 2017. The Lidov-Kozai Effect - Applications in Exoplanet Research 
and Dynamical Astronomy. Astrophys. Space Sci. Libr. 441 https://doi.org/10.1007/ 
978-3-319-43522-0. 

Stern, S.A., Weaver, H.A., Spencer, J.R., Olkin, C.B., Gladstone, G.R., Grundy, W.M., 
Moore, J.M., Cruikshank, D.P., Elliott, H.A., McKinnon, W.B., et al., 2019. Initial 
results from the new horizons exploration of 2014 MU69, a small Kuiper Belt object. 
Science 364, aaw9771. https://doi.org/10.1126/science.aaw9771. 

Thirouin, A., Sheppard, S.S., 2019. Light curves and rotational properties of the pristine 
cold classical Kuiper Belt objects. AJ 157, 228. https://doi.org/10.3847/1538-3881/ 
ab18a9 arXiv:1904.02207.  

Thomas, F., Morbidelli, A., 1996. The Kozai resonance in the outer solar system and the 
dynamics of long-period comets. Celest. Mech. Dyn. Astron. 64, 209–229. https:// 
doi.org/10.1007/BF00728348. 

Umurhan, O., Keane, J., Porter, S., 2019. Near surface temperature modeling of 2014 
MU69. In: EPSC-DPS Joint Meeting 2019. 

Vashkov’Yak, M.A., 2005. Particular solutions of the Singly Averaged Hill problem. 
Astron. Lett. 31, 487–493. https://doi.org/10.1134/1.1958113. 

W. Lyra et al.                                                                                                                                                                                                                                    

https://doi.org/10.1103/PhysRevSeriesI.32.233
https://doi.org/10.1103/PhysRevSeriesI.32.233
https://doi.org/10.1016/j.icarus.2008.10.025
https://doi.org/10.1016/j.icarus.2008.10.025
https://doi.org/10.1086/320391
https://doi.org/10.1119/1.10237
https://doi.org/10.1006/icar.2002.6896
https://doi.org/10.1006/icar.2002.6896
https://doi.org/10.1016/j.powtec.2008.07.006
https://doi.org/10.1016/j.powtec.2008.07.006
https://doi.org/10.1086/304869
https://doi.org/10.1086/323843
https://doi.org/10.1086/323843
https://doi.org/10.1086/521702
https://doi.org/10.1038/s41550-017-0088
https://doi.org/10.1038/s41550-017-0088
https://doi.org/10.1086/152291
https://doi.org/10.1016/j.icarus.2011.03.012
https://doi.org/10.1016/j.icarus.2011.03.012
https://doi.org/10.1143/PTPS.70.35
https://doi.org/10.1086/516730
https://doi.org/10.1038/nature06086
https://doi.org/10.1126/science.aaa4747
https://doi.org/10.1126/science.aaa4747
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0065
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0065
https://doi.org/10.1046/j.1365-8711.1998.01903.x
https://doi.org/10.1086/108790
https://doi.org/10.3847/1538-4357/aad69b
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf6000
https://doi.org/10.1016/0032-0633(62)90129-0
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0090
https://doi.org/10.3847/2041-8213/ab40c0
https://doi.org/10.3847/2041-8213/ab40c0
https://doi.org/10.2458/azu_uapress_9780816532131-ch019
https://doi.org/10.2458/azu_uapress_9780816532131-ch019
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf2037
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf2037
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf2037
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf2037
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0110
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0110
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0115
https://doi.org/10.1103/PhysRevSeriesI.32.349
https://doi.org/10.1103/PhysRevSeriesI.32.349
https://doi.org/10.1103/PhysRev.21.217
https://doi.org/10.1103/PhysRev.21.217
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0120
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0120
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0125
https://doi.org/10.1146/annurev-astro-081915-023315
https://doi.org/10.1088/0004-637X/719/2/1775
https://doi.org/10.1088/0004-637X/719/2/1775
https://arxiv.org/abs/1001.2558
https://doi.org/10.1088/2041-8205/742/2/L22
https://doi.org/10.1088/2041-8205/742/2/L22
https://doi.org/10.1086/375461
https://doi.org/10.1086/375461
https://doi.org/10.1088/0004-6256/140/3/785
https://doi.org/10.1088/0004-6256/140/3/785
https://doi.org/10.1038/s41550-019-0806-z
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0160
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0160
https://doi.org/10.1016/j.icarus.2007.10.022
https://doi.org/10.1016/j.icarus.2007.10.022
https://doi.org/10.1088/0004-637X/697/2/1048
https://doi.org/10.1088/0004-637X/733/1/56
https://doi.org/10.1088/0004-637X/733/1/56
https://doi.org/10.1088/0004-637X/699/1/L17
https://doi.org/10.1088/0004-637X/699/1/L17
https://doi.org/10.1126/science.1163148
https://doi.org/10.1088/0004-6256/142/4/131
https://doi.org/10.1016/j.icarus.2012.06.034
https://doi.org/10.1016/j.icarus.2012.06.034
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0200
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0200
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0200
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0200
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf5000
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf5000
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf5000
https://doi.org/10.1088/0004-6256/137/6/4766
https://doi.org/10.1088/0004-6256/137/6/4766
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0210
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0210
https://doi.org/10.1006/icar.1994.1118
https://doi.org/10.1007/978-3-319-43522-0
https://doi.org/10.1007/978-3-319-43522-0
https://doi.org/10.1126/science.aaw9771
https://doi.org/10.3847/1538-3881/ab18a9
https://doi.org/10.3847/1538-3881/ab18a9
https://doi.org/10.1007/BF00728348
https://doi.org/10.1007/BF00728348
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0240
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0240
https://doi.org/10.1134/1.1958113


Icarus xxx (xxxx) xxx

26

Veillet, C., Parker, J.W., Griffin, I., Marsden, B., Doressoundiram, A., Buie, M., Tholen, D. 
J., Connelley, M., Holman, M.J., 2002. The binary Kuiper-belt object 1998 WW31. 
Nature 416, 711–713. https://doi.org/10.1038/416711a. 

von Karman, T., 1911. Uber den Mechanismus des Widerstands, den ein bewegter Korper 
in einer Flussigkeit. Gottinger Nachr. Math. Phys. Kl. 509–517. 

Wandel, O., Kley, W., Schafer, C., Malamud, U., Grishin, E.W., Perets, H., 2019. 
Numerical simulations of the formation of Ultima Thule. In: EPSC-DPS Joint Meeting 
2019. 

Weidenschilling, S.J., 1977. The distribution of mass in the planetary system and solar 
nebula. ApSS 51, 153–158. https://doi.org/10.1007/BF00642464. 

Youdin, A.N., Goodman, J., 2005. Streaming instabilities in protoplanetary disks. ApJ 
620, 459–469. https://doi.org/10.1086/426895 (arXiv:astro-ph/0409263).  

Youdin, A., Johansen, A., 2007. Protoplanetary disk turbulence driven by the streaming 
instability: linear evolution and numerical methods. ApJ 662, 613–626. https://doi. 
org/10.1086/516729 (arXiv:astro-ph/0702625).  

Youdin, A.N., Shu, F.H., 2002. Planetesimal formation by gravitational instability. ApJ 
580, 494–505. https://doi.org/10.1086/343109 (arXiv:astro-ph/0207536).  

W. Lyra et al.                                                                                                                                                                                                                                    

https://doi.org/10.1038/416711a
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf5010
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf5010
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0255
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0255
http://refhub.elsevier.com/S0019-1035(20)30213-X/rf0255
https://doi.org/10.1007/BF00642464
https://doi.org/10.1086/426895
https://doi.org/10.1086/516729
https://doi.org/10.1086/516729
https://doi.org/10.1086/343109

	Evolution of MU69 from a binary planetesimal into contact by Kozai-Lidov oscillations and nebular drag
	1 Introduction
	2 Model
	2.1 The KTJD model
	2.2 Nebular drag
	2.3 Parameters of MU69
	2.3.1 Drag time


	3 Results
	3.1 Inability of drag alone to lead to contact in the Kuiper belt
	3.2 Kozai-driven collapse in the Kuiper belt
	3.3 Gas-enhanced Kozai

	4 Conclusion
	Acknowledgements
	Appendix A Orbital solution with nebular drag
	A.1 Single particle equivalent system
	A.2 Numerical validation of the single particle equivalent
	A.3 Orbital solution
	A.3.1 Orbital drag
	A.3.1.1 Semimajor axis
	A.3.1.2 Angular momentum
	A.3.1.3 Eccentricity
	A.3.1.4 Inclination
	A.3.1.5 Longitude of ascending node
	A.3.1.6 Argument of pericenter
	A.3.1.7 Orbital drag: summary

	A.3.2 Wind
	A.3.2.1 Semimajor axis
	A.3.2.2 Angular momentum
	A.3.2.3 Eccentricity
	A.3.2.4 Inclination
	A.3.2.5 Longitude of ascending node
	A.3.2.6 Argument of pericenter
	A.3.2.7 Wind: summary

	A.3.3 Coriolis force
	A.3.3.1 Semimajor axis
	A.3.3.2 Angular momentum
	A.3.3.3 Eccentricity
	A.3.3.4 Inclination
	A.3.3.5 Longitude of ascending node
	A.3.3.6 Argument of pericenter
	A.3.3.7 Coriolis force: summary


	A.4 Orbital evolution
	A.4.1 Isolated binary (nout=0)
	A.4.2 Hierarchical binary (nout ≠ 0)


	Appendix B Drag time
	Appendix C Single vs double averaged secular dynamics
	References


