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Look again at that dot. That’s here. That’s home. That’s us. On it ev-
eryone you love, everyone you know, everyone you ever heard of, ev-
ery human being who ever was, lived out their lives. The aggregate of
our joy and suffering, thousands of confident religions, ideologies, and
economic doctrines, every hunter and forager, every hero and coward,
every creator and destroyer of civilization, every king and peasant, ev-
ery young couple in love, every mother and father, hopeful child, in-
ventor and explorer, every teacher of morals, every corrupt politician,
every "superstar," every "supreme leader," every saint and sinner in the
history of our species lived there - on a mote of dust suspended in a
sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the
rivers of blood spilled by all those generals and emperors so that, in
glory and triumph, they could become the momentary masters of a
fraction of a dot. Think of the endless cruelties visited by the inhabi-
tants of one corner of this pixel on the scarcely distinguishable inhabi-
tants of some other corner, how frequent their misunderstandings, how
eager they are to kill one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we
have some privileged position in the Universe, are challenged by this
point of pale light. Our planet is a lonely speck in the great enveloping
cosmic dark. In our obscurity, in all this vastness, there is no hint that
help will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is
nowhere else, at least in the near future, to which our species could
migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the
Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building
experience. There is perhaps no better demonstration of the folly of hu-
man conceits than this distant image of our tiny world.

Carl Sagan (1934-1996)
Pale Blue Dot



The Pale Blue Dot photograph, reproduced on the previous page, was taken by
the spacecraft Voyager 1, on February 14, 1990, from its vantage point approx-
imately 40 AU (6 billion km) away from the Earth, and 32� above the ecliptic.
The Earth takes up less than a single pixel.
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1. Introduction

The worlds come into being as follows: many bodies of all sorts and shapes
move from the infinite into a great void; they come together there and produce

a single whirl, in which, colliding with one another and revolving in all
manner of ways, they begin to separate like to like.

Leucippus (480-420? B.C.)

Stars shine due to the production of energy by nuclear reactions oc-
curring in their center. However, there is yet another source of energy
in astrophysical objects: the release of gravitational binding energy, a
process known as accretion.
Indeed, before the recognition that the Sun is powered by nuclear

reactions and that the Earth keeps its warm interior due to radioac-
tive decay of heavy nuclides, accretion was pointed out by Helmholtz
(1854) and Lord Kelvin (Thomson, 1862) as the only possible source of
their energy: the Sun was continuously shrinking and the Earth was
still radiating away the heat from accretion. It led, of course, to too
short timescales, with the Sun and the Earth being as young as a few
tens of millions of years. Geologists, however, knew of rocks that were
considerably older than that, and biologist Charles Darwin certainly
needed much longer timescales to explain the origin of the species.
Unfortunately, rock dating was no match for Kelvin’s lengthy calcula-
tions, backed up not only by the known physics of the time, but also by
his immense influence and prestige. Only with the advent of nuclear
physics and the realization of the superb amounts of energy the atomic
nucleus stored, could accretion be dismissed as the main energy source
for the Sun and the Earth, and the question be settled - in favor of the
geologists and evolutionary biologists1.
There are classes of objects, however, for which accretion is the domi-

nant source of energy. Indeed, accretion onto a central object is believed
to power some of the most energetic phenomena in the Universe. We

1Kelvin actually argued against evolution through natural selection, based on the youth
of the Earth and the Sun (Thomson 1862, 1897). We can invert the argument to illus-
trate the power of Darwinian evolution theory: it can be said that it predicted that stars
should be powered by some other mechanism.

9



can estimate, for instance, the energy release of a particle of mass m
falling in the gravitational potential well of a black hole. The gravi-
tational potential energy difference from infinity to the last stable or-
bit Rls � 3Rc (where Rc=2GM�c2 is the Schwarzschild radius, beyond
which light cannot escape) is

Ep �
GMm
Rls

�
1
6
mc2, (1.1)

i.e., an appreciable fraction of its rest energy. Half of it stays as kinetic
energy in the accretion disk. The other half, approximately 9% of the
rest energy, is radiated away. The standard theory of black hole ac-
cretion (Lynden-Bell 1969, Lynden-Bell & Pringle 1974) shows by sim-
ple order of magnitude estimates that a black hole of 108 � 109 solar
masses, accreting at a rate of 1 M

�
yr�1 will radiate copious amounts

of energy at the rate of 1047L
�
, thus explaining why quasars are seen

all the way across the Universe.
Yet, although a theory of nuclear fusion is firmly established to

explain stellar luminosities, our current understanding of accretion
processes is just marginal. This is because the physics of accretion is,
in some respects, considerably more complicated than the already
extreme physics occurring in stellar cores. It involves, for instance,
non-linear advection - that renders most mathematical techniques
useless - and turbulence, for which not even a consistent physical
theory exists. Legend tells that distinguished physicist Werner
Heisenberg found this combination to be such a difficult subject that
after completing his doctoral thesis Über Stabilität und Turbulenz von
Flüssigkeitsströmen (On the Stability and Turbulence of Fluid Flow;
Heisenberg 1924), he sought refuge in quantum mechanics.
The problem of accretion is intimately related to the field of planet

formation and extrasolar planets, one of the most fascinating topics
of contemporary astronomy. Early mathematical considerations by
Laplace (1796) applied Newton’s theory of universal gravitation and
laws of motion to a slowly rotating spherical cloud, implying that it
should collapse under its own weight. Due to conservation of angular
momentum, the gas settles into a flat disk orbiting the condensing
proto-sun in the center. In this solar nebula, planets are taking shape.
Nevertheless, it was later realized that the correct picture is far
from that trivial. As interstellar clouds are huge in size, even the
slightest rotation means far too much angular momentum. Even a
formed disk stores in its innermost astronomical unit two orders of
magnitude more angular momentum than a star can accommodate
before achieving break-up velocities. In order to accrete, the gas must
somehow get rid of its angular momentum. Even more difficult is to

10



explain the leap of 14 orders of magnitude in size from micron-sized
interstellar dust grains to giant planet Jupiter.
The modern paradigm requires the presence of turbulence in the

disk in order to provide both the anomalous viscosity necessary for
star formation and the trapping of solids needed to quickly congregate
the dust into progressively larger bodies. The turbulence is brought
about by themagneto-rotational instability (MRI; Chandrashekar 1961,
Balbus & Hawley 1991, Balbus & Hawley 1998), whereby the combina-
tion of a weak (subthermal) magnetic field and the shear present in
the Keplerian rotation of the gas de-stabilizes the flow. The concurrent
processes that lead to planet formation, once believed to be a progress
of deterministic steps, must instead take place in this turbulent envi-
ronment. Starting with micron-sized dust grains, coagulation models
(Brauer et al. 2007) predict growth to centimeter (pebbles) and meter
size (boulders) by electromagnetic hit-and-stick mechanisms (mostly
van der Walls forces). However, growth beyond this size is halted,
for two reasons. First, collisions between boulders lead to destruction
rather than growth (Benz 2000). Second, because of the balance be-
tween pressure, rotation and gravity, the gas orbits the star slightly
slower than an independent body at the same distance would. Conse-
quently, pebbles and boulders tend to outpace the gas. The resulting
headwind drains their angular momentum, leading them into spiral
trajectories towards the star, in timescales as short as a hundred years
at 1AU (Weidenschilling 1977a). Avoiding this ill fate of the building
blocks of planets stands as one of the major unsolved problems in the
theory of planet formation.
A distinct possibility to solve these problems is gravitational insta-

bility of the layer of solids (Safronov 1969; Lyttleton 1972; Goldreich &
Ward 1973; Youdin & Shu 2002). When the dust aggregates had grown
to centimeter and meter size, the gas drag is reduced and the solids are
pushed to the midplane of the disk due to the stellar gravity. Although
such bodies do not have enough mass to attract each other individ-
ually, the sedimentation increases the solids-to-gas ratio by orders of
magnitude when compared to the interstellar value of 10�2. It was
then hypothesized (Safronov 1969) that due to the high densities of
this midplane layer, the solids could collectively achieve critical num-
ber density and undergo direct gravitational collapse. Such a scenario
has the advantage of occurring on very rapid timescales, thus avoiding
the radial drift barrier.
This picture was nonetheless shown to be simplistic, in the view

that even low levels of turbulence in the disk preclude the midplane
layer of solids from achieving densities high enough to trigger the
gravitational instability (Weidenschilling 1980). Even in the absence of
self-sustained turbulence such as the one generated by the MRI, the

11



solids themselves can generate turbulence due to the backreaction of
the drag force onto the gas. Such turbulence can be brought about by
Kelvin-Helmholtz instabilities due to the vertical shear the dense layer
of solids induces on the gas (Weidenschilling 1980; Weidenschilling
& Cuzzi 1993; Sekiya 1998; Johansen et al. 2006), or by streaming in-
stabilities induced by the radial migration of solids particles (Youdin
& Goodman 2005; Paardekooper 2006; Youdin & Johansen 2007; Jo-
hansen & Youdin 2007). In the turbulent motion, the solids are stirred
up by the gas, forming a vertically extended layer where the stellar
gravity is balanced by turbulent diffusion (Dubrulle et al. 1995; Ga-
raud & Lin 2004).
But if turbulence precludes direct gravitational collapse through sed-

imentation, it was also shown that it allows for it in an indirect way. As
solid particles concentrate in high pressure regions (Haghighipour &
Boss 2003), the solids-to-gas ratio can be enhanced in the transient tur-
bulent gas pressure maxima, potentially reaching values high enough
to trigger gravitational collapse. Numerical calculations by Johansen et
al. (2007) show that this is indeed the case, with the particles trapped
in the pressure maxima generated by the MRI collapsing into dwarf
planets when the gravitational interaction between particles is consid-
ered. They also show that the MRI is not necessarily needed, since the
weak turbulence brought about by the streaming instability itself can
lead to enough clumping under certain conditions.
Such models, however, ignored the possibility of fragmentation of

particles upon collisions. As the turbulence enhances the velocity dis-
persion of solids, destructive collisions become more likely. Moreover,
upon destruction, the smaller fragments are tightly coupled to the gas
and therefore dragged away from the midplane (Johansen et al. 2008),
reducing the effective amount of solid material available for collapse.
The fragmentation problemwould be less severe in areas where ran-

dom velocities are reduced. Anticyclonic vortices similar to Jupiter’s
Great Red Spot (Cassini 1666, Schwabe 1831, Marcus 1988) have long
been believed to favour planet formation since they enhance the local
shear and induce a net force on solid particles towards their centers
(Barge & Sommeria 1995). Klahr & Bodenheimer (2006) further argue
that anticyclonic vortices may potentially be less turbulent than the
ambient gas, which in turn would lead to velocity dispersions that are
low enough to prevent fragmentation of the boulders upon collisions.
The formation of vortices in disk is a direct consequence of the

presence of long-lived axisymmetric pressure maxima. Such maxima
launch inertial waves (Rossby waves in planetary atmospheres being
a close analog) that upon breaking, coalesce into regions of large
anti-cyclonic vorticity (Lovelace et al. 1999, Li et al. 2000, Li et al.
2001). Such favorable pressure maxima can occur in the following

12



scenario. The magneto-rotational instability, as the name suggests,
depends on the coupling between the gas and the magnetic field,
which in turn just occurs in the presence of sufficient ionization. In
the inner disk this condition is met, since high temperatures provide
enough free electrons through collisional ionization of alkali metals.
In the outer regions the gas is cold but the gas density is low enough
for cosmic rays to penetrate all the way to the disk’s midplane and
provide ionization throughout. In an intermmediate region, however,
the gas is too cold and too dense to be ionized either way. The result
is that, when threaded by a weak magnetic field, the disk displays
MRI-active regions in the ionized layers, and a MRI-dead zone in the
neutral parts around the midplane (Gammie 1996, Miller & Stone
2000; Oishi et al. 2007). Matter flows towards the star due to the high
turbulent viscosity of the MRI-active layers, but upon hitting the
border of the dead zone, it reaches a region of slow accretion and the
flow stalls. Nevertheless, as the flow proceeds unabridgedly from
the outer active regions, a surface density maximum forms, which
launches the inertial waves and triggers the formation of vortices
(Varnière & Tagger 2006, Inaba & Barge 2006).
As we see, the words of Leucippus quoted in the opening of this

introduction are not exactly without foundation within the modern
theory of planet formation. Substitute “many bodies of all sorts and
shapes” by gas and dust, then “single whirl” by protoplanetary disk and
finally “revolving in all manner of ways” by turbulence (here broadly
defined to include long-lived vortices), and it could have figured in
the introduction of a paper in the latest issue of Astronomy & Astro-
physics. This attests not to clarividence of the ancient Greeks, but to the
antiquity of the question that we try to answer in this thesis: How did
the Earth come to be? Virtually every society in recorded history tried
at some point to answer this question. Given the huge sample space,
some of the educated guesses of the time are bound to contain some
truth.
In this project, I aimed at providing an answer to this ancient

question by constructing state-of-the-art global simulations of
turbulent protoplanetary disks that could be used to explore the
implications of this scenario for planet formation. The gas disk
is modelled in a fixed grid in Cartesian, cylindrical or spherical
coordinates, while the solids are treated as numerical particles. In
paper I we built MRI-unstable global models of protoplanetary
disks, confirming the predictions of local models that meter-size
particles concentrate enough in the transient pressure maxima of
the turbulence. In paper II we built on the vortex-producing dead
zone model of Varnière & Tagger (2006) by including interacting
centimeter and meter sized particles to their 2D model, showing that
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the particle accumulation inside the vortices is so efficient that it
leads to gravitational collapse of the cluster of particles. As a result,
a planet formation burst ensues in the disk, leading to the formation
of 300 gravitationally bound planetary embryos, 20 of them being
more massive than Mars. Their mass spectrum follows a power law
of index �2.3�0.2. In paper III we addressed, among other issues, the
fragmentation problem by calculating the collisional velocity history
of the particles that compose the embryos, finding that the vast
majority of them never experienced a collision with another particle
at relative speeds faster than 1 ms�1. This result lends further support
to the long-held idea that anti-cyclonic vortices provide a superbly
favorable environment for planet formation.
We also went on to show, in paper IV, that the same mechanism oc-

curs in disks with giant planets, where vortices are also excited (de Val-
Borro et al. 2007). The gravitational collapse of the solids, in this case,
leads to the formation of Super-Earths, that could well be the cores of
a second generation of giant planets. An interesting by-product of this
work was the realization that collapse of solids into Earth mass planets
also occurs at the stable Lagrangian points of the orbit of a giant planet.
This raises the possibility that some of the gas giant extra-solar planets
discovered so far may have Trojan Earth-mass companions, which in
turn allows for the addition of solar-type stars with giant planets in
Earth-like orbits to the list of potentially habitable stellar systems.
The simulations were performed with the PENCIL CODE. The code,

including improvements done for the Thesis work, is publicly avail-
able under a GNU open source license and can be downloaded at
http://www.nordita.org/software/pencil-code/
In the following chapters we provide what intends to be a pedagog-

ical review of the underlying physics of the simulations used to ob-
tain the results presented in the papers. In chapter 2 we introduce the
model equations and outline the main results of the standard theory
of viscous accretion disks, which constitute a starting point for more
advanced models. This is followed by a review of the aerodynamics of
embedded solid bodies, in chapter 3. In chapter 4 we introduce the ba-
sic physics of the magneto-rotational instability. Chapter 5 deals with
departure from ideal MHD, introducing resistive effects and the emer-
gence of dead zones in disks, the Rossby wave instability, and vortex
formation. In chapter 6 we review the results of planet-disk interac-
tion and explore the consequences for a second event of planet forma-
tion. Chapter 7 provides a brief outline of ongoing works and future
projects I intend to pursue. Numerical issues relevant to this work are
discussed in the appendices.
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2. Dynamical Equations

When I meet God, I am going to ask him two questions:
Why relativity? Why turbulence?

I really believe he will have an answer for the first.

Werner Heisenberg

The equations we solve will be quoted through the Thesis. The gas
follows the equations of magnetohydrodynamics (MHD)

Dρg

Dt
� �ρg∇ � u (2.1)

DS
Dt

�
1

ρgT

�
∇ � �K∇T� � ημ0 J2 � 2νρgS2

�
(2.2)

Du
Dt

� �∇Φ � ρ�1g
�∇p� J � B � ρp fd �∇ �

�
2νρgS

��
(2.3)

�A
�t

� u � B � ημ0 J (2.4)

p � ρgc2s	γ (2.5)

Φ � Φsg �
N�
i

GMi

r � ri


(2.6)

∇2Φsg � 4πG
�
ρg � ρp

�
. (2.7)

In the above equations, the operator

D
Dt

�
�

�t
� u �∇ (2.8)

represents the advective derivative. The quantities ρg and u are the
density and velocity of the gas, T is the temperature, cs is the sound
speed, p is the pressure, and S=cv�ln T � �γ � 1� ln ρ� its specific en-
tropy, where γ is the adiabatic index and cv the specific heat capacity
at constant volume. ν is the kinematic viscosity, K is the heat conduc-
tivity, S is the rate-of-strain tensor, A is the magnetic vector potential,
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B � ∇� A is the magnetic field, η is the resistivity, μ0 is the magnetic
permissivity, J=μ�10 ∇�B is the volume current density, G is the gravi-
tational constant, Φ is the gravitational potential,M is the mass of each
of the N massive bodies (the Sun and the planets, for instance).
The quantity ρp � npm�

stand for the bulk density of solids, where
m

�
is the mass of an individual particle and np their number density.

The solids follow the Lagrangian equations

dvp
dt

� �∇Φ� f d (2.9)

dxp
dt

� vp (2.10)

fd � �
1
τs

�
vp � u

�
(2.11)

where xp and vp are the position and velocity of each particle. Solids
and gas exchange momentum through the drag force fd. The quantity
τs is the stopping time, representing the timescale on which the solids
couple to the gas, explained in detail on the next chapter.
In Eq. (2.2)-(2.4) we write the usual heat conductivity, viscosity and

resistivity terms, but in practice we employ higher order versions of
these dissipation terms, to maximize the inertial range of the simula-
tions. In addition, we also add explicit diffusion (also high-order) to
the continuity equation, since this equation has no dissipation term
to stabilize high frequency modes. These terms are described in Ap-
pendix A. The Poisson solver for Eq. (2.7) is detailed in Appendix B.
Throughout this work, we write cylindrical coordinates as (s,φ,z)

and spherical coordinates as (r,φ,θ), where θ is the polar angle, φ the
azimuthal angle, and z is the direction perpendicular to the midplane
of the disk. In 2D situations, where s=r, we use the more common r
designation.

2.1 Viscous disk solution
The equilibrium of an unmagnetized accretion disk orbiting a central
mass is found directly from the momentum equation. In cylindrical co-
ordinates and under the conditions of azimuthal symmetry (���φ=0),
and initial centrifugal balance ur�t0�=0, they read
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�s� s �φ2 � �
1
ρ

�p
�s

�
GM
r3
s (2.12)

s�φ � �ν

�
s
�2 �φ

�s2
� 3

� �φ

�s

�
(2.13)

�z � �
1
ρ

�p
�z

�
GM
r3
z (2.14)

where we ignored the particles’ backreaction terms, which only be-
come important when ρp � ρg. The self-gravity terms were also ig-
nored since the disk is assumed of low mass.
Equation (2.12) gives the condition for initial centrifugal balance

(�s=0)

Ω2 � Ω2
K �

1
sρ
�p
�s

(2.15)

where we substituted ΩK � GM�r3 for the Keplerian angular
frequency and Ω � �φ for the true, pressure-corrected, sub-Keplerian,
angular frequency.
Equation (2.13) reflects the fact that viscosity is continuously depriv-

ing the disk of angular momentum and making it accrete onto the cen-
tral star. Although, as the viscosity ν is small, this effect takes many
orbits to settle into a steady inflow.
The third equation gives the condition for vertical hydrostatic equi-

librium (�z=0)

1
ρ

�p
�z

��Ω2
Kz (2.16)

which, if the sound speed does not depend on z, is readily integrated
to yield the density stratification

ρ�r,z� � ρ�r�e�γz2�2H2
(2.17)

where H=cs�ΩK is the pressure scale height. As the dependency of the
sound speed with radius (we usually use cs�r�1�2) is less steep than
the dependency of ΩK with radius (�r�3�2), H is invariably an increas-
ing function of distance, so protoplanetary disks are flared. It follows
that the disk’s aspect ratio is

h 	
H
r
�
cs
uK

, (2.18)

17



and since the Keplerian flow is very supersonic, the above equation
implies h � 1, so the disk is geometrically thin.
Equation (2.17) is valid near the midplane, since we assumed that

ΩK did not depend on z, which is not strictly valid. The expression is
similar considering the full dependency of ΩK on z

ρ�r,z� � ρ�r�e�γz2��H2�1�sinθ�� (2.19)

and Eq. (2.17) is recovered near the midplane where θ, the polar angle,
is � π�2. A similar expression, also yielding Eq. (2.17) at θ � π�2 is
found if the sound speed is also allowed to depend on z.

2.1.1 Steady state viscous evolution
Under the viscous force, a small radial velocity will ensue in the flow
and the equilibrium solution will turn into an non-static but steady
state, with non-zero mass accretion rate

�m�s� �

"
A

ρg u � n̂dA (2.20)

� �2πs
ˆ

ρg�s,z�us�s,z�dz. (2.21)

where we assume the surface A to be a cylinder at a radial distance s
from the origin, with n̂=ŝ. If us does not depend on z, then

�m�r� � �2πrΣgur, (2.22)

where Σg=
´

ρgdz is the surface density and we use r instead of s since
in 2D the two quantities are equal. Steady state solutions exist if �m does
not depend on radius (so that matter does not pile up anywhere in the
disk).
The steady-state radial velocity can be found from the axisymmet-

ric and vertically integrated continuity and angular momentum equa-
tions, which read

	Σ

	t



1
r
	

	r
�rΣur� � 0 (2.23)

	

	t

�
Σr2Ω

�



1
r
	

	r

�
Σr3Ωur

�
�

1
r
	

	r

�
νΣr3

dΩ

dr

�
(2.24)
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For a steady state disk, the time derivatives are zero, so we have

rΣur � c1 (2.25)

Σr3Ωur � νΣr3
dΩ

dr
� c2 (2.26)

where c1 and c2 are constants of integration. It is readily seen from
Eq. (2.22) that c1=- �m�2π, so the mass accretion rate is constant. The
constant c2 is evaluated by noticing that at the surface of the star (r�),
the accreting gas is dragged into rigid rotation, so dΩ�dr=0 at r=r�. We
thus have

c2 � c1r2�Ω�r�� � c1�GMr��1�2 (2.27)

we substitute this back into Eq. (2.26). Noticing that Ω � ΩK and
dΩK�dr=-3ΩK�2r, we find

νΣ �
�m

3π

�
1�

�r�
r

�1�2�
(2.28)

which throughout the disk, where (r � r�), reduces to

�m � 3πνΣ (2.29)

The viscous inflow velocity ur is found by substituting Eq. (2.29) into
Eq. (2.22)

ur ��
3ν

2r
(2.30)

2.2 The need for turbulence
Equation (2.29) allows for a direct comparison with observations. Ob-
servations of T-Tauri disks reveal mass accretion rates of the order of
� 10�8M

�
yr�1 (e.g., Sicilia-Aguilar et al. 2004). Using this value for �m

and the typical densities of the minimum mass solar nebula at �1AU,
103 g cm3 (Weidenschilling 1977b), the viscosity needed is

ν �
�m

10Σ
� 1014 cm2 s�1. (2.31)

The immediate source of viscosity one can think of is the natural,
microscopic, molecular viscosity. We can estimate it from dimensional
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analysis. Viscosity has dimension of cm2 s�1, so we can estimate it
(e.g., Spitzer 1962), in terms of a typical length l and velocity v. For
molecular viscosity, these are the mean free path of the medium and
the thermal velocity. The mean free path λ is a function of the number
density of molecules and of their collisional cross section σcoll

λ �
1

nσcoll
. (2.32)

For the inner regions of a protoplanetary disk, n � 1014cm�3 and the
cross section of molecular hydrogen is σcoll � 2 � 10�15cm�2, so λ �
10cm. The typical sound speed is of the order of 1 kms�1, so that
ν=107 cm2 s�1.
This is seven orders of magnitude lower than required. Other physi-

cal mechanism, that acts as an effective viscosity, must be invoked to
explain accretion.
Turbulence has long been known to provide viscosity due to the in-

teraction of the turbulent eddies. Such “eddy viscosity” comes natu-
rally from the equation of motion when we consider turbulence by
splitting the quantities ψ into mean �ψ and perturbation δψ (i.e., ψ=�ψ�
δψ). Then writing the (incompressible) Euler equation

ρ�tui � ρFi � �j�pδij � ρuiuj� (2.33)

in terms of the mean quantities, we obtain

ρ�t �ui � ρ�Fi � �j��pδij � ρ �ui �uj � ρ�δuiδuj�. (2.34)

Equation. (2.34) was first obtained by Reynolds (1895) and is there-
fore called Reynolds equation. We see that all perturbations average out
except for the term ρ�δuiδuj. Comparing Eq. (2.34) with the Navier-
Stokes equation (Eq. (2.3)), we see that this term, the Reynolds stress,
behaves exactly like the rate-of-strain tensor and therefore transports
angular momentum. We will return to this point in chapter 4.
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3. Aerodynamics of solid bodies

Leave no stone unturned!

Euripides commands the solar nebula
Heraclidae, circa 428 B.C.

Solid particles and gas interchange momentum due to interactions
that happen at the surface of the solid body. The many processes that
can occurs are generally described by the collective name of “drag” or
“friction”. Due to the details involved, a general description of drag
forces derived from first principles is not available, since simplifica-
tions are often needed to arrive at linear equations suitable for analyti-
cal manipulation. Nevertheless, great insight can be obtained from lim-
iting cases. Consider a solid body of cross section σ travelling through
a fluid medium of uniform density ρ with velocity Δv. In a time in-
terval dt, it sweeps a volume dV � σ�Δv�dt. In the reference frame of
the particle, the gas molecules are travelling ballistically with velocity
�Δv. If all their momentum is transferred to the particle, the force is

Fd �
dp
dt

� ρdV
dv
dt

��ρσ�Δv�Δv. (3.1)

In aerodynamics it is usual to define a factor CD that takes into account
the deviations from this idealized picture

Fd ��0.5σCDρ�Δv�Δv. (3.2)

The factor 0.5 comes in because it is common to define the drag force
in terms of kinetic energy instead of momentum. Considering spheres
of radius a

�
, their cross section is πa2

�
. The acceleration fd that appears

in the equation of motion is found upon dividing Fd by the mass of the
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particle 4�3πa3
�
ρ
�
, where ρ

�
is its internal density

fd ��

�
3ρCD�Δv�
8a

�
ρ
�

�
Δv. (3.3)

The quantity in parenthesis has dimension of time�1 and therefore rep-
resents the timescale within which the particle couples to the gas flow

τs �
8a
�
ρ
�

3ρCD�Δv�
. (3.4)

The drag then can be cast in the compact form

fd ��
1
τs

Δv (3.5)

and we just need to know the coefficient CD to obtain the friction force.

3.1 Dimensionless numbers
One can judge from the approximations used in obtaining Eq. (3.1)
which quantities are important in the determination of CD. We ne-
glected the thermal velocity dispersion of the particles, simply equat-
ing their velocities to Δv. This approximation corresponds to very su-
personic motion, and we therefore expect the Mach number of the rel-
ative flow

Ma�
�Δv�
cs

(3.6)

to play a role at lower relative speeds. Equation (3.1) also assumed that
the gas molecules collide with the particle’s surface at ballistic trajecto-
ries. This supposes that the mean free path λ of the gas is much larger
than the particle’s dimensions. It will thus break when this assumption
is relaxed, and we can expect CD to depend on the Knudsen number
of the flow past the particle

Kn�
λ

2a
�

. (3.7)

The regime of low Knudsen numbers is usually referred to as Stokes
drag, while the regime of high Knudsen numbers is usually called
Epstein drag (Epstein 1924). Both regimes show dependencies on the
Mach number. A third dimensionless number is also important. In the
Stokes regime when the Knudsen number is low, intermolecular col-
lisions in the gas are frequent and molecular viscosity becomes rel-
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evant. Thus, regimes of low and high Reynolds numbers should exist
for Stokes drag. However, one can write the Reynolds number in terms
of the Knudsen and Mach numbers

Re� 2a
�
ρ�Δv�
μ

� 3
�

π

8
Ma
Kn

(3.8)

such that only two of these three dimensionless numbers need be
treated as independent quantities.

3.2 Epstein drag
For supersonic free molecular flow, the case considered in Eq. (3.1), the
coefficient is obviously C�Kn�1,Ma�1�

D � 2. We will substitute the super-
script “Kn� 1” by “Eps” hereafter. For very subsonic motion, the ther-
mal velocities of the molecules are much greater than the drift velocity
of the particles. The number n of molecules per unit volume colliding
with the particles within an interval of speeds between v and v � dv
follows the Maxwell-Boltzmann distribution

n �v�d3u � n�β��π
�3 exp	
β2u2�d3u (3.9)

where u � �Δv� is the speed of the impinging molecules seen from the
reference frame of the subsonic particle and β �

�
mH2

�2kBTg. In this

equation, mH2
is the mass of molecular hydrogen, kB stands for the

Boltzmann constant and Tg is the gas temperature. Upon integration,
the rate of momentum transfer from the impinging molecules to the
surface of a spherical particle is (Epstein 1924)

FEps,Ma�1
d �
4π

3
ρvtha�2Δv, (3.10)

where vth � 2��πβ is the mean thermal speed. Substituting β yields

FEps,Ma�1
d �


�
128π

3
ρa�2csΔv, (3.11)

where we already substituted cs �
�
kBTg�mH2 for the isothermal

sound speed. The coefficient CD in this regime is therefore

CEps,Ma�1
D � 16

�
2�π

3Ma
(3.12)
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The general coefficient for arbitrary Mach numbers was calculated
by Baines et al. (1965)

CEps
D � 2W2 � 1

W3�π
e�W

2 � 4W4 � 4W2 � 1
2W4 erf�W�

� 2
�

π�1� ε�
3W

�
Tp
Tg

(3.13)

where W � �Δv�β �Ma��2, Tp is the temperature of the particle, erf
denotes the Gauss error function

erf�x� � 2�
π

ˆ x

0
e�t

2
dt,

and ε is a factor that determines the importance of specular (mirror-
like) to diffusive reflection of the gas molecules that hit the particle’s
surface (see e.g., Skorov & Rickman 1999). In practice, as this general
coefficient is too cumbersome to implement numerically, a simple in-
terpolation (Kwok 1975) is often used to connect the two regimes.

CEps
D 	 2

�
1� 128

9πMa2

�1�2
(3.14)

Figure 3.1a illustrates the behaviour of the interpolation compared
to the exact solution for the case of pure specular reflection (ε=1). The
maximum deviation from the approximation of Kwok (1975) is at the
percent level (	1.5%), meeting maximum deviation at Ma	2.

3.3 Stokes drag
When the particle radius exceeds the mean free path of the particle, the
approximation of ballistic collisions ceases to apply and the frequent
intermolecular collisions lead to the emergence of viscous behaviour.
It is a well known result that ideal fluids exert no drag (d’Alembert’s
paradox, e.g., Choudhuri 1998, §4.7). When the kinematic viscosity μ is
considered, the Stokes drag law on a large (Kn
1) sphere is recovered

F�Kn�1,Re�1�
d � 6πμaΔv (3.15)
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Figure 3.1: Upper panels. The dependence of the drag coefficients upon (a.)
Mach number in the Epstein regime (Kn� 1) and (b.) the Reynolds number in
the Stokes regime (Kn� 1). The subsonic Epstein law is valid until very close
to the transition to supersonic. The viscous Stokes law only starts to deviate
from the general case also at Reynolds numbers close to unity.
Lower panels. (c.) The corresponding Reynolds number in the plane of Mach
and Knudsen numbers. We only expect deviations from the Stokes law at
Re � 1. The transitions to turbulent drag only occur at very high Mach and
very low Knudsen numbers (particle radii of the order of 10 meters). We do
not expect them to play an important role in the models presented in this
work.
(d.) The behaviour of the interpolated coefficient, for slices at subsonic and
supersonic motion. The predictions of Epstein and Stokes drag are shown for
comparison. For particles up to 10 centimeters, Epstein drag does not deviate
much from the general (interpolated) coefficient. Pure Stokes drag starts to
apply only beyond 10 meters.

a lengthy proof of which can be found in Landau & Lifshitz (1987, §20).
Dividing Eq. (3.15) by the mass of the particle and expressing it in the
form of Eq. (3.3), we have

CStk,Re�1
D �

12μ

a�ρ�Δv�
�

24
Re

(3.16)
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where the superscript “Stk” replaced “Kn�1”.
On obtaining this equation, the inertia of the fluid is neglected, so

it only holds for low Reynolds numbers. Empirical corrections to the
Stokes’ law were worked out (e.g., Arnold 1911, Millikan 1911, Mil-
likan 1923), but a general case derived from first principles is much
more difficult to obtain than in the case of free molecular flow. The ma-
jor complication resides at the boundary layer immediately over the
surface of the particle, where the velocity of the viscous fluid has to be
zero. If the fluid has inertia, a sharp velocity gradient develops in the
flow past the particle as the velocity goes to zero at the solid surface. At
this boundary layer, the viscous term μ∇2v is important even at high
Reynolds numbers (Prandtl 1905). It can be seen experimentally that
in such cases, the flow past the particle develops into a turbulent wake
(von Kármán 1905), with drag coefficients much larger than those pre-
dicted by Stokes law. Experiments reveal that the drag coefficient CD
at Stokes regime for different Reynolds numbers can be approximated
as (Lain et al. 1999, Woitke & Helling 2003)

CStk
D �

���
��

24Re�1 � 3.6Re�0.313 ; Re� 500;
9.5� 10�5Re1.397 ; 500� Re� 1500;
2.61 ; Re� 1500.

(3.17)

Figure 3.1b shows its behaviour and the deviation of the inertia-
neglecting viscous Stokes law (Eq. (3.15)). The fact that these coeffi-
cients are derived empirically instead of from first principles is dis-
turbing at first, since the parameter space of the experiments might
not bracket the values found in the solar nebula. However, we see
from Fig. 3.1c that the range of Reynolds numbers where deviations
from the Stokes law occur correspond to very high Mach numbers in
the particle radius range we are interested in. In this regime the par-
ticle will suffer intense drag and be brought back to subsonic motion
quite rapidly. Due to this high impulse, the exact formulation of the
turbulent regime of low Knudsen numbers will not have major im-
pacts on the results of the simulations. Indeed, most of the flow occurs
at the regime of low Mach, low Reynolds, numbers, independently of
the Knudsen number.

3.4 General case
As expressions for intermediate Knudsen numbers are not available,
we use the interpolation expressions of Woitke & Helling (2003; see
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also Paardekooper 2007)

CD �
Kn�2CEps

D � CStk
D

�Kn� � 1�2
(3.18)

where Kn� � 3Kn is the critical Knudsen number where Epstein and
Stokes drag laws yield the same value for subsonic laminar motion.
Figure 3.1d shows the behaviour of the interpolation. As stressed by
Woitke & Helling (2003), at the critical Knudsen number, the true fric-
tion force yields smaller values than in both limiting cases.

3.5 Radial drift of solids in gaseous disks
It is seen from Eq. (2.15) that the gas orbits the star at sub-Keplerian
speeds, due to the pressure gradient correction. Equation (2.15) can be
written as

Ω � ΩK

�
1�

h2

γ

� lnP
� lnr

�1�2

� ΩK�1� η� (3.19)

where η=-�h2�2γ��lnP��lnr is a parameter often used to character-
ize the strength of the global pressure gradient (e.g., Nakagawa et al.
1986). It is positive for a negative radial pressure gradient and lies in
the range 0	 η 
 1 (usually is between 0.001 and 0.1).
Solids, on the other hand, are pressureless, and orbit at Keplerian

speeds. The difference is, of course, Δv � vKηφ̂. That means that the
solids will suffer gas drag, according to Eq. (3.5). The drag lowers the
angular velocity of the particle, so that it loses centrifugal support and
moves radially inwards. The radial velocity �r of this drift can be de-
rived analytically. With vanishing gas radial velocity, the equations of
motion for a particle in the midplane are

�r� r �φ2 � �Ω2
Kr� �r�τs (3.20)

r�φ� 2 �r �φ � ��r �φ� uφ��τs. (3.21)

A steady or quasi-steady state solution implies �r� 0. In addition, the
gas velocity is uφ=vK�1� η�, according to Eq. (3.19). So,

r �φ2 � Ω2
Kr� �r�τs (3.22)

r�φ� 2 �r �φ � �r� �φ�ΩK�1� η���τs. (3.23)
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Figure 3.2: The radius of the particle subject to maximum drift (τsΩK=1) for
our choice of parameters (right panel) and in theMinimumMass Solar Nebula
(Weidenschilling 1977b, left panel). q=�� lnΣ�� lnr is the power law of the
surface density profile. The profile is very flat compared to the ones predicted
by the limiting cases of Epstein and Stokes drag, especially for our choice of
parameters.

As the Keplerian motion is still dominant, we can write the particle
angular velocity as �φ � ΩK � δω, with ΩK � δω. It follows that

�φ2 � Ω2
K�1� δω�2ΩK�,

as well as
�φ � �ΩK ���3Ω�2r� �r.

Plugging these two identities in Eq. (3.22)-Eq. (3.23), we have a sys-
tem of equations for �r and δω. The first equation yields δω � �r��2 ts�,
where ts=τsΩK is the dimensionless stopping time. Plugging it into the
second, the radial drift velocity is, to first order

�r ��
2tsηvK
�1� t2s �

. (3.24)

Equation (3.24) has a maximum at ts=1, so the drift is fastest for
loosely coupled particles whose stopping time τs is equal to the dy-
namical timescale Ω�1. Figure 3.2 shows the size of particles of τsΩK=1
for two different disk models. The radius is normalized to 5.2AU. The
mean free path of the gas is also plotted for comparison. The particles
of maximum drift have diameter of the order of 1 meter.
The timescale for the drift is τdrift � r�	 �r	, which for ts=1 amounts to

τdrift � �ηΩK�
�1. For η � 10�3, this timescale is

τdrift � 160
� r
1AU

�3�2
yr. (3.25)
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which leads to the disturbing realization, first seen by Weidenschilling
(1977a) that once dust coagulates to this size, the particles are soon
lost to the star. If planets are to form bottom-up, the jump to kilometer-
size has to occur faster than this severely short timescale. Alternatively,
some mechanism might occur in the disk that halts the radial drift of
the meter-sized solids.

3.5.1 Pressure trapping
Equations (3.19) and (3.24) led to fast inward drift because the global
pressure gradient is negative (positive η). If, however, the disk presents
local pressure maximum, the local density peak has zero pressure gra-
dient, constituting a point of equilibrium. It is straightforward to see
that the equilibrium is stable for pressure maxima, and unstable for
pressure minima. For pressure maxima, the pressure gradient is posi-
tive at radii immediately inner w.r.t. the maximum. The gas there ro-
tates at super-Keplerian speeds and the negative η therefore turns �r
positive: the particle migrates outwards, towards the pressure maxi-
mum. At the outer radii, the pressure gradient is negative, so the par-
ticle migrates inwards, also towards the pressure maximum. The op-
posite happens in pressure minima. As a direct result of Eq. (3.24), the
particles for which the pressure trap is most efficient are those of stop-
ping time τsΩK � 1.
Pressure maxima in disks can take a variety of forms. The next chap-

ter deal with topics as varied as turbulence, dead zones, vortex for-
mation and planet-disk interaction. There is however a unifying as-
pect behind these studies, namely, they are ways of bringing about pres-
sure maxima in protoplanetary disks. If long lived, there particle-trapping
structures may potentially keep the particles long enough for coagula-
tion or gravitational instability to breach the meter-size barrier.

3.6 Gravitational Instability of the layer of solids
The Toomre criterion (Toomre 1963, Binney & Tremaine 1987) for thin
gas disks states that the gas is gravitationally unstable if

Q �
csκ

πGΣg
� 1 (3.26)

where

κ2 �
1
r3
dj2

dr
� 2Ω2

�
2�

d lnΩ
d lnr

�
, (3.27)
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is the epicyclic frequency. In the above equation

j �Ωr2 (3.28)

is the angular momentum per unit mass. Equation (3.26) means that
a prospective collapsing mass is stabilized by shear (κ) and pressure
(cs), while destabilized, of course, by its gravity (GΣ). For the disks
we model, Q � 30, so the stability of the gas is ensured. Solids, on the
other hand, do not have pressure, and are more prone to gravitational
instability. In the case of a pressureless turbulent fluid as the swarm
of solids, the sound speed is replaced by the velocity dispersion vp rms
(Chavanis 2000)

vp rmsΩ

πGΣp
� 1. (3.29)

Once this condition is met, the gravitational potential energy over-
comes the kinetic energy of the solids, and collapse ensues.
In this work we did not model coagulation. Instead, we assume that

it efficiently formed centimeter and meter sized solids. We then follow
the motion of these bodies and investigate possible gravitational in-
stability inside particle trapping structures. The validity of neglecting
coagulation is corroborated by the fact that in the proposedmechanism
we put forth, gravitational growth is seen to occur at least one order of
magnitude faster than the timescale for coagulation (� 1000 yr; Blum&
Wurm 2008). There is, however, the possibility that the same trapping
mechanism that favours gravitational instability might also speed up
coagulation, growing the solids beyond the size τsΩK � 1 for which the
particle trapping mechanism works best. Of course, this is not a draw-
back, since it would mean that the mechanism we present in paper II
and paper III are planetesimal (instead of planet) factories. The plan-
etesimals would then decouple from the gas and get scattered through
the disk, where they could be used to form planets by the traditional
gravitational focusing mechanism. A definite answer to this question
has to be addressed by a simulation that includes both coagulation and
gravity.
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4. Magnetic Turbulence in
Accretion Disks

Big whirls have little whirls
that feed on their velocity

and little whirls have lesser whirls
and so on to viscosity

Lewis F. Richardson
on the Kolmogorov cascade theory of isotropic turbulence.

We highlighted in Chapter 1 the need for turbulence in order to pro-
vide the necessary viscosity for accretion. Purely laminar Keplerian
disks, however, cannot go turbulent. For it to occur, a particle displaced
from its orbit must tend to be even further displaced, by some instabil-
ity. Mathematically, the above statement means that (in the absence of
pressure) the epicyclic frequency (Eq. (3.27)) must go imaginary. The
condition of κ2 � 0 only occurs for

d lnΩ

d lnr
��2.

Such statement is known as the Rayleigh criterion. Another mechanism
must come to play to trigger an instability.
Since the seventies, many possible ways to set the disk into a tur-

bulent state were proposed, but only the magnetorotational instabil-
ity seems robust and strong enough to explain the observed accretion
rates in low mass disk. Gravitational turbulence may be important in
the early stages of the disk, when it is still massive. We will not con-
cern ourselves with this stage, but notice that the accretion rates then
are as high or even higher than those achieved by theMRI (α=5� 10�2;
Lodato & Rice 2005).
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4.1 The Magneto-Rotational Instability
Shakura & Sunyaev (1973), in the seminal paper that set forth the
principles of what became the standard theory of accretion disks,
suggest that magnetic fields could lead to turbulence. The educated
guess could not be more correct.
The effect of magnetic fields on flows past rotating cylinders

(Couette flow) had already been studied by Velikhov (1959) and
Chandrasekhar (1960, 1961). They found that it lead to an instability,
but did not apply the result to an astrophysical situation. The
instability was re-discovered by Steve Balbus and John Hawley
(Balbus & Hawley, 1991,1992,1998; Hawley & Balbus, 1991,1992),
who showed that it was operative in accretion disks, leading to the
long-sought turbulence.
What triggers the instability can be intuitively understood. A mag-

netic field line has tension if bent. A disturbance in the field will there-
fore tend to restore the field to its initial position. A parcel of gas dis-
placed of its original position will be thuged back. That is, it resists
stretching. Another effect arises when in a differentially rotating disk.
Produce a radial disturbance in the field, and two parcels initially at
the same radial position will be displaced radially along with the field.
However, they will be still connected by the tensed line: the magnetic
field resists shear, trying to enforce rigid rotation.
The first is clearly a restoring force. The second is the heart of the

instability. Because the field tries to enforce rigid rotation, the parcel
of gas displaced inwards keeps its original velocity. For its new orbital
position, it is rotating too slow and therefore loses centrifugal balance,
spiraling further inwards. The parcel of gas displaced outwards like-
wise keeps its original velocity. It will be rotating too fast for its new
radius, and therefore the centrifugal force pushes it further outwards.
A little displacement leads to more displacement. The situation is un-
stable.
Quoting the original paper announcing the “powerful local shear

instability” (Balbus & Hawley, 1991)

The Rayleigh instability criterion of a negative radial gradient in specific angu-
lar momentum is largely irrelevant to gaseous astrophysical disks if magnetic
fields are present.
Instead, the combination of differential rotation in the form of a negative

angular velocity radial gradient with almost any small seed field will lead to
dynamical instability.

A illustration of the process is seen in fig. 4.1. This magneto-
rotational instability is operative as long as stretching provided by the
shear overcomes the restoring effect of the magnetic tension. It can be
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Figure 4.1: Illustration of how themagneto-rotational instability arises. Amag-
netic field line has tension and therefore can be thought of as a spring, con-
necting two gas parcels. Displace two gas parcels radially, and the field that
connects them will tense, trying to enforce rigid rotation. Due to the pres-
ence of shear, the parcel now located in the inner orbit rotates too slow for its
new radial position and therefore loses centrifugal support, sinking further
inwards. The outer gas parcel also kept its original velocity due to the tension
of field, and is rotating too fast for its new, outer, orbits. It gains centrifu-
gal support and moves further outwards. Angular momentum is transported
outwards and matter accretes.

shown that this is equal to requiring a subthermal field. This can be
seen intuitively: a strong field offers too much tension. Displace the
field lines and the two parcels of gas are so strongly connected that
the centrifugal force cannot displace them further apart. The restoring
force then takes care of leading them back to their stable positions.

4.1.1 From turbulent stresses to laminar alpha viscosity
The similarities between the properties of turbulent magnetohydrody-
namic disks and those of viscous accretion disks can be seen explicitly
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by writing the Navier-Stokes and the Reynolds equation in terms of
angular momentum L� sρuφ . We do so by substituting the continuity
equation in the azimuthal momentum equation, and assuming axial
symmetry ( ��θ � 0)

�L
�t

�
1
s
�

�s
�sLus� �

1
s
�

�s

�
νL

dlnΩ

dln s

�
(4.1)

�L̄
�t

�
1
s
�

�s
�
sLūs

�
��

1
s
�

�s

�
s2ρδuφδus

�
, (4.2)

in which we identify the R.H.S. as the flow of momentum, i.e., the di-
vergence of the Reynolds stress tensor.
By comparing Eq. (4.1) and Eq. (4.2), we identify

ν ��

�
dlnΩ

dln s

��1 Rφs

ρΩ
(4.3)

Using the alpha-parametrization of Shakura & Sunyaev (1973) and
recalling that cs � ΩH

α�R� �
2
3
Rφs

ρc2s
, (4.4)

where we used Ω�s�3�2 for a Keplerian disk. The superscript R de-
notes that this is a kinetic (Reynolds) alpha.
By introducing the Lorentz force in terms of the Maxwell stress in

the equation of motion

��∇� B� � B�φ �
�

�xj

�
B2

2
δφj 	 BφBj

�
� μ0

�Mφj

�xj
, (4.5)

and following the same lines, one arrives at the magnetic (Maxwell)
alpha

α�M� �	
2
3
Mφs

ρc2s
. (4.6)

We notice that the factor 2
3 is often omitted in the literature, thus
one should be careful when comparing results of different works.
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4.1.2 Dispersion relation
The axisymmetric dispersion relation of the MRI for the limiting case
of incompressibility can be worked out by considering waves of the
form

ψ � exp�kss� kzz�ωt�,

which for the equations of motions can be solved in Fourier space to
yield (Balbus & Hawley 1991)

k2

k2z
�4 � κ2�̃2 � 4Ω2�k � vA�2 � 0 (4.7)

where k2 � k2s � k2z, κ is the epicyclic frequency and

�2 � ω2 � �k � vA�2 (4.8)

Note that the field just enters the dispersion relation multiplied by
the wavenumber k. Thus, even weak fields can lead to significant mag-
netic tension at small wavelengths. It is therefore useful to define a
wavenumber parameter

q � k � vA�Ω (4.9)

Using this substitution and solving the quadratic equation for
�2�Ω2, we find

ω2

Ω2 � q2
�
1� 8

κ2�Ω2 �
�

κ4�Ω4 � 16q2

�
, (4.10)

which, for a Keplerian disk reduces to

ω2

Ω2 � q2
�
1� 8

1�
�
1� 16q2

�
(4.11)

since κ�Ω. The condition for instability in this approximation is there-
fore having the second term in the right hand side bigger than one. This
is satisfied for all q2 � 3. Therefore, the unstable wavenumbers of the
MRI are

0� k � vA�Ω �
	
3 (4.12)
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The maximum growth rate occurs around q=1. We will refer to this
fastest growing wavelength as λMRI

λMRI � 2πvAΩ�1 (4.13)

For λMRI, the growth rate is 0.75Ω. This corresponds to a million-fold
amplification in 3 orbits. Themagneto-rotational is a powerful instability.
The non-linear evolution in the shearing sheet (Hawley & Balbus 1991)
confirms this behavior.

4.2 The MRI in global models
In the papers that comprise this Thesis, we performed simulations
of protoplanetary disks emcopassing a large domain in radius. These
models are referred to as global disks. The distinction is needed be-
cause some works solve the equations in the shearing sheet approxi-
mation (e.g., Goldreich and Tremaine 1978, Brandenburg et al. 1995),
where the flow is solved in a tiny Cartesian box that co-rotates with
the disk at a fixed distance from the central star. The shearing box has
the advantages of being closer to the dissipation scale and of keep-
ing the computational costs to a minimum as, for instance, periodic
boundary conditions can be used for the azimuthal and vertical di-
rection (whilst the radial direction resorts to shear-periodic boundary
conditions). Nonetheless, they fail to convey the full perspective of the
problem, that just a global disk can yield. Yet, global disk have more
elevated computational costs, since many scale lengths are present in
the same simulation. A local box of size �H, for instance, comprises
�10 cells of the typical resolution used in global calculations.
Modelling the MRI in global disks poses extra numerical constrains

when compared to shearing boxes. The field needs to be subthermal,
which means weak. Due to this, the wavelengths of the turbulence are
very short, and the maximum growing wavelength is usually not re-
solved unless the resolution is pushed to its limits. Raising the field
strength is not an option, since we cannot raise to equipartition en-
ergies, lest the instability is quenched. The fiducial simulation of pa-
per I used a constant vertical field of 20 G and resolution 0.1 AU. For
the typical densities of the solar nebula (2� 10�11gcm�3 at 5.2 AU),
the resulting λMRI is � 0.05 AU, i.e., half the grid resolution. The lack
of sufficient resolution affects the numerical results: while in a shear-
ing box the turbulence saturates in about 3 orbits, a global disks takes
at least 20, and sometimes even 50 or more, as the resolved unstable
wavelengths are growing much slower than the fastest growing mode.
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In paper I we used several combinations of fields and sound speeds
in order to study the MRI in global frames. An interesting outcome of
this sound speed study was the realization that the dimensionless al-
pha parameter does not seem to scale with temperature as one would
expect. The stresses rise obeying a power law of 0.25, while the pres-
sure, obeying ρc2s , grows much faster. The result is that alpha decreases
with temperature. In paper I we also studied how solids are trapped
in the overdensities generated by the turbulence, which we briefly de-
scribe below.

4.2.1 Solids trapped in turbulence
As discussed before, solid particles on Keplerian orbits experience a
headwind of the sub-Keplerian gas, causing the particles to migrate
inwards in a laminar disk. When turbulence is introduced, transient
pressure minima and maxima occur everywhere in the disk, and long
lived pressure maxima act as traps where solids get heavily concen-
trated.
It is possible that this particle trap mechanism lead to local enhance-

ments of the solids-to-gas ratio that are large enough to produce grav-
itational instabilities in the solid phase, forming gravitationally bound
objects. We studied this possibility in paper I, by including particles in
late stages of our turbulent models.
Such a study has already been carried out in local box models

(Johansen et al. 2007) and in gravitationally unstable global disks
by SPH simulations (Lodato & Rice, 2004). Fromang & Nelson
(2005) performed a study with a few thousand particles in order to
understand how they should get trapped in the vorticity minima
generated by the MRI. However, for the paper I a large number of
particles was studied in an MRI-active global disk. We usually include
106 particles, which allows us to trace the swarm back onto the grid
as a density field without using fluid approaches. By doing this, we
could also measure other effects of the turbulence on the solid phase,
such as the appearance of an effective diffusion.
As discussed by Johansen & Klahr (2005), while solid particles are

pulled towards the midplane by the stellar gravity, turbulent motions
stir them up again. A sedimentary layer in equilibrium between tur-
bulent diffusion and gravitational settling is formed. The thickness of
this layer is therefore a measurement of the turbulent diffusion acting
on the solid particles.
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Under the influence of gravity, the solids settle with a profile similar
to the one generated by a pressure force (Dubrulle et al. 1995)

lnρp � lnρp�s,z � 0� � z2

2H2
p
, (4.14)

By comparing this profile with the analytical expression for a pressure-
less fluid under diffusion, gas drag and vertical gravity (Johansen &
Klahr, 2005)

lnρp � lnρp�s,z � 0� � τf

D�t�
z

ˆ
gzdz, (4.15)

and recalling that gz ��Ω2z, we have

D�t�
z � Ω2H2

pτf (4.16)

From Eq. (4.14), we see that the scale height of the solids is the ver-
tical distance in which the bulk density falls by a factor 1��e � 0.6
relative to the value at midplane. In paper I we measured the diffusion
coefficient of particles due to the turbulence, according to Eq. (??), find-
ing diffusion coefficients of approximately same strength of the turbu-
lent viscosity that acts on the gas phase.
In terms of the Schmidt number, i.e., the ratio of turbulent viscosity

to turbulent diffusion

Sc� ν�t�

D�t� (4.17)

the particle scale height can be written as

Hp � H
�

α

Sc ts
(4.18)

where we substituted ν�t�=αΩH2. For Sc�1, ts=1, and typical α values
of 10�2, Eq. (4.18) leads to a particle scale height ten times smaller than
the gas scale height. This validates the use, in paper I, of cylindrical
disks where the gas is not vertically stratified.

4.3 Origin of the field
Observations of circularly polarized lines in the disk of FU Ori (Donati
et al. 2005), indicating fields of 1 kG in the inner regions, supports an
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accretion mechanism mediated by magnetic fields. However, the ori-
gin of the field is still a matter of debate. It could be the “fossil” field of
the original nebula, the stellar magnetic field, or a field generated by
the MRI-driven disk dynamo itself. All these possibilities have prob-
lems.
The magnetic field of the proto-stellar magnetosphere falls too fast

with radius (1�r3) to be of any significance at large radii. Any external
field that tries to enter the disk will reconnect at the outer boundary.
The existence of a self-sustained disk dynamo remains a matter of de-
bate. The theory predicts that in absence of resistivity, the instability
will increase the coherence length of any small seed magnetic field,
and grow its mean strength to a significant fraction of the equiparti-
tion value. This is because, as noted before, the field only enters the
dispersion relation (Eq. (4.8)) multiplied by k, so that even weak fields
generate enough tension at large wavenumbers.
Numerical simulations have had mixed success in finding support-

ing evidence for this behaviour. If the seed field has zero net flux, it is
shown that the resulting stresses depend on numerical resolution (Pes-
sah et al. 2007, Fromang & Papaloizou 2007), with no convergence in
sight. When resistive effects are included, the effectiveness of the dy-
namo depend in a critical way on the value of the magnetic Prandtl
number, Pr � ν�η (Fromang et al. 2007). For Pr � 1, as expected in ac-
cretion disks, the small scale dynamo fails.
A structured field with non-zero net flux, on the other hand, leads

to a large scale dynamo with vigorous stresses, whose resulting values
depend on the coherence length of the large scale field λMRI (Pessah
et al. 2007). For this reason, in paper I we used imposed vertical or
azimuthal initial fields to trigger the growth of the MRI, and remain
agnostic in respect to their origin.
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5. The magnetically dead zone and
the Rossby wave instability

In this house, we OBEY the laws of thermodynamics.

Homer J. Simpson, cartoon character,
setting an example for all disk theorists.

For the MRI to operate, there are three requirements. The presence
of subthermal magnetic fields, shear, and sufficient ionization to pro-
vide coupling between the gas and the magnetic field. While magnetic
fields are ubiquitous and the Keplerian profile provides the shear, the
third condition is not always met. As T-Tauri disks are cold and dense
(� 100K and 10�11 g cm�3 at 5.2 AU), recombination is rapid, and the
number of free electrons is therefore small. As a result, the disk is not
ionized throughout, and there should exist regions where the coupling
to the ambient field is too weak for the instability to operate. These
regions will be “dead” to the MRI. In this chapter we briefly review
some of the physics and relevant consequences of the presence a mag-
netically dead zone in accretion disks.

5.1 The nature of resistivity
Currents are driven by the most mobile charge carriers, the electrons.
Resistivity therefore arises from impediments to the electron move-
ment. In the case of a weakly ionized gas, the most probable collision a
electron would suffer is with an neutral. The electron having speed ve
and the neutral having speed vn, the momentum of the electron fluid
is dropped by Δpe � �me�ve � vn� at each electron-neutral encounter.
We can define an average time between collisions τR so that this mo-
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mentum transfer amounts to a collisional drag in a form identical to
Eq. (3.5)

f R ��
1

τR
�ve � vn�. (5.1)

The subscript “R” denotes “resistive”. Equation (5.1) is usually written
in terms of an average frequency of collisions instead of time between
collisions (Spitzer 1962, Phelps 1979, Draine 1983, Blaes & Balbus 1994).
This frequency being νR � τ�1R , the above equation is then

f R ��νR�ve � vn�. (5.2)

The resistivity is found from its definition, the inverse of conduc-
tivity (η=1�σ), which in turn is defined as the proportionality factor
between the current and the force per unit charge that produced it
(Ohm’s law)

J � σF�e, (5.3)

where the force F is of course me f R, where me is the electron mass. The
current density is defined as

J ��neeve (5.4)

where ne is the electron number density. In Eq. (5.3) and Eq. (5.4), e is
the electron charge. Equating both and assuming that ve�vn, we have

η �
meνR
nee2

(5.5)

The term νR can be estimated the following way. An electron of ve-
locity v in a time interval dt sweeps a volume dV � πr20vdt, where πr20
is the electron cross section. If it collides with all the neutrals within
this volume, the number of collisions is simply N=nndV, where nn is
the number density of neutrals (mostly H2 molecules) . The frequency
of collisions is thus

νR �
N
dt
� πr20CR nn v, (5.6)

where CR, like the coefficient CD in the treatment of gas drag, takes
into account the deviations from this idealized picture. For thermal
speeds, the situation is similar to that of subsonic Epstein drag (Eq.
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(3.11)). The impinging neutrals follow a Maxwellian distribution and
the integration yields (cf. Phelps 1979)

νR � 10�15nn

�
128kT
9πme

�1�2
� 8.3� 10�10nnT1�2 s�1. (5.7)

Combining it with Eq. (5.5) and substituting the electron mass and
electron charge, we find the resistivity in terms of the electron fraction
x=ne�nn

η � 295x�1T1�2 cm2 s�1. (5.8)

5.2 Suppression of the MRI
The condition for the suppression of the MRI follows directly from
the magnetic Reynolds number. Considering the induction equation,
the amplification of magnetic stresses due to the MRI occurs through
the electromotive term u � B, while the resistive term η∇ � B yields
a damping that opposes the amplification. The ratio of the two terms
is the magnetic Reynolds number, of dimension ReM � UL�η. At any
length scale L the instability will be suppressed if this quantity falls
below unity. The velocity associated with magnetic fields is the Alfvén
velocity, and the length of interest is the scale height H, so the condi-
tion for the operation of the MRI in the presence of resistivity is

ReM �
vAH

η
� 1. (5.9)

To express this quantity in terms of non-magnetic parameters, we
relate the Alfvén speed with the sound speed the following way. The
Alfvén speed can be approximated via the Maxwell stress

Mrφ � ρv2
A
,

which in turn, from the definition of the alpha viscosity Trφ � αρc2s ,
leads to

vA � cs
�

α,

assuming that theMaxwell component dominates the stress tensor (i.e.
Trφ � Mrφ). We can therefore use the relations in Appendix D to write
the magnetic Reynolds number as
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ReM � α1�2 csH
η

� 2� 1013xα1�2
� r
1AU

�3�2� T
500K

�1�2� 2
μ

�
, (5.10)

where μ is the mean molecular weight. Assuming that all terms in
parenthesis (as well as α1�2) are near unity, the magnetic field will be
well coupled to the gas when

x � 10�13, (5.11)

give or take one order of magnitude.

5.2.1 The dead zone
The threshold value of ionization fraction x� 10�13 seems very low, yet
it is not met in many parts of the disk. We briefly mention below the
main sources of ionization to define the regions that should be coupled
to the magnetic field.

5.2.1.1 Collisions
Calculations by Umebayashi (1983) reveal an almost exponential in-
crease of x with temperature, with x equalling 10�13 at 900K, due
mainly to collisional ionization of the alkali metals. As the other quan-
tities vary weakly with temperature, Gammie (1996) concludes that
T� 103K is an acceptable approximation for the condition of coupling.
This temperature corresponds to a distance of 0.5AU for a temperature
profile of T=T0�r and T0=100K at 5.2AU.

5.2.1.2 Cosmic rays
Beyond the distance where the temperature drops below 1000K, non-
thermal ionization processes dominate. The main source of this ion-
ization are cosmic rays, which impact the disk providing an ionization
rate of ζ=10�17 s�1, penetrating the disk up to a stopping depth of

ΣCR � 96gcm�2

(Umebayashi & Nakano 1981). The disk therefore shall display a lay-
ered structure, with a laminar, resistive, MRI-dead zone region around
the midplane, sandwiched byMRI-active conductive layers. At greater
distances where the column density drops below ΣCR, throughout ion-
ization resumes.
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5.2.1.3 UV and X-rays
Glassgold et al. (1997) and Igea & Glassgold (1999) cast doubt on the
effectiveness of ionization by galactic cosmic rays since they could be
deflected by the stellar wind. UV and X-ray photons therefore become
the main ionization source in this case. These are emitted by the proto-
star, at a rate of LX=10�3L�. The penetration depth, however, is much
lower than in the case of cosmic rays, with

ΣUV � 10�3 gcm�2

and
ΣX � 10gcm�2

(Igea & Glassgold 1999). Ilgner & Nelson (2006) further proposed that
during flares, when the X-ray luminosity is raised by 2 orders of mag-
nitude relative to the quiescent level (and more hard X-rays are emit-
ted), the dead zone can be completely suppressed. However, the MRI
does not resume since its growth takes longer than the duration of the
flare.

5.2.1.4 Radioactive decay of 26Al
In the inner regions beyond the reach of cosmic rays or X-rays, there
is yet another source of ionization, namely, the decay of radioactive
nuclides. An exhaustive list of these processes is presented by Ume-
bayashi & Nakano (2009). Long-lived nuclides yield an ionization rate
of 1.4� 10�22 s�1, mainly (80%) due to decay of 40K. Heavy nuclides
232Th 235U and 238U contribute to the remaining 20%. The strongest
ionizing sources among nuclides is found to be the short-lived 26Al
(now extinct in the solar system), with an ionization rate of 7� 10�
10�19 s�1. The next strongest ionizing sources among short-lived nu-
clides, 60Fe and 36Cl, are 10 times less strong than 26Al. The presence
of 26Al in the early solar system is corroborated by studies of mete-
orites that indicate a large overabundance of 26Mg, the daughter nu-
clide of 26Al (MacPherson et al. 1995).
This extra source of ionization leads to some coupling in the dead

zone, that therefore would show some level of activity, not being com-
pletely dead, but only quiet (some authors prefer the term “undead
zone”). However, Turner and Sano (2008) show that the free electrons
given out by this low ionization source would quickly recombine on
the surface of μm-sized dust grains.
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5.3 Accretion onto and through the dead zone
If no transport happens in the dead zone, matter can do little more than
piling up there as the inflow proceeds from the active layers However,
the accumulation of matter cannot proceed indefinitely since, as matter
piles up, the conditions for gravitational instability would eventually
be met (Armitage et al. 2001). The gravitational turbulence that ensues
(Lodato 2008) would therefore empty the dead zone as the excess mat-
ter accretes, thus re-starting the cycle.
However, local simulations show that the dead zone has some level

of turbulence even in the absence of local 26Al ionization. This hap-
pens because the turbulence on the active layers induce small levels of
Reynolds stress in the dead zone (Fleming & Stone 2003). If the iner-
tia of the midplane layer is not too high (Oishi et al. 2007), this forced
turbulence can lead to moderate α values with non-negligible trans-
port. Terquem (2008) shows that steady state solutions in 1D models
exist in this case, as the dead zone gets denser and hotter to match the
condition �r�νΣ�=0 (Fig. 5.1). In this case, the steady state will have an
αT viscosity value in the active layers and a lower αD in the dead zone.
Várniere & Tagger (2006) studied the flow in the midplane in such con-
ditions, with a dead zone represented by the viscosity profile

ν � νT �

�
νT � νD

2

��
tanh

�
r� r1

Δr

�
� tanh

�
r� r2

Δr

��
(5.12)

where r1 and r2 are the locations of the borders of the dead zone and Δr
is the width of the viscosity jump. This is the profile we used in papers
II and III.
We point that, in such steady-state dead zone, there is the possibility

that the some other physical process is excited before Q approaches 1,
or that the 1D steady profile is unstable to some 2D or 3D instability.
We show in the next section that this is indeed the case, and the dead
zone is likely to be unstable to the Rossby wave instability.

5.4 The Rossby wave instability
In the absence of pressure forces, an element of the disk displaced
from its orbit will execute oscillations around its stable position at the
epicyclic frequency κ. In such approximation, the Rayleigh criterion
suffices to determine stability. As the angular momentum j � r2Ω in-
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Figure 5.1: Plots of the aspect ratio, density, and midplane temperature in
the steady-state dead zone model of Terquem (2008). The mass accretion rate
was �m=10�8M� yr�1. The left hand side plots correspond to αT � 10�2 and
αD � 10�4, whereas the right hand side plots use a dead zone alpha viscos-
ity αD � 10�3. The dotted, long-dashed, and short-dashed curves correspond
to disk models with different penetration depths ΣT=100, 50 and 10 g cm�2,
respectively. In the dead zone, the disk is thicker, more massive and hotter.
The solids and dot-dashed curves correspond to standard disk models with
constant α=αT and α=αD. These steady-state dead zone profiles, particularly
the ones with ΣT=100 show pressure bumps that are unstable to the Rossby
wave instability, and are therefore prone to develop anticylonic vortices. Re-
produced from Terquem (2008).
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creases outwards, such disk is always stable. In the presence of pres-
sure forces, this criterion is replaced by the Solberg-Høiland criterion,

κ2 � N2 � 0 (5.13)

where

N2 �
1
Σ

dP
dr

�
1
Σ

dΣ

dr
�

1
γP
dP
dr

�
(5.14)

is the square of the Brunt-Väisälä frequency, the frequency of
oscillation of buoyant structures. Equation (5.13) means that radial
modes that are stable/unstable to shear can be destabilized/stabilized
by pressure, and vice-versa.
In the context of pressure disturbances, Lovelace et al. (1999) and

Li et al. (2000) find yet another instability, related not to radial, but
to azimuthal perturbations. The instability exists when the following
quantity has a local extremum

L�r� � F�r��PΣ�γ
�2�γ . (5.15)

The quantity F is defined as

F �
ΣΩ

κ2 � Δω2 � c2s�
�
LsLp

� (5.16)

where

Ls � γ

��
d
dr

ln
�
PΣ�γ

��
(5.17)

Lp � γ

��
d
dr

lnP
�

(5.18)

are the radial length scale of the entropy and density variations, re-
spectively. For corotational modes (Δω � ω �mΩ � κ) in a barotropic
(Ls	
) disk, the quantity F reduces to ΣΩκ�2, which is readily iden-
tified with (half) the inverse of vortensity ξ

ξ � ωz�Σ (5.19)
ωz � �∇ u�z (5.20)

�
1
r
�r
�r

�
r2Ω

�
�

κ2

2Ω
,
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which in turn led Lovelace et al. (1999) to interpret L as an entropy-
modified version of, or generalized, potential vorticity. An extremum
in the profile of L can be generated, for example, by a pressure bump
somewhere in the disk. The dispersion relation of the disturbances is
analogous to the dispersion relation of Rossby waves in planetary at-
mospheres, hence the name of the instability.
Since in planetary atmospheres the Rossby waves are known to give

rise to Rossby vortices like Jupiter’s Great Red Spot, Lovelace et al.
(1999) speculate that the non-linear saturated state of the RWImight be
the generation of vortices after the Rossby waves break and coalesce.
This was indeed confirmed by Li et al. (2001) by numerical simulations.

5.5 Vortices
Vortices are equilibrium solutions to the compressible Euler equation
(with barotropic equation of state), characterized as flows with closed
elliptic streamlines. When dealing with vortices and vortex excitation,
it is convenient to think in terms of the vorticity equation, obtained by
taking the curl of the momentum equation

Dω

Dt
� �ω �∇�u�ω�∇ � u� �

1
ρ2

∇ρ�∇p� ν∇2ω. (5.21)

In the above equation, the first term yields stretching of the vortex
lines by velocity gradients, the second arises from compression, and
the third is the baroclinic term. The last term accounts for viscous dis-
sipation. It is readily seen that for a flat 2D vortex, where ω=ωẑ and
uz=0, the first term vanishes. In the incompressible case, ∇ � u � 0 and
the second term vanishes too. If the flow is barotropic, ∇ρ and ∇p are
parallel and the third term also vanishes. Incompressible barotropic 2D
flows thus conserve vorticity in the inviscid range.
The condition of incompressibility is not mandatory, since bymathe-

matical construction, the velocity field of a vortex of constant vorticity
ω=ωẑ=�xuy � �yux must satisfy

ux � εΩVy (5.22)

uy � �ε�1ΩVx (5.23)

which is divergenceless. In the above equations, ΩV is the angular fre-
quency of the vortex in the co-rotating frame. The quantity ε 	 a
b is
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the aspect ratio of the vortex, where a is the semimajor-axis (in the y-
direction) and b the semiminor-axis (in the x-direction) 1.
Given an equation of state, a pressure profile can be constructed that

satisfies the condition of steady state (cf. Johansen et al. 2004). For a
barotropic equation of state, the “planet” solution of Goodman et al.
(1987) with ΩV � εΩ

�
3��1� ε2� exactly solves the compressible Euler

equations.

5.5.1 Vortices as particle traps
Inside a vortex, the flow is geostrophic, i.e., in equilibrium between
pressure and Coriolis forces. Against a background Keplerian flow, cy-
clonic vortices (that rotate counterclockwise, opposing the local shear)
are destroyed, whereas anti-cyclonic vortices are stable.
Such vortices have two properties that make them an attractive

possibility for planet formation. The first, stated above, is that they are
equilibrium solutions, thus persistent structures in hydrodynamic
flows, as seen in the Great Red Spot of Jupiter, a remarkable high
pressure vortex stable over three hundred years. The second is that
under the influence of the drag force, loosely coupled particles inside
an anticylonic vortex experience a net force towards the vortex eye.
While the mechanism is essentially the same mechanism responsible
for the radial particle drift in a laminar disk (Chavanis 2000), the
crucial difference is that whereas in a laminar disk the radial drift
leads them to the inhospitable flames of the star, radial drift inside an
anticyclonic vortex simply makes the particles sink towards the vortex
eye. This has the convenient side effect of dramatically enhancing
the solids-to-gas ratio, potentially achieving values high enough to
trigger the gravitational instability.

5.5.2 Vortex stability
As seen in Eq. (5.21), a fluid element conserves vorticity in incompress-
ible barotropic and inviscid 2D flow. Because of this constrain, 2D tur-
bulence experiences a modification of the energy cascade, which be-
comes inverse (Kraichnan 1967). As a result, random eddies placed in
2D simulations cascade energy toward the largest scales of the box,
thus forming progressively larger vortices (e.g., Bracco 1999, Johnson
2005).
The astrophysical literature has seen examples of works where ini-

tial vorticity was put in 3D simulations, and let to decay (Barranco &

1In a sufficiently small patch of the disk where curvature can be ignored (i.e., the Carte-
sian “shearing sheet” limit, discussed in Chapter 4), x equals the radial direction and
y the azimuthal.
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Marcus 2005, Shen et al. 2006), concluding that vortices could not be
sustained like in 2D turbulence. Shen et al. (2006) seeded a 3D box
with small scale vorticity, whereas Barranco & Marcus (2005) started
the simulations with a tall columnar vortex. The former sees the vor-
ticity being dissipated all over the box. The latter observed the column
going unstable, with vorticity being quenched in the midplane, but
sustained above and below it.
These negative results on vortex growth and sustaining are under-

stood as a result of the elliptic instability (Crow 1970, Gledzel et al.
1975, Kerswell 2002), by which the stretching term in Eq. (5.21), �ω �
∇�u, absent in 2D, breaks down elliptical streamlines such as vor-
tical flow. Three-dimensional barotropic simulations that perturb an
equilibrium flow with noise are simply witnessing the stretching term
quickly destroying the eddies. The energy then cascades towards small
scales where they are dissipated.
Kerswell (2002) shows that there are ranges for the vortex’s Rossby

and Froude numbers where the elliptic instability is suppressed 2. In
the presence of rigid rotation, stability exists for anticyclonic vortic-
ity of Rossby numbers 2/3 � Ro � 2. In the presence of stratification,
vortices with Froude numbers Fr�1 are elliptically stable. Barranco &
Marcus (2005) find that vortices are destroyed in the midplane, where
Fr�1; and stable vortices away from the midplane, where Fr�1 (see
their Sect. 4.2). This is in agreement with the prediction of the elliptic
instability.
The situation changes considerably when including the baroclinic

term, that generates vorticity. Klahr (2004) shows that the baroclinic
instability is present in accretion disks, leading to amplification of
seed noise into full-fledged vortices in 2D simulations (Klahr &
Bodenheimer 2003, Petersen 2007). Although 2D, this starkly contrasts
with barotropic works that simply saw re-structuring of small
eddies into larger ones, with vorticity conservation. The baroclinic
instability also operates in 3D (Klahr, private communication). A
stable anticyclonic vortex is also seen on the unstratified 3D MHD
simulation of Fromang & Nelson (2005); on the stratified inviscid
run of Edgar & Quillen (2008); and on the 3D RWI-unstable setup of
Méheut et al. (2008).
These simulations provide evidence of the simple mechanism

needed to quench the elliptic instability: a sufficiently large baroclinic
term ∇p � ∇ρ that generates enough vorticity to counteract the
negative effects of the stretching term. This possibility was not

2The Rossby number is defined as Ro�Ωv�Ω where Ωv is the vortex’ turnover fre-
quency and Ω the orbital frequency of the flow. The Froude number is defined as
Fr�Ωv�Nz, where Nz is the Brunt-Väisälä frequency for vertical buoyant modes (see
Chapter 7).
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touched upon on the review of Kerswell (2002), and we suggest is
the main reason behind the negative results of Barranco & Marcus
(2005) and Shen et al. (2006). The simulations of Shen et al. (2006) are
barotropic. Without the baroclinic term, nothing opposes stretching,
and it is no surprise that the vortices are destroyed. The simulations
of Barranco & Marcus (2005) use a non-barotropic equation of state,
but there is no large scale baroclinity since a radial entropy gradient is
absent. The large scale stretching therefore vastly overcomes the small
scare baroclinity and the vortical column decays.
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6. Subordinate planet formation

The King of Gods once felt the burning joy,
And sigh’d for lovely Ganymede of Troy.

Down with his masquerading wings he flies,
And bears the little Trojan to the skies;

Where now, in robes of heav’nly purple drest,
He serves the nectar at th’almighty’s feast,

Ovid predicts Trojan companions to Jovian planets
The Fable of Cyparissus (inMetamorphoses).

In paper II and paper III we explored the conditions for planet for-
mation in 2D simulations of alpha disks with a dead zone. The in-
flow from the active layers leads to the development of surface den-
sity maxima at the edges of the dead zone that, in turn, are unstable
to the Rossby wave instability. Inside the vortices that form in the sat-
urated state, planet formation occurred, leading to the emergence of
more than 300 gravitationally bound objects, 20 of which were more
massive than Mars.
We now take a leap in time and assume that this collection of plane-

tary embryos would effectively assemble into oligarchs, a small num-
ber of dominant rocky cores massive enough to undergo runnaway ac-
cretion of gas in order to form giant planets such as Jupiter. Such step
is predicted by N-body models starting from a number of Mars-sized
bodies such as those we study in papers II and III (e.g., Kokubo et al.
2006).
In this chapter we deal with the underlying physics of paper IV,

where we explored the opportunities for planet formation created by
the presence of a giant planet. Such a planet gives rise to two distinct
structures where a secondary burst of planet formation might ensue.
These are namely, the stable Lagrangian points L4 and L5, equilib-
rium locations where gas is retained for at least 100 orbits; and a deep
gas gap, whose borders constitute pressure jumps, propitious for the
Rossby wave instability to develop new planet-forming vortices. We
call this secondary burst subordinate planet formation since it depends
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on the presence of a giant planet perturber, formed by other mecha-
nism, to induce the favorable structures.
In this endeavour, it is worth to review the basic physics of planet-

disk interaction that enables such structures. It is equally worth to in-
troduce paper IX, a code comparison project not included in the body
of this thesis. Our part in that project was to implement and run the test
problemwith the PENCIL CODE. The problem chosenwas one that was
conceptually simple and could, at the same time, highlight some of the
nuances of the different codes. The problem thus chosen was the gap
opening problem. In the next sections, we describe some of the analyt-
ical theory of planet-disk interaction, and the relevant results of paper
IX that are pertinent to paper IV.

6.1 Planet-Disk interaction
Numerical simulations of planet disk interaction (e.g. Bryden et al.
1999, Kley 1999, Lubow et al. 1999, Artymowicz 2001) have showed
that the influence of a planet in a disk appears as a distinctive one-
armed spiral. Even the very first such calculation (Miki 1982), albeit
done in 2D in a local box, already shows evidence of a spiral pattern
in the form of high density “laces” excited by the planet. This is seen
as strong shocks for high-mass planets, and slightly enhanced density
regions for a low-mass (Neptune) planet.
Provided the planets are of low mass, the response they exert on

the disk is linear. Ogilvie & Lubow (2002) then show that the precise
shape of the spiral density perturbation launched by the planet can
be calculated analytically as a superposition of the individual Fourier
modes. We briefly summarize the calculation below.
In a 2D case, any linear wave can be written as a superposition of the

several Fourier modes in co-sine series

A�r,φ, t� � A�r�cos�Φm�r,φ, t�� (6.1)

where A�r� is the complex amplitude and

Φm �

ˆ
k � r dr (6.2)

�

ˆ
k�r�dr�m�φ � Ωpt� (6.3)
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where k andm are the radial and azimuthal wavenumber, respectively.
Ωp=GM�r3p is the angular frequency of the planet, which is at the radial
position rp. The dispersion relation for such waves is

m2�Ω�Ωp�
2 � κ2 � c2s k

2, (6.4)

where κ is the epicyclic frequency. Using this relation, a sound speed
c2s � c2s0�r, and units where GM � rp � Ωp=1, we find

k2 � r c�2s0
�

Ω2�m2 � 1� �m2 � 2mΩ
�

�
m2�1� r3� � 2mr3�2 � 1

r2c2s0
(6.5)

since Ω2 = GM/r3.
The above equation can be cast in the form

k2 �
m2

c2s0r
2
�r2�3 � r2�3� ��r2�3 � r2�3� � (6.6)

where we recognize

r� �
�
1�

1
m

�2�3
(6.7)

as the locations of the Lindblad resonances for mode m.
The wavefronts are calculated as lines of constant phase, defined by

dφ

dr
��

k
m

(6.8)

Solving for the phase φ and plugging it back into (6.3), the authors
find that constructive interference occurs at curves φ=ϕ�r, t� defined by

ϕouter � t�
2

3cs0

�
r3�2 �

3
2
lnr� 1

�
(6.9)

for the outer wavefront, and

ϕinner � t�
2

3cs0

�
r3�2 �

3
2
lnr� 1

�
(6.10)

for the inner wavefront.
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Figure 6.1: Analytical solution of the spiral wake generated by an embedded
low mass planet and comparison with the numerical solution achieved with
PENCIL for the case of a Neptune-mass planet.

The resulting pattern is plotted in Fig. 6.1. The flow solution attained
with the PENCIL CODE for a Neptune mass planet in a laminar 2D disk
shows excellent agreement.

6.1.1 The carved gap
The opening of a gap and its evolution is also a matter of concern. The
gap is the most immediately recognizable structure the planet imposes
on the disk, and therefore an important comparison for the several
runs of Paper IX. The shape and depth of the gap was also the problem
we chose to assess the role of numerical dissipation in the simulations
described in Paper I, using the common setup and agreed solution of
Paper IX as a model of what we should expect. It also has paramount
importance in Paper IV. It is therefore interesting to describe it.
As the planet orbits inside the disk, it produces tides in the gas. The

tides tend to expel material away from its vicinity, while the viscous
evolution tends to smear out the sharp density gradient and fill in the
gap. The steady state of the disk will be determined by the balance be-
tween the tidal and viscous torques. The rate of angular momentum
transfer (torque) at a distance d from the planet’s orbital radius is ap-
proximately (Lin & Papaloizou, 1979a,b; Lin & Papaloizou Lin, 1986;
Lin & Papaloizou 1993)

τp � 0.23q2Σr40Ω2
� r
d

�3
(6.11)

where this approximation applies as long as d�H, the disk’s scale
height.
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In order to carve a gap, τp resulting from the tidal torque must
exceed the viscous angular momentum transfer rate τν � 3πΣνr20Ω.
Adopting a minimum value d � H, the above requirement becomes

q �
40ν

Ωr20
(6.12)

To convert it to dimensionless quantities, we use the Shakura-Sunyaev
alpha viscosity ν � αcsH, leading to

q � 40α

�
H
r0

�2
(6.13)

for H � 0.05r, we have
q � 0.1α (6.14)

With α � 10�3, planets with q � 10�4 will open gaps in disks. For a
solar mass star, this critical value of q corresponds roughly to twice the
mass of Neptune.
This approximation breaks down for inviscid disks, for it assumes

local dissipation of the waves. Without viscosity, nothing counteracts
the tides of the planet and therefore the gap width will be truncated by
other mechanisms rather than viscous inflow.Without viscous torques,
the planet will have full control over what happens inside its Hill ra-
dius. Conversely, it cannot influence the gas outside it. The latter state-
ment leads to the educated guess that a deep gap can only be opened
if the Hill radius of the planet is comparable to the local scale height of
the disk

RH � r0

�
Mp

3M�

�1�3
� H (6.15)

This can be verified mathematically. Lin & Papaloizou (1993) de-
scribe an ansatz for the gap opened in such a case. They assume first
that the truncated disk can be described by a smooth step function

Σ � Σ0

�
tanh

�
�r � r0�
Hr

��n
(6.16)

where Hr is the “radial scale length” of the gap and n is the index of
the polytropic equation of state of the disk. They then parametrize this
scale length by Hr � �n�β�1�2H. This density profile leads to a modifi-
cation of the epicyclic frequency (Eq. (2.15), Eq. (3.27)), and the authors
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show that for κ2 to remain real, β2 must be less than 27/16. This corre-
sponds to

Hr �
�
16
27

�1�4
n1�2H (6.17)

which is roughly H. So the planet opens a gap comparable in size with
the scale height of the disk, as we intuitively suspected.
It can be shown that the maximum torque occurs when Hr becomes

comparable to H, and the former must satisfy Hr � r0�q�3�1�3 so that
the edge of the gap lie outside the planet’s Hill radius. This reasoning
leads to the conclusion that the condition for opening a gap in invis-
cid disks indeed is having the planet’s Hill radius exceeding the scale
height of the disk. In terms of q, Eq. (6.15) becomes

q � 3
�
H
r0

�3
. (6.18)

For flared disks of H � 0.05s, the above condition requires a critical
q of 3.75� 10�4, or roughly the mass of Saturn.
This analysis also works for viscous disks provided that τp greatly

exceeds the viscous torque τν.

6.2 Lagrangian points
The Lagrangian points are stationary solutions to the circular restricted
three-body problem (TBP). The TBP refers to the motion of three bod-
ies under their combined gravitational potential, a notoriously difficult
problem, for which the solutions can be chaotic. The restricted TBP as-
sumes that the mass of the third body is negligible, which simplifies
the problem to finding the motion of a test particle under the influence
of the other bodies, that in turn execute the fully integrable two-body
problem. If in addition, the motion of the two massive bodies occur
in circular orbits, the Jacobi constant is a conserved quantity for the
motion of the test particle.
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6.2.1 The Jacobi constant
The Jacobi constant can be calculated from the following dynamical
considerations. In the inertial (sidereal) frame, the test particle is sub-
ject to the acceleration

asid ��
μ1

r31
r1 �

μ2

r32
r2 (6.19)

where μ1=GM1 and μ2=GM2 are the masses of the dominant bodies,
and r1and r2 are the positions of the test particle relative to these bod-
ies. This acceleration relates to the acceleration in the synodic frame
(i.e., the frame co-rotating with the secondary) by

asyn � asid �Ω� �Ω� r� � 2Ω� r � �Ω� r (6.20)

where Ω is the angular velocity of the frame. For Ω � const � Ωẑ, it
reduces to the usual expressions

�x� 2Ωy � Ω2x� μ1
�x� μ2�

r31
� μ2

�x� μ1�

r32
(6.21)

�y� 2Ωx � Ω2y�
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r31
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r32

�
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�z � �
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μ1

r31
�

μ2

r32

�
z. (6.23)

These accelerations can be cast into the form of the gradient of a
scalar

�x� 2Ωy �
�U
�x

(6.24)

�y� 2Ωx �
�U
�y

(6.25)

�z �
�U
�z

(6.26)

where the function U is

U�x,y,z� �
Ω2

2
�x2 � y2� �

μ1

r1
�

μ2

r2
. (6.27)

59



Multiplying Eq. (6.24) by �x, Eq. (6.25) by �y, Eq. (6.26) by �z, and sum-
ming them, we get

�x�x� �y�y� �z�z �
�U
�x

�x�
�U
�y

�y�
�U
�z

�z �
�U
�t

. (6.28)

This equation is then integrated in time, which yields

�x2 � �y2 � �z2 � CJ � 2U (6.29)

where CJ , the Jacobi constant, is the constant of integration. Using Eq.
(6.27),

CJ �
Ω2

2
�x2 � y2� � 2

�
μ1

r1
�

μ2

r2

�
� v2 (6.30)

where v2 � �x2 � �y2 � �z2 is the squared velocity of the particle in the
corotating frame. The value of the Jacobi constant constrains the trajec-
tories. The motion of a test particle is possible inside surfaces bound
by zero-velocity curves were CJ=2U. The appearance of the five La-
grangian points is readily seen from the surfaces obtained by progres-
sively decreasing the Jacobi constant (Fig. 6.2). The figure also illus-
trates that the first three points are unstable, whilst L4 and L5 are sta-
ble points. We make further use of the Jacobi constant in Appendix C
to assess the quality of the numerical solution of our N-body code.

6.3 PENCIL’s results
In this section I show the results obtained, but not included in Paper
IX. All other relevant information is in the body of that article.
Fig. 6.3 shows the state of the flow after 100 orbits for a q � 10�3

(Jupiter mass) planets. The evolution of the gap is shown as
azimuthally averaged density profiles for various orbits. The
streamlines are also shown, evidencing the L4 and L5 Lagrangian
points of the planets. The horseshoe orbits can also easily be spotted
in the Jupiter mass case. The mass loss due to viscous inflow and the
excitation of the spiral waves that reach the buffer zone is very low,
being less than 3% in the timespan of the simulation. The resulting
torques show agreement with the predictions of type II migration,
with the outer disk out-weighting the inner, leading to a net negative
torque and consequent inward migration if the planet’s orbit was
allowed to evolve.
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Figure 6.2: As the value of the Jacobi constant decreases, the zero velocity
curves that bound the motion of a test particle in the circular restricted three
body problem reveal the locations of the equilibrium Langrangian points. The
three first points lie in the line connecting the two massive bodies (marked by
the vertical dashes on the horizontal axis). These points are unstable, since
they are surrounded by white areas, where motion is forbidden. The points
L4 and L5, on the other hand, are stable. The lower plots correspond to horse-
shoe and tadpole orbits, respectively.

In Fig 6.4 we see PENCIL’s solution as compared to other codes. An-
gular momentum and mass are output in the upper right and lower
left panel respectively, where we see that PENCIL agrees well with the
other codes. This statement is interesting if we recall that the other
codes are all conservative, taking explicit care of mass and momentum.
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Figure 6.3: Gap opening by a Jupiter-mass planet. The upper left figure shows
the state of the disk after 100 orbits, with superimposed streamlines. The La-
grangian points L4 and L5 and horseshoe orbits are clearly seen. The upper
right figure shows the time-evolution of the gap. In the lower left we quantify
the amount of mass loss in the box during the simulation, being less than 3%.
This loss in not numerical, but due to viscous inflow and the damping of the
spiral wake when it reaches the boundary. The figure in the lower right shows
the averaged torque acting on the planet by the inner and outer disks. The to-
tal torque is negative, so the planet migrates inwards in type II migration.

Even more interesting is to notice that the PENCIL’s solution in this
case was computed in a Cartesian grid. The capabilities of a Cartesian
grid on modelling a cylindrical flow were further explored in Paper I.
Fig. 6.5 shows radial plots of the density profile in the azimuthal po-

sitions of the L4 and L5 points (φ=�π�3) in the upper panels. The lower
plots show the density profiles at φ=π (thus including the L3 point)
and in the planet’s azimuthal location (φ=0). The agreement among
the several codes is remarkable. PENCIL reveals a slightly depleted in-
ner disk and a shallower gap compared to the other codes. This feature
was explained in Paper I as effects of resolution and numerical dissi-
pation.
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Figure 6.4: Comparison of the results of PENCIL among the other codes in
respect to the evolution of mass, angular momentum and the total torques.
For mass and angular momentum, PENCIL agrees well with the other codes,
albeit with a different slope. The total torque, however, is the strongest among
the codes (except Cartesian FLASH, which clearly differs from all others.)
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Figure 6.5: Density slices for late times of the gap opened by a Jupiter mass
planet. The color and line-style coding is the same as in the previous figure.
The upper panels shows radial slices at the position of the L4 (left) and L5
(right) points, respectively. The lower ones show slices at azimuthal position
φ=π (left) and φ=0 (right).
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7. Ongoing and future work

(Jen:) Ok, I think I finally understand what you did in your thesis. There’s this
problem, right? That’s really important, and all the research that’s been done
before doesn’t quite solve it. But now your solution kinda solves it, but only
under certain conditions and assumptions that may or may not apply to reality.

(Mike:) That describes every thesis ever written.

Jorge Cham’s Piled Higher and Deeper comic strip
(www.phdcomics.com)

In this thesis, I have explored conditions for planet formation
in disks with magnetorotational turbulence or vortices, as well as
secondary bursts of planet formation triggered by the presence of
a previously formed giant planet. In paper I the conditions were
three-dimensional, but the gravity of the particles was not solved for
to follow gravitational collapse. Papers II, III and IV addressed the
collapse of interacting particles into planets, but in 2D disks only.
Although Uriel Frisch’s textbook Turbulence states that “doing physics
in Flatland requires no apologies”, and although we have good
evidence that the proposed scenario also works in 3D, we believe that
the 2D models presented in papers II-IV leave much room for exciting
improvements. At the moment of writing, I have a number of works
in progress and other, future works, that are important and that I
find interesting to pursue. In this last chapter, much of an epilogue, I
devote a couple of paragraphs to each of them.

7.1 The RWI in three dimensions
The Rossby wave instability as originally proposed was investigated
analytically (Lovelace et al., 1999) and numerically (Li et al., 2001) in
two dimensions only. It is still unclear what the conditions for its ex-
citation would be in three dimensions, but its existence in 3D is evi-
denced in the simulations of Méheut et al. (2008). In 3D, the Solberg-
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Høiland criteria for instability are (Rüdiger et al. 2002, and references
therein)

1
r3
�j2

�r
�

1
cpρ

∇p �∇S � 0 (7.1)

�p
�z

�
�j2

�z
�S
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�r
�S
�z

�
� 0 (7.2)

where cp is the heat capacity at constant pressure and j=Ωr2 (Eq.
(3.28)). The first term in Eq. (7.1) is the square of the epicyclic
frequency. The dot product splits into two parcels so that we can
re-write the equation as

κ2 � N2
r � N

2
z � 0 (7.3)
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are pieces of the Brunt-Väisälä frequency (not to be confused with
vector components). Equation (7.1) states that vertical buyoancy has
an additional stabilizing/destabilizing effect not present in two di-
mensional simulations. Equation (7.2) contains the term �zΩ and de-
termines if the disk is unstable to the strato-rotational instability (cf.
Urpin & Brandenburg 1998, Yavneh et al. 2001, Rüdiger et al. 2002,
Dubrulle et al. 2005, Umurhan 2006).
Wemodelled a 3D-disk with the same α-dead zone prescription used

in paper II and paper III. We show the resulting flow in Fig. 7.1 (left
panel). We confirm that the RWI is present, only taking longer to de-
velop due to the stabilizing effect of stratification, embodied in the ver-
tical Brunt-Väisälä frequency.
The inner edge of the dead zone breaks into eight vortices, that show

no sign of merging after 30 orbits after their appearance. In constrast,
2D RWI-unstable models show 4-5 vortices that quickly merge. The
discrepancy in number of vortices is probably due to a modification
of the dispersion relation for the RWI in three dimensions. In 2D, the
most unstable modes are those of m=4 and m=5 (Li et al., 2000), their
merging due to the inverse cascade of power and direct cascade of
enstrophy. In 3D, where enstrophy is not conserved, the energy cas-
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Figure 7.1: Three-dimensional Rossby wave instability lauching vortices in a
α dead zone model (left panel) and in a disk with an embedded planet (right
panel). The stabilizing effect of stratification delays the onset of the instability,
but does not quench it. Work in progress.

cade is direct, so vortex merging does not occur. On the other hand,
we notice that the simulation of Meunét et al. (2008) shows only three
vortices. It is not clear from the analysis they present whether this is
the most unstable mode or whether some inverse cascade is present in
their simulation. To study this problem self-consistently, we intend to
abandon the alpha viscosity prescription, in favour of non-ideal MHD
dead zone models with resistivity given by Eq. (5.8).
The RWI is also excited in disks with giant planets, as seen in Fig. 7.1

(right panel). In this simulation, two vortices are seen. A similar simu-
lation (Edgar & Quillen 2008) also shows a low-m dominant mode, in
their case m=1. It appears that this case is more closely related to a 2D
configuration than the dead zone model, probably due to the gravity
of the planet.

7.2 Radiation
The simualations done in this thesis were performed with a very sim-
ple treatment of the energy equation. For papers I and IV we did not
solve it at all, using instead a locally isothermal equation of state. That
means that we assumed the disk optically thin, efficiently radiating
away the excess energy so no heating ever occurs. In papers II and
III we did solve the energy equation, but with an adiabatic equation
of state and including only pdV work. I intend to improve on that by
modelling disks with a realistic treatment of radiation energy trans-
port.
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The first steps towards this goal are embodied in the undergraduate
thesis of Heidar T. Thrastarson, carried out under my supervision. In
that work, we relaxed the approximations of isothermality by solving
the equations of hydrodynamics coupled with the detailed balance of
energy e and modelling the radiative field within the box

ρ
De
Dt

� �p∇ � u �∇ � F (7.6)

F �

˛
4π

ˆ
�

0
n̂ Iν dνdΩ�n̂� (7.7)

Iν�n̂� �
dEν

dνdtdΩ�n̂ � dA�
(7.8)

n̂ �∇Iν � χν�Sν � Iν� (7.9)

where F is the radiative flux, Iν is the specific intensity, Sν the source
function, n̂ the normal unit vector, ν refers to frequency and Ω to solid
angle (the last two are not to be confused with viscosity and angular
frequency).
The current implementation of the equation of radiative transfer in

the PENCIL CODE was slightly modified to allow for two frequency
ranges: the visible range where the star radiates, and the infrared,
where most of the emission of the disk itself will takes place. Fig. 7.2
illustrates the temperature distribution found for a hydrostatic
vertically stratified disk when subject to this radiative field. The
optically thin parts heat up considerably, while the thick disk achieves
equilibrium in much lower temperatures.

7.3 Gas accretion onto giant planets
The last stages of the formation of a giant planet consist of accretion
of gas from the surrounding nebula (Mizuno 1980). In this process,
the gravitational sphere of influence of the planet (the Hill sphere) be-
comes fully filled with gas, that becomes optically thick due to the high
densities. Unable to radiate away the heat, the accreted gas cannot con-
tract in order to settle onto the core. The pressure build-up prevents
more gas from entering the Hill sphere, thus stalling the accretion pro-
cess. The planet’s final mass is ultimately determined by the ability of
the accreted gas to cool and contract in order to make way for more
material entering the Hill sphere. Early estimates of the timescales in-
volved on gas accretion (Pollack et al. 1996) used the opacities of inter-
stellar dust grains, finding that the cooling phase lasted for more than
8 million years (Myr), which is much too long to match the constraints
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Figure 7.2: Equilibrium temperature structure for a disk irradiated from above
at optical wavelengths and re-radiating in infrared. Temperature shown in K.
Work in progress.

on disk lifetime posed by observations (�3 Myr; Haisch et al. 2001).
This early estimate was lowered to 2Myr by Hubickyj et al. (2005),
who notice that the opacities would decrease to 2% of the interstel-
lar value if the grains settled to the bottom of the gas envelope of the
protoplanet, where they are destroyed by sublimation. These models,
although shedding light on the importance of accurate opacities and
a detailed treatment of radiative transfer, made use of hydrostatic or
quasi-static approximations. The works that modelled the hydrody-
namical evolution of gas flow into the Hill sphere (Klahr & Kley 2006,
Ayliffe & Bate 2008) included radiation transport through the so-called
diffusion approximation (Boss 2004, Boss 2005), where the equation of
radiative transfer is not actually solved, and the validity is restricted
to the very optically thick media. I plan to improve on these models
by explicitly solving the radiative transfer equation in a fully three-
dimensional hydrodynamical model.
This simulation will be done by means of a local model, in a small

Cartesian box around the forming planet, in order to finely resolve the
dynamics inside the Hill sphere. Since the mass of gas that is being
accreted is comparable to the mass of the rocky core (and outgrows it
at later stages), the simulation will also include self-gravity. Detailed
radiative transfer using the ray-tracing technique will be employed,
which can treat both optically thin and thick media. Magnetic fields,
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not included in any model that treated this problem so far, will be a
most interesting addition.
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8. Contribution to Included Papers

I: Coded all parts of the implementation except the existing particles
module. This module only had to be adapted to include the
boundary conditions for embedded cylinders described in the
article. Ran the simulations and wrote the paper.

II: Adapted PENCIL ’s existing Poisson solver for global boundary
conditions, coded general drag force laws, ran the simulations, and
wrote the paper.

III: Coded a cylindrical grid for PENCIL, ran the simulations, and wrote
the paper.

IV: Coded a N-bodymodule for PENCIL, ran the simulations, andwrote
the paper.
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9. Summary in Swedish

Planeternas turbulenta födelse
Hydrodynamiska simulenringar av ansamlingsskivor och planetbildning

Planetbildning och extrasolära planeter är ett av astronomins mest
fascinerande forskningsområden och intimt sammankopplat med
forskningen om hur stjärnor bildas. Grunden inom forskningsområdet
lades av den kände franske matematikern Pierre-Simon de Laplace,
som i slutet av 1700-talet applicerade Newtons gravitationsteori
och rörelselagar på ett långsamt roterande sfäriskt gasmoln för att
på så sätt studera molnets utveckling och eventuella kollaps under
påverkan av sin egen gravitation. I Laplaces modell gör rotationen
i kombination med rörelsemängdsmomentets bevarande att gasen
samlas i en plan skiva runt den blivande stjärnan (protostjärnan).
Fysiker har senare insett att detta är en alltför enkel modell; eftersom

interstellära moln är ofantligt stora skulle minsta lilla rotation innebära
att den blivande stjärnan får ett för stort rörelsemängdsmoment. En
nybildad skiva skulle enligt detta scenario innehålla minst 100 gånger
större rörelsemängdsmoment än vad som krävs för att spränga sönder
det tänkta slutresultatet, stjärnan. För att stjärnan ska kunna “fånga in”
skivans gas måste den bli av med sitt rörelsemängdsmoment på något
sätt. Ett annat problemmedmodellen ligger i svårigheten att förstå hur
mikrometerstora stoftpartiklar i skivan samlas ihop till planeter stora
som Jupiter.
Den enda kända kraft som kan samla ihop material i stor skala är

friktion, vilket i gaser kallas viskositet. Molekyler i gasen kolliderar,
värms upp och strålar ut värme. De förlorar då rörelseenergi och börjar
röra sig in mot stjärnan. Om man ersätter de små molekylerna i mod-
ellen med stora turbulenselement så har man ett recept för ansamling;
turbulent viskositet. Eftersom storleken på dessa element är så mycket
större än molekyler så är även friktionen större, och ansamlingen till
stjärnan kan fortgå.
Turbulens i skivan uppstår på grund av en magnetisk effekt, den

s.k. magneto-rotationella instabiliteten, där växelverkan mellan den
differentialla rotationen och magnetfältet destabiliserar det jämna gas-
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flödet. De processer som därefter leder till planetbildning måste därför
fungera i en turbulent och orolig miljö.
Planetbildningen startar med koagulation, där kolliderande

mikrometersmå stoftpartiklar med hjälp av elektromagnetiska krafter
kan bygga upp centimeterstora gruskorn och meterstora bumlingar.
Vid dessa dimensioner slutar emellertid denna mekanism att fungera
av två skäl. För det första är kropparnas inbördes hastigheter så
stora, upp till 10 km per sekund, att kollisioner mellan två bumlingar
resulterar i grus snarare än en större bumling. För det andra tenderar
dessa kroppar att sjunka in mot stjärnan p.g.a. friktionen från den
omgivande gasen som berövar dem rörelseenergi. Tidsskalan under
vilket detta sker tycks vara så pass kort som något hundratal år.
Detta fenomen har visat sig vara det mest svåröverstigliga hindret för
förståelsen av planetbildning.
En möjlighet att komma förbi dessa hinder erbjuds av gravitation-

skraften. När stoftkornen har vuxit till centimeter- och meterstorlek,
avtar gasens bromsverkan och kropparna attraheras av stjärnans
gravitation mot skivans centralplan. Även om dessa kroppar är för
lätta för attrahera varandra individuellt, så ökar sedimentationen
stoft/gas-kvoten med flera storleksordningar. Med de höga tätheter
som då uppnås kan materialet kollektivt uppnå den kritiska
densiteten och genomgå en gravitationell kollaps. Detta scenario
har fördelen att ha en mycket kort tidsskala och undgår därmed
problemet med gasens bromsande effekt.
Denna utvecklingsväg har dock visat sig vara en överförenkling

eftersom till och med ett litet mått av turbulens i skivan hindrar
partiklarna från att uppnå den täthet som krävs för att trigga
kollapsen. Dessutom, i avsaknad av självupprätthållande turbulens
som den som orsakas av magneto-rotationella instabilitet, kan
kropparna själva orsaka turbulens med sina rörelser i gasen.
Gasturbulensen rör då upp de fasta partiklarna och skapar ett lager
med finit tjockhet, där stjärnans gravitationella sedimenterande effekt
balanseras av turbulent diffusion.
Trots att turbulens i skivan förhindrar en direkt kollaps genom

sedimentation, möjliggör den ändå processen på ett indirekt sätt.
Friktionen mellan gasen och de fasta partiklarna tenderar att skjuta
de fasta partiklarna mot områden med högre tryck och förhöjer
därmed stoft/gas-kvoten i delar av skivan, vilket ger möjlighet till
gravitationell kollaps då den kritiska densiteten uppnås. Numeriska
beräkningar visar att detta också sker; partiklar fångas i dessa
högtryckszoner och kollapsar till dvärgplaneter under gravitationell
inverkan. Turbulensen höjer dock även de fasta partiklarnas inbördes
hastigheter vilket gör att sannolikheten för kollisioner, och därmed
även fragmentering, ökar.
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Problemet med ökad fragmentering kan undvikas om partikelack-
umuleringen sker i en skyddad miljö där kollisionshastigheterna
är lägre. Anti-cykloniska virvelströmmar liknande Jupiters stora
röda fläck har länge antagits gynna planetbildning eftersom
de skapar en inåtriktad nettokraft. Virvelströmmar har också
mindre intern turbulens än den omgivande gasen vilket minskar
kollisionshastigheterna och förhindrar fragmentering. Sådana
virvelströmmar liknar orkaner i jordatmosfären och kan bildas i
områden i skivan där ansamlingsflöde bromsas. Detta sker bl.a. i den
magnetiskt “döda” zonen där jonisationsgraden är så låg att materien
inte kopplar till det omgivande fältet.
Jag har arbetat med globala “state-of-the-art” simuleringar av

turbulenta protoplanetära skivor, vilka har använts för att utforska
betydelsen av detta scenario vid bildandet av planeter. Själva
skivan behandlas i modellen i en statisk struktur, medan fasta
kroppar behandlas som numeriska partiklar (artikel I). I artikel II
byggde vi skiv-modeller med magnetiskt döda zoner, inklusive
växelverkande partiklar av centimeter- och meterstorlek. Vi visar
att ansamlandet av partiklar i virvelströmmarna är så effektivt att
det leder till gravitationell kollaps. Vidare visar vi att det sker ett
utbrott av planetbildning i skivan, vilket i modellen resulterade
i 300 gravitationellt bundna planet-embryon, varav 20 befanns
vara mer massiva än Mars. I artikel III adresserade vi bland annat
problemet med fragmentering genom att beräkna historiken av
kollisionshastigheter hos de partiklar som utgör embryon. Resultatet
visar att den övervägande majoriteten partiklar inte har utsatts för
kollisioner med övriga partiklar med större hastigheter än 1 meter
per sekund. Detta häpnadsväckande resultat stärker den sedan länge
vidhållna teorin om att anti-cykloniska virvelströmmar är mycket
fördelaktiga strukturer vid planetbildning.
I artikel IV gick vi vidare och visade att samma mekanismer

även verkar i skivor med jätteplaneter. I dessa simuleringar öppnar
jätteplanetern upp ett gap i skivans material, vilket ökar förekomsten
av virvelströmmar. Den gravitationella kollapsen leder i det här
fallet till bildandet av super-jordar, som mycket väl skulle kunna
fungera som kärnor för nästa generation jätteplaneter. Som en
biprodukt av detta arbete upptäckte jag också att gravitationella
kollapser till jordstorlek även sker vid de stabila Lagrange-punkterna
i jätteplanetens omloppsbana. Från denna upptäckt drar vi slutsatsen
att det finns en möjlighet att vissa av de gasjättar som upptäckts
i andra solsystem skulle kunna ha Trojanska kompanjoner av
jordstorlek och att det skulle kunna finnas jordliknande planeter
även i system med jätteplaneter i jordliknande banor. Denna
häpnadsväckande upptäckt blev uppmärksammad i media, och går

75



att läsa om i ett av de senaste numrena av den populärvetenskapliga
tidningen New Scientist. Ytterligare en populärvetenskaplig artikel
som citerar denna upptäckt kommer snart att finnas i press i den
nordiska tidskriften Illustrerad Vetenskap.
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Appendix A

A.1 High-frequency filters
Being high order, PENCIL has much reduced numerical dissipation.
In order to perform inviscid simulations, high-frequency filters must
therefore be used to provide extra dissipation for modes approaching
the Nyquist frequency. Usual Laplacian viscosity ν∇2u is equivalent
to a multiplication by k2 in Fourier space, where k is the wavenum-
ber. We use instead hyper-viscosity, which replaces the k2 dependency
by a higher power-law, kn, n�2. The idea behind it is to provide large
dissipation only where it is needed, at the grid scale (high k), while
minimizing it at the largest scales of the box (small k). In principle, one
can use as high n as desired, but in practice we are limited by the order
of the code. A multiplication by kn is equivalent to an operator ∇n in
real space. As PENCIL is of sixth order, three ghost cells are available
in each direction, thus the sixth-order derivative is the highest we can
compute. The hyper-dissipation we use is therefore∇6, or k6 is Fourier
space. Figure A.1 illustrates how such tool maximizes the inertial range
of a simulation.

A.1.1 Conservative Hyperdissipation
It is desirable to have this high-frequency filter obeying the conserva-
tion laws. So, for density we want a mass conserving term, for veloc-
ities we want a momentum conserving term, for magnetic fields we
want a term conserving magnetic flux, and for entropy we want an en-
ergy conserving term. These enter as hyperdiffusion, hyperviscosity,
hyper-resistivity, and hyper heat conductivity terms in the evolution
equations. To ensure conservation under transport, they must take the
form of the divergence of the flux J of the quantity ψ, so that Gauss
theorem applies and we have

�ψ

�t
�∇ �J � 0 (A.1)
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Figure A.1: Dissipation acting on a scalar field ψ, for n=1 (Laplacian dissipa-
tion) and n=3 (third-order hyperdissipation). The field is initially seeded with
noise (upper panel). For n=3 the large scale is not affected as much as in the
n=1 case, which is seen by the larger wiggling of the latter in themiddle panel.
In Fourier space (lower panel) we see that near the grid scale both formula-
tion give strong dissipation. It also illustrates that at the large scales (k�1), the
effect of n=3 is indeed negligible.

For density, the flow due to mass diffusion is usually taken as the
phenomenological Fick’s Law

J ��D∇ρ (A.2)

i.e., proportional to the density gradient, in the opposite direction. This
leads to the usual Laplacian diffusion

�ρ

�t
� D∇2ρ (A.3)
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under the assumption that the diffusion coefficient D is isotropic.
Higher order hyperdiffusion of order 2n involves a generalization of
Eq. (A.2), to (Haugen & Brandenburg 2004, Johansen & Klahr 2005)

J �n� ��Dn∇2n�1ρ, (A.4)

In our case, we are interested in the case n � 3, so that the hyper-
diffusion term is

�ρ

�t
� D3∇6ρ. (A.5)

The hyper diffusion coefficient D3 can be calculated from D assum-
ing that at the Nyquist frequency the two formulations (A.3) and (A.5)
yield the same quenching. Considering a wave as a Fourier series in
one dimension (x), one element of the series is expressed as

ψk � Aei�kx�ωt� (A.6)

Plugging it into the second order diffusion equation (2.3) we
have the dispersion condition iω � �Dk2. The sixth order version
(2.5) yields iω � �D�3�k6. Equating both we have D�3� � Dk�4. This
condition should hold at the grid scale, where k � π�Δx, therefore

D�3� � D
�

Δx
π

�4
(A.7)

For the magnetic potential, resistivity has the same formulation as
mass diffusion

�A
�t

��η∇� B � η∇2A, (A.8)

where we used the Coulomb gauge ∇ � A � 0. The algebra is the same
as above, also yielding η�3� � η�Δx�π�4. For entropy, the heat conduc-
tion term is

�S
�t

�
1

ρT
∇ � �K∇T� , (A.9)

and requiring that K be constant, we substitute it by

�S
�t

�
K�3�

ρT
∇6T. (A.10)
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also with K�3� � K�Δx�π�4.

A.1.2 Hyperviscosity
Viscosity has some caveats where subtleties apply. The difference is
that the momentum flux due to viscosity is not proportional to the ve-
locity gradient, but to the rate-of-strain tensor

Sij �
1
2

�
�ui
�xj

�
�uj
�xi

�
1
3

δij∇ � u

�
(A.11)

which only allows the viscous acceleration to be reduced to the simple
formulation ν∇2u under the condition of incompressibility and con-
stant dynamical viscosity μ � νρ. Due to this, the general expression
for conservative hyperviscosity involves more terms. In some cases, it
is no great overhead, but for others, simpler formulations can be ap-
plied.

A.1.2.1 Conservative case
In the general case, the viscous acceleration is

fvisc � ρ�1∇ � �2ρνS� (A.12)

So, for the hyper-viscous force, we must replace the rate-of-strain
tensor by a high order version

f �hyper�visc � ρ�1∇ �
�
2ρνnS�n�

�
(A.13)

where the nth-order rate of strain tensor is (Haugen & Brandenburg
2004)

S�n� � ��∇2�n�1S. (A.14)

For the n � 3 case it is

S�3�ij �
1
2

�
�5uj
�xi5

�
�4

�xi4

�
�ui
�xj

�
�

1
3

�4

�xi4
�∇ � u�

�
(A.15)

Plugging it into Eq. (A.13), and assuming μ3 � const

f �hyper�visc � ν3

�
∇6u �

1
3
∇4�∇�∇ � u��

�
(A.16)
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For ν3 � const, we have to derivate the density as well

f �hyper�visc � ν3

�
∇6u �

1
3
∇4�∇�∇ � u�� � 2S�3� �∇lnρ

�
(A.17)

A.1.2.2 Non-conservative cases
Equations (A.16) and (A.17) explicitly conserve linear and angular mo-
mentum. Although desirable properties, such expressions are cumber-
some and numerically expensive, due to the fourth order derivatives
of ∇�∇ � u�.
This term, however, is only important when high compressibility is

present (since it depends on the divergence of u). In practice we drop
this term and use a simple hyper-viscosity

fvisc �

�
ν3∇6u if μ � const
ν3
�∇6u � 2S�3� �∇lnρ

�
if ν � const

(A.18)

Notice that this can indeed be expressed as the divergence of a sim-
ple rate-of-strain tensor

S�3�ij �
�5ui
�xj5

(A.19)

so it does conserve linear momentum. It does not, however, conserve
angular momentum, since the symmetry of the rate-of-strain tensor
was dropped. Thus, vorticity sinks and sourcesmay be spuriously gen-
erated at the grid scale.
A symmetric tensor can be computed, that conserves angular mo-

mentum and can be easily implemented

Sij �
1
2

�
�5ui
�xj5

�
�5uj
�xi5

�
(A.20)

This tensor, however, is not traceless, and therefore accurate only
for weak compressibility. It should work well if the turbulence is sub-
sonic. In paper I we performed simulations with both Eq. (A.19) and
Eq. (A.20), not finding significant differences for the turbulent prob-
lem studied. This is expected, since the spectral range in which hyper-
viscosity operates is very limited: as a numerical tool, only its perfor-
mance as a high-frequency filter is needed. This also supports the us-
age of the highest order terms only, since these are the ones that pro-
vide quenching at high k. Momentum conservation is a cheap bonus.
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Angular momentum conservation is perhaps playing it too safe, at
great computational expense.

A.1.3 Anisotropic hyperdissipation
As we want quenching primarily at the Nyquist frequency, hyperdis-
sipation depends intrinsically on the resolution, according to Eq. (A.7).
Because of this, isotropic hyperdissipation only gives equal quenching
in all spatial directions if Δx=Δy=Δz, i.e., if the cells are cubic. For
non-cubic cells, anisotropic dissipation is required as different direc-
tions may be better/worse sampled, thus needing less/more numer-
ical smoothing. Such generalization is straightforward. For that, we
replace Eq. (A.4) by

J �

�
Dx

�
5ρ

�x5
,Dy

�
5ρ

�y5
,Dz

�
5ρ

�z5

�
, (A.21)

so that different diffusion operates in different directions. Since Dx, Dy
and Dz are constants, the divergence of this vector is

∇ �J � Dx
�
6ρ

�x6
�Dy

�
6ρ

�y6
�Dz

�
6ρ

�z6
. (A.22)

The formulation for resistivity and heat conductivity are strictly the
same. For viscosity it also assumes the same form if we consider the
simple non-conservative rate-of-strain tensor (A.19). This formulation
was used for runs with enhanced resolution in z (Δx=Δy=2Δz) in paper
I.
Mathematically, these operations can be written compactly by notic-

ing that the coefficients in Eq. (A.22) transform like diagonal tensors
χ

�3�
ij � χ

�3�
k δijk, where δijk is the unit diagonal third order tensor, χ�3� is

the vector containing the dissipative coefficients (diffusion, viscosity,
resistivity, or heat conductivity) in x, y, and z, and summation over re-
peated indices applies. Therefore, for a scalar quantity ψ (density, any
of the three components of the velocity or magnetic potential), we can
write

�ψ

�t
��χ

�3�
ij �i�

5
jψ ��

�
q

χ
�3�
q

�6

�x6q
ψ. (A.23)

84



Appendix B

B.1 Poisson solver
The execution time of a N-body problem scales as N2, since all pairs
of interactions have to be computed. This offers no significant over-
head when few particles are being used, but in simulations with 106

particles, it would be pure brute force. Instead, we solve the particle’s
gravity by the Poisson equation (Eq. (2.7)) in which the particles are
mapped onto the grid as a density field ρp. This is summed to the gas
density ρg and Eq. (2.7) is then inverted in Fourier space to get the
(self-)gravitational potential Φsg. This is straightforward for the case
of tri-dimensional periodic boundary conditions in Cartesian coordi-
nates. For a given wavevector k � �kx,ky,kz�, the Poisson equation

�2Φ

�x2
�
�2Φ

�y2
�
�2Φ

�z2
� 4πGρ (B.1)

becomes

�Φ ��
4πG
k2

�ρ (B.2)

where k2=k2x� k2y� k2z and tilde denotes a Fourier-transformed quantity

�f �k� �

ˆ
�

��

f �x�e�ik�xdx (B.3)

f �x� �
1

�2π�3

ˆ
�

��

�f �k�eik�xdk (B.4)

In the above and the following, we use ρ=ρg � ρp and omit the “sg”
subscript of Φsg, for clarity.
The condition of periodicity implies that the potential computed by

this method will have contributions from infinite mirror-images of the
grid at both sides of each axis. For x and y this is not as problematic as it
sounds, becausewe can expand the grid by a low factor x, and solve the
Fourier transforms on this expanded grid. The mirror images will then
be located 2x away, so their impact on the motion will be diluted by
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a factor 1/(4x2). Using x=2 suffices for our applications. In the vertical
direction, however, the disk is geometrically thin. The vertical mirror
images would still be close to the real disk unless a huge expansion
factor be used, or the order of x=1/h, where h is the scale height of
the disk. As the scale height is usually h=0.05, the expanding factor
should be x=20, which means that the resolution and computational
time would become prohibitive.

B.1.1 Potential of flatenned disks
Nevertheless, for such thin disks, the situation is closer to that of a very
flattened configuration

�2Φ

�x2
�
�2Φ

�y2
�
�2Φ

�z2
� 4πGΣδ�z� (B.5)

where Σ is the vertically integrated surface density. The presence of the
Dirac delta is problematic in real space, but is removed in Fourier space
since �δ�x� x0� � e�ikx0 . Therefore, the transform of Eq. (B.5) reads

�Φ�kx,ky,kz� � �4πG �Σ
e�ikzz0

k2x � k2y � k2z
. (B.6)

The denominator can be cast in the form

k2x � k
2
y � k

2
z � k2 � k2z

� �kz � i�k�� � �kz � i�k�� (B.7)

where �k�=
�
k2x � k2y. In this formulation, the inverse Fourier integra-

tion (from kz back to z)

�Φ�kx,ky,z� � �2GΣ�kx,ky�
ˆ �

��

eikz�z�z0�

�kz � ik��kz � ik�
dkz (B.8)

can be done analytically via residue around the pole ik to yield the
solution

�Φ�kx,ky,z� � �
2πG
�k�

�Σ�kx,ky�e��k��z�z0�. (B.9)

Apart from being faster (scaling as N log2N), this method has the ob-
vious advantage that the combined gravity of the gas and the solids is
solved simultaneously. Other methods, such as a hierarquical particle-
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Figure B.1: a. The potential generated by an exponential disk computed by Eq.
(B.9) is compared with the analytical expression. The accuracy (b.) is at the
percent level.
c. The potential generated by a single particle agrees very well with its New-
tonian prediction. In particular, the scheme ensures that the gravity (d.) is
smooth and the particle does not suffer self-acceleration.

tree, would still need to solve the elliptic problem for the gas (consid-
ering that the gas gravity is of relevance).
In Fig. B.1 we show the numerical solutions for a gas distribution

and for a single particle. We chose the exponential disk profile

Σ � Σ0e�r�r0 (B.10)

for which the analytical solution is (Freeman 1970)

Φ ��πGΣ0r�I0�y�K1�y� � I1�y�K0�y�� (B.11)

where y=r��2r0� and In and Kn are themodified Bessel functions of first
and second kind.
We see from the panels that the solution is very good. The mirror

images lead to a slightly higher error at the outer disk. The error does
not reach more than 3%, though. The potential generated by a single
particle agrees well with its Newtonian prediction, deviating from it
near the center, since we are limited by resolution and the gravity is
underestimated. In particular, the solution is smooth and the particle
does not experience self-acceleration.
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Appendix C

C.1 N-body solver
The N-body code takes advantage of the existing Particles module of
the PENCIL CODE. This module was coded by Anders Johansen and
Anthony Mee with the initial intent of treating solid particles whose
radius a

�
is comparable to the mean free path λ of the gas (i.e., particles

of Knudsen number Kn=λ�2a
�
� 1), for which a fluid description is not

valid. A N-body implementation based on that module only needed to
include mass as extra state for the particles, solve for the N2 gravita-
tional pair interactions and distinguish between the N-body and the
small bodies that are mapped into the grid as a ρp density field.
The particles of the N-body ensemble evolve due to their mutual

gravity and by interacting with the gas and the swarm of small bodies.
The equation of motion for particle i is

dvpi
dt

� Fgi �
N�

j�i

GMj

R2
ij

R̂ij (C.1)

where Rij � �rpi � rpj � is the distance between particles i and j, and
R̂ij is the unit vector pointing from particle j to particle i. The first
term of the R.H.S. is the combined gravity of the gas and of the smaller
particles onto the particle i, solved via

Fgi ��G
ˆ
V

�ρg�r� � ρp�r�	Ri

�R2
i � b

2
i �

3�2
dV, (C.2)

where the integration is carried out over the whole disk. The smooth-
ing distance bi is taken to be as small as possible. It is usually a fraction
of the Hill radius. The stellar potential can be treated as unsoftened
(b�=0) in a cylindrical grid, or if we provide an inner boundary in a
Cartesian grid. For few particles (
10), calculating the integral for ev-
ery particle is practical. For larger ensembles one would prefer to solve
the Poisson equation to calculate the disk’s potential
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Fgi � �∇Φsg (C.3)

∇2Φsg � 4πG�ρg � ρp�. (C.4)

We note that in this formulation there is no distinction between a
planet and a star except for the mass. The star evolves dynamically
due to the gravity of the planets, wobbling around the center of mass
of the system, which is set to the center of the grid.
The evolution of the particles is done with the same third-order

Runge-Kutta time-stepping routine used for the gas. The particles
define the timestep also by the Courant condition that they should not
move more than one cell at a time. For pure particle runs, where the
grid is absent, we adopt a fixed time-step tp � 2πΩ�1

fp where Ωfp is
the angular frequency of the fastest particle.

C.1.1 Conservation of the Jacobi constant
We test the stability of the N-body solver by monitoring the evolution
of the Jacobi constant (Eq. (6.30)), a conserved quantity in the circular
restricted three-body problem and thus very suitable as diagnostic of
the quality of the numerical solution. We usually evolve the quantities
in the inertial frame (Fig. C.1, left panel), which dismisses the addi-
tion of the extra accelerations in Eq. (6.20). Positions and velocities are
transformed from the corotational to the inertial frame according to

rsid � Rrsyn
vsid � vsyn �Ω� rsyn,

where rsid=�ξ,η,z� are the coordinates in the inertial frame and R is the
rotation matrix. Equation (6.30) is thus written

CJ � 2
�

μ1

r1
�

μ2

r2

�
� 2Ω�ξ �η � η �ξ� � � �ξ2 � �η2 � �z2�. (C.5)

The right hand side panel of Fig. C.1 shows the evolution of the Ja-
cobi constant relative to its initial value in a simulation with μ2=10�3,
and the test particle is placed initial at position �x,y�=(2,0). The Jacobi
constant is conserved up to one part in 105 within the timespan of 100
orbits.
We stress that the level of conservation is poor when compared to

integrators designed to specifically deal with long-term N-body prob-
lems. These integrators are usually symplectic, unlike the Runge-Kutta
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Figure C.1: Sketch of the inertial frame (left hand side), with origin at the bari-
center. The masses and distances are normalized to 1. The Jacobi constant
is given by Eq. (C.5). We show the degree of conservation on the image at
the right hand side. For 100 orbits, the usual time we evolve the simulations,
the Jacobi constant is conserved up to one part in 10�5. The conservation is
deemed poor when compared to dedicated N-body codes that are used for
calculations of timescales of millions, billions, of years. But for hydrodynam-
ical simulations, up to only a few thousand years, this degree of conservation
is acceptable.

scheme of the PENCIL CODE. As such, PENCIL should not be used to
deal with evolution over millions of years. But for the time-span we
are interested on, of only thousands of years (�100 orbits), this degree
of conservation of the Jacobi constant can be deemed acceptable.

C.1.2 A many-body test
As a further test, we perform a simulation of the solar system in Carte-
sian coordinates (Fig. C.2). Nine particles, representing the Sun and the
eight planets were simulated. The masses were normalized to Mtotal=1
and we initialize the planets aligned at their respective semi-major
axes. The normalizedmasses and initial semimajor axes, fromMercury
to Neptune, are

�μ, a0�� � �2� 10�7,0.38� �μ, a0�� � �3� 10�6,0.72�
�μ, a0�� � �3� 10�6,1.00� �μ, a0�� � �3� 10�7,1.50�
�μ, a0�� � �1� 10�3,5.20� �μ, a0�� � �3� 10�4,10.0�
�μ, a0�� � �4� 10�5,19.0� �μ, a0�� � �5� 10�5,30.0�

(C.6)
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Figure C.2: Solar system simulation with the N-body solver of the PENCIL

CODE. We follow the evolution of the Sun and the eight planets for� 1.5� 103

yr, with a fixed time-step of 10�3 yr. The time-stepping scheme is the same
third order Runge-Kutta time-step scheme used for the evolution of the hy-
drodynamical quantities (although this simulation did not include gas). The
excitation of eccentricity is a decreasing function of distance. This lead to the
de-stabiliation of Mercury’s orbit, whose semi-major axis decreases from 0.4
to 0.3 during the course of the simulation. All other planets have stable semi-
major axes, with mild or little eccentricity pumping. We usually place the in-
ner boundary of the hydro simulations at 1-2AU.

The planets have their initial velocities set to the Keplerian value.
The Sun, as explained, has normalized mass

μ� � 1�
8�

p�1

μp � 0.998604, (C.7)

and is initialized at a position and a velocity that keeps the center of
mass at the center of the grid, at rest.
With a time-step of 10�3yr, a whole Neptune orbit for the ensemble

takes one minute in a single processor. We followed the evolution of
the system for 10 Neptune’s orbits (�1652 years), during which it can
be seen that all planets except Mercury keep orbiting the Sun stably,
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with modest eccentricity pumping. Mercury’s behavior is a result of
poorer conservation of the Jacobi constant at such short distances from
the star, which is also from the plot as the (numerical) eccentricity exci-
tation is a decreasing function of semi-major axis. In contrast, we usu-
ally use an inner boundary located at 1.0-2.0 AU, which, from Fig. C.2,
is seen to be stable. We conclude that the N-body solver is stable and
sufficiently accurate during the usual timespan of our simulations.
As an extension of the particle’s module, the N-body is fully compat-

ible with the parallel optimization of PENCIL, which further speeds up
the calculations. Parallelization, however, is not yet possible for pure
particle runs, since it relies on splitting the grid between the proces-
sors. So far, the N-body code does not allow the sink particles to have
a time-evolving mass. Such a restriction limits the study of accretion
onto the planet, but we do not deal with this problem in this work.
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Appendix D

D.1 Useful numbers and relations
Many readers might be familiar with Astronomy but not acquainted
with the physical state of protoplanetary disks. In Table D.1, we show
the nominal values of some quantities of interest that hopefully will
provide a better understanding of the contents of this work.
A number of parametrizations are also of help. Below we show:

Surface density

Σ � 3� 103gcm�2
�
1AU
r

�1.5
(D.1)

Volume density at midplane

ρ � 1.7� 10�9gcm�3
�
500K
T

�1�2�1AU
r

�3
(D.2)

Sound speed

cs �
�

γKT
μmH

�1�2
� 1.60kms�1

�
T

500K

�1�2� 2
μ

�1�2
(D.3)

Hills Radius

RH � a
�
Mp

3M�

�1�3
(D.4)

Keplerian Angular frequency

ΩK �

�
GM�

r3

�1�2
(D.5)

Disk scale height

H � csΩ�1
� 7.20� 1011cm

�
T

500K

�1�2� r
1AU

�3�2� 2
μ

�1�2
(D.6)
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Table D.1: Useful values and parametrizations

Quantity Symbol Value
Astronomical unit AU 1.496� 1013cm
Solar mass M� 1.99� 1033g
Earth mass M� 5.9742� 1027g
Jupiter mass MJ,M� 0.001M� � 318M�

Mass accretion rate �M 10�8M�yr�1

Orbital velocity at 5.2 AU uφ 13.6kms�1

Adiabatic sound speed at 5.2 AU
cs0

775ms�1

Isothermal sound speed at 5.2 AU 657ms�1

Dimensionless alpha viscosity α 10�4 � 10�2

Mean molecular weight of the gas (H2) μ 2
Lifetime of the disk - 106 - 107 yr

Disk aspect ratio

h �
H
r
� 0.048

�
T

500K

�1�2� r
1AU

�3�2� 2
μ

�1�2
(D.7)

Anomalous viscosity

ν � αcsH (D.8)
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ABSTRACT

Aims. We present global 3D MHD simulations of disks of gas and solids, aiming at developing models that can be used to study
various scenarios of planet formation and planet-disk interaction in turbulent accretion disks. A second goal is to demonstrate that
Cartesian codes are comparable to cylindrical and spherical ones in handling the magnetohydrodynamics of the disk simulations
while offering advantages, such as the absence of a grid singularity, for certain applications, e.g., circumbinary disks and disk-jet
simulations.
Methods. We employ the Pencil Code, a 3D high-order finite-difference MHD code using Cartesian coordinates. We solve the
equations of ideal MHD with a local isothermal equation of state. Planets and stars are treated as particles evolved with an N-body
scheme. Solid boulders are treated as individual superparticles that couple to the gas through a drag force that is linear in the local
relative velocity between gas and particle.
Results. We find that Cartesian grids are well-suited for accretion disk problems. The disk-in-a-box models based on Cartesian grids
presented here develop and sustain MHD turbulence, in good agreement with published results achieved with cylindrical codes.
Models without an inner boundary do not show the spurious build-up of magnetic pressure and Reynolds stress seen in the models
with boundaries, but the global stresses and alpha viscosities are similar in the two cases. We investigate the dependence of the
magnetorotational instability on disk scale height, finding evidence that the turbulence generated by the magnetorotational instability
grows with thermal pressure. The turbulent stresses depend on the thermal pressure obeying a power law of 0.24 ± 0.03, compatible
with the value of 0.25 found in shearing box calculations. The ratio of Maxwell to Reynolds stresses decreases with increasing
temperature, dropping from 5 to 1 when the sound speed was raised by a factor 4, maintaing the same field strength. We also study
the dynamics of solid boulders in the hydromagnetic turbulence, by making use of 106 Lagrangian particles embedded in the Eulerian
grid. The effective diffusion provided by the turbulence prevents settling of the solids in a infinitesimally thin layer, forming instead
a layer of solids of finite vertical thickness. The measured scale height of this diffusion-supported layer of solids implies turbulent
vertical diffusion coefficients with globally averaged Schmidt numbers of 1.0 ± 0.2 for a model with α ≈ 10−3 and 0.78 ± 0.06 for
a model with α ≈ 10−1. That is, the vertical turbulent diffusion acting on the solids phase is comparable to the turbulent viscosity
acting on the gas phase. The average bulk density of solids in the turbulent flow is quite low (ρp = 6.0× 10−11 kg m−3), but in the high
pressure regions, significant overdensities are observed, where the solid-to-gas ratio reached values as great as 85, corresponding to
4 orders of magnitude higher than the initial interstellar value of 0.01.

Key words. magnetohydrodynamics (MHD) – accretion, accretion disks – instabilities – turbulence – solar system: formation –
diffusion

1. Introduction

Planets have long been believed to form in disks of gas and dust
around young stars (Kant 1755; Laplace 1796), interacting with
their surroundings via a set of complex and highly nonlinear pro-
cesses. In the core accretion scenario for giant planet formation
(Mizuno 1980), dust coagulates first into km-sized icy and rocky
planetesimals (Safronov 1969; Goldreich & Ward 1973; Youdin
& Shu 2002) that further collide, forming progressively larger
solid bodies that eventually give rise to cores of several Earth
masses. If a critical mass is attained, these cores become gas
giant planets by undergoing runaway accretion of gas (Pollack
et al. 1996). Otherwise, just a small amount of nebular gas is
retained by the core, which ends up as an ice giant.

The success of this picture in explaining the overall shape of
the solar system was shaken by the discovery of the extra-solar

planets. In less than a decade, the zoo of planetary objects re-
ceived exotic members such as close-in Hot Jupiters (Mayor &
Queloz 1995), pulsar planets (Wolszczan & Frail 1992), highly
eccentric giants (Marcy & Butler 1996), free-floating planets
(Lucas & Roche 2000), and super-Earths (Rivera et al. 2005).
Thus, understanding the diversity of these extra-solar planets is
a crucial task in planet formation theory.

Planet-disk interaction seems to be one of the obvious candi-
dates to account for this diversity. Planets exchange angular mo-
mentum with the disk, leading to either inward or outward mi-
gration (Ward 1981; Lin & Papaloizou 1986; Ward & Hourigan
1989; Masset et al. 2006). An understanding of the physical state
of accretion disks is essential to provide a detailed picture of the
effect of migration on planetary orbits.

Analytical theory must necessarily contain a number of lin-
earizing simplifications. Therefore, numerical simulations are a
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major tool to provide advances in the problem. But even then,
the large computational demands of such calculations have put
some restrictions and limitations in the models presented so far.
Because of this, although many of the individual physical pro-
cesses occurring on circumstellar environments are understood
in some detail, state-of-the-art calculations on planet formation
still lag behind our current understanding, containing simplify-
ing assumptions needed to reduce the computational effort.

For example, the evolution of temperature is usually ne-
glected in solving the dynamical equations, favoring an imposed
temperature profile. Paardekooper & Mellema (2006) showed
that in non-isothermal disks, the net torques acting on a forming
planet can change sign due to asymmetric heating on the planet’s
corotation region, potentially stopping and reversing the migra-
tion of the planet. 2D and 3D models of disks with radiative
transfer were presented by D’Angelo et al. (2003) and Klahr &
Kley (2006), showing that a high-mass planet may carve a cold
gap in the disk while retaining a thick circumplanetary cloud.
But no radiative global simulation with explicit ray tracing, able
to consistently treat optically thin and thick regions and the tran-
sition between them, has been presented so far.

Magnetic fields have been shown to play a major role in
the structure and evolution of accretion disks. Observational ef-
forts in the detection and analysis of protoplanetary disks show
evidence that these disks accrete, with a mass accretion rate
of the order ≈10−8 M� yr−1 (e.g., Sicilia-Aguilar et al. 2004).
Such a powerful accretion cannot be explained by molecular
viscosity, requiring some other mechanism to transport angu-
lar momentum outward. Balbus & Hawley (1991) pointed out
the importance of the magnetorotational instability (Velikhov
1959; Chandrasekhar 1960, 1961) for accretion disks. In their
important work, they show that this magnetorotational instabil-
ity (MRI) is operative in sufficiently ionized Keplerian disks as
long as the magnetic field is subthermal, generating a turbulence
powerful enough to explain observed accretion rates in proto-
planetary disks.

However, although magnetic fields are ubiquitous in the uni-
verse, protoplanetary disks are thought to be “cold” and thus not
completely ionized. Cosmic rays can provide the required ion-
ization for the MRI to operate, but they cannot penetrate all the
way to the midplane of the disk (a standard value for the penetra-
tion depth is a gas column density of Σ = 100 g cm−2). The result
is that in the region where giant planets are thought to form, only
the surface of the disk is sufficiently ionized for theMRI to grow.
Turbulence thus likely operates in a surface layer, while the mid-
plane is neutral and laminar, constituting a so called “dead zone”
(Gammie 1996; Miller & Stone 2000; Oishi et al. 2007).

As a result of the mentioned difficulties of modeling the cou-
pled interaction between radiation, magnetic fields, dust grains,
solids, neutral and ionized gas in the gravitational potential of a
star and embedded planets, the numerical works in the field show
a heterogeneity of methods, with most works tackling only some
aspects of the problem. Particularly, numerical simulations have
focused on local Cartesian shearing boxes (e.g., Hawley et al.
1995; Brandenburg et al. 1995) or global disks on cylindrical
grids (e.g., Hawley 2001; Armitage et al. 2001; Nelson 2005).
As the MRI is a local process, the shearing box has the advan-
tage of capturing much of the physics of the problem while sig-
nificantly reducing the computational effort and complexity –
for instance (shear-) periodic boundary conditions can be used.
The global disks on cylindrical grids offer the advantage of hav-
ing the grid and flow geometry coinciding, but in this case, spe-
cial care must be taken for the boundary conditions, as reflec-
tive boundaries make waves bounce through the computational

domain in an unphysical manner and outflow boundary condi-
tions may lead to too muchmass loss (Fromang& Nelson 2006).
Fromang & Nelson (2006) have also presented the first simula-
tion of the MRI in global disks with vertical density stratifica-
tion. A comparison between their models and a stratified version
of ours will be addressed in future work.

In a series of articles we aim at constructing global radia-
tive magnetohydrodynamical simulations. In this first paper, we
present the features and capabilities of the numerical scheme
used by constructing cylindrical disk models of gas and solids
with MHD turbulence. These models will be developed in fu-
ture work to allow for stratification, radiation and a global self-
consistent treatment of dead zones.

The simulations presented here are embedded in Cartesian
boxes. Although it can be regarded as unpractical for simulat-
ing a flow with cylindrical symmetry, such a grid also presents
some advantages. First, cylindrical grids are a strong limitation
for flows that deviate from cylindrical symmetry, e.g. circumbi-
nary disks or 3D jet simulations, mainly because it is impossible
to have a flow across the center of the grid, and at r = 0 re-
flection must occur. Second, this approach has proved useful in
view of computational simplicity and parallelization efficiency
(e.g. Dobler et al. 2006). In particular, by having cells of con-
stant aspect ratio, Cartesian grids have much reduced numeri-
cal dissipation when compared to grids with complex geometry
(van Noort et al. 2002). Therefore, while cylindrical and spher-
ical grids can explicitly conserve angular momentum w.r.t the
origin of the coordinate system, it is of no benefit for systems
that do not have the center of mass at the origin. Third, as pho-
tons travel in straight lines (in the absence of general relativistic
effects), a radiative transfer scheme with ray tracing is simpler
to implement in a Cartesian grid in spite of the cylindrical sym-
metry of the hydrodynamical flow (Freytag et al. 2002).

As a numerical solver we employ the Pencil Code1, a high
(6th) order finite difference code. Such a numerical tool is highly
different from most other astrophysical codes in use in the liter-
ature (see de Val-Borro et al. 2006, and references therein), thus
also providing an independent check of the results so far ob-
tained in the field.

This paper is structured as follows: we discuss the model in
Sect. 2, proceeding to test cases in Sect. 3. In Sect. 4 we discuss
the several MHD simulations performed. In Sect. 5 the models
with solids are presented, finally leading to the conclusions in
Sect. 6.

2. The model

2.1. Gas dynamics

The equations solved are those of ideal MHD in an inertial refer-
ence framewith a central gravity source. The equation governing
the evolution of density is the continuity equation

Dρ
Dt
= −ρ∇ · u + fD(ρ), (1)

where ρ and u are the density and velocity of the gas. The oper-
ator D/Dt = ∂/∂t + u · ∇ represents the advective derivative.

The equation of motion is the sum of all forces acting on a
parcel of gas. It reads

Du
Dt
= −1
ρ
∇p − ∇Φ + J × B

ρ
+ f ν(u, ρ), (2)

1 See http://www.nordita.dk/software/pencil-code
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where p is pressure, Φ the gravitational potential, B is the mag-
netic field, J = μ−10 ∇ × B is the volume current density, as de-
fined by Ampère’s Law, and μ0 is the magnetic permeability of
vacuum.

The evolution of the magnetic field is governed by the induc-
tion equation. The Pencil code, however, works not with the
magnetic field itself, but with the magnetic potential A, where
B = ∇ × A. This automatically guarantees the solenoidality of
the magnetic field, as the condition ∇ · B = ∇ · (∇ × A) = 0
is always satisfied. The induction equation formulated for the
magnetic potential reads

∂A
∂t
= u × B + f η(A). (3)

The equation of state, relating pressure and density, closes the
system of equations. We use the ideal gas law

p = ρc2s , (4)

with a locally isothermal approximation, where the sound
speed cs is a time-independent function of the cylindrical dis-
tance s to the z-axis. We write cylindrical coordinates as (s, φ, z)
and spherical coordinates as (r, φ, θ), where θ is the polar angle
and φ the azimuthal angle. The z direction is perpendicular to the
midplane of the disk.

The gravitational potential Φ has contributions from the star
and the N − 1 embedded planets,

Φ = −
N∑
i

GMi√
R2

i + b2
i

, (5)

where G is the gravitational constant, Mi is the mass of particle i
and Ri = |r − rpi | is the distance of a gas parcel relative to parti-
cle i. The quantity bi is the distance over which the gravity field
of the particle i is softened to prevent singularities.

The functions fD (ρ), f ν(u, ρ), and f η(A) are explicit mass
diffusion, viscosity and resistivity terms, needed to stabilize the
numerical scheme. They are composed of two terms, where the
first one is a conservative sixth-order dissipation. This term is
described in detail in Haugen & Brandenburg (2004) as well as
in Johansen & Klahr (2005) for the case of isotropic dissipation.
A generalization for the anisotropic case, required for non-cubic
cells, is shown in Appendix A. The second term is a localized
shock-capturing dissipation, activated when large negative di-
vergences, typical of shocks, are formed (Haugen et al. 2004).
This is described in Appendix B.

2.2. Planet orbital evolution

The star and the planets are treated as an N-body ensemble,
evolving due to their mutual gravitational interaction. The equa-
tion of motion for particle i is

dupi

dt
= Fgi −

N∑
j�i

GM j

R2
i j

R̂i j (6)

where Ri j = |rpi − rp j | is the distance between particles i and j,
and R̂i j is the unit vector pointing from particle j to particle i.
The first term of the R.H.S. is the combined gravity of the gas
onto the particle i

Fgi = −G
�

V

ρ(r)Ri

(R2
i + b2

i )
3/2

dV, (7)

where the integration is carried out over the whole disk. As we
are not interested in the disk’s self-gravity, but rather on its grav-
itational effect on one specific point (or a few points in case of
multiple planets), calculating the integral above is simpler and
faster than using a Poisson solver to find the gravitational poten-
tial of the disk everywhere on the grid.

The smoothing distance bi is taken to be as small as possible.
It is usually a fraction of the Hill radius. For reasons described
in Sect. 2.7, the stellar potential can be treated as unsoftened
(b	 = 0). We note that in this formulation there is no distinction
between a planet and a star except for the mass. The star evolves
dynamically due to the gravity of the planets, wobbling around
the center of mass of the system, which is set to the center of the
grid. As the disk is not massive compared to the star, we exclude
the disk torques from influencing the star. For runs without plan-
ets a constant gravity profile with a star at the center of the grid
is used instead of solving the equations of the N-body code.

2.3. Dynamics of solids

To model the early stages of planet formation where solids grow
from cm and m sizes to kilometer-sized planetesimals we con-
sider the dynamics of meter-sized solid boulders, also treated
as individual Lagrangian particles. Each of the particles has its
own position and velocity, independent of the grid, integrated
by the same particle module of the Pencil Code that is used
for the planets. The difference is that as the planets interact with
the disk and with themselves by gravity, the particles interact
with the disk only via a drag force that is proportional to the
velocity of the particle with respect to the local gas velocity.

While in our cylindrical models there is no vertical gravity
on the gas, the particles do feel this component without which no
settling towards the disk midplane would occur. The evolution
equation for solid particle i is therefore

dui
dt
= − 1
τf
(ui − u) − GM	

r3
r, (8)

where τf is the friction time and u is the gas velocity at the posi-
tion of a particle. We assume that the friction time is independent
of velocity differences between gas and particles. We choose it
to be τ = 1/Ω0, which for the typical densities and temperatures
in the disk (Table 1), corresponds to particle radii between 0.4
and 2.5 m, depending inversely on the orbital distance. The as-
sumption of linearity of the drag law holds as long as the ve-
locity difference between gas and solids is much smaller than
the sound speed (Weidenschilling 1977; Paardekooper 2007;
Johansen et al. 2007). The condition is met since the turbulence
generated by the MRI is subsonic.

The gas velocity u at the position of the particle is interpo-
lated from the nearest 27 grid points, using a Triangular Shaped
Cloud scheme, as described in Youdin & Johansen (2007).

2.4. The code

The Pencil code is a non-conservative Cartesian finite-
difference MHD code that uses sixth order centered spatial
derivatives and a third order Runge-Kutta time-stepping scheme,
being primarily designed for compressible turbulent hydromag-
netic flows.

The Pencil code was recently applied to a 2D global lam-
inar disk calculation, in which the results agreed with those of
polar-grid based codes (de Val-Borro et al. 2006). We extend this
calculation now to three dimensions with magnetic fields, fully
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Table 1. Conversion between code and physical units.

Quantity Physical unit

Length 5.2 AU (=7.8 × 1011 m)
Density 2.0 × 10−8 kg m−3

Velocity 1.31 × 104 m s−1

Energy 1.60 × 1036 J
Pressure, stress 3.41 Pa
Time 1.89 yr (=6.0 × 107 s)
Magnetic field 2.07 × 10−3 T
Viscosity 1.02 × 1016 m2 s−1

Mass 4.73 × 10−3 M�
Mass accretion rate 2.51 × 10−3 M� yr−1
Domain size (Ls, Lz) 2−13 AU, ±1.3 AU
Resolution (Δ x) 0.08 AU

exploiting the capabilities of the Pencil code for handling the
problem of numerical hydromagnetic turbulence.

2.5. Units

We adopt dimensionless units such that

GM = ρ0 = μ0 = 1.

The quantity GM has dimension of length3 time−2, so it sets a
constraint on [x][t]. The unit of time follows from this as being
the inverse of the Keplerian angular frequency at s = s0 ≡ 1

[t] =

√
GM

s30
= Ω−10 , (9)

which gives an orbital period P = 2π at s0 in absence of a global
pressure gradient.

The unit of velocity

[u] = [x]/[t] = Ω0s0

is therefore the local Keplerian speed at s0. The sound speed
is set accordingly, through the Mach number (see Eq. (11)).
Density is measured relative to the initial density of the box
[ρ] = ρ0.

The unit of magnetic field follows from the Alfvén speed,

[B] = Ω0s0
√
μ0ρ0.

It follows from this that the unit of magnetic vector potential is

[A] = [B][x] = Ω0s20
√
μ0ρ0.

As the simulation is dimensionless, it scales with the choice
of physical units. By assuming that s0 is the semi-major axis
of Jupiter, aJ = 5.2 AU, and considering the typical density
of the minimum mass solar nebula at that location, ρ0 ≈ 2 ×
10−8 kg m−3, the physical units corresponding to the employed
code units are listed in Table 1.

2.6. Initial conditions

We use a Cartesian box with a spatial range x, y ∈ [−2.6, 2.6],
and z ∈ [−0.26, 0.26] (see Table 1 for a conversion of the units
used to physical units). The number of cells is usually Nx = Ny =
320, Nz = 32. This ensures that Δ x = Δ y = Δ z, i.e., all cells are
cubes of the same size. However, for some models we double
the resolution in the vertical direction in order to resolve faster
growing wavelengths of the MRI. Doubling the resolution in x

and y would keep the cells cubic, but the already expensive com-
putational costs would become unpractical without yielding any
other major advantage. We therefore keep it at 320 × 320 and in-
troduce anisotropic hyperdiffusivity to treat the non-cubic cells
(see Appendix A).

As stated before, we use the ideal gas law approximation to
evaluate the pressure. The sound speed is set as a power law

cs = cs0 s−qT /2. (10)

We usually set qT = 1, so that the Keplerian flow has a constant
Mach numberM

M = ΩKs
cs

≡ const., (11)

where ΩK is the “cylindrical” Keplerian angular velocity profile

Ω2
K =

GM	
s3

·
The Mach number is seen to be the inverse of the aspect ratio
h = H/r, where H = cs/Ω is the pressure scale height. We
checked the evolution and saturated state of the turbulence for
Mach numbers of 5, 10 and 20.

We also perform simulations with radially-varyingM where
the sound speed follows a steeper power law, with qT = 2.

Accretion disks exhibit a radial density gradient, but this
gradient arises due to accretion itself (Shakura & Sunyaev
1973). Therefore, we initialize the midplane density at a con-
stant value ρ0, in order to understand the role of the stresses in
generating the density gradient.

We start our models in strict equilibrium between gravity,
global (thermal and magnetic) pressure gradients and centrifugal
forces,

Ω2 = Ω2
K +

1
sρ
∂

∂s

(
p +

B2

2μ0

)
· (12)

2.7. Boundary conditions

In this work, we compute models with and without an inner
boundary to quantify the advantages/drawbacks of such a fea-
ture in a Cartesian grid. As for the external boundary, the box
limits at x = ±2.6 and y = ±2.6 do not correspond to the phys-
ical boundaries of the problem. Indeed, the dynamically evolv-
ing disk encompasses a cylinder inside of sext = 2.5. The frozen
regions outside of this cylinder play the role of ghost rings in
cylindrical codes.

After evolving the dynamical equations, we set the time
derivatives of all variables to zero in the region outside sext = 2.5.
As the variables cannot evolve outward of sext, being effectively
frozen in this region, the “real” boundary conditions of the box
(e.g., open, reflecting) do not matter if this freezing boundary
condition is used.

To avoid numerical instabilities due to this abrupt jump from
frozen to evolving regions, we apply a buffer zone to the deriva-
tives of the variables, that smoothly drives the variable X to a
desired value X0 in a timescale τ, such that

∂X
∂t
= −X − X0

τ
S(s). (13)

where S(s) is the uniquely defined fifth-order step function that
is 1 at the domain boundary and 0 at the interior boundary of the
buffer zone while maintaining continuous second order deriva-
tives (Dobler, private communication). Its shape is visualized
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Fig. 1. Border profile of the simulations. The step function (Eq. (13)) is
applied to the derivatives of the dynamical variables. The gas is free to
evolve between s = 0.5 and s = 2.3, is slowed down between [0.4, 0.5]
and [2.3, 2.5] (light-shaded areas) and is effectively frozen at s < 0.4
and s > 2.5 (dark-shaded areas).

in Fig. 1. We usually take the driving term X0 to be the ini-
tial condition of the variable, and the driving time τ being the
Keplerian period 2π/ΩK, the dynamical timescale of the disk.
The effect of this border profile is to smooth the transition be-
tween the evolving disk and the frozen regions of the grid, thus
preventing large gradients and discontinuities that would other-
wise arise. As the gas flow is symmetric in the vertical direction,
the vertical boundary condition is set to periodic for the purpose
of simplicity.

For the runs without an inner boundary, we smooth the quan-
tities containing singularities by replacing

s−n ⇒ (s2 + b2)−n/2. (14)

In practice, it is applied to the angular frequency Ω, the grav-
itational potential Φ and the sound speed cs. We usually take
b = 0.1, so the smoothed gravitational potential deviates from
the Newtonian by less than 5% at sint = 0.4. The physical do-
main thus runs from sint to sext.

For runs with an inner boundary, we apply inside sint the
same freezing as used outside sext. The N-body particle code
does not participate in the freezing, so although the star lies in a
region of frozen gas, it is allowed to move.

As the gas is frozen in the inner and outer parts, the infor-
mation about the flow in this region is not of interest. Therefore,
we exclude these regions from the time-step calculation. As their
time derivatives are set to zero at the end of the time-step, they
cannot violate causality.

In principle, we could set sint as close to zero as possible (by
not using smoothing but retaining an inner boundary), in order
to study the processes that happen in the immediate vicinity of
the star, like winds, the magnetic cavity and surface accretion
(von Rekowski & Piskunov 2006). However, due to the increas-
ing Keplerian velocity in the advection and the decreasing reso-
lution of the orbits, non-axisymmetric wave modes (particularly
the m = 4 mode) build up in the inner disk as we try to push
sint → 0. The density fluctuations resulting from the excitation
of these modes lead to numerical instabilities.

Finally, the magnetic potential follows the same boundaries
as described above. This would be a problem if we solved for the
actual magnetic field, as sinks or sources of magnetic flux imply
the presence of open magnetic loops (monopoles). By solving
for the magnetic vector potential we do not face such problems.

The solid particles obey different boundary conditions,
explained in Sect. 5.

Normal x Hyper Viscosities

0.5 1.0 1.5 2.0 2.5
s

0

1

2

3
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Σ

Normal, ν1=10-3

Hyper,  ν3=10-10

Fig. 2. The radial density profile after 100 orbits for Laplacian viscos-
ity ν1 = 10−3 is compared to the profile obtained by using sixth-order
hyperviscosity (ν3 = 10−10) of same strength in the small scales. In the
hyperviscous case, the global flow is unaffected. Note that the frozen
regions behave like infinite reservoirs of matter. The power law describ-
ing the resulting density profile for normal viscosity is very close to the
s−0.5, as expected for constant viscosity (see Pringle 1981, and refer-
ences therein)

3. Influence of free parameters

In order to clarify the influence of the numerical scheme and the
approximations made, a series of non-magnetic 2D models were
computed, with and without planets. The grid being Cartesian,
all our simulations span the whole azimuthal domain.We usually
evolve the simulations up to 100 orbits at s0, which corresponds
to ≈25 orbits at the outer edge of the disk and ≈400 orbits at its
inner edge.

3.1. Viscosity

Explicit hyperviscosity and hyperdiffusion induce dissipation
primarily near the grid scale, replacing the usual 2nd order
Laplacian terms. A visual picture of the difference between us-
ing the two types of viscosity is seen in Fig. 2. The first model
was computed with a Laplacian viscosity ν1 = 10−3. The radial
inflow is significant, and as the outer frozen region behaves like
an infinite reservoir of matter, the total mass inside the disk keeps
on rising as matter flows in from this reservoir. The radial den-
sity profile soon starts to deviate from the flat initial condition.
Shown in the figure is the density profile after 100 orbits at s0
with ν1 = 10−3. When using hyperviscosity of similar strength
at the grid scale, i.e., ν3 = 10−10, the overall flow shows no sig-
nificant deviations from the initial conditions.

The simulation shown using Laplacian viscosity was com-
puted without an inner boundary, using a softened stellar poten-
tial with b = 0.1. Using the damping and freezing profile de-
scribed in Sect. 2.7, the density is not allowed to deviate much
from the initial condition at the boundaries. In the physically
evolving part of the disk, however, a density profile of expo-
nent s−0.4 evolves.

3.2. Mass diffusion

To evaluate the influence of mass diffusion, we simulate a lami-
nar disk with constant Laplacian viscosity ν1 = 10−5 in the pres-
ence of a gap-opening Jupiter-mass planet. We performed runs
of resolution 320 × 320 with hyperdiffusion coefficients rang-
ing from D3 = 5 × 10−11 to 10−14. After a hundred orbits, time
enough for the planet to open a deep gap, the density profiles are
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Fig. 3. Upper panel. The gap carved by a 1 MJ planet in a 2D disk re-
veals the influence of explicit diffusion in the calculations. The inner
disk loses mass depending on the amount of diffusion. The value of
D3 = 5 × 10−12 seems to ensure mass conservation in the inner disk
yet not distorting the shape of the gap. The solid line represents a 640 ×
640 run without diffusion, for comparison. Resolution is 320 × 320 oth-
erwise. Lower panel. Same but with hyperdiffusion set to D3 = 10−11
and varying the shock diffusion coefficient from 10−2 to 1.

plotted in Fig. 2a, where a run with resolution 640 × 640 without
explicit diffusion is shown for comparison.

It is seen that D3 = 5× 10−11 constitutes too much diffusion,
as the gap is significantly altered. As less diffusion is used, the
shape of the gap monotonically approaches the one recovered in
the higher resolution run. The walls of the gap are fairly well re-
produced for lower diffusion, but its bottom is always shallower
even for the lowest coefficient used (D3 = 10−14).

Judging from the gap alone, one could in principle use no
diffusion at all, but the inner disk suffers depletion for low diffu-
sion regimes, due to the non-conservative nature of the numer-
ical scheme. Even the higher resolution run seems to have lost
mass due to the lack of explicit diffusion.

We adopt a hyperdiffusion coefficient of D3 = 5 × 10−12 as
the best compromise between the need for preserving material
in the inner disk and for reproducing the overall shape of the
gap. Requiring Schmidt and magnetic Prandtl numbers of 1 at
the grid scale, we set hyperviscosity and hyperresistivity to the
same value.

3.3. Shocks

Shock viscosity and shock diffusion are needed for two reasons:
(a) to stabilize the flow near the shock-generating particles in
runs with planets and (b) to treat eventual supersonic motion in
the turbulence (arising when the disk is exposed to a strong net
vertical field), in which case shock resistivity is also included.

In Fig. 2b we show gap-opening runs with fixed hyperdif-
fusion coefficient D3 but varying the shock diffusion coefficient.
From the continuity equation, one can tell that the effect of shock
diffusion is to slow down the time evolution of density by smear-
ing out any large divergences. Indeed, one sees that after a hun-
dred orbits, a shock diffusion coefficient of 1 fails to reproduce
the shape of the gap as compared to the higher resolution run
without shock diffusion, while 10−1 shows less accumulation
than expected in the Lindblad resonances, also seen as compared
to the higher resolution run. We therefore use shock diffusion of
10−2 for the turbulent runs. The flow around a high-mass planet,
however, could only be stabilized with a shock viscosity of 1.

Shock resistivity is also used when the run involves the mag-
netic potential. The value used was not tuned in 2D runs like
shock diffusion and shock viscosity. Instead, in the presence of
turbulence, we simply checked what was the lowest shock resis-
tivity coefficient that did not lead to numerical instabilities for
model A (see Table 2), finding that it is of the order of unity, like
the shock viscosity.

3.4. Non-turbulent runs

To verify the numerical stability of the model in the absence of
physical turbulence, we perform tests for cases where the turbu-
lence is not supposed to be present. In these runs, we monitor the
evolution of the mass inflow rate Ṁ defined as the 1D radially
dependent surface integral over a surface A which is a cylinder
at a radial distance s from the origin

Ṁ(s) =
�

A
ρu · n̂dA (15)

= 2πs
� Lz/2

−Lz/2

ρ(s, z)us(s, z) dz. (16)

We see that in a 2D laminar model, the mass inflow rate is con-
stant through the radial domain once a steady flow is achieved
(which simply states that mass is conserved). We thus define
the mass accretion rate as the mass inflow rate across the inner
boundary, ṁ = Ṁ|s=0.4 , meaning that after crossing this boundary,
the matter is considered lost (accreted).

We also measure the kinetic alpha parameter of turbulent vis-
cosity, defined as

αR =
2
3

Rsφ

ρc2s
,

where Rsφ = ρδusδuφ is the Reynolds stress; and its magnetic
counterpart

αM = −23
Msφ

ρc2s
,

where Msφ = μ−10 δBsδBφ is the Maxwell stress.
In Fig. 4 we show a 2D run where the velocities were per-

turbed with noise of urms = 10−2, but the induction equation is
not solved. The turbulence dies out so fast that even before ten
orbits at s0 the flow is already smooth, showing that the numeri-
cal scheme does not spuriously generate or sustain turbulence.
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Table 2. Cylindrical turbulent disk models.

Parameter Results

Run sint B0 cs0 qT β0 Nz χsh Np Rsφ −Msφ αR αM Brms βt δt
(×103) (×105) (×105) (×103) (×103) (×103) (×103)

Uniform field Bz

A 0.4 1 0.05 1 5000 32 1 106 0.24 ± 0.04 1.5 ± 0.3 0.9 ± 0.2 6 ± 1 17 ± 9 13 ± 3 7 ± 1
B 0.4 1 0.10 1 20 000 32 1 ... 1.0 ± 0.2 2.5 ± 0.3 0.7 ± 0.1 1.8 ± 0.2 16 ± 5 65 ± 7 ...
C 0.4 1 0.20 1 80 000 32 1 ... 4 ± 1 5.3 ± 0.8 0.9 ± 0.2 1.3 ± 0.2 26 ± 7 81 ± 7 ...
A 2 0.0 1 0.05 1 5000 32 1 ... 0.20 ± 0.04 1.3 ± 0.1 0.7 ± 0.1 4.7 ± 0.3 17 ± 5 13 ± 1 ...
B 2 0.0 1 0.10 1 20 000 32 1 ... 0.9 ± 0.2 2.6 ± 0.3 0.8 ± 0.1 2.1 ± 0.2 20 ± 11 43 ± 13 ...
C 2 0.0 1 0.20 1 80 000 32 1 ... 5 ± 3 5 ± 1 1.2 ± 0.8 1.2 ± 0.3 22 ± 9 116 ± 19 -

Radially varying field Bz

D 0.4 20 0.10 2 12 64 2 106 22 ± 2 78 ± 7 25 ± 1 87 ± 3 71 ± 9 4 ± 1 140 ± 10
E 0.4 20 0.20 2 50 64 2 ... 35 ± 7 87 ± 15 13 ± 3 30 ± 5 60 ± 23 11 ± 1 ...
Dw 0.4 5 0.10 2 750 64 2 ... 4.1 ± 0.4 13 ± 2 5.4 ± 0.6 17 ± 2 28 ± 10 13 ± 2 ...
Ew 0.4 5 0.20 2 3000 64 2 ... 13 ± 4 27 ± 2 4 ± 1 8.7 ± 0.7 36 ± 11 33 ± 3 ...

Uniform field Bφ

F 0.0 30 0.05 1 5.5 32 2 ... 0.7 ± 0.1 2.9 ± 0.4 2.5 ± 0.4 11 ± 1 12 ± 4 24 ± 2 ...
G 0.0 30 0.20 1 90 32 2 ... 5 ± 2 18 ± 6 0.9 ± 0.4 3.3 ± 1.4 28 ± 11 107 ± 22 ...
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Fig. 4. Without solving the dynamical equations for the magnetic field,
even initially vigorous random motions of urms = 0.2cs0 die out rather
quickly. The plots show the time evolution of the globally averaged
Reynolds stress and mass accretion rate. Time is quoted in orbits at s0.

A 3D cylindrical run in which we add a vertical net field of
strength B0 = 10−3 (dimensionless), corresponding to plasma
β = 5000 at s0, 12 500 at sint and 2000 at sext (see Eq. (19)),
but where the initial flow is not perturbed by noise, does not
develop turbulence. We also tested if the MRI would develop
in a disk seeded only with noise in both the velocity and mag-
netic potential (urms = Arms = 10−4). There is a short growth
in magnetic energy, presumably due to reconnection of the field
lines, but without a structured field to maintain the turbulence
the Reynolds and Maxwell stresses quickly level down to zero
as viscosity and resistivity smooth the imposed noise.

4. Cylindrical disk runs

For the main simulations in this paper we consider flat vertical
profiles for the gravity field. Such an approximation is called a
“cylindrical” disk and has been often used in order to study the
MRI (e.g., Armitage 1998; Hawley 2001). The vertical gravity
gz = −Ω2z is switched off so that, physically, the star is no longer
a point mass at r = 0, but a rod at s = 0 extending through the
length of the z-axis. In such a setup, the pressure scale height H

has no hydrostatic meaning, being only a way to write the tem-
perature profile of the disk. We performed simulations with non-
zero net flux magnetic fields B = B0 ẑ and B = B0φ̂. Models
with a radially varying vertical field proportional to Ω(s) were
also computed.

For the turbulence to develop, the unstable wavelengths of
the MRI must be resolved. The characteristic vertical wave-
length λBH of the hydromagnetic turbulence is given by (Balbus
& Hawley 1991, 1998)

λBH = 2π
vA
Ω
, (17)

where vA is the Alfvén speed

vA =
B√
μ0ρ

· (18)

The turbulence will be present as long as the critical wave-
length λc is resolved. This wavelength is λc = λBH/

√
3, whilst

the most unstable wavelength of the MRI is 4λBH/
√
15 (Balbus

& Hawley 1991). The plasma β parameter – the ratio of ther-
mal to magnetic pressure – can be expressed in terms of the
sound and Alfvén speed, by writing the magnetic pressure PM =
B2/(2 μ0) in terms of the Alfvén speed PM = B2/(2 μ0) = ρv2A/2,
giving

β =
2c2s
v2
A

· (19)

The constant B0 is usually set to 10−3, but runs varying the field
from 10−4 to 10−1 were also studied. Although the runs reported
here are in the local isothermal approximation,we also varied the
initial sound speed at s0, cs0 , in order to check how the resulting
turbulent viscosity depends on the global gas pressure.

The parameters of the cylindrical models presented here are
specified in Table 2.

4.1. Constant vertical field – model A

The evolution of the turbulence in a fiducial run with a net ver-
tical flux of strength B0 = 10−3 and temperature profile corre-
sponding to cs0 = 0.05 is shown in Fig. 5. The absolute value
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Fig. 5. Time evolution of the turbulence for model A (constant net flux vertical field B = 10−3 ẑ and constant Mach number). The top panel shows
the evolution of the sφ-component of the Maxwell and Reynolds stresses, while the middle and bottom panels show the evolution of magnetic
and kinetic energy, respectively. The units are given in Table 1. The solid lines in the two bottom panels show the total energy. The toroidal field
dominates the magnetic energy to the point that the energy in the azimuthal component can barely be distinguished from the total energy. The
kinetic energy is more evenly distributed among the three dimensions, but the turbulence is not isotropic. The radial component shows 1.5 times
more energy than the vertical and 2 times more than the azimuthal. Time is quoted in orbits at s0.

of the Maxwell stress at saturation is always larger than the
Reynolds stress, but the latter fluctuates more strongly.

The minimum ratio of stresses is −Msφ/Rsφ = 3 (at t ≈ 75 or-
bits), but it reaches as much as 100 (at t ≈ 58 orbits). After 75 or-
bits, the average ratio of Maxwell to Reynolds stress is around 5.

In agreement with previous shearing box simulations
(Brandenburg et al. 1995; Hawley et al. 1995; Johansen & Klahr
2005), global disks (Hawley 2001; Nelson 2005) and analytical
calculations (Balbus & Hawley 1991), a large scale toroidal field
is seen to form, which dominates the magnetic energy, being
2 orders of magnitude stronger than the radial and vertical fields.
Indeed, one can barely distinguish between the energy stored in
the azimuthal field and the total magnetic energy. The kinetic en-
ergy is more evenly distributed, but it is not isotropic. The radial
component accounts for 45% of the total energy, being≈1.5 big-
ger than the vertical and twice as big as the azimuthal. The radial
structure of the alpha parameter is seen in Fig. 6. The outer disk
is more turbulent due to the smaller values of plasma β when
compared to the inner disk.

Following the time evolution of the turbulence in the mid-
plane, it is seen that different regions of the disk reach satura-
tion at different times. The turbulence starts from the outer disk,
propagating inwards. It is expected since, as Ω decreases with
radius, a uniform field implies a Balbus-Hawley wavelength that
increases with distance from the star. As longer wavelengths –
comparable to the length of the box – are easily resolved, the
outer disk goes turbulent first. It is seen that inside s0 = 1 the
disk did not go turbulent. In this model, the Mach number is
constant, M = 20, with a constant field, B = 10−3 through the
whole domain, corresponding to plasma β running from 2000 at
sext and 12 500 at sint. The magnetic field determines the value
of the critical wavelength, which ranges from λc = 0.002 at sint

to λc = 0.025 at sext. As we have 32 grid points in the vertical
direction, the smallest wavelength resolved with significant ac-
curacy (8 points) by our high-order finite-difference method is
Lz/4 ≈ 0.12. From the dispersion relation of the MRI (Hawley
& Balbus 1991), this unstable wavelength has a growth rate of
≈0.1Ω, much lower than the fastest growing wavelength with
ω = (3/4)Ω.

We also computed models where the whole disk goes tur-
bulent (models D and E), but we will use these weak field disk
models (models A to C2, see Table 2) in the next subsection for
studying the behavior of the turbulence with thermal pressure.
Although dissipative and slowly growing, the weak field used
in these disks has one major advantage: the turbulence grows
slowly and has less spatial variability. Therefore, the damping at
the frozen boundaries is more gentle than in other, rapidly grow-
ing, violently fluctuating, disks. These issues discussed above
reflect the compromise between keeping the disk cold while still
retaining the field subthermal and with sufficient resolution to
resolve the rapidly growing unstable wavelengths.

The runs with a vertical net field of B0 = 10−4 or lower did
not develop turbulence as the field is weaker than needed in the
presence of the chosen dissipation parameters (Hawley& Balbus
1991).

4.2. Dependence on sound speed – models B and C

We investigate the dependence of the saturated state on the im-
posed sound speed profile. We test three different sound speeds
of, cs0 = 0.05, 0.10 and 0.20, corresponding to runs A, B and C.

As the runs are locally isothermal, we are mainly investigat-
ing how the MRI responds to different radial pressure gradients.
The cold model (A) shows a weaker turbulence at saturation
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Fig. 6. Radial structure of the total alpha parameter αR+αM for model A.
The turbulence starts from the outer disk, where plasma β is smaller.
The different curves correspond to snapshots at 70 (dotted), 80 (dot-
dashed), 90 (dot-dot-dot-dashed), and 100 orbits (solid), after saturation
is reached. The variability is not monotonic, but highly fluctuating.

than the hotter ones, as shown by the strength of the stresses
(Figs. 7a, b) and magnetic/kinetic energies (Figs. 7c, d). The
Maxwell stress is three times bigger for model C than for A,
the colder version. Such behavior was reported by Sano et al.
(2004), indicating a power law of exponent 0.25 for the growth
of the Maxwell stress with gas pressure. Our global disk calcu-
lations agree well with this value.

The dimensionless magnetic αM parameter, which is a mea-
sure of turbulent viscosity, decreases drastically with sound
speed (Fig. 8). As seen before, the stresses actually increase
with increasing temperature, so this decrease of αM is due to
the stresses increasing less rapidly than the temperature. Even
though alpha decreases, the effective viscosity νt = αcsH in-
creases. As seen in Figs. 9 and 10, a centrally concentrated den-
sity profile has developed from the initially flat configuration, a
signature of mass accretion due to turbulent angular momentum
transport, as also confirmed by the measured stresses. The re-
sulting density profile in model C is smoother overall, but the
overdensities seem to be similar in average.

It is clear that alpha per se is not a good measure of viscos-
ity. Since νt = αc2sΩ

−1, with no reference to the Alfvén speed,
the resulting alpha value of turbulent disks where the origin of
the turbulence is magnetic may change with sound speed. As
most of the analyses of turbulent thin accretion disks have fo-
cused on locally isothermal simulations using cs ≈ 0.05, such
dependence of α on sound speed did not receive proper attention.
Although protoplanetary disks are thin, this rise in angular mo-
mentum transport with temperature suggests that the effects of
radiation will be important for high temperature regions around
forming planets as well as regions where the turbulence leads to
significant Joule and/or viscous heating.

4.3. Excluding the inner boundary

The correct treatment of boundaries is a major issue for numeri-
cal simulations. In global simulations of disks, outflow or frozen
boundaries are usually used, both of them being more realistic
than reflective, but also presenting disadvantages. Strictly speak-
ing, a “perfect” boundary might well not exist. The best solution
would be, of course, not having to use a boundary at all.

Cylindrical grids only make sense if the center of mass is at
the origin of the coordinate system as only then angular momen-
tum transport can be written in a conservative form. If the center
of mass is not at the origin or there is more than one massive

object the cylindrical coordinate system artificially introduces a
reflective boundary at the center. Cartesian grids, as stated be-
fore, are not hindered by this, and we can therefore study how
the presence or absence of an inner boundary affects the results.

We compute a version of model A where the computational
domain extends all the way to sint = 0. Without an inner bound-
ary, the gravitational potential, the angular frequency and the
sound speed have to be smoothed according to Eq. (14) to pre-
vent singularities. When taking global averages, we exclude the
smoothed region.

The evolution of the turbulence and the globally averaged
stresses at saturation are almost identical to those seen at
model A. The only noticeable difference is that the highly fluctu-
ating magnetic field observed in the inner boundary of model A
(with rms amplitude ≈2 times seen in the rest of the disk) does
not occur in this model.

In model A, the magnetic potential at the inner boundary re-
mains frozen at the initial condition A = 0. As theMRI builds up
the magnetic potential in the freely evolving disk, a sharp radial
gradient appears at the boundaries. This sharp radial gradient in
the azimuthal and vertical components of the magnetic poten-
tial translates into high values of the magnetic field. If we were
solving for the magnetic field instead, a similar effect would be
seen. The magnetic field would rise in the disk, but is kept frozen
at the boundary, thus building up a high magnetic pressure with
equally damaging effects for the simulation.

By avoiding the inner boundary altogether, such an effect
does not occur. However, other problems arise as the advec-
tion on the very inner disk (s < 0.4) happens on tight circular
trajectories that are poorly resolved in the Cartesian geometry
near the center of the grid. As they behave like highly localized
vortices, in most cases the explicit shock dissipation terms en-
sure numerical stability. But for cases with stronger turbulence
(model D, Sect. 4.4), a model without an inner boundary could
not be treated.

As we did for the models with an inner boundary, we check
the dependency of the turbulent stresses with sound speed by
computing versions of models B and C without an inner bound-
ary. As for model A2, these models B2 and C2 behave quite sim-
ilarly to models B and C, saturating at roughly the same stresses.

4.4. Radially varying field – models D and E

With the constant vertical field, it is seen that the inner disk does
not go turbulent. This is due to the fact that in this rapidly ad-
vecting region, the growth of the MRI is numerically damped.

In view of this, we also compute models with a radially vary-
ing z-field

B =
LzΩ(s)
2 jπ

√
μ0ρ0 ẑ, (20)

such that j Balbus-Hawley wavelengths (Eq. (17)) are resolved
through the vertical extent Lz of the box at any radius. We com-
puted a model with j = 4 (model D), and another version, with
a weaker field (model Dw) with j = 16, so that unstable wave-
lengths are reasonably well resolved. These fields can make the
whole disk go turbulent, but they grow so strong in the inner disk
of model D that a more pronounced temperature profile (qT = 2)
had to be used to avoid the magnetic field from going superther-
mal. For model D, such a setup has plasma β = 20 at sint and
120 at sext. Model Dw has a field with a strength more simi-
lar to model A, and therefore would not need this fix. However,
to allow a comparison with model D, we also used this steeper
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temperature gradient, thus having a plasma β = 300 at sint and
1850 at sext.

As this setup has an inverse β profile compared to the models
with a constant vertical field, the turbulence starts from the inner
disk instead of the outer. Also, as the magnetic field is stronger,
wavelengths of faster growth rate are better resolved and the tur-
bulence saturates after a few orbits. Due to the strong stresses,
we had to raise shock resistivity to 2 instead of 1 as used before.

The stresses also saturate at higher values, 0.08 for the
Maxwell stress, and 0.02 for the Reynolds stress (Fig. 11) for
model D. The weaker field yields a total alpha viscosity around
2 × 10−2 (αM = 0.017, αR = 0.005, see Fig. 11a and Table 2).
These values are at least one order of magnitude higher than the
ones obtained with a constant field. The radial structure of the
alpha value, plotted in Fig. 12, reveals that the stresses follow
the radial profile of 1/β, being stronger in the inner disk. The
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Fig. 9. Density contours at selected planes x = 0, y = 0, and z = 0 on saturated turbulent state for sound speed profiles of cs0 = 0.05 (model A, left
panel) and cs0 = 0.20 (model C, right panel). The color code is the same for both figures. The stronger stresses for the hotter case lead to a much
more effective turbulent viscosity, as seen from the steep density profile resulting from accretion. The vertical planes are stretched to show more de-
tail than the correct aspect ratio would allow. Movies of these simulations can be found at http://www.astro.uu.se/∼wlyra/planet.html/.
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Model A shows what seems to be a variability around a constant value, model C has developed a smoother radial density gradient. The lower panel
shows the two density profiles at the end of the simulation.

same was seen in the simulations with a constant field, where
the stresses were stronger in the more magnetic outer disk.

The stresses in this model are so high that the alpha viscosity
in the saturated state is always of the order 10−1, reaching≈0.5 in
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Fig. 12. Same as Fig. 6, but for models D (left panel) and Dw (right panel). The times corresponding to the snapshots are indicated in the legends,
as well as the time average. The inner disk is considerably more turbulent than the outer parts.

the moremagnetized inner disk (Fig. 12). That means that the in-
ner disk approaches magnetically dominated values for plasma β
as the turbulence saturates. The global average of plasma β in
the saturated state is 4, although it did not reach superthermal
values (<1) during the course of the simulation. Model Dw is
milder, having a total alpha value of the order 10−2, reaching a
maximum of ≈0.08 in the more magnetized inner disk.

The high stresses compared to the cases with constant verti-
cal field stem from the initially stronger magnetic field, not from
a pressure effect. Indeed, in this setup, the temperature profile
is steeper, but it never rises above the sound speed of model C,
with cs0 = 0.2 and power law of exponent 0.5. However, we still
expect the pressure effect seen on models ABC to be present. To
check the behavior of this setup with the imposed temperature

profile, we compute another model (model E) with the same ini-
tial condition for the magnetic field as model D, but with a hot-
ter temperature, with cs0 = 0.2. This setup has a plasma beta
value of 80 in the inner disk and 450 in the outer. A weaker ver-
sion with plasma beta value of 1200 in the inner disk and 7400
(model Ew) was also computed, for comparison with model Dw.
The results (Fig. 11b) are similar to models ABC: The stresses
are indeed larger than those of models D and Dw, but the alpha
viscosity values are smaller. Also as seen on models ABC, the
kinetic alpha did not change appreciably, but the magnetic alpha
was reduced by approximately a factor of 2.

The ratio of stresses varied as well, as seen in models ABC.
It is around 4 for model D, but 2 or less for model E. It is around
3 for model Dw, but less than 2 for model Ew.
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A final note on the temperature effect; we see that, like al-
pha, the turbulent plasma beta parameter βt does not scale with
pressure. As the rise in the turbulent magnetic energy is out-
paced by the growth of the pressure, βt increases with increasing
temperature.

4.5. Constant azimuthal field – models F and G

Analytical treatment (Balbus & Hawley 1992; Ogilvie & Pringle
1996) and numerical simulations (Hawley 2000; Papaloizou &
Nelson 2003) show a wealth of evidence that the MRI also ex-
ists for a purely toroidal field. In this case, waves of the form
exp[i(mφ − ωt)], where m = kφs is the azimuthal wavenumber,
are excited. The maximum growth rates are similar to those ob-
served in purely vertical fields, but reached at much smaller az-
imuthal wavenumbers.

For an azimuthal field, the maximum growth rate occurs at
the wavenumber (Balbus & Hawley 1998)

mmax(s) =

√
15
2
Ωs
vA

· (21)

Such wavelengths are now resolved in the xy plane, instead of
in the vertical direction. Without the severe constraint of fitting
unstable wavelengths in the tiny vertical scale height of the disk,
the azimuthal field can be set at much stronger values than those
used in the vertical cases. The only constraint is that we keep
the field subthermal. With a temperature gradient of qT = 1 and
cs0 = 0.05, a constant azimuthal field of B0 = 3×10−2 (model F)
corresponds to plasma β of 12 at s = 0.4, 5.5 at s0 and 2 at
s = 2.5. The wavenumbers are mmax = 65 at s0, 102 at s = 0.4
and 41 at the outer boundary. A hotter version, with cs0 = 0.20,
yielding plasma β = 220 at s = 0.4, 90 at s0 and 35 at s = 2.5
(model G), was also computed for comparison.

Following the time evolution of model F, we see that the tur-
bulence actually saturates at t = 200 at s = 2.0 (≈11 orbits),
t = 300 at s = 1.5 (≈30 orbits) and is still growing linearly at
s = 1.0 at the end of the simulation at t = 628 (100 orbits).
The global average (Fig. 13), and a space-time (s, t) inspection
(Fig. 14) of the stresses reveals that after reaching saturation at
t = 250 (40 orbits at s0), a steady state is maintained for 20 or-
bits, after which the turbulence starts decaying slowly. But as a
small growth is observed near the end of the simulation, it is not
clear if this decay would continue to zero or if it constitutes just a
unusually long fluctuation of the turbulence. Moreover, the mag-
netic and kinetic energies (Fig. 13) show no signs of decaying.

On the right panel of Fig. 14, we plot the total alpha viscosity
parameter αM + αR. Curiously, it does not show the decaying ef-
fect seen on the stresses, implying that a decrease in gas pressure
accompanied the decrease in Maxwell stress. Such a behavior is
expected, since a negative density gradient is arising from the
accretion process. Therefore, a depleted outer disk has a larger
value of alpha viscosity for the same Maxwell stress.

The global average yields Rsφ = (0.7 ± 0.1) × 10−5, Msφ =
(2.9 ± 0.4) × 10−5 and total alpha viscosity α = (1.3 ±
0.1) × 10−2.

Model G shows Maxwell stresses that go further towards the
inner disk, and Reynolds stresses that extend to inside s = 0.4
as seen in Fig. 14. The outer disk attains a turbulent state first,
at t = 100 (15 orbits), and the inner disk at t = 200 (30 orbits).
The turbulent alpha parameter peaks at 8× 10−3 (αM = 6× 10−3,
αR = 2 × 10−3) at 30 orbits and starts a long decay until leveling
after other 30 orbits at αM = 3 × 10−3 and αR = 7.5 × 10−4. The
global averages are Rsφ = (5 ± 2) × 10−5, Msφ = (1.8 ± 0.6) ×
10−4 and total alpha viscosity α = (4.2 ± 1.5) × 10−3.

The referee, Dr. Ulf Torkelsson, pointed out to us that the
non-zero tension of the constant azimuthal field,

μ−1(B · ∇)B = −μ−1B2
0s−1 ŝ,
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Fig. 14. Space-time diagram of the turbulent stresses and alpha viscosity for model F (upper panels) and model G (lower panels). Time is quoted
in orbits at s0 = 1.0. Saturation is reached at 40 orbits, but after 60 orbits the stresses seem to start a slow decay. The alpha viscosity appears
constant, due to a similar decay in gas pressure in the outer disk, that starts to deplete as the resulting accretion builds a negative density gradient.
Model G behaves similarly, but with higher stresses, lower alpha viscosity and being turbulent further inside.

leads to an increase in the centripetal force that is not taken into
account by Eq. (12), so the models with azimuthal flux are not
started in strict magnetohydrostatical equilibrium. We therefore
performed a set of 2D tests to assess how this out-of-equilibrium
initial condition could modify our results. First we ran a 2D disk
without noise in the velocity field, so although a magnetic field
is present, the spectrum of wavelengths is not excited. The de-
parture from equilibrium launches a sound wave starting from
the inner disk and propagating outwards. At time t = 30 (≈5 or-
bits) in model F the sound wave reaches the outer boundary and
is damped by the buffer zone. After that, the oscillations slowly
damp through the next orbits as the disk settles into centrifu-
gal equilibrium between gravity, thermal pressure, and magnetic
tension forces. We followed the evolution until time t = 90. At
this time, the amplitude of the perturbation dropped to 3% of the
initial density and 1% of the reference sound speed cs0 .

In model G, with a sound speed 4 times faster, the sound
wave reaches the outer boundary much earlier, at time t = 12
(about 2 orbits). By including noise we see the same results, so
we conclude that in a 2D case, even though the non-vanishing
magnetic tension leads to an out of equilibrium initial configura-
tion, the discrepancy is slight and the system quickly relaxes in
a timescale that is much smaller than the time the MRI takes to
saturate (20 orbits).

5. Disks with solid boulders

Having presented the gaseous disk models, we now proceed to
study the behavior of solid boulders inserted in these disks we
have constructed. Meter-sized boulders are an important step
towards kilometer-sized planetesimals. They are also interest-
ing from a gas-dynamical point of view because they are only
marginally coupled to the gas (on approximately a Keplerian
shear time-scale) and can thus experience concentrations in vor-
tices and transient gas high pressures (Barge & Sommeria 1995;
Fromang & Nelson 2005; Johansen et al. 2006).

Our models are usually evolved for ≈75 orbits at s0 before
we add the particles, to allow for the turbulence to develop and
saturate. A large number of particles (106) is used, which allows
us to trace the swarm of particles onto the grid as a density field.
The initial condition is such that the particles are concentrated
in an annulus of constant bulk density ρp, ranging from sint to
sext, with a solids-to-gas ratio of 0.01, typical of the interstellar
medium. Their velocity is initially the Keplerian angular velocity
for their radial location.

As boundary conditions, we do not allow the particles to
leave the computational domain as they drift inwards due to gas
drag from the slightly sub-Keplerian gas. Instead, a particle that
crosses the inner radius sint will be relocated to the outer ra-
dius sext, where it will reappear at the same azimuthal location,
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Fig. 15. Vertical slice of the bulk density of solid particles (upper) and the same quantity normalized by the midplane density. A midplane layer
forms in equilibrium between sedimentation and turbulent diffusion. The scale height of this layer follows a linear dependence with radius.

thus mimicking periodic boundary conditions. Its velocity, how-
ever, will be reset to the Keplerian angular velocity at sext. A
particle that tries to cross the outer radius will simply have its ve-
locity reset to Keplerian without changing its radial or azimuthal
location.

We include particles at the later stages of models A and D.
For model A, where the inner disk does not go turbulent, it was
noticed that by allowing the particles to move through all the
radial range, they eventually got trapped in the several local den-
sity maxima between the concentric rings that the inner disk
breaks into. As such a loss of particles is undesirable, we keep
them where the turbulence is saturated by setting the inner ra-
dius of the boundary conditions for particles outwards of s0. In
model D, where the Balbus-Hawley wavelength is resolved at
all radii, such correction is not needed. We discuss the results of
model D first.

5.1. Particles on model D

The particles soon fall to the disk midplane due to the vertical
gravity. At the same time they get trapped in high pressure re-
gions in the turbulent flow due to the drag force (Klahr & Lin
2001; Johansen et al. 2006). In Fig. 15 we plot a slice of the bulk
density of solids profile 10 orbits after the insertion of the par-
ticles into the simulation. A pile-up of solids in the inner disk
is seen to have occurred, because particles have concentrated
in a pressure maximum in the gas (we discuss this further in
Sect. 5.2; see also Fig. 18).

As discussed by Johansen & Klahr (2005), while solid par-
ticles are pulled towards the midplane by the stellar gravity, tur-
bulent motions stir them up again. A sedimentary layer in equi-
librium between turbulent diffusion and gravitational settling is
formed. The thickness of this layer is therefore a measurement
of the turbulent diffusion acting on the solid particles.

Under the influence of gravity, the solids settle with a profile
similar to the one generated by a pressure force (Dubrulle et al.
1995)

ln ρp(s, z) = ln ρp(s, z = 0) − z2

2H2
p
· (22)

By comparing this profile with the analytical expression for a
pressureless fluid under diffusion, gas drag and vertical gravity
(Johansen & Klahr 2005)

ln ρp = ln ρp(s, z = 0) − τf
D(t)

z

�
gz dz, (23)

and recalling that gz = −Ω2z, we have

D(t)
z = Ω

2H2
pτf . (24)

From Eq. (22), we see that the scale height of the solids is
the vertical distance in which the bulk density falls by a factor
1/
√
e ≈ 0.6 relative to the value at midplane. We plot in Fig. 15b

the bulk density normalized by its value in the midplane. In this
figure, the quantity plotted is in fact identical to the exponential
term in Eq. (22). Where it reaches 0.6, the vertical distance z
gives the diffusion scale height Hp.

We fit the points where the exponential term equals 0.6 with
a power law Hp = arn. A linear regression in logarithm yields
a = 0.042 and n = 0.97, with an rms of 0.04. This translates into
a diffusion coefficient (Eq. (24)) of D(t) ≈ 1.7× 10−3 s−1. As this
model has a sound speed profile cs = 0.1 s−1, the diffusion coef-
ficient in dimensionless units corresponds to δ(t) = D(t)c−2s Ω =
0.17 s−1.5, or 0.14 if globally averaged. The rms of 0.04 in the
logarithm fit yields an uncertainty of 0.01 in this global aver-
age. As the total alpha viscosity is 0.112 ± 0.003, the globally
averaged vertical Schmidt number, i.e., the strength of viscosity
when compared to vertical diffusion, is 0.78 ± 0.06.

5.2. Particles in model A

For model A, the alpha viscosity (α ∼ 10−3) is much lower than
in model D (α ∼ 10−1), so according to Eq. (24) and assuming
that the diffusion coefficient is of the same order of the turbulent
viscosity, we expect the sedimentary layer of solid particles to
have a scale height of Hp = α/Ω

2τf ≈ 0.03H. At sext, the gas
scale height H equals 0.08 for cs0 = 0.05, then Hp = 2.5 × 10−3.
With a grid resolution Δz = 0.02, this layer will not be resolved.
It means that the interpolation of the particle density back to the



898 W. Lyra et al.: Disk-in-a-box

Scale Height of Solids

1.0 1.5 2.0 2.5
s

0.00

0.01

0.02

0.03

0.04

z r
m

s

a).

Turbulent Viscosity and Diffusion

1.0 1.5 2.0 2.5
s

0

2•10−5

4•10−5

6•10−5

8•10−5

ν t
 , 

D
t

b).

Dtνt

Schmidt Number

1.0 1.5 2.0 2.5
s

0.0

0.5

1.0

1.5

S
c

c).
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localized overdensities in diffusion last for some orbits, while viscosity shows a smoother evolution in time. The quantities have approximately
the same strength, as the Schmidt number is overall around unity, and seldom greater than 5.

grid will not allow for a grid-based measurement of the diffusion
acting in the turbulent layer as we did for model D.

But as the particles are Lagrangian, we can plot their real po-
sitions and trace the scale height of solids in a grid-independent
way. The diffusion process operates in much the same way,
nearly independent of grid resolution, since the large scale ve-
locities of the gas are well resolved. In order to do this, we define
128 bins in the radial direction and measure the individual ver-
tical positions of the swarm of particles with respect to the mid-
plane of the disk within these bins. The standard deviation zrms
of the vertical positions of particles with respect to the midplane
in each bin immediately gives the scale height of the sedimen-
tary layer. The result of this process is shown in Fig. 16a, where
we average zrms as measured on 17 snapshots, from orbits 4 to 20
at s0 after the insertion of the particles. The initial time is cho-
sen at 4 orbits because it is the time it takes for the drag force to
couple the particles to the gas at sext, thus making sure that the
sedimentary layer is in equilibrium between gravitational set-
tling and turbulent diffusion through the whole radial extent of
the disk.

The dashed line in Fig. 16a represents the power law fit Hp =
arn to the measured scale height. It yields a= 0.003 and n = 2.48.
The rms of the logarithmic fit is 0.09. In Fig. 16b we plot the
resulting diffusion coefficient D(t)

z = Ω
2H2

pτf . It can be approx-
imated by a power law of ≈9 × 10−6 s2. In dimensionless units
it corresponds to δ(t) = 3.6 × 10−3 s−1.5, or 0.007 if globally av-
eraged. The uncertainty is 0.001. This behavior of the turbulent

diffusion that acts on solids is quite similar to the one shown by
the turbulent viscosity arising from the stresses on the gas phase
(dot-dashed line in Fig. 16b). Checking the radial dependency of
the Schmidt number (Fig. 16c), we see that it is of the order of
unity all over the radial domain. A slight trend is seen towards
smaller Schmidt numbers in the outer disk, but it never gets be-
low 0.6.

In Fig. 17 we explore this radial dependency in more detail.
The figure shows the vertical and azimuthal average of the tur-
bulent viscosity νt, turbulent diffusion Dt and their ratio Sc, the
Schmidt number, as a function of radial position s. On the time
axis we show time in orbits at s0 since the beginning of the sim-
ulations. At 71 orbits the particles are inserted, and quickly fall
to the midplane. As seen from the diffusion map, the particles in
the innermost radii quickly sediment, settling in a diffusive equi-
librium in less than two orbits. After four orbits, t = 75, the last
radius achieves diffusion equilibrium and the situation becomes
statistically unchanged until the end of the simulation.

The gas-phase viscosity and the solid-phase diffusion are
similar in average, but the diffusion is seen to fluctuate more.
Transient patches of high diffusivity are seen to live for some or-
bits at a constant radial location before decaying. The turbulent
viscosity, in turn, appears much smoother in time. The result-
ing Schmidt number is shown in greyscale in the right panel of
Fig. 17. Due to the high variability of diffusion, some short lived
bright areas of Sc > 5 are seen, but overall the Schmidt number
is around 1 throughout the space-time domain.
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Fig. 18. Density contours at midplane of the gas and solid phases of the disk (left and right panel, respectively). The snapshots were taken at
20 orbits at s0 after the insertion of the particles. The color code for the solid phase is selected to represent 2 sigma (0.25) above the average
bulk density of 0.03. The bright areas are saturated as the maximum density reaches as far as 85. A movie of this simulation can be found at
http://www.astro.uu.se/∼wlyra/planet.html/. A correlation with gas density is seen, since the bright clumps of solids correspond to
pressure maxima, i.e., areas of high gas density.

In Fig. 18 we show contours of the gas density (left panel)
and the bulk density of solids (right panel) in a snapshot taken
after 20 orbits after the insertion of the particles. A correlation is
seen as the solids show large concentration at areas of high gas
density. Initially, the density increases linearly as the particles
sediment towards the midplane. As seen before, the sedimenta-
tion is complete at the outer radius after ≈4 orbits. After that, the
growth is only due to the particles being concentrated in transient
gas high pressures.

The average bulk density is quite low (ρp = 0.003, or 6.0 ×
10−11 kg m−3 in physical units, see Table 1), and several areas
devoid of particles are seen in the disk. However, the overdensi-
ties observed as bright clumps in the snapshot are several stan-
dard deviations above average. By plotting the maximum solid
density (which is roughly the solids-to-gas ratio) throughout the
simulation (Fig. 19), we see that its value is usually around 30,
but it can reach values as high as 85. Such a behavior was seen in
shearing box simulations by Johansen et al. (2006), who report

local enhancements of the solids-to-gas ratio by a factor of 100,
also pointing that such concentrations are gravitationally unsta-
ble, thus being able to collapse to form km-sized bodies.

As a control, we also simulated the settling for a non-
turbulent, purely laminar, unperturbed disk. Without high pres-
sure regions, the particles simply sedimented towards the
midplane forming a thin homogeneous layer of solids.

6. Summary and conclusions

We have considered MHD models of global Keplerian disks in
Cartesian grids. These disk-in-a-box models are able to develop
and sustain MHD turbulence, in good agreement with published
results achieved with cylindrical codes and shearing boxes. In
this first article of the series, we investigated the dependence
of the MRI with disk scale height and the dynamics of solid
boulders in the global hydromagnetic turbulence.
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Fig. 19. Maximum bulk density of solids, in units of the mean gas den-
sity as a function of time for model A. Time is quoted in orbits at s0.
The maximum density rises as the particles sediment towards the mid-
plane. After the sedimentation that lasts for four orbits, the particles are
coupled with the gas and trapping in transient gas high pressures raise
their maximum density well above average. The maximum density is
usually around 30, but between orbits 12 and 13, it reached values as
high as 85.

As a numerical solver we have used the Pencil Code.
This finite-difference code solves the non-conservative form of
the dynamical equations using sixth-order spatial derivatives,
achieving spatial resolution that approaches that of spectral
methods. The numerical scheme is stabilized by using hyperdis-
sipation and shock dissipation terms, which enter as free param-
eters in the dynamical equations. The effect of hyperdissipation
is to quench unstable modes in the small scales of the grid, while
affecting the large scale motion as little as possible, whereas
shock dissipation is invoked to smear out large divergences in
the flow field. We choose these parameters by performing series
of 2D gap opening simulations with a Jupiter mass planet and
comparing them with a higher resolution calculation without ex-
plicit dissipative terms.

We find evidence that the turbulence generated by the
magnetorotational instability grows with the thermal pressure.
The turbulent stresses depend on thermal pressure obeying a
power law of 0.24 ± 0.03, compatible with the value of 0.25
found in shearing box calculations by Sano et al. (2004). We ex-
tend this result to a global disk showing that the rise in pressure
increases the turbulent stresses, thus raising the angular momen-
tum transport (and therefore the mass accretion rate) although
the alpha viscosity value drops.

We also notice two curious effects. First, the dominance
of the radial component of the turbulent kinetic energy in-
creases with temperature. The percentage of the total kinetic
energy stored in the radial component is 40% for the cold
model A, and 60% for the hotter model C. Second, the ratio
of stresses −Msφ/Rsφ diminished with increasing temperature.
It is 5 for model A, and just 1.3 for model C. The same is seen
in the model without inner boundary, where the ratio is 6.5 for
model A2 and very close to 1 for model C2. This effect is unex-
pected since it is believed that the shear parameter alone controls
the ratio of stresses (Pessah et al. 2006; Ogilvie & Pringle 1996).
From the shearing box data of Sano et al. (2004) the stress ratio
seems to be constant with temperature.

One explanation could be that, according to Eq. (12), the
angular velocity is sub-Keplerian and the increasing effects of
pressure from the colder to the hotter models modifies the shear.
Quantitatively, however, one sees that the pressure correction
is too small to account for the decrease in the stress ratio and,
more importantly, would have the opposite effect. According

to the linearized equations for the evolution of the turbulent
fluctuations, the Maxwell stress couples with shear qΩ, and
the Reynolds stress couples with the large scale vorticity w =
(2 − q)Ω (Balbus & Hawley 1998), where q = −∂ lnΩ/∂ ln r is
the shear rate. The pressure-corrected angular velocity of the gas
can be approximated from Eq. (12) as

Ω � ΩK(1 − η), (25)

where η = (1/2)(∂ lnP/∂ ln r)(H/s)2 > 0 is a parameter often
used to parameterize the strength of the global pressure gradient
(see e.g. Nakagawa et al. 1986). Typical values of η lie between
0.001 and 0.1.

The reduction of both the angular frequency and shear rate
should reduce the Maxwell stress. Our simulations show the
opposite, with the Maxwell stress increasing as the pressure is
raised. Regarding the stress ratio, reducing the shear increases
this quantity since the Reynolds stress falls faster than the
Maxwell stress due to the stabilizing effect of the growing vor-
ticity (Abramowicz et al. 1996). Once again, we see the opposite
effect.

As most of the analysis of turbulent thin accretion disks
have focused on locally isothermal simulations using cs ≈ 0.05,
changing the field configuration while keeping the temperature
constant, such behavior has been largely overlooked. Although
the disk temperatures considered in this case are quite extreme
for disks around T-Tauri stars, circumplanetary disks are thought
to be rather thick (Klahr & Kley 2006) and therefore the evolu-
tion of the MRI in such disks is expected to be more similar to
the hotter cases considered in this paper (models CEG) than the
colder ones.

We investigated the effect of an inner boundary in the evolu-
tion and outcome of the turbulence. By using a Cartesian grid,
an inner boundary can be discarded provided we smooth the
gravitational potential to avoid a singularity in the flow. Models
without an inner boundary do not show the spurious build-up of
magnetic pressure and Reynolds stress seen in the models with
boundaries, while the global stresses and alpha viscosities are
similar in the two cases.

In treating the solids, we make use of a large number of par-
ticles, which allows us to effectively map the particles back into
the grid as a density field without using fluid approaches. We
monitor the settling of the particles toward the midplane and the
formation of a sedimentary layer when the solids are subject to
gas drag and the gravity from the central object. The effective
diffusion provided by the turbulence prevents further settling
of solids, in accordance with the results of Johansen & Klahr
(2005). By having the global disk perspective, we could measure
the radial dependence of the diffusion scale height of the solid
component. The measured scale heights imply turbulent vertical
diffusion coefficients with globally averaged Schmidt numbers
of 1.0 ± 0.2 for model A (α ≈ 10−3) and 0.78± 0.06 for model D
(α ≈ 10−1).

We conclude that the models presented in this first paper of
the series are capable of sustaining turbulence and are adequately
suited for further studies of planet formation. Future papers will
present studies of thermodynamics and radiative transfer in the
evolution of the turbulent stresses, planet-planet and planet-disk
interaction, the effect of stratification and the dynamics of dead
zones.
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Appendix A: Anisotropic hyperdissipation

Hyperdissipation is used to quench unstable modes at the
grid scale, therefore being intrinsically resolution-dependent.
Because of this, isotropic dissipation only gives equal dissipa-
tion in all spatial directions if Δx = Δy = Δz, i.e., if the cells
are cubic. For non-cubic cells, anisotropic dissipation is required
as different directions may be better/worse sampled, thus need-
ing less/more numerical smoothing. Such a generalization is
straightforward. We notice that hyperdiffusion works as a con-
servative term in the continuity equation such that

fD(ρ) = ∇ ·J , (A.1)

where J = D3∇5ρ is the mass flux due to hyperdiffusion.
For simplicity, we will drop the subscripts “3” from the coef-
ficients hereafter. This formulation reduces to the usual sixth-
order hyperdiffusion under the condition that D is constant.
Generalizing it to three dimensions simply involves replacing
this mass flow by

J =
(
Dx
∂5ρ

∂x5
,Dy
∂5ρ

∂y5
,Dz
∂5ρ

∂z5

)
,

so that different diffusion operates in different directions. Since
Dx, Dy and Dz are constants, the divergent of this vector is

∇ ·J = Dx
∂6ρ

∂x6
+ Dy

∂6ρ

∂y6
+ Dz

∂6ρ

∂z6
·

The formulation for resistivity is strictly the same. For viscosity
it also assumes the same form if we consider a simple nth order
rate of strain tensor operator S (n)

i j = ∂
n
jui.

Appendix B: Shocks

Shock viscosity is taken to be proportional to positive flow con-
vergence, maximum over three zones, and smoothed to second
order,

ζν = νsh

〈
max
3

[(−∇ · u)+]
〉 [
min(Δx, Δy,Δz)

]2, (B.1)

where νsh is a constant defining the strength of the shock vis-
cosity, usually around unity. We refer to it as the shock viscosity
coefficient (Haugen et al. 2004). In the equation of motion it
takes the form of a bulk viscosity so that now the stress tensor
contains

τi j = [...] + ρζνδi j∇ · u, (B.2)

where [...] refers to the (hyper) viscous terms described in
Appendix A. The acceleration due to shock viscosity is therefore

fν(u, ρ) = ρ−1∇ · τ
= ζν

[∇(∇ · u) + (∇ ln ρ + ∇ ln ζν)∇ · u]
. (B.3)

Such a viscosity scheme ensures that energy is dissipated in re-
gions of the flow where shocks occur, whereas more quiescent
regions are left untouched. The formulations for shock diffusion
and shock resistivity are similar, yielding

fD(ρ) = ζD
(
∇2ρ + ∇ ln ζD · ∇ρ

)
, (B.4)

and

fη(A) = ζη
(
∇2A + ∇ ln ζη∇ · A

)
, (B.5)

where ζD and ζη are analogous to ζν in Eq. (B.1), containing their
respective shock diffusion and shock resistivity coefficients Dsh
and ηsh.
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ABSTRACT

Context. In the borders of the dead zones of protoplanetary disks, the inflow of gas produces a local density maximum that triggers
the Rossby wave instability. The vortices that form are efficient in trapping solids.
Aims. We aim to assess the possibility of gravitational collapse of the solids within the Rossby vortices.
Methods. We perform global simulations of the dynamics of gas and solids in a low mass non-magnetized self-gravitating thin
protoplanetary disk with the Pencil Code. We use multiple particle species of radius 1, 10, 30, and 100 cm. The dead zone is modelled
as a region of low viscosity.
Results. The Rossby vortices excited in the edges of the dead zone are efficient particle traps. Within 5 orbits after their appearance,
the solids achieve critical density and undergo gravitational collapse into Mars sized objects. The velocity dispersions are of the
order of 10 m s−1 for newly formed embryos, later lowering to less than 1 m s−1 by drag force cooling. After 200 orbits, over 300
gravitationally bound embryos were formed, 20 of them being more massive than Mars. Their mass spectrum follows a power law of
index −2.3 ± 0.2.

Key words. accretion, accretion disks – instabilites – stars: planetary systems: formation

1. Introduction

The formation of planets is one of the major unsolved prob-
lems in modern astrophysics. In the standard core accretion sce-
nario, sub-μm grains assemble into progressively larger bodies
through electrostatic interactions (Natta et al. 2007), eventually
growing into centimeter and meter sized boulders. Growth be-
yond this size, however, is halted since these boulders have very
poor sticking properties and are easily destroyed by collisions
at the velocities assumed to be prevalent in circumstellar disks
(Benz 2000). Furthermore, centimeter and meter sized solids are
loosely decoupled from the gas, but remain sufficiently small
to be affected by significant gas drag. The resulting headwind
from the sub-Keplerian gas reduces their angular momentum and
forces them into spiral trajectories onto the star in timescales as
short as a few thousand years (Weidenschilling 1977a).

A mechanism for overcoming these barriers was presented
by Kretke & Lin (2007). In the presence of sufficient ionization,
the gaseous disk couples with the ambient weak magnetic field,
which triggers the growth of the magneto-rotational instability
(MRI; Balbus & Hawley 1991). In its saturated state, a vigorous
turbulence drives accretion onto the star by means of magnetic
and kinetic stresses. However, in the water condensation front
(snowline) the abundant presence of snowflakes effectively re-
moves free electrons from the gas, lowering the degree of ioniza-
tion. The turbulence is weakened locally and the accretion flow
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is stalled. As the radial inflow proceeds from the outer disk, gas
accumulates at the snowline. Since embedded solid bodies move
towards gas pressure maxima (Haghighipour & Boss 2003), the
snowline environment proposed by Kretke & Lin (2007) is po-
tentially an efficient particle trap. This scenario was further ex-
plored by Brauer et al. (2008), who demonstrated that as solids
concentrate at this local pressure maximum, rapid growth into
kilometer sized planetesimals occurs by coagulation.

Kretke et al. (2008) emphasized that an identical mechanism
is supposed to occur elsewhere in the disk. Ionization ought to
be present in the very inner disk due to the high temperatures,
as well as in the outer regions where the gas is sufficiently thin
for cosmic rays to penetrate to the disk midplane and provide
ionization throughout. In between, however, temperatures are
too low and gas columns too thick to allow sufficient ioniza-
tion either by collisions or by cosmic rays. In the midplane of
this region, the gas is neutral and the turbulence is largely sup-
pressed (Gammie 1996). As in the snowline, the accretion flow
from the MRI-active regions halts at the borders of this “dead”
zone, where the gas then accumulates.

These models have been tested only by one-dimensional
simulations, and these tests have therefore not benefitted from
an interesting development. As shown by Varnière & Tagger
(2006), the density pileup at the border of the dead zone triggers
the Rossby wave instability (RWI; Li et al. 2001). The azimuthal
symmetry of the problem is broken and long-lived anticyclonic
vortices are formed as the waves break and coalesce. Such en-
tities are of significant interest because, by rotating clockwise

Article published by EDP Sciences
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Fig. 1. The appearance of the disk in the gas (upper panels) and solid (lower panels) phases in selected snapshots. The Rossby vortices first appear
at 15 orbits. Collapse of the particles into a gravitationally bound planetary embryo the size of Mars occurs 5 orbits later. The vortices tend to
merge and decrease in number, retaining an m = 4 dominant mode at the outer edge until the end of the simulation, up to which over 300 embryos
were formed.

in the global counterclockwise Keplerian flow, they amplify the
local shear and induce a net force on solid particles towards
their center (Barge & Sommeria 1995). As shown by Klahr &
Bodenheimer (2006), the accumulation of solids under these cir-
cumstances is likely to lead to high densities. Inaba & Barge
(2006) continued the study of Varnière & Tagger (2006) by in-
cluding solids and confirming that the Rossby vortices excited
in the borders of the dead zone act as powerful traps, enhancing
the local solids-to-gas ratio by at least an order of magnitude.
Unfortunately, they used a fluid approach – which limited the
maximum particle size they could consider – and they did not
include the self-gravity of the solids, which is crucial to follow
the gravitational collapse. Studies with interacting particles in
the literature include a MRI-unstable local box (Johansen et al.
2007) capable of producing dwarf planets out of meter sized
boulders, a global massive disk unstable to gas self-gravity (Rice
et al. 2006) in which concentrations of 0.5 M⊕ are seen in the spi-
ral arms, and a simulation that produces 10–100 km “sandpile”
clumps formed out of mm-sized particles (Cuzzi et al. 2008).

In this letter, we build on the studies of Varnière & Tagger
(2006) and Inaba & Barge (2006) by including self-gravitating
centimeter and meter sized Lagrangian particles to model the
solid phase. We show that in the vortices launched by the RWI
in the borders of the dead zone, the solids quickly achieve critical
densities and undergo gravitational collapse into protoplanetary
embryos in the mass range 0.1–0.6 M⊕.

2. Model

We work in the thin disk approximation, using the vertically
averaged equations of hydrodynamics. The gas drag is imple-
mented in the same way as Paardekooper (2007), interpolat-
ing between Epstein and Stokes drag (see online supplement).
The back reaction of the drag force onto the gas is present. The
Poisson solver for the particles is a particle-mesh solver based
on multiple Fourier transforms in a Cartesian grid, as used by
Johansen et al. (2007).

We follow the Varnière & Tagger (2006) dead zone model,
which consists of jumps in the viscosity profile. We artificially

place the inner and outer edges of the dead zone at 0.6
and 1.2 times the semi-major axis of Jupiter (5.2 AU), using
Heaviside functions to jump from α = 10−2 to zero inside the
dead zone. The parameter α is the usual alpha viscosity (Shakura
& Sunyaev 1973).

The simulations were performed with the pencil code1 in
Cartesian geometry. The resolution was 256 × 256. The surface
density profile followed a power law of Σ(r) ∝ r−1/2, and we
chose a disk about twice as massive as the MinimumMass Solar
Nebula, with surface density Σ0 = 300 g cm−2 at 5.2 AU. The
sound speed followed the local isothermal approximation with a
radial temperature profile T (r) ∝ r−1. The disk aspect ratio was
h = 0.05. For the solids, we used 105 Lagrangian superparticles
and the interstellar value for the solids-to-gas ratio (10−2). Each
superparticle therefore contained 10−9 M� � 2 × 1024 g of
material. We used multiple particles species, of 1, 10, 30, and
100 cm radii, each represented by 1/4 of the total number of
particles. We quote time as orbital periods at 5.2 AU.

3. Results

In Fig. 1, we show snapshots of the appearance of the disk for the
gas and solids phases. The vortices triggered by the Rossby wave
instability are visible as early as 15 orbits. As seen in the solids
phase, the particles are trapped by the vortical motion and soon
reach extremely high densities. After 17 orbits, seven vortices
appear at the outer edge. After 45 orbits have elapsed, the m = 4
mode begins to dominate, persisting until the end of the simula-
tion at 200 orbits, their gas surface density peaking at 4.5 times
their initial value. In the inner edge of the dead zone, at 40 orbits
we see a conspicuous m = 3 mode. By the end of the simulation,
their surface density has increased by a factor of 8 relative to the
initial condition, and a weak m = 2 mode is visible, albeit with
far less contrast than in the outer disk.

In Fig. 2a, we plot the time evolution of the maximum con-
centration of solids. The solid line represents the maximummass
of solids contained in a single cell. The red dashed line marks the

1 See http://www.nordita.org/software/pencil-code
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spectrum by the end of the simulation. The line and color style is the same as in Fig. 2a. Twenty gravitationally bound embryos in the mass range
0.1–0.6 M⊕were formed in the vortices launched at the edges of the dead zone.

maximummass that is gravitationally bound.We decide whether
boundness is present based on two criteria. First, we consider the
mass inside the Hill’s sphere of the clump defined by the black
line. Particles inside/outside the Hill’s sphere are added/removed
from the total mass, and the Hill’s radius recomputed. The pro-
cess is iterated until convergence. This positional criterion is fol-
lowed by a dynamical one. We calculate the velocity dispersion
vrms of the particles inside the Hill’s radius, and compare its value
with the escape velocity of the enclosed mass. If vrms < vesc, we
consider that the cluster of particles is bound. We plot the ve-
locity dispersion and escape velocity of the most massive clump
in Fig. 2b. The first bound clumps appeared at 18 orbits, with
masses of 0.050 and 0.036 M⊕. At 20 orbits, four clumps of
0.1 M⊕ are present. The mass is that of Mars, constituting a pro-
toplanetary embryo. The efficiency of the vortex trapping mech-
anism can be more clearly appreciated if we consider the time
elapsed between the rise of the Rossby vortices and the collapse
of the trapped particles into a Mars sized object: only 5 orbits.

Two orbits later, the maximum mass increased to 0.22 M⊕.
Nine other clumps collapsed into embryos as well, five of them
of mass above that of Mars. The maximum bound mass reached
0.67 M⊕, but settled at 0.59 M⊕ from 89 orbits until the end of
the simulation at 200 orbits. We observe evidence that the mass
loss episodes are due to tides from the gas, since the vortices
concentrate sufficient gas to provide a considerable gravitational
pull. In addition to tides, erosion (Cuzzi et al. 2008) also plays
a role in disrupting clumps of smaller particles. We discuss this
point further in the online supplement.

Figure 2b also indicates that the velocity dispersion remained
below 1 m s−1 for most of the simulation. This is of extreme
importance because it implies that particle encounters are gen-
tle enough for destructive collisions to be avoided. The opposite
was reported for the massive disk models of Rice et al. (2006),
where particle encounters in the spiral arms occurred at veloc-
ities comparable with the sound speed. In Fig. 2b, we plot the
maximum speed vmax for comparison. It is evident that even vmax
remains lower than the escape velocity. This indicates that even
if destructive collisions occur, the fragments will remain bound,
although the strong drag force felt by the fragments might delay
any gravitational collapse.

We plot the mass spectrum of the formed embryos in Fig. 2c.
The solid black line represents the mass of solids inside a cell of
the simulation box, without information on boundness. We over-
plot the distribution of bound clumps with the red dashed line.

Over 300 bound embryos are formed by the end of the simula-
tion, twenty of these being more massive than Mars. The mass
spectrum follows a power law of index −2.3± 0.2 in the interval
−2.0 < log (M/M⊕) < −1.2.

The two most massive embryos have 0.59 and 0.57 M⊕, and
are located in the inner and outer edge, respectively.

A common trait of these embryos is that they consist of an
overwhelming majority of particles of a single species. For in-
stance, over 98% of the most massive embryo consists of 30 cm
particles. Almost 97% of the second most massive one were
10 cm particles. In one embryo in the Mars mass bin, 94% of the
particles were of 1 cm radius. These different particle radii re-
flect the variations in gas drag strengths experienced by particles
of different size. Since particles of a given size drift in a similar
way, their spatial convergence becomes easier than the conver-
gence of particles of different sizes. The almost single-phasing
of the size spectrum of the bound clumps also contributes to their
low velocity dispersions. Since particles of different sizes expe-
rience different gas drags, their relative velocities are often far
higher than the relative velocities between particles of identi-
cal size (Thébault et al. 2008). We indeed see that clumps with
a more non-uniform distribution of particle sizes usually show
larger velocity dispersions (≈10 instead of ≈1 m s−1). It is an
observed fact that planetesimals are formed of similarly sized
particles (Scott & Krot 2005). Although the constituent particles
appear to be sub-mm grains, different nebula parameters could
enable smaller grains to be trapped.

At higher resolution (5122, and 4 × 105 particles), more
bound clumps are formed, which extend to lower masses. More
clumps containing similar quantities of particles of different
sizes are observed, although the majority of clumps have nearly
single phasing. The situation does not alter significantly when
the number of particles is increased to 106. In Fig. 3, we fol-
low the collapse of one of these clumps at higher resolution.
Although particles of different size are present inside the Hill’s
sphere during the first stages of collapse, most are expelled and
the collapsed embryo consists primarily of 30 cm particles. A
control run without self-gravity achieves higher cell concentra-
tion, due to the absence of gas tides. At later times, the clumps
also tend to have low rms speeds and small rms radii (≈104 km),
due to the efficient dynamical cooling provided by the drag force.
Size segregation due to aerodynamical sorting is also observed
in the control run. Inaba & Barge (2006) reported destruction of
the vortices by the drag force backreaction. We see a different
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effect, in which the particles alter the evolution of the Rossby
vortices and generate a vorticity of their own.

4. Conclusions

In this Letter, we have shown that when modelling the self-
gravity of the gas and solids in protoplanetary disks, gravi-
tational collapse of the solids into Mars sized protoplanetary
embryos occurs rapidly at the borders of the dead zone, where
particles concentrate. We have also found that tides from the
dense gaseous vortices may hinder the formation process sig-
nificantly.

Studies considering the origin of oligarchs usually begin
from a collection of 10–20Mars sized objects (e.g. Kobuko et al.
2006). This Letter presents the first simulation in which a similar
number of Mars-sized embryos are formed from centimeter and
meter sized sized building blocks.

It is crucial to the model that particles grow to sufficient size,
otherwise the drag force from the gas becomes too strong to al-
low any concentration. Testi et al. (2003) observed grains of up
to cm sizes in the disk surrounding the pre-main-sequence star
CQ Tauri, which provides some observational evidence that a
sufficient number of particles of the required size may exist in
true protoplanetary disks.

We emphasize again that the model used in this Letter is sim-
plistic, and the conditions may differ with a more realistic treat-
ment of the dead zone. Nevertheless, the mechanism presented
in this Letter (as proposed originally by Varnière & Tagger 2006)
appears robust. It only requires the RWI to be excited in the bor-
ders between the active and dead zones, which in turn relies only
on the slowdown of the accretion flow at this same border. Future
studies should include a coagulation/fragmentation model such
as those of Brauer et al. (2008) or Johansen et al. (2008), and fo-
cus on the precise state of flow at this transition region in global
simulations, to address the question of how the RWI interacts
with the MRI and non-ideal MHD in three dimensions.
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Appendix A: Dynamical equations

As stated in the main paper, we work in the thin disk approxima-
tion, using the vertically integrated equations of hydrodynamics

∂Σg

∂t
= −(u · ∇)Σg − Σg∇ · u + fD(Σg) (A.1)

∂u
∂t
= −(u · ∇)u − 1

Σg
∇P − ∇Φ − Σp

Σg
f d

+2Σ−1g ∇ · (νΣgS) + fν(u,Σg) (A.2)

dxp

dt
= up (A.3)

dup

dt
= −∇Φ + f d (A.4)

Φ = Φsg − GM�
r

(A.5)

∇2Φsg = 4πG
(
Σg + Σp

)
δ(z) (A.6)

P = Σgc
2
s (A.7)

fd = −
(
3ρgCD |Δu|
8a•ρ•

)
Δu. (A.8)

In the above equations, G is the gravitational constant, Σg and
Σp are the vertically integrated gas density and bulk density of
solids, respectively, u represents the velocity of the gas parcels,
xp is the position and up is the velocity of the solid particles, P
is the vertically integrated pressure, cs is the sound speed, Φ is
the gravitational potential, ν is the viscosity, and S is the rate of
strain tensor. The functions fD(Σg) and fν(u,Σg) are sixth order
hyperdiffusion and hyperviscosity terms that provide extra dis-
sipation close to the grid scale, explained in Lyra et al. (2008).
They are required because the high order scheme of the Pencil
code has too little overall numerical dissipation.

The function f d is the drag force by which gas and solids
interact. In Eq. (A.8), ρ• is the internal density of a solid particle,
a• its radius, and Δu = up−u its velocity relative to the gas.CD is
a dimensionless coefficient that defines the strength of the drag
force.

Appendix B: Drag force

The drag regimes are controlled by the mean free path λ of the
gas, which can be expressed in terms of the Knudsen number of
the flow past the particle Kn = λ/2a•. High Knudsen numbers
correspond to free molecular flow, or Epstein regime. Stokes
drag is applicable to low Knudsen numbers. We use the formula
of Woitke & Helling (2003; see also Paardekooper 2007), which
interpolates between Epstein and Stokes regimes

CD =
9Kn2CEps

D +CStk
D

(3Kn + 1)2
· (B.1)

where CEps
D and CStk

D are the coefficients of Epstein and Stokes
drag, respectively. These coefficients are

CEps
D ≈ 2

(
1 +

128

9πMa2

)1/2
(B.2)

CStk
D =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
24Re−1 + 3.6Re−0.313 ; Re ≤ 500;
9.5 × 10−5 Re1.397 ; 500 < Re ≤ 1500;
2.61 ; Re > 1500,

(B.3)

where Ma = |Δu|/cs is the Mach number, Re = 2a•ρ|Δu|/μ
is the Reynolds number of the flow past the particle, and μ =√
8/πρcsλ/3 is the kinematic viscosity of the gas.
The approximation for Epstein drag (Kwok 1975) connects

regimes of low and high Mach number with a good degree
of accuracy, and is more numerically friendly than the general
case (Baines et al. 1965). The piecewise function for the Stokes
regime are empirical corrections to Stokes law (CD = 24 Re−1),
which only applies for low Reynolds numbers.

Appendix C: Gas tides and mass loss

The most remarkable feature of Fig. 3a of the main paper is the
mass loss event at 90 orbits. It consists of the detachment of a
0.8 MMars object from the original cluster, of 6.7 MMars.

We observe evidence that this puzzling behaviour is due
to gravitational tides from the gas. The gas is too pressure-
supported to undergo collapse, but the vortices concentrate a suf-
ficient amount of material to exert a considerable gravitational
pull. We illustrate this in Fig. C.1, where we show the state of the
disk before (at 80 orbits, Figs. C.1a–C.1d) the mass-loss episode
and after (at 100 orbits, Figs. C.1e–C.1h). The plots show the
surface densities of gas and solids, and the potential associated
with them. Even though the clumping of solids yield a consider-
able gravitational pull (Figs. C.1d and C.1h), these figures indi-
cate that the dominant contribution to the gravitational potential
comes from the gas – more specifically from the vortices, where
the gas density peaks at a value one order of magnitude higher
than that of the initial conditions.

The most massive clump is located in the inner disk at
(X, Y) = (−0.40, –0.53) in Fig. C.1b, not clearly identifiable
amidst the other particles trapped inside the vortex. However,
the embryo is immediately observable as the bright point at
(X, Y) = (−0.65, −0.19) in Fig. C.1h (also visible in Fig. C.1f,
albeit less prominently). There are two features in this plot that
are worth noting. First, by comparing the location of the embryo
in these figures with the location of the vortices, we notice that
the planet has left its parental vortex. Second, the inner vortices
have undergone the transition from the m = 3 to the m = 2 mode.
Due to merging, their gas density has increased, with dramatic
consequences for the embryos within them.

We assess how the gravity of the gas influences the motion
of the particles in Figs. C.1i–C.1l. In Fig. C.1i, we take a hori-
zontal density slice at the position of the most massive embryo
at 80 orbits. Figure C.1j is an enlargement of Fig. C.1i about
X = −0.53, where the embryo is located. We see that the den-
sities of solids and gas peak at similar values. The subsequent
figures show the gravitational potential (Fig. C.1k) and acceler-
ation (Fig. C.1l) about the embryo. The gas produces a deeper
gravitational well, albeit smoother than the one displayed by the
solids. In the acceleration plot, it is seen that the pull of the gas is
more significant than the pull of the embryo at a distance of only
0.26 AU (0.03 in code units, corresponding to two grid cells)
away from the center. And even where the pull of the solids is
strongest (one grid cell away from the center), the gravity of the
gas is still an appreciable fraction of the gravity of the solids.
Tides from the gas are unavoidable.

It is beyond the scope of this paper to consider the full mathe-
matical details of the theory of tides, especially because the two
bodies (the vortex and the embryo) are extended. Instead, we
consider the following toy model. The tidal force FT experienced
by the planet is proportional to the gradient of the acceleration a
induced by the gas. It is also proportional to the radius R of the
planet: FT ∝ R∇a. Since ∇a = −∇2Φ, according to the Poisson



W. Lyra et al.: Embryos grown in the dead zone, Online Material p 2

Density − Gas

−2 −1 0 1 2
−2

−1

0

1

2

Y

a.
t/(

2π
Ω

0−
1 )=

80
Density − Solids

−2 −1 0 1 2
 

 

 

 

 
b.

Potential − Gas

−2 −1 0 1 2
 

 

 

 

 
c.

Potential − Solids

−2 −1 0 1 2
 

 

 

 

 
d.

−2 −1 0 1 2
−2

−1

0

1

2

Y

e.

t/(
2π

Ω
0−

1 )=
10

0

−2 −1 0 1 2
 

 

 

 

 
f.

−2 −1 0 1 2
 

 

 

 

 
g.

−2 −1 0 1 2
 

 

 

 

 
h.

Density slice at Y=−0.4, t/(2πΩ0
−1)=80

−2 −1 0 1 2
X

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

Σ/
Σ 0

Gas
Solids

i.

Enlargement around X=−0.53

    

0.001

0.100

10.000

Σ/
Σ 0

Density

j.

    

−0.043

−0.042

−0.041

φ/
φ 0

Potentialk.

−0.7 −0.6 −0.5 −0.4
X

−0.015

0.000

0.015

−
dφ

/d
x

Gravityl.

log10(Σg/Σ0)

−1. 0. 1.

log10(Σp/Σ0)

−4. −2. 1.

log10(−φg/φ0)

−1.48 −1.40 −1.32

log10(−φp/φ0)

−3.37 −3.17 −2.98

X
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location, in which we see that the peak in the density of solids is not much higher than the gas density at the location of the embryo (panel j).
Significant gas tides are expected because the gravitational potential (panel k) and acceleration (panel l) have similar contributions from gas and
solid components.

equation, the tidal force is proportional to the local value of the
density

FT ∝ R ρg. (C.1)

We consider the 3D volume density to avoid the requirement
of using the Dirac delta in the 2D case. Considering the planet
spherical, Newton’s second theorem holds and we can assume
that FG = −GM/R2 for the planet’s (self-)gravitational force at
its surface. Substituting M = 4/3πρpR3, we have FG ∝ Rρp, so

ζ =
FT

FG
∝ ρg
ρp
, (C.2)

i.e., the ratio of the disrupting tidal stresses to the self-gravitating
forces that attempt to keep the planet together is directly propor-
tional to the gas-to-solids ratio. At 80 orbits, as seen in Fig. C.1j,
this ratio is around unity. As the vortices undergo the transition
from the m = 3 to the m = 2 mode, their peak density increases
(while the planet remains at constant mass). The tides eventu-
ally become sufficiently strong for a mass-loss event to occur.

We also witness some of the other, less massive, embryos be-
ing completely obliterated by the gas tides. Erosion is also im-
portant, since we observe a size dependency in this effect, with
embryos consisting of a• = 10 cm particles being more prone to
disruption than those consisting of a• = 30 cm particles. We per-
formed tests that indicated that the erosion of bound clumps by
ram pressure seen by Cuzzi et al. (2008) only occurs for clumps
consisting of particles smaller than cm-size for our initial nebula
parameters, larger particles being more stable. However, when
the gas density of the vortices reaches a maximum value a factor
ten higher than the initial density, the gas drag also strengthens,
shifting the onset of erosion towards larger particle radii.

The effect of tides will probably be less dramatic in 3D simu-
lations because, as the particles settle into the midplane, the ratio
of the volume gas density to the bulk density of solids ρg/ρp is
expected to be much lower than the ratio of the column gas den-
sity to the vertically integrated surface density of solids Σg/Σp.
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ABSTRACT

Context. As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive
(dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that
ensues triggers the Rossby wave instability, that in turn saturates into anticyclonic vortices. It was suggested that the
trapping of solids within them leads to a burst of planet formation on very short timescales.
Aims. We study in further detail the formation and evolution of the vortices, focusing on the implications for the dynam-
ics of embedded solid particles and planet formation.
Methods. We perform two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin
protoplanetary disk with the Pencil Code. We use multiple particle species of radius 1, 10, 30, and 100 cm. We solve for
the particles’ gravitational interaction by a particle-mesh method, translating the particles’ number density into surface
density and computing the corresponding self-gravitational potential via fast Fourier transforms. The dead zone is mod-
eled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used.
Results. The Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust
process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass
in timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the
vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition
to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed proto-
planetary embryos. We find evidence that the backreaction of the drag force from the particles onto the gas modifies the
evolution of the Rossby wave instability, with vortices being launched only at later times if this term is excluded from
the momentum equation. Even though the gas is not initially gravitationally unstable, the vortices can grow to Q ≈ 1 in
locally isothermal runs, which halts the inverse cascade of energy towards smaller wavenumbers. As a result, vortices in
models without self-gravity tend to rapidly merge towards a m=2 or m=1 mode, while models with self-gravity retain
dominant higher order modes (m=4 or m=3) for longer times. Non-selfgravitating disks thus show fewer and stronger
vortices. We also estimate the collisional velocity history of the particles that compose the most massive embryo by the
end of the simulation, finding that the vast majority of them never experienced a collision with another particle at speeds
faster than 1m s−1. This result lends further support to previous studies showing that vortices provide a favorable envi-
ronment for planet formation.

Key words. Keywords should be given

1. Introduction

The ill fate of the building blocks of planets in gaseous
disks around young stars stands as one of the major
unsolved problems in the theory of planet formation.
Beginning with micron-sized interstellar dust grains, co-
agulation models predict growth to centimeter and me-
ter size (Weidenschilling 1980; Dominik et al. 2007) in the
denser environments of a circumstellar disk. Such bod-
ies, however, are large enough to have already decoupled
slightly from the sub-Keplerian gas, yet still small enough
to be subject to a significant gas drag. The resulting head-
wind drains their angular momentum, leading them into
spiral trajectories towards the star, in timescales as short as
a hundred years at 1AU (Weidenschilling 1977a). Another
acute problem is that such bodies have poor sticking

Send offprint requests to: wlyra@astro.uu.se

properties and a low threshold velocity for fragmentation
(Chokshi et al. 1993), such that collisions between them
usually lead to destruction rather than growth (Benz 2000;
Sirono 2004; Ormel & Cuzzi 2007). Such problems severely
hinder growth to km-size by coagulation (Brauer et al.
2008a).

In view of these problems, other routes for breaching
the meter size barrier have been pursued. A distinct al-
ternative is gravitational instability of the layer of solids
(Safronov 1969, Lyttleton 1972; Goldreich & Ward 1973;
Youdin & Shu 2002). When the dust aggregates had grown
to centimeter and meter size the gas drag is reduced and
the solids are pushed to the midplane of the disk due
to the stellar gravity. Although such bodies do not have
enough mass to attract each other individually, sedimen-
tation increases the solids-to-gas ratio by orders of mag-
nitude when compared to the interstellar value of 10−2.
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It was then hypothesized (Safronov 1969) that due to the
high densities of this midplane layer, the solids could col-
lectively achieve critical number density and undergo di-
rect gravitational collapse. Such a scenario has the advan-
tage of occurring on very rapid timescales, thus avoiding
the radial drift barrier.

This picture is nonetheless simplistic, in the view that
even low levels of turbulence in the disk preclude the mid-
plane layer of solids from achieving densities high enough
to trigger the gravitational instability (Weidenschilling &
Cuzzi 1993). Even in the absence of self-sustained turbu-
lence such as the one generated by the magneto-rotational
instability (MRI; Balbus & Hawley 1991; Balbus & Hawley
1998), the solids themselves can generate turbulence due
to the backreaction of the drag force onto the gas. Such tur-
bulence can be brought about by Kelvin-Helmholtz insta-
bilities due to the vertical shear present in the sedimented
layer of solids (Weidenschilling 1980; Weidenschilling &
Cuzzi 1993; Sekiya 1998; Johansen et al. 2006), or by
streaming instabilities induced by the radial migration
of solids particles (Youdin & Goodman 2005; Johansen
et al. 2006; Paardekooper 2006; Youdin & Johansen 2007;
Johansen & Youdin 2007). In the turbulent motion, the
solids are stirred up by the gas, forming a vertically ex-
tended layer where the stellar gravity is balanced by tur-
bulent diffusion (Dubrulle et al. 1995; Garaud & Lin 2004).

But if turbulence precludes direct gravitational col-
lapse through sedimentation, it was also shown that it al-
lows for it in an indirect way. As solid particles concentrate
in high pressure regions (Haghighipour & Boss 2003), the
solids-to-gas ratio can be enhanced in the transient tur-
bulent gas pressure maxima, potentially reaching values
high enough to achieve gravitational collapse. Numerical
calculations by Johansen et al. (2007) show that this is in-
deed the case, with the particles trapped in the pressure
maxima generated by the MRI collapsing into dwarf plan-
ets when the gravitational interaction between particles is
considered. They also show that the MRI is not necessarily
needed, since the weak turbulence brought about by the
streaming instability itself can lead to enough clumping
under certain conditions. Another way of achieving high
enough densities for gravitational collapse of the solid
layer was shown by Rice et al. (2004) and Rice et al. (2006),
where meter-sized solids concentrate prodigiously in the
spiral arms formed in marginally gravitationally unstable
circumstellar disks.

Such models, however, ignored the possibility of frag-
mentation of particles upon collisions. As the turbulence
enhances the velocity dispersion of solids, destructive col-
lisions become more likely. Moreover, upon destruction,
the smaller fragments are tightly coupled to the gas and
therefore dragged away from the midplane (Johansen et
al. 2008), reducing the effective amount of solid material
available for collapse. Such problem is particularly severe
in the high mass disks investigated by Rice et al. (2004) and
Rice et al. (2006), where the typical speeds of the boulders
upon encounters are comparable to the sound speed.

The fragmentation problem could be avoided if the
accumulation of solids happened, for instance, within a
protective environment where the collisional speeds are
brought down to gentler values. Anticyclonic vortices
(Marcus 1990) have been shown to favor planet forma-
tion (Barge & Sommeria 1995; Tanga et al. 1996; Bracco et
al. 1999; Chavanis 2000; Johansen et al. 2004) since, by ro-

tating clockwise in the global counterclockwise Keplerian
flow, they enhance the local shear and induce a net force on
solid particles towards their centers. Klahr & Bodenheimer
(2006) further argue that anticyclonic vortices would be
less turbulent than the ambient gas, which in turn would
lead to velocity dispersions that are low enough to prevent
fragmentation. Vortices in disks can be the result of the
baroclinic instability (Klahr & Bodenheimer 2003; Klahr
2004; Petersen et al. 2007), the Rossby wave instability
(Lovelace et al. 1999; Li et al. 2000; Li et al. 2001) or, per-
haps, the MRI (Fromang and Nelson 2005).

In this paper, we focus on vortices generated by the
Rossby wave instability (RWI), which is a global instabil-
ity where azimuthal modes experience growth in the pres-
ence of local extrema of a quantity interpreted as a com-
bination of entropy and potential vorticity. In the linear
phase, the instability launches inertial-acoustic waves. The
non-linear saturation is achieved when the Rossby waves
break and coalesce into anticyclonic vortices. It was shown
by Varnière & Tagger (2006) that a favorable profile of
the entropy-modified vorticity naturally arises if the disk
has a slow-accretion zone, such as in the layered accretion
model of Gammie (1996). In this model, ionization is pro-
vided by collisions in the hot inner regions, and by cos-
mic rays in the outer disk where the column densities are
low (a standard value for the penetration depth of cosmic
rays is a gas column density of 100 g cm−2). Throughout
most of the midplane, however, the temperatures are too
cold and the column densities are too thick for ionization
to occur either way. The result is that, when threaded by a
weak magnetic field, the disk displays MRI-active regions
in the ionized layers, and a MRI-dead zone in the neutral
parts around the midplane (Gammie 1996, Miller & Stone
2000; Oishi et al. 2007). Matter flows towards the star due
to the high turbulent viscosity of the MRI-active layers,
but upon hitting the border of the dead zone, it reaches
a region of slow accretion and the flow stalls. However, as
the flow proceeds unabridgedly from the outer active re-
gions, a surface density maximum forms, which triggers
the growth of the RWI.

The implications of this scenario for planet forma-
tion were first explored by Inaba & Barge (2006), who
use the RWI-unstable dead zone model of Varnière &
Tagger (2006) to study the accumulation of solids inside
the Rossby vortices. They confirm that the vortices are effi-
cient particle traps, since the solids-to-gas ratio was raised
by at least one order of magnitude, modeling the solid
phase of the disk as a fluid. Such approximation requires
that the size of the solid particles be much smaller than
the gas mean free path. Since in the Minimum Mass Solar
Nebula (MMSN; Weidenschilling 1977b) at 5.2AU the par-
ticles subject to maximum drift have a size comparable to
the mean free path, the sizes that a fluid approach can
handle correspond to too strong friction, thus ultimately
underestimating the trapping performance of the vorti-
cal motion. In Lyra et al. (2008b; hereafter LJKP08), we
took the works of Varnière & Tagger (2006) and Inaba &
Barge (2006) one step further by including gravitation-
ally interacting centimeter and meter size solids treated as
Lagrangian particles. In that Letter, we showed that the
solids concentrated in the vortices triggered by the RWI
rapidly reach critical densities and undergo collapse into
rocky planets. The resulting burst lead to the formation of
20 rocky protoplanetary embryos in the mass range 0.1-0.6
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M⊕, along with hundreds of smaller bodies following a
mass spectrum of power law −2.3±0.2.

In this paper we further detail the method used in
LJPK08, also presenting a number of new results. In the
following section we present the dynamical equations, fol-
lowed by an in-depth analysis of the vortices in Sect. 3. In
Sect. 4 we analyze the formation and evolution of the pro-
toplanetary embryos, focusing on stability against erosion
(Paraskov et al. 2006; Cuzzi et al. 2008) and tides from the
gas, which we identify as an important disrupting agent.
In Sect. 6 we investigate the response of the RWI to effects
not considered in the original analysis of Lovelace et al.
(1999) and Li et al. (2000), and in Sect. 7 we present a dis-
cussion of the limitations of the model. A summary and
conclusions are presented in Sect. 8.

2. The model

2.1. Dynamical Equations

We work in the thin disk approximation, using the verti-
cally integrated equations of hydrodynamics

∂Σg

∂t
= − (u · ∇)Σg − Σg∇ · u + fD(Σg) (1)

∂u
∂t

= − (u · ∇) u − 1
Σg

∇P− ∇Φ− Σp

Σg
fd (2)

+2 Σ−1
g ∇ · (νΣgS

)
+ fν(u, Σg)

dxp

dt
= vp (3)

dvp

dt
= −∇Φ + fd (4)

Φ = Φsg − GM�
r

(5)

∇2Φsg = 4πG
(
Σg + Σp

)
δ(z) (6)

P = Σgc2
s (7)

fd = −
(

3ρgCD|Δv|
8a•ρ•

)
Δv. (8)

In the above equations G is the gravitational constant,
Σg and Σp are the vertically integrated gas density and
bulk density of solids, respectively; u stands for the veloc-
ity of the gas parcels; xp is the position and vp is the veloc-
ity of the solid particles, P is the vertically integrated pres-
sure, cs is the sound speed, Φ the gravitational potential, ν
the viscosity, and S the rate-of-strain tensor. The functions
fD(Σg) and fν(u, Σg) are sixth order hyperdiffusion and
hyperviscosity terms that provide extra dissipation near
the grid scale, explained in Lyra et al. (2008a). They are
needed because the high order scheme of the Pencil Code
has too little overall numerical dissipation.

The function fd is the drag force by which gas and
solids interact. In Eq. (8), ρ• is the internal density of a solid
particle, a• its radius, and Δv = vp − u its velocity rela-
tive to the gas. CD is a dimensionless coefficient that de-
fines the strength of the drag force. We use the formula of
Woitke & Helling (2003) that interpolates between Epstein
and Stokes drag

CD =
9Kn2CEps

D + CStk
D

(3Kn + 1)2 . (9)

where CEps
D and CStk

D are the coefficients of Epstein and
Stokes drag, respectively. These are

CEps
D ≈ 2

(
1 +

128
9πMa2

)1/2

(10)

CStk
D =

⎧⎨⎩ 24 Re−1 + 3.6 Re−0.313 ; Re ≤ 500;
9.5 × 10−5 Re1.397 ; 500 < Re ≤ 1500;
2.61 ; Re > 1500.

(11)

where Ma = |Δv|/cs is the Mach number, Re =
2a•ρg|Δv|/μ is the Reynolds number of the flow past the
particle, and μ =

√
8/πρgcsλ/3 is the kinematic viscosity

of the gas. We defer the reader to Lyra et al. (2008c) for fur-
ther details of the drag force. The self-gravity solver is also
explained in that paper.

2.2. Initial and boundary conditions

In this paper, we use the Pencil Code1 in Cartesian and
cylindrical geometry. The cylindrical runs do not include
the gravity of the particles and were therefore only used
for tests or runs without particles, as will become clear in
the next sections. A Cartesian box was used for the pro-
duction runs. The Cartesian box ranges x, y ∈ [−2.0, 2.0]r0.
The resolution is 256×256, unless stated otherwise. The
cylindrical grid ranges r ∈ [0.3, 2.0]r0, with 2π coverage
in azimuth.

The density profile follows the power law Σg=Σ0r−0.5

and the sound speed is also set as a power law cs =
cs0r

−0.5. The velocity field is set by the condition of cen-
trifugal equilibrium

φ̇2 = Ω2
K +

1
r

[
1
Σg

∂P
∂r

+
∂Φsg

∂r

]
(12)

We use units such that r0=Σ0=GM�=1. We choose
cs0 = 0.05 and a Toomre Q parameter of 30 at r0. The
gas is throughout stable against gravitational instability.
Assuming that r0=5.2 AU and that Σ0=300 g cm−2, the disk
has 10−2M� of gas within the modeled range. The dead
zone is modeled as static viscosity jumps following arc-
tangent profiles

ν = ν0 − ν0

2

[
tanh

(
r− r1

Δr

)
− tanh

(
r− r2

Δr

)]
(13)

where r1=0.6 and r2=1.2 are the locations of the jumps
and Δr its width. We adopt Δr=10−2, which provides a
smooth jump over two grid cells only. The jump is thus
close to a Heaviside function yet still differentiable. We
use ν0=2.5× 10−5 in code units, corresponding to an alpha
value (Shakura & Sunyaev 1973) of α≡νΩ/c2

s≈10−2.
For the solids, we use 105 or 4 × 105 Lagrangian nu-

merical particles. For a gas mass of 10−2M� and the inter-
stellar solids-to-gas ratio of 10−2, each numerical particle

1 See http://www.nordita.org/software/pencil-code
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therefore is a super-particle containing (in the lower reso-
lution case) 10−9M� � 2.7 × 10−2MMoon of material. We
use particles of radii a•=1, 10, 30, and 100 cm, as also used
in Lyra et al. (2008c). For our nebula parameters, maxi-
mum drift occurs for particles of 30 cm, as detailed in that
paper.

The particles are initialized as to yield a surface density
following the same power law as the gas density, and their
velocities are initialized to the Keplerian value. We use
reflective boundaries for the cylindrical grid and frozen
boundaries for the Cartesian grid (Lyra et al. 2008a). Both
use the buffer zone described in de Val-Borro et al. (2006)
to damp waves before they reach the boundary. Particles
are removed from the simulation if they cross the inner
boundary.

3. Vortices

The trapping mechanism of vortices is not only due to its
being a high-pressure region, but mainly due to the vor-
ticity of the flow. In an anticyclonic vortex (cyclonic vor-
tices are destroyed by the Keplerian shear), the motion oc-
curs in the same sense as the local shear, i.e., the gas ro-
tates clockwise. Therefore, at the antistellar point the angu-
lar momentum is decreased with respect to a non-vortical
flow; and conversely increased at the substellar point. As
a result, the gas at the antistellar point is accelerated in-
wards, while the gas at the substellar point is accelerated
outwards. A net centripetal force towards the eye ensues.
The streamlines of vortices (or vortex lines) are a set of
Keplerian ellipses with the same semimajor axis but dif-
ferent eccentricities, being circular in the center and more
eccentric outwards (Barge and Sommeria 1995). We show
contours of |u| on the surroundings of one of the giant vor-
tices, in the upper left panel of Fig. 1. As the gas drags the
particles, the particles also revolve around the vortex eye.
But because the gas-solids coupling is not perfect, the par-
ticles lose angular momentum and sink deeply towards
the center. In the next subsections we describe some of the
properties of the vortices present in our simulations

3.1. Launching Mechanism - the RWI

The vortices in LJKP08 are triggered by the Rossby wave
instability (RWI), a case of purely hydrodynamical insta-
bility in accretion disks. Considering azimuthal perturba-
tions to the inviscid Euler equations, Lovelace et al. (1999)
and Li et al. (2000) find that instabilities exist when the fol-
lowing quantity has a local extremum

L(r) ≡ F (r)
(
PΣ−γ

)2/γ (14)

The quantity F is defined as

F ≡ ΣΩ

κ2 − Δω2 − c2
s/

(
LsLp

) (15)

where

κ ≡
[

1
r3

d
dr

(
r4Ω2

)]1/2

(16)

is the epicyclic frequency and

Fig. 1. Enlargement around one of the vortices in a snapshot at
20 orbits. Contours of |u| are superimposed on the gas surface
density plot, showing that the density enhancement is associated
with intense vorticity. In the upper panel we show the multi-
phase (total) surface density of solids, whereas in the middle and
lower panels we show the contribution of each particle species.
The vortical motion preferentially traps particles of a•=10 and 30
cm.

Ls ≡ γ

/[
d
dr

ln
(
PΣ−γ

)]
(17)

Lp ≡ γ

/[
d
dr

ln P
]

(18)

are the radial length scale of the entropy and density vari-
ations, respectively. γ is the adiabatic index. For corro-
tational modes (Δω ≡ ω − mΩ � κ) in a barotropic
(Ls → ∞) disk, the quantity F reduces to ΣΩκ−2, which is
readily identified with (half) the inverse of vortensity ξ

ξ = ωz/Σ (19)
ωz = |∇ × u|z (20)

=
1
r
∂r
∂r

(
r2Ω

)
=

κ2

2Ω
,
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Fig. 2. Evolution of the pressure bump with different widths of
the viscosity jump (uppermost panels; the dashed line is the
Heaviside jump, for comparison). The violation of the Solberg-
Høiland criterion (lowermost panels) is a conservative indica-
tion that the threshold of instability of the RWI was reached. As
the width of the jump increases, the threshold takes increasingly
longer time to be breached. For jumps smoother than two scale
lengths, the threshold was not reached (up to 500 orbits).

which in turn led Lovelace et al. (1999) to interpret L as an
entropy-modified version of, or generalized, potential vor-
ticity. An extremum in the profile of L can be generated,
for example, by a pressure bump somewhere in the disk.
The dispersion relation of the disturbances is analogous to
the dispersion relation of Rossby waves in planetary atmo-
spheres, hence the name of the instability.

3.2. How sharp need the jump be?

Although formally the instability is triggered by a min-
imum or maximum of L, ones finds in practice that the
amplitude and radial width of the pressure bump present
critical values beyond which instability does not occur. Li
et al. (2000) find that typically, a pressure variation of 10-
20% over a length similar to the scale height of the disk is
sufficient to trigger the instability. The threshold, however,
is problem dependent, depending - among other things
- on the geometry of the pressure variation (step jump
or Gaussian, for example; see Li et al. (2000) for details).
Due to this, we use a more general criterion to assess the
threshold of instability. Li et al. (2000) note that the thresh-
old of instability for the RWI is always reached before the

Solberg-Høiland criterion for stability of axis-symmetric
disturbances

κ2 + N2 ≥ 0 (21)

is violated. Eq. (21), therefore, provides a conservative es-
timate of whether or not the RWI is excited. The Solberg-
Høiland criterion is easily understood. In a pressureless
disk, the condition κ2 ≥ 0 suffices to determine stability.
The other term

N2 ≡ 1
Σ

dP
dr

(
1
Σ

dΣ
dr

− 1
γP

dP
dr

)
(22)

is the square of the Brunt-Väisälä frequency, associated
with the oscillations of buoyant structures in the pres-
ence of an entropy gradient. Physically, Eq. (21) means
that a mode that is unstable/stable to shear can be stabi-
lized/destabilized by pressure gradients and vice-versa.

We measure the epicyclic and Brunt-Väisälä frequen-
cies in a series of 1D simulations where we varied the
width Δr of the viscosity jump (Eq. (13)). We find that for
locally isothermal simulations, the Solberg-Høiland crite-
rion is violated at the outer edge for Δr ≤ 0.04, which
is slightly less than one scale height. In these isother-
mal simulations, the criterion depends almost solely on
the epicyclic frequency because, as the temperature does
not rise with compression, the pressure does not change
enough for N2 to go appreciably negative.

To assess the effect of non-barotropic behavior, we re-
place the locally isothermal flow by an isentropic one with
an adiabatic equation of state

∂S
∂t

= − (u ·∇) S + fχ(S) (23)

P = Σc2
s/γ (24)

which means that we allow heating and cooling by com-
pression and rarefaction only, excluding viscous heating
and radiative cooling. In Eq. (23), S = ln P− γ ln Σ is the
vertically integrated specific entropy of the gas. The func-
tion fχ(S) is a sixth order hyperconductivity term, analo-
gous to hyperdiffusion for density. The adiabatic index is
γ=7/5.

The results are illustrated in Fig. 2, where we plot the
viscosity profile (upper panel) for different widths Δr, and
the time evolution of the density, pressure and temper-
ature bumps. The lower panels measure if the Solberg-
Høiland criterion was violated. We find that the pressure
bump sharpens considerably compared to the isothermal
case, due to the high temperatures associated with the
compression. The consequence is that the Solberg-Høiland
criterion is violated by viscosity jumps up to Δr ≤ 0.12,
i.e., 3 times broader than in the isothermal simulations. In
this non-isothermal case, it is mostly the Brunt-Väisälä fre-
quency that leads κ2 + N2 to negative values. The effect of
increasing the width is mainly of slowing the evolution of
the quantity κ2 + N2 towards negative values. It only takes
five orbits for Δr = 0.01, but it takes 350 orbits when Δr is
increased to 0.1. In Fig. 2 we state Δr in terms of the scale
height H=0.05 r0. We present a resolution study of vortex
excitation in Appendix A. We also address the issue of vor-
tex survival in a non-static dead zone in Appendix B.



6 Lyra et al.: Planet formation bursts

3.3. Steady-state dead zone

If no transport happens in the dead zone, matter can do lit-
tle more than piling up there as the inflow proceeds from
the active layers However, the accumulation of matter can-
not proceed indefinitely since, as matter piles up, the con-
ditions for gravitational instability would eventually be
met (Armitage et al. 2001). The gravitational turbulence
that ensues (Lodato 2008) would therefore empty the dead
zone as the excess matter accretes, thus re-starting the cy-
cle.

However, local simulations show that the dead zone
has some level of residual turbulence. This happens be-
cause the turbulence on the active layers induce small lev-
els of Reynolds stress in the dead zone (Fleming & Stone
2003). If the inertia of the midplane layer is not too high
(Oishi et al. 2007), this forced turbulence can lead to mod-
erate α values with non-negligible transport 2.

Terquem (2008) shows that steady state solutions in 1D
models exist in this case, as the dead zone gets denser and
hotter to match the condition of constancy of the mass ac-
cretion rate with radius, ∂r(νΣ)=0. In this case, the steady
state will have an νT viscosity value in the active layers
and a lower νD in the dead zone.

Vortex formation by the RWI requires the presence of
a pressure maximum. In our model, and that of Varniére
& Tagger (2006) and Inaba & Barge (2006), the pressure
maximum comes about by stalling the accretion flow in the
border of the dead zone. There is no requirement that the
dead zone should have zero viscosity, just a viscosity sig-
nificantly lower than that of the active regions. We tested
different values of νD/νT, and found that changing it from
0 to 0.1 has little effect on the instability. For higher values,
the Solberg-Høiland criterion takes increasingly longer to
be violated. For νD/νT = 0.5, the Solberg-Høiland cri-
terion is violated after 60 orbits. We also notice that the
steady-state dead zones of Terquem (2008; see Fig. 3 of that
paper) have the surface density varying by more a factor
of ∼10 over a few scale lengths at the inner edge. Such
profiles violate the Solberg-Høiland criterion, so the RWI
is expected to be excited in those conditions as well.

4. Embryos

4.1. Drag force cooling and compactness

The embryos formed in our simulations present a number
of interesting features. We first would like to address the
issue regarding their physical size. The embryos consist
of a cluster of a large number of particles, held together
by their collective gravitational pull. But are they strongly
bound like solid objects? Or do they consist of loosely cou-
pled objects in the same potential well? To answer this
question we measure the rms spatial dispersion of the par-
ticles inside the cluster, defined as

rrms =
n

∑
i=1

|ri − rCM | (25)

2 Another alternative is local ionization provided by the de-
cay of the short-lived radioactive nuclide 26Al (Umebayashi &
Nakano 2009), although Turner & Sano (2008) show that the free
electrons given out by this low ionization source would quickly
recombine on the surface of μm-sized dust grains.
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Fig. 3. 1D simulation of collapse of 1000 particles. With drag force
the kinetic energy of the particles is efficiently dissipated and the
particles collapse at subgrid scale towards infinite density. When
the drag force is excluded the system cannot dissipate energy and
a halo of particles, 10 grid cells wide, is formed.
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Fig. 4. Evolution of the most massive clump formed (solid line),
that we traced back in time from the end of the simulation. It
differs from the instantaneous most massive clump (dashed line)
because the clumps have different feeding rate and can also ex-
perience mass loss, as in the episode that happened at ≈ 90 orbits
(see text).

where n is the number of particles within the Hill sphere of
the clump, r is the vector radius of each particle and rCM is
the vector radius of their center of mass. We take this value
as a measurement of the “radius” of the embryo. The most
massive embryo has a radius of 1.13 R⊕. This compactness
corresponds to a tenth of a thousandth of the resolution
element.

Such compactness is due to the dynamical cooling pro-
vided by the drag force. We illustrate this in Fig. 3. The fig-
ure shows the results of 1D simulation with a thousand in-
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teracting particles with and without gas drag. Without gas
drag the particles have no means to dissipate energy and
perform oscillations about the center of mass. The very in-
ner particles show virialization, while the outer particles
form a halo extending for a radius of 10 grid cells in aver-
age.

When including gas drag, the system gets so dissipa-
tive that the kinetic energy is soon lost and the ensemble of
particles collapses. The exponential decay of the particles’
rms position seen in the upper left panel of Fig. 3 shows no
sign of flattening, down to a millionth of a resolution ele-
ment. This leads us to infer that collapse to zero volume is
ongoing. This is of course expected, since no mechanism to
provide support against the gravitational pull is present.

In view of this, the question is why our planets, that
are subject to drag forces, do not shrink to zero as well but
stabilize at a very small but finite radius. We are drawn to
the conclusion that this is a numerical issue. The tests of
Fig. 3 were done with a fixed time-step. But when the par-
ticles cluster together to form a planet in our simulations,
they end up dominating the time-step. The position up-
date x(t) = x0 + vΔt therefore occurs with the maximum
Δt allowed by the Courant condition, which is that the
fastest particle should move by one grid cell. Due to this,
the time resolution of the subgrid motion around the cen-
ter of mass of the cluster is under-resolved. With the over-
shot Δt, the particles that are attracted towards the center
of mass of the clump will end up in a position past it. In the
next time step they will be attracted to the center of mass
from the other side, but will once again overshoot it. The
result of this is that the particles will execute undamped
oscillations, leading to a finite rms radius. We performed
tests like those of Fig. 3 with a particle-controlled variable
timestep, confirming this explanation. We conclude that
the fact that the most massive embryo has a stable rms
radius compatible with its mass is but a deceptive coin-
cidence.

We stress that this drag force cooling will cease to be ef-
ficient as the solids-to-gas ratio grows too large (ρp/ρg �
1), because in this case the backreaction would be too
strong and the gas would simply be dragged along with
the particles. In this case, a Keplerian disk of solids might
form, accreting matter onto the planet due to collisions be-
tween the orbiting solids. This accretion regime is never-
theless beyond the scope of the current paper.

4.2. Mass loss

In Fig. 2a of LJKP08 we showed the evolution of the most
massive clump. However, as the clumps have different
feeding rate and some of them experience mass loss, the
most massive clump shown there is not always the same
clump. In Fig. 4 we contrast this with the evolution of the
most massive clump at the end of the simulation, which we
tracked backwards in time. Such clump started in the inner
disk, showing 0.8 MMars by 40 orbits. By this time, the most
massive clump was a 3 MMars clump in the outer disk.

The most remarkable feature of this plot is the mass
loss event at 90 orbits. Fig. 5 shows that it consists of the
detachment of a 0.8 MMars object from the original cluster,
of 6.7MMars. The detachment is already seen at 87 orbits,
although the separation is quite small (4 times the Earth-
Moon mean separation, REM). At 89 orbits, the smaller ob-
ject left the Hill sphere of the more massive embryo. They
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Fig. 5. Time series of the mass loss episode. Due to gravitational
tides from the massive vortex whence the embryo formed, a large
chunk of particles was detached from the original cluster. At 87
orbits, a separation 4 times the Earth-Moon distance is seen. The
separation grows and two orbits later the two bodies do not over-
lap Hill radii, thus counting as separate objects.

finally appeared as separate objects, and the maximum
mass decreased.

We see evidence that this puzzling behavior is due to
gravitational tides from the gas. The gas is too pressure-
supported to undergo collapse, but the vortices concen-
trate enough material to yield a considerable gravitational
pull. We illustrate this in Fig. 6, where we show the state of
the disk before the mass loss episode (at 80 orbits, Fig. 6a-
Fig. 6d) and after that (at 100 orbits, Fig. 6e-Fig. 6h). The
plots show the surface densities of gas and solids, and the
potential associated with them. Even though the clump-
ing of solids yield a considerable gravitational pull (Fig. 6d
and Fig. 6h), these figures show that the dominant contri-
bution to the gravitational potential comes from the gas -
more specifically from the vortices, where the gas density
peaks one order of magnitude denser than the initial con-
dition.

The most massive clump is located in the inner disk at
(X,Y)=(-0.40,-0.53) in Fig. 6b, not clearly identifiable amidst
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Fig. 6. The state of the disk before (a-d) and after (e-h) the mass loss episode. The conspicuous difference between them is that the
embryo has left its parental vortex from one snapshot to the other. It is seen as a bright spot in panels f and h, at (X,Y)=(-0.65,-0.19).
In panel b (before the mass loss), the embryo is at (X,Y)=(-0.40,-0.53) but not easily spotted among the swarm of solids inside the
vortex. Panel i shows a horizontal slice through this location, in which we see that the density of solids does not peak much higher
than the gas density at the location of the embryo (panel j). Significant gas tides are expected as the gravitational potential (panel k)
and acceleration (panel l) have similar contributions from the gas and solid components.

the other particles trapped inside the vortex. However,
the embryo is immediately observable as the bright point
at (X,Y)=(-0.65,-0.19) in Fig. 6h (also visible in Fig. 6f, al-
beit less prominently). There are two features in this plot
that are worth noting. First, by comparing the location of
the embryo in these figures with the location of the vor-
tices, we notice that the planet has left its parental vortex.
Second, the inner vortices have undergone the transition
from the m=3 to the m=2 mode. Due to merging, their gas
density has increased, with dramatic consequences for the
embryos within them.

We assess how the gravity of the gas influences the mo-
tion of the particles (Fig. 6i-Fig. 6l). In Fig. 6i we take a
horizontal density slice at the position of the most mas-
sive embryo at 80 orbits. Fig. 6j is an enlargement of Fig. 6i
around X=-0.53, where the embryo is located. We see that
the densities of solids and gas peak at similar values. The

next figures show the gravitational potential (Fig. 6k) and
acceleration (Fig. 6l) around the embryo. The gas produces
a deeper gravitational well, albeit smoother than the one
displayed by the solids. In the acceleration plot it is seen
that the pull of the gas is greater than the pull of the em-
bryo already at a distance of just 0.26 AU (0.03 in code
units, corresponding to two grid cells) away from the cen-
ter. And even where the pull of the solids is strongest (one
grid cell away from the center), the gravity of the gas still
is an appreciable fraction of the gravity of the solids. Tides
from the gas are unavoidable.

It is beyond the scope of this paper to consider the full
mathematical details of the theory of tides, especially be-
cause the two bodies (the vortex and the embryo) are ex-
tended. Instead, we consider the following toy model. The
tidal force FT experienced by the planet is proportional to
the gradient of the acceleration a induced by the gas. It is
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Fig. 7. Can self-gravity alone maintain the formed embryos to-
gether? We switch off the hydrodynamics at the last snapshot
and run for additional 200 orbits. The most massive embryo, that
had already left the parental vortex (at ≈ 90 orbits), does not dis-
perse.

also proportional to the radius R of the planet: FT ∝ R∇a.
Since ∇a = −∇2Φ, according to the Poisson equation, the
tidal force is proportional to the local value of the density

FT ∝ R ρg. (26)

We consider the 3D volume density to avoid the
requirement of using the Dirac delta in the 2D case.
Considering the planet spherical, Newton’s second the-
orem holds and we can write FG = −GM/R2

for the planet’s (self-)gravitational force at its surface.
Substituting M = 4/3πρpR3, we have FG ∝ Rρp, so

ζ =
FT
FG

∝
ρg

ρp
, (27)

i.e., the ratio of the disrupting tidal stresses to the self-
gravitating forces that attempt to keep the planet together
is directly proportional to the gas-to-solids ratio. At 80 or-
bits, as seen in Fig. 6j this ratio is around unity. As the
vortices undergo the transition from the m=3 to the m=2
mode, their peak density increases (while the planet re-
mains at a constant mass), the tides eventually become
strong enough to cause the mass loss event of Fig. 5. This
effect will probably be less dramatic in 3D simulations be-
cause, as the particles settle in the midplane, the ratio of
the volume gas density to the bulk density of solids ρg/ρp
is expected to be much lower than the ratio of the column
gas density to the vertically integrated surface density of
solids Σg/Σp .

4.3. Erosion?

Cuzzi et al. (2008) points that erosion is of prominent im-
portance in the stability of self-gravitating clumps of par-
ticles. They put forth a model where self-gravity plays a

role analogous to that of surface tension in liquid drops,
preventing disruption against ram pressure forces from
the gas. The clumps are held together by self-gravity if the
gravitational Weber number (in analogy with the surface
tension case) is less than a critical value, close to 1. The
gravitational Weber number is defined as the ratio of the
drag to self-gravitational accelerations

WeG =
| fd|

|∇Φsg| . (28)

Cuzzi et al. (2008) further point that in numerical mod-
els, artificial viscosity can largely exaggerate the disrupt-
ing effect of the ram pressure. This happens because, as the
clumps are small, they are deeply within the viscous range
of the grid, whereas in the real solar nebula the dissipation
happens at much smaller scales. The Reynolds number of
the flow past the particles is therefore much smaller than
what a real clump would experience 3, and the exagger-
ated viscous stresses might de-stabilize potentially stable
clumps.

It is interesting to assess if this mechanism plays a sig-
nificant role in our models, or even if it can account for at
least some of the mass loss events.

We can estimate how important erosion will be for our
clumps the following way. We approximate the clumps as
single point masses so that |∇Φsg| ≈ GM/r2, where M is
the total mass of the clump. Plugging this in Eq. (30), we
write the gravitational Weber number as

WeG =
3ρCD|Δv|2r2

8 GMa•ρ•
. (29)

For Epstein drag (Eq. (10)), CD does not depend on a•.
So, for all other quantities being constant, we expect WeG
to decrease linearly as a• increases. In other words, self-
gravitating clumps of larger particles should be more sta-
ble than clumps composed of smaller particles.

We can simplify the WeG by writing the mass M as
M=πr2

rmsΣp , and the drag force as | fd|=Ma cs/τ. Thus, at
r=rrms,

WeG =
Ma cs
τπGΣp

. (30)

We confirm in Appendix C that Eq. (30) is sufficiently
accurate in predicting the onset of erosion. For our choice
of parameters,

WeG ≈ 17 Ma
(τΩ)Σp r2 (31)

so for a flow of Ma ≈ 10−2, a clump of Σp=1 at r ≈ 1 will
be stable if τΩ � 0.1. The embryos we consider are formed

3 The Reynolds number of the flow past a clump can be written
as Re = Rrmsvrms/ν. At the grid scale our choice of viscosity is
usually 3× 1017 cm s−1 (it decreases very fast as we go to smaller
wavenumbers, as k6). For a clump as the ones of this study, of
Rrms=104 km and vrms=1 m s−1, the Reynolds number is Re ≈
3× 10−7. At such incredibly low Reynolds numbers, inertia plays
no role. The self-gravity of the particles, therefore, is not holding
the cluster together against drag forces from the gas, but against
largely exaggerated viscous stresses. In comparison, in the solar
nebula, the molecular viscosity is much lower and the Reynolds
number is expected to be > 106 (Cuzzi et al. 2008).
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Fig. 8. The relative velocities between particles are contrasted
with collisional velocities calculated from Eq. (32). At the initial
condition (t=0) the relative velocities between particles follow
what is expected from the Keplerian shear (dashed line), reach-
ing as far as 300 m s−1inside a grid cell (which is 31 REM wide). In
contrast, the true collisional velocities are much lower. The figure
shows that estimating fragmentation with the relative velocities
would greatly overestimate its likelihood. Time is quoted in or-
bits (tK=2π/Ω0).

predominantly of particles of 10 cm (τΩ≈0.1) and 30 cm
(τΩ≈0.3). We conclude that erosion might play a role in
our case. The sharp dependence of WeG on the distance in
Eq. (31) also means that embryos at the inner edge of the
dead zone are more prone to erosion than the ones at the
outer edge. We will develop this further in Sect 5.2.2.

4.4. Can the embryos be held together indefinitely?

To answer the question of how long lived these clumps
are, we take the last snapshot of the simulation and switch
off the hydrodynamics. The particles now move under the
influence of the stellar gravity and their own self-gravity
only. We run for additional 200 orbits to assess is self-
gravity alone can maintain the cluster of particles together.
The result is shown in Fig. 7.

The clustered particles do not disperse, and the most
massive embryo maintains the same mass for the addi-
tional simulating time. We do not see difference in the de-
gree of compactness of the most massive embryo. As the
vortices are shut down, the unbound 1 cm sized particles
that were too well coupled to the gas to be dragged into
the eye are released from they vortical confinement and
spread over a wider annulus.

We have no reason to suspect that the situation will
change over longer timescales. We conclude that the em-
bryos can be held together indefinitely.

4.5. Collisions

As stated before, one of the problems that solids accumu-
lation inside vortices can potentially solve is the issue of
fragmentation of particles upon collisions, a drawback for
both coagulation (Brauer et al. 2008a) and gravitational in-
stability models (Rice et al. 2006, Johansen et al. 2007) of
planetesimal growth.

To assess if fragmentation poses a significant barrier for
the formation of the protoplanetary embryos in this study,
we take the most massive embryo by the end of the sim-
ulation, flag the particles that constitute it and trace them
back in time, calculating their collisional velocity history.
The collisional speed for each particle is calculated by tak-
ing the closest neighbor to that particle within the range
of a grid cell. There is, however, a subtlety concerning the
difference between collisional velocities and relative veloc-
ities. A collision between particles i and j only happens
when the separation rij between them tends to zero. For
our resolution and choice of r0, a grid cell is 0.08 AU wide,
thus existing plenty of room for subgrid Lagrangian dy-
namics. In particular, the velocity difference due to the
Keplerian shear between the inner and outer radial bor-
ders of a grid cell can be significant. At the inner edge of
the dead zone of the model presented in this paper (3.12
AU) for instance, this difference amounts to 434 m s−1. As
this velocity difference is due to the separation between
particles, it vanishes when rij tends to zero, thus never con-
tributing to the true collisional speed. In Fig. 8 we show
these uncorrected relative velocities in the initial condi-
tion and in a snapshot at 40 orbits, plotted against sepa-
ration. The clear correlation follows what is expected from
the Keplerian shear (dashed line) in the initial condition.

The gas motion adds another velocity that has to be
taken into account. Solid particles are dragged by the gas
motion, yet gas streamlines never intersect. The gas mo-
tion itself thus introduce velocities that never participate
in collisions. We correct for these two by the following pro-
cedure. For each particle in the pair involved in a collision,
we consider its velocity Δv relative to the gas (the same
quantity that appears in the drag force, Δv=vp − u). We
then define the collisional velocity vector as

vij
coll ≡ Δv(xpi) − Δv(xpj). (32)

Equation (32) ensures that tracer particles, that fol-
low the gas streamlines, should never experience collision.
Furthermore, as the shear dependence of Δv=ηvK is much
smaller than the shear dependence of vp=vK (where η =
(1/2)(H/r)2(∂ ln P/∂ ln r) = 3.75 × 10−3 is the pressure-
correction factor), we can assume that it also corrects for
this quantity. Figure 8 also shows the collisional speeds
calculated by Eq. (32). The dependence on separation was
greatly suppressed.

The results of the collisional velocity history of the par-
ticles that constitute the most massive embryo at the end
of simulation are plotted in Fig. 9.

Figure 9a shows a cumulative plot of the mass of the
embryo, that defines the time t0 that each flagged particle
was accreted. We define the time of accretion as the mo-
ment when the particle approached the grid point xnear
nearest to the maximum of particle number density (also
defined by the flagged particles) by less than ddiag=dx

√
2
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Fig. 9. a). Accretion history of the most massive embryo. Collapse happens at 40 orbits, and further accretion of particles happens
through the next 18 orbits, after which the maximum mass is attained. This plot defines the time t0 that each particle is accreted.
b). Histograms of the maximum collisional velocities experienced by a given particle, before (dot-dashed line) and after (solid line)
its accretion time t0. The solid line histogram represents the maximum collisional speed from t0 until the end of the simulation. The
dot-dashed line histogram covers a time interval of ten orbits before t0. As the vortices form at ≈30 orbits, the latter better represents
vcoll under vortex trapping. The vast majority of the particles are in the bin of 0-5 m s−1. The smaller window zooms into this bin.
The black line corresponds to bins of 1m s−1whereas the grey line to bins of 0.1m s−1. Both represent vcoll after t0. It shows that most
of the particles never experience collisions more violent than 1 m s−1.
c). Same as b). but plotting the maximum collisional speeds as function of separation between the particle and its nearest neighbor.
Before t0, three populations are seen, of low speed at short separations, high speeds at short separations, and high speeds at large
separations. Only the second group would have experienced destructive collisions. After t0, 99% of the particles belong to the first
group. The correlation with distance for the first group is not due to the Keplerian shear (dashed line) or the residual shear present
in Δv (dotted line).

(the grid cell diagonal) and kept

|xp − xnear| ≤ ddiag (33)

until the end of the simulation. Although this is not as
strict as the definition of accretion we have been using
before (based on the Hill criterion and escape velocity),
this simpler criterion captures what happens before col-
lapse (i.e., before the maximum of particle number den-
sity becomes a bound protoplanetary embryo) and serves
well our purpose of illustrating the behavior of collisional
speeds at close separations. The first episode of accre-
tion takes place at 40 orbits, coinciding with the time that
the clump of particles became bound (in accordance with
Fig. 4). Further accretion proceeds over the next 18 orbits,
with the maximum mass being attained at 58 orbits. No
other particle was accreted after this time.

Figure 9b shows histograms of the maximum col-
lisional speed that a particle experienced before (dot-
dashed line) and after (solid line) accretion. The latter
refers to the maximum of vcoll taken between t0 and the
end of the simulation (200 orbits). The former refers to a
time interval of 10 orbits before t0. As the vortices in the
inner disk just fully develop at ≈30 orbits, the dot-dashed
histogram is more representative of a situation where par-
ticles are inserted in a disk with existent vortices. The con-
clusion is striking: the vast majority of the particles that
constitute the embryo never experienced a collision more
violent than 1 m s−1.

In Fig. 9c we show the maximum collisional veloci-
ties of Fig. 9b as a function of the separation between a
given particle and its closest neighbor, also before and af-
ter accretion. The distribution before accretion is trimodal,

with particles with low speeds (<1m s−1) at small separa-
tions, particles with high speeds (<20m s−1) at small sep-
arations, and particles with high speeds at large separa-
tions (>10REM). Only the second group of particles would
have undergone fragmentation. The first group is below
the fragmentation velocity threshold, whereas the large
separations of the third group imply they never experi-
enced an encounter close enough to lead to a collision.
After accretion, virtually all particles (99%) belong to the
first group.

In Fig. 10 we plot the collisional velocities versus sep-
aration at selected snapshots instead of historical maxima.
In these plots, we only used the particles for which Eq. (33)
was satisfied, i.e., considering only the collisions that are
participating on the formation process of the embryo. At
30 orbits, a small number of particles is observed (87), 78%
of these showing safe collisional speeds (<10m s−1). 5 or-
bits later 119 particles are within the grid cell of the form-
ing embryo, 92% of which show gentle collisions. At the
time the overdensity gets bound (40 orbits), it is formed
by 639 particles, with just 7 of these showing collisional
speeds greater than 10m s−1. At 45 orbits, all 877 particles
display safe speeds. The tendency seen in this time series
towards an increasing number of encounters at low sepa-
rations and at low collisional speeds indicates that collapse
towards zero volume is ongoing. Indeed, at 70 orbits, we
observe that most of the particles occupy the same point
in space.
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Fig. 10. Collisional speeds as a function of separation at selected
snapshots at 30, 35, 40, and 45 orbits (tK=2π/Ω0). The figure only
shows particles that are closer than the distance of a grid cell to
the clump of maximum number density. The group at low sepa-
rations and high speeds observed in the upper plots would un-
dergo fragmentation. Nevertheless, they represent only a minor-
ity of particles (22% at 30 orbits, 8% at 35). At the time the cluster
gets bound (at 40 orbits), the vast majority of particles (99%) is
safely at low speeds. The presence of a fourth group at 45 orbits,
at very low separations (<10−3 REM) and with very low colli-
sional speeds (<10−3 m s−1) indicates that collapse towards zero
volume is ongoing.

5. Size distribution

In our simulations, we considered the solid phase of the
disk represented by particles of 1, 10, 30, and 100 cm. In
this section we discuss a number of issues, relevant to the
simulations, related to having a size spectrum instead of
single-phasing.

5.1. Aerodynamical sorting

One of the most prominent features of the embryos formed
in our models is that they are composed primarily of
same-sized particles. This is mostly due to aerodynamical
sorting. As particles of different size have different fric-
tion times, differential drag occurs inside the vortex, effec-
tively sorting the particles spatially by size. Moreover, the
stationary point is determined by a balance between the
Coriolis and the drag force, in such a way that the eye of
the vortex is the stationary point only for τs → 0, or perfect
coupling. In general, the stationary point is azimuthally
shifted with respect to the eye, according to the particle
size (Youdin 2008).

The aerodynamical sorting inside the vortex can be
seen in Fig. 11, which corresponds to the vortex of Fig. 1.
As similar particles drift alike, streams of same-sized par-
ticles are clearly seen in the vortical flow.

Aerodynamical sorting
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Fig. 11. Aerodynamical sorting for the particles trapped in the
vortical motion. The figure is centered at the vortex shown in
Fig. 1, at 18 orbits. The unit of length is the Earth-Moon mean
distance, and the Y-coordinate points to the star. As particles of
different size have different friction times, differential drag oc-
curs inside the vortex, effectively sorting the particles spatially
by size.

5.2. Differences between the inner and outer embryos

Another interesting feature of our results is that once the
vortices are formed, they easily trap the 10 cm and 30 cm
particles both in the inner and in the outer edge of the
dead zone. Yet, by the end of the simulation there seems
to be a preference for the embryos in the inner disk to
be composed of larger particles (30-100 cm), while in the
outer disk, more embryos formed of the smaller particles
(1-10 cm) are seen. We explain these two features in the fol-
lowing sections.

5.2.1. Preferential sizes in different locations of the nebula

The first feature (inner and outer vortices equally trapping
particles of same size) follows from the fact that the gen-
eral drag coefficient (Eq. (9)) yields a nearly flat profile for
the radius of the particle with maximum drift (τΩ=1) ver-
sus distance. This is seen by calculating the stopping times
ts of the different particles as a function of the dynamical
variables

ts = τΩ

=

√
32π

Kn′Ma
λρ•
Σg

(
Kn′ + 1

)2(
Kn′2CEps

D + CStk
D

) (34)

and calculating the radius for a given stopping time
ts. Substituting CEps

D =16/(3Ma)
√

2/π (Eq. (10) at sub-
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sonic regime) and Stokes law CStk
D =24/Re (with Re =

3Ma/Kn
√

π/8) yields the quadratic equation for a•

2a2• + 3λa• −
6λΣgts
πρ•

= 0 (35)

and, as the radius is positive, the solution is unique

a• =
3λ
4

(√
1 +

16Σgts
3πλρ•

− 1

)
(36)

Fig. 12 shows this curve as a function of radius for
ts=1 and our initial parameters. The particle radius of
ts=1 predicted by both pure Epstein and pure Stokes drag
are shown for comparison. The mean free path λ is also
shown. The figure shows that the curve is so flat for our
choice of parameters, that inner and outer vortices must
have similar efficiency on trapping particles of a given
size.

5.2.2. Tidal disruption and erosion of the inner embryos of
a•=10 cm

We see evidence that the second feature (the absence of
clumps of 10 cm in the inner disk at later times even
though they were formed) is due to tidal disruption in
the same episode that lead the most massive embryo to
lose mass. We illustrate this in Fig. 13, a time series of the
gas and the solid phases, the latter split into the 4 differ-
ent particle sizes. The upper plots, at 75 orbits, show that
embryos of 30 cm and 10 cm were formed in both the inner
and outer vortices.

The gas plots of the time series of Fig. 13 illustrate the
transition from the m=3 to the m=2 undergone by the inner
vortices, as mentioned in Sect. 4.2. This raises their den-
sity so the tides get stronger. The plots of the 30 cm phase
show that the embryos composed of these particles split
into smaller objects, that nevertheless can still keep their
physical integrity.

The fate of the clusters composed of particles of 10 cm
is different, though. As the gas density increases, so does
the gravitational Weber numbers of the embryos. Erosion
starts to play a more significant role. As the density in-
creases inside the inner vortices (a factor 5 relative to the
initial condition at 75 orbits; 8 at 200 orbits), the embryos
of 10 cm particles start to behave more and more like the
τΩ=0.01 clusters of Fig. C.1. At 85 orbits, one of embryos
of 10 cm particles in the inner edge was destroyed. At 95
orbits, a second embryo was disrupted. At 105 orbits, the
third embryo was also destroyed by the combined effect
of tides and erosion. 25 orbits later, the 10 cm particles
have dispersed through the inner edge of the dead zone.
The tides from the gas prevent them from assembling once
again.

The outer vortices never get as strong as the inner ones.
The result is that although the inner embryos of 10 cm par-
ticles are destroyed, the outer ones are kept until the end
of the simulation.

6. The response of the RWI to the drag

backreaction and self-gravity

The evolution of the RWI was studied analytically for the
case of a low mass dustless disk only. In Fig. 14 we show

how the effects of gas self-gravity and backreaction from
the solids affect the evolution of the instability.

The upper panels of Fig. 14 show a disk without solids
and without self-gravity. In the middle panels we included
self-gravity, while in the lower panels we included solids.
The appearance of the disk in the three simulations is
shown in selected snapshots at 5, 10, and 15 orbits.

The self-gravitating and non-selfgravitating dustless
cases (upper and middle panels) look similar, with the
RWI being excited first in the outer edge of the dead zone.
However, there is a crucial difference between them. The
snapshot at 15 orbits shows a prominent m=2 mode in the
outer disk for the non-selfgravitating case, while the run
with self-gravity displays a dominant m=5 mode at the
same time. This puzzling result is made even more inter-
esting by recalling that the the gas is gravitationally sta-
ble (Q≈30). That the growth rates of different modes vary
that significantly for such a value of Q is indicative that
the dispersion relation of the RWI is probably remarkably
sensitive to self-gravity.

The simulation with drag backreaction (lower panels)
also displays a number of interesting features. First, the
RWI was excited in the inner disk as early as 5 orbits. In
contrast, the control run without solids (upper panels) has
the instability appearing first in the outer disk, and at later
times (10 orbits). The conclusion is that the particles in-
duce vorticity on their own. Even though it is clear that
this behavior has to do with free energy being transfered
from the particle motion to the gas motion, it is not ob-
vious if this result can be linked to the streaming insta-
bility (Youdin & Goodman 2005) since the solids-to-gas
ratio is not nearly as high as the one needed to excite it
(ρp/ρg � 1). Instead, it is more likely that the backreaction
is modifying the dispersion relation of the RWI.

Another interesting feature of this run is that although
the RWI was excited in the inner edge of the dead zone
as early as 5 orbits, the outer edge just went unstable as
late as 15 orbits. In contrast, the control run (upper panels)
shows the outer disk going unstable at 10 orbits. As the
backreaction hastens the growth of the RWI in the inner
edge, it is unclear why it should stall it in the outer edge.
One possibility is that the Rossby waves launched by the
edge that first goes unstable interferes destructively with
the perturbations fighting to grow in the other edge.

The dominant mode also changed from the dusty to
the dustless case. The latter has m=4 and m=5 modes be-
ing dominant in the inner edge. In the dusty case a m=2
mode is seen instead. However, since in the dustless case
it is the outer edge that displays a m=2 mode, another ex-
planation comes to mind. As the models are 2D, we are
probably witnessing the inverse cascade phenomenon due
to enstrophy conservation. The vortices are simply cascad-
ing energy towards the larger scales, so the edge that goes
unstable first (outer in the dustless case, inner in the dusty)
will also reach a dominant m=2 mode first (possibly also
m=1 at later times).

If this is the case, then self-gravity somehow halts
the inverse cascade that took place in the dustless non-
selfgravitating case. It is also instructive to compare the
dusty non-selfgravitating run (lower panel) with the dusty
selfgravitating run of LJKP08 (Fig. 1 of that paper). In that
case, the m=4 was dominant in the outer edge of the dead
zone until the end of the simulation at 200 orbits. We also
perform a test (Fig. 15) that consists of switching the self-
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Fig. 12. The radius of the particle subject to maximum drift (τΩ=1) for our choice of parameters (left panel) and in the MMSN (right
panel). q=−∂ ln Σ/∂ ln r is the power law of the surface density profile. The profile is very flat compared to the ones predicted by the
limiting cases of Epstein and Stokes drag, especially for our choice of parameters. The vortices in the inner and outer edge of the
dead zone should have similar efficiency on trapping particles of a given size.

gravity off in the run of LJKP08, and checking the evo-
lution of the vortices. Without self-gravity, the m=4 mode
turns into a m=3 mode in less than 15 orbits. In the inner
edge, a m=2 mode developed out of the otherwise domi-
nant m=3 mode. The inverse cascade indeed resumed.

This result was also very recently reported by
Mamatsashvili & Rice (2009). Without self-gravity, the vor-
tex size is limited by the pressure scale height H. Once
vortices grow to sizes of a few times H, the vortical flow
becomes super-sonic. The vortex then radiates density
waves that carry energy away and limit further growth.
Mamatsashvili & Rice (2009) point that in the presence
of self-gravity, the Jeans length λJ ∼ QH, where Q =
(κcs)/(GπΣ) is the Toomre Q parameter, poses another
limitation to the maximum size of a vortex. We measure
Q at the location of the vortices and confirm that it is close
to 1 (in the range 0.5-3). The growth seen when self-gravity
is switched off is a result of this constrain being lifted.

7. Limitations of the model

The presented models are admittedly simplified. In this
section, we state what we consider the main limitations
of our calculations to be.

7.1. Two-dimensionality

The most stringent limitation of the models is the 2D ap-
proximation, that leads to a number of features, stated be-
low.

7.1.1. Vortex formation and survival

The question of the excitation and sustainability of vor-
tices in three dimensions is the matter of an old, yet un-
settled, debate. Once excited, anticyclonic vortices are eas-
ily maintained in 2D simulations where, unless viscosity is
present, they cannot decay and will instead merge, grow-
ing in size in a cascade of energy towards the largest scale
of box (e.g., Johnson & Gammie 2005). However, three-
dimensional studies in the context of protoplanetary disks

found that tall vortex columns are destroyed, both in non-
stratified (Shen et al. 2006) and in stratified (Barranco &
Marcus 2005) local boxes. This phenomenon is understood
as a result of the elliptic instability (Crow 1970, Gledzel
et al. 1975, Kerswell 2002), by which the stretching term
(ω · ∇)u, absent in 2D, breaks down elliptical stream-
lines such as vortical flow. For a vortex to grow in 3D, the
baroclinic term ρ−2∇ρ×∇p has to counter the stretching
term.

An indication that vortices can be sustained in three di-
mensions is present in the study of Edgar & Quillen (2008).
These authors simulate a stratified disk in spherical co-
ordinates with an embedded giant planet. In their invis-
cid run, the RWI is excited, leading to Rossby vortices at
the edges of the gap, much like as in the 2D runs of de
Val-Borro et al (2007). The vortices launched in three di-
mensions are long lived and vertically extended, appar-
ently following the same scale height as the surround-
ing disk. We remark that the MRI-generated vortex of
Fromang & Nelson (2005) is also seen to be long-lived in a
unstratified global disk. The studies of Edgar & Quillen
(2008) and Fromang & Nelson (2005) both use a locally
isothermal equation of state, which has large-scale non-
zero baroclinity due to the static radial temperature gradi-
ent. Furthermore, the existence of the RWI in 3D is demon-
strated by the simulations of Méheut et al. (2008).

7.1.2. Strength of the vortices

The first major impact of this is the inverse cascade due
to enstrophy conservation that overpowers the vortices.
An in depth study of the formation, development and
structure of Rossby vortices in 3D global accretion disks
is needed to realistically address the issue of planet forma-
tion inside these structures.

7.1.3. Particle sedimentation

Another limitation posed by the two-dimensionally is that
the particles and the gas have the same infinitely thin scale
height. The result of this is that the back-reaction of the
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Fig. 13. Time series of the gas and solid density (for each indi-
vidual particle size), evidencing the destruction of the embryos
of 10 cm particles when the inner vortices undergo the transition
from the m=3 to the m=2 mode. At 75 orbits (upper panels), em-
bryos are seen in both the inner and outer vortices, for both 10 cm
and 30 cm particles. At 85 orbits one of the embryos in the 10 cm
phase was disrupted, followed by a second at 95 orbits, and the
last one ten orbits later. The embryos composed of 30 cm particles
also experience tides. But as their gravitational Weber numbers
are smaller, they just undergo splitting, the large fragments be-
ing more stable against erosion than the embryos composed of
particles of 10 cm.

drag force from the particles onto the gas is largely un-
derestimated in our models. In 3D disks, the midplane
particle layer is far denser due to sedimentation, so the
ratio ρp/ρg is far greater than the ratio Σp/Σg used in
Eq. (3). The stronger backreaction that ensues is known
to excite the streaming instabilities if ρp/ρg � 1 (Youdin
& Goodman 2005, Youdin & Johansen 2007, Johansen &
Youdin 2007). This instability enhances particle clumping,
thus aiding collapse (Johansen et al. 2007). However, the
effect of this strong backreaction on the vortices is poorly
known.

7.1.4. Different particle scale heights

As the particles sediment, what sets the particle scale
height is the equilibrium between turbulent diffusion and
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Fig. 14. Upper panels. Evolution of a disk without particles and
without self-gravity, that serves as a control run for the next plots.
Middle panels. Evolution of a disk without particles but with self-
gravity. The difference compared to the upper panels is that the
dominant mode in the outer disk changed from m=2 to m=5. Self-
gravity modifies the dispersion relation of the RWI, or it stalls
the inverse cascade of power known to occur in 2D turbulence,
or both.
Lower panels. Evolution of a disk without self-gravity but with
particles. The backreaction leads to an early excitation of the RWI
in the inner edge of the dead zone. Conversely, the outer edge
goes unstable later when compared to the other two runs. Since
the particle density is not high enough to excite the streaming
instability, we take it as evidence that the backreaction modifies
the dispersion relation of the RWI.

vertical gravity. Controlled by the drag force, the turbu-
lent diffusion depends on the particle radius, and so does
the equilibrium scale height of the solids (Dubrulle et al.
1995). Because of this, particles of 1 m radius settle in a
thinner layer than those of 1 cm particles. Inside a vor-
tex, turbulent motions are expected to be weaker (Klahr
& Bodenheimer 2006), bringing the layer of solids closer
to a 2D configuration, but a dependence on radius is still
expected. We could not model this effect on our simula-
tions.

7.1.5. Gas tides and mass loss

The strength of the disrupting gas tides is yet another ef-
fect related to the difference between 2D and 3D mod-
els. As discussed in Sect. 3.2, the tides are proportional
to the gas-to-solids ratio ρg/ρp, thus expected to be much
weaker in 3D where sedimentation considerably increases
ρp in the midplane. As the vorticity is also expected to be
weaker in 3D, the peak of ρg at the vortex’s eye would be
weaker than in a 2D calculation, further weakening the ef-
fect of tides. We therefore anticipate embryos formed in 3D
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simulations to be significantly less prone to mass loss than
the ones presented in this study.

7.2. Equation of state

In this study, we used very simple equations of state:
isothermal (Eq. (7)) or adiabatic (Eq. (24)). The effect of
the equation of state can be appreciated by seeing the
evolution of the Solberg-Høiland criterion in isothermal
and adiabatic simulations. In the former, it is the epicyclic
frequency that brings κ2 + N2 to negative values, while
in the latter the criterion is broken mainly by the Brunt-
Väisälä frequency. The excitation of the Rossby wave insta-
bility is greatly favored in the presence of a strong entropy
gradient, and made more difficult (yet not impossible) as
the disk approaches isothermality. Therefore, an accurate
modeling of the energy budget - solving for radiative cool-
ing and turbulent heating -, is something to pursue in or-
der to more realistically address the evolution of the RWI
and the issue of planet formation inside the vortices that
constitute its saturated state.

7.3. Aerodynamics of the embryo

The aerodynamics of a super-particle is controlled by the
radius a• of the individual rocks. This means that even
though the ensemble of rocks has the same position and
velocity, there is still space between them and therefore
they have contact with the gaseous nebula through all
their surface area.

However, after gravitational collapse occurs, the solids
are not any longer an ensemble of pebbles and boulders
with free space between them, but a single massive object
of planetary dimensions. This leads to a radical change in
the aerodynamical properties. Yet, in our simulations, we
still consider the collapsed body as an ensemble of super-
particles, with the aerodynamical properties of individual
pebbles and boulders. This is certainly a limitation of the
model.

For a large planet, the correct treatment would be
to consider that, after collapse, we leave the regime of
particle-gas Stokes drag and enter planet-disk interaction
by gravitational friction (type I migration). In the solar
nebula the two drags have similar strength for bodies of
100 km. As we solve for the self-gravity of the gas, the lat-
ter is included in our model, albeit limited by the resolu-
tion of the grid. The fact that we keep using Epstein-Stokes
drag on the super-particles after collapse might make an
embryo more stable, especially in view of the very effec-
tive dynamical cooling provided by the drag force (Fig. 3).
Substituting collapsed clusters by a sink particle that feels
the gas gravity but not the gas drag is a possible solution,
but also has caveats on its own. The evolution of sink par-
ticles depends too much on artificial numerical parameters
such as the accretion radius. Furthermore, a sink particle
does not suffer tidal effects, which we showed to be non-
negligible.

7.4. Coagulation and Fragmentation

As dust particles are drawn together, electromagnetic in-
teractions occur at their surface, causing sticking under fa-
vorable conditions. Brauer et al. (2008b) show that den-

sity enhancements like the ones we see - where matter
accumulates due to a discontinuity in viscosity -, dra-
matically favor coagulation. As particles are drawn to-
gether and the relative velocities are reduced, growth by
coagulation occurs for a range of mass accretion rate ṁ
and threshold fragmentation velocity vft. They find that
the meter size barrier can be breached for mass accretion
rates up to ṁ=10−8M�/yr (for vft=10 m s−1) and thresh-
old fragmentation velocities no less than vft=5 m s−1(for
ṁ=8 × 10−9 M�/yr).

This raises the possibility that even before the RWI ex-
cites the vortices, coagulation will have depleted the pop-
ulation of centimeter and meter sized objects onto bodies
that are too large for our proposed mechanism to occur
efficiently. As we see, it is preferentially the 10 and 30 cm
sized particles that concentrate into planetary embryos.

The timescale for coagulation, however, is much longer
than the time-scale for gravitational collapse. We see
growth to Mars size taking place in only five orbits (≈60
yr), while growth by coagulation from meter to kilometer
size occurs in timescales of a few thousand years accord-
ing to Brauer et al. (2008b). On the other hand, it could
as well be that the favorable environment provided by the
vortices act as to speed up coagulation even further. This,
of course, is not bad. Growth beyond the preferred size
will lead to decoupling from the gas and ejection from the
vortex that, in the end, behaves as a planetesimal factory.

Fragmentation is an important piece of reality that we
did not include in our model. Nevertheless, we showed
in Sect 4.5 that the majority of the particles were never
involved in collisions with speeds greater than 1m s−1.
These are of course very good news for planet formation.
However, we feel the need to stress that the time inter-
val between snapshots in Fig. 9a is of whole orbits (to-
taling 200 snapshots). The number of high-speed impacts
could be greater had we checked the collision speeds at
every time-step instead. Although desirable, this would
have made the simulations computationally very expen-
sive since it must be done in runtime. The result of Fig. 9b
should therefore be taken only as further evidence for low
collisional speeds inside vortices, not as conclusive proof
of it. Carballido et al. (2008) further point that the low colli-
sional speeds at low separation may be unrealistic. This is
because the particles couple to the smallest eddies, whose
size is a function of the mesh Reynolds number. These au-
thors find average collisional speeds of 0.05cs for particles
of stopping time ΩKτf =0.2 (a•≈15 cm in our models), but
notice a sharp decrease of the collisional speeds towards
smaller separations. In our simulations, we are consider-
ing encounters that happen inside a grid cell, where we do
not resolve the velocity field, so this may indeed be the rea-
son behind the low collisional velocities we find. However,
we point that there is a difference between the simulations
of Carballido et al. (2008) and those presented in this pa-
per. They considered particle concentrations in the tran-
sient pressure maxima of the turbulence generated by the
MRI, whereas we consider particle concentrations within
long lived anticyclonic vortices. As vortex structures tend
to merge and grow, there is less power available at the
smallest scales when compared to MRI turbulence.
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Fig. 15. In the simulation shown in LJKP08, the vortices main-
tained a m=4 mode in the outer edge of the dead zone until the
end of the simulation. By switching self-gravity off, we see that
in less than 15 orbits the outer vortices merged into a m=3 mode,
while the m=3 mode in the inner disk edge into a m=2 mode. This
is because as Q decreases, the size of the vortices approaches the
Jeans length scale, which effectively halts the inverse cascade of
energy.

8. Summary and conclusions

We have undertaken simulations of disks of gas and solids,
where the solids are represented by Lagrangian particles
of radii 1, 10, 30, and 100 cm. We show that in the borders
of the dead zone, where the accretion flow stalls due a dif-
ference in turbulent viscosity, rapid gravitational collapse
of the particles into protoplanets occurs within the vortices
that form due to the excitation of the Rossby wave insta-
bility (Lovelace et al. 1999). As shown in LJKP08, over 300
gravitationally bound planetary embryos were formed, 20
of them being more massive than Mars. The mass spec-
trum follows a power law of index −2.3±0.1 in the inter-
val −2.0<log(M/ M⊕)< −1.2.

Although for the main results of this study we have
used sharp viscosity jumps to model the transition be-
tween the active and dead zones, we show that the RWI is
excited up to viscosity jumps as smooth as Δr=2H where
H is the pressure scale height. For this conclusion, we used
the Solberg-Høiland criterion as providing a conservative
estimate of whether the RWI is excited. The consequence
of increasing the width of the viscosity jumps seems to be
that the threshold of instability is reached at increasingly
longer times. It only takes five orbits with Δr=0.2H (the
usual width used in the models presented in this paper),
but takes 350 orbits for Δr=2H. We also assessed if the vor-
tices would survive in the more realistic environment of a
turbulent disk by making the location of the viscosity shift
oscillate with an amplitude typical of the scale length of
MRI turbulence over the period of a Keplerian revolution.

We find that this has little effect on the excitation of the
RWI and saturation into vortices.

We model the solid phase with Lagrangian superpar-
ticles representing physical pebbles and rocks of different
size (1, 10, 30, and 100 cm). As these particles are subject to
different gas drag, an aerodynamical sorting by size takes
place within the vortices. The consequence of this is that
the first bound structures are formed of single particles
species. This is a very interesting result, since it is an ob-
served fact that planetesimals are formed of similar-sized
building blocks (Scott & Krot 2005). These building blocks
seem to be sub-mm sized grains, but different nebula pa-
rameters could work as to trap smaller particles. Youdin
(2008) also points that the stationary point of a particle
trapped in vortical motion is shifted azimuthally with re-
spect to the eye, according to its radius a•. We indeed see
that clumps of particles of different size, that collapse into
different embryos inside the same vortex, usually retain
significant azimuthal displacements between each other
for long times instead of forming a single, more massive,
embryo at the vortex eye. This may or may not be a re-
sult of the size-dependent azimuthally shifted stationary
points of Youdin (2008).

A collapsed embryo is observed to be very compact.
The compactness is mainly provided by the drag force,
which makes the system very dissipative (dynamical cool-
ing by gravity alone works on much longer timescales).
Collapse towards “infinite” density is seen to occur in
some cases, with most of the particles occupying the same
position in space (limited by numerical precision). In the
specific case when the particles dominate the time-step,
the Courant condition leads a particle to overshoot the
center of the mass, so that it executes oscillations about it,
which in turn leads to a finite rms radius. We also observe
that a clump of particles is susceptible to the disrupting ef-
fects of ram pressure erosion and gravitational tides from
the gas. Both effects are proportional to the local gas-to-
solids density ratio. When the vortices in the inner border
of the dead zone undergo the transition from the m=3 to
the m=2 mode, their surface density increases, with dras-
tic consequences for the embryos within them. The most
massive embryo by that time, a protoplanet 6.7 times the
mass of Mars, mostly formed of a•=30 cm particles, was
split into two smaller objects, of 5.9 and 0.8 MMars, due to
the action of the gas tides. The fate of the embryos formed
mostly of 10 cm was more dramatic. As the 10 cm particles
experience stronger drag forces, the ram pressure is also
stronger. During the mode transition, the combined effects
of tides and erosion completely obliterated these embryos,
leaving extended arcs of particles that did not reaccumu-
late until the end of the simulation. We anticipate that this
effect will be very reduced in 3D simulations. In 2D simu-
lations, the ratio of the vertically integrated solids density
to the gas column density Σp/Σg never gets much above
unity even for the most massive embryo. In contrast, the
ratio of the bulk density of solids to the volume gas den-
sity ρp/ρg is greatly increased in the midplane of 3D disks
due to sedimentation.

We also observe that the solids modify the evolution
of the RWI. We are drawn to this conclusion because a
simulation without the backreaction of the drag force from
the particles onto the gas developed vortices at later times
when compared to the ones that include particle feedback.
We stress that this is not due to the streaming instabil-
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ity, since the solids-to-gas ratio was much lower than the
value needed to excite it (ρp/ρg � 1). Instead, it is more
likely that the backreaction of the drag force contributes
non-negligibly to the dispersion relation of the RWI. Self-
gravity is also seen to play a role on modifying the evo-
lution of the turbulence. We observe that in simulations
without self-gravity, the disk tends to show less vortices
at later times. In a simulation where we switched off the
self-gravity after the vortices had developed, the domi-
nant m=4 mode in the outer edge of the dead zone rapidly
turned into a m=3 mode. The vortices in the inner edge
also quickly turned from a dominant m=3 mode to dis-
playing a m=2 mode instead. We measured the Toomre Q
parameter and found that the vortices have Q ≈ 1. This
constitutes further evidence that in the presence of self-
gravity, vortex growth is not only limited by the pressure
scale height but also by the Jeans length (Mamatsashvili &
Rice 2009).

An important finding in this paper is that under vor-
tex trapping, the collisional speeds between particles are
greatly reduced. We measured the collisional velocity his-
tory of every particle that is bound to the most massive
embryo at the end of the simulation, and found that the
vast majority of them never experienced close encounters
at speeds greater than 1 m s−1. This is well below the frag-
mentation threshold and lends support to the long-held
belief that vortices provide a superbly favorable environ-
ment for planetary growth. Growth by coagulation be-
yond the optimal size for planet formation is also avoided
because the timescales for coagulation are much longer
than the rapid timescale for gravitational collapse wit-
nessed in our models. This does not exclude the possi-
bility that coagulation itself is sped up within a vortex.
In this case, the vortex will behave as a planetesimal fac-
tory, quickly producing kilometer sized bodies that leave
the vortex due to their decoupling from the gas. This, as
noted by Klahr & Bodenheimer (2006) is very positive
for planet formation, since the formed planetesimals are
then scattered through the disk, where they can be used to
form planets independently from a vortex. Even though
it implies that we are facing the comfortable position of
a win-win situation for planet formation, one has to de-
cide which process (planet formation by direct gravita-
tional collapse or planetesimal formation by fast coagu-
lation) is getting the upper hand inside the Rossby vor-
tices. A definite answer to this question can only be drawn
from a simulation that includes the processes of coagula-
tion/fragmentation. Unfortunately, inclusion of sophisti-
cated coagulation/fragmentation models such as that of
Brauer et al. (2007) would render a hydrodynamical sim-
ulation overly expensive. A possible alternative would be
a Monte Carlo model of dust coagulation, such as the one
recently developed by Ormel et al. (2007). A further devel-
opment of the Monte Carlo technique is described in Zsom
& Dullemond (2008). The main difference between the two
models is that while Ormel et al. (2007) simulate coag-
ulation between real dust particles, Zsom & Dullemond
(2008) use superparticles to model coagulation and frag-
mentation. Therefore the latter one is more suitable for hy-
drodynamical simulations such as ours and simple esti-
mations show that this model could be adapted to a hydro
model with no prohibitive overhead.

We reiterate that the models presented suffer from a
number of limitations, detailed in Sect 7. Some of them,

like refining the particle mass resolution to the individ-
ual pebbles and rocks, are beyond the capabilities of the
current generation of computer models. Others, however,
such as inclusion of detailed thermal physics, could be
tackled with relatively little effort. We urge researchers ac-
tive on the field to consider these problems. It is our hope
that a coherent picture of planet formation in the magneti-
cally dead zones of accretion disks shall emerge as a result
of it.

Acknowledgements. Simulations were performed at the PIA clus-
ter of the Max-Planck-Institut für Astronomie and on the Uppsala
Multidisciplinary Center for Advanced Computational Science
(UPPMAX). This research has been supported in part by the Deutsche
Forschungsgemeinschaft DFG through grant DFG Forschergruppe 759
“The Formation of Planets: The Critical First Growth Phase”. A. Zsom
acknowledges support by the IMPRS for Astronomy & Cosmic Physics
at the University of Heidelberg.

References

Armitage, P. J., Livio, M., & Pringle, J. E. 2001, MNRAS, 324, 705
Balbus, S.A., & Hawley, J.F. 1998, RvMP, 70, 1
Balbus, S.A., & Hawley, J.F. 1991, ApJ, 376, 214
Barranco, J.A., & Marcus, P.S. 2005, ApJ, 623, 1157
Barge, P., & Sommeria, J. 1995, A&A, 295, 1
Benz, W. 2000, SSRv, 92, 279
Bracco, A., Chavanis, P.-H., Provenzale, A.,& Spiegel, E. A. 1999, Physics

of Fluids, 11, 2280
Brauer, F., Dullemond, C. P., Johansen, A., Henning, Th., Klahr, H., &

Natta, A. 2007, A&A, 469, 1169
Brauer, F., Dullemond, C. P., & Henning, Th. 2008a, A&A, 480, 859
Brauer, F., Henning, Th., & Dullemond, C. P. 2008b, A&A, 487, 1
Carballido, A., Stone, J. M.,& Turner, N. J. 2008, MNRAS, 386, 145
Chavanis, P.-H. 2000, A&A, 356, 1089
Chokshi, A., Tielens, A. G. G. M., & Hollenbach, D. 1993, ApJ, 407, 806
Crow, S.C. 1970, AIAAJ, 8, 2172
Cuzzi, J. N., Hogan, R. C., & Shariff, K. 2008, arXiv0804.3526
Dominik, C., Blum, J., Cuzzi, J.N., & Wurm, G. 2007, Protostars and Planets

V, p783
Dubrulle, B., Morfill, G., & Sterzik, M., 1995, Icarus, 114, 237
Edgar, R. G., & Quillen, A. C. 2008, MNRAS, 387, 387
Fleming, T. & Stone, J. M. 2003, ApJ, 585, 908
Fromang, S., & Nelson, R. P. 2005, MNRAS, 364, 81
Gammie, C. F. 1996, ApJ, 457, 355
Garaud, P., & Lin, D. N. C. 2004, ApJ, 608, 1050
Gledzer, E.B., Dolzhanskii, F.V., Obukhov, A. M., & Ponomarev, V. M.

1975, Isv. Atmos. Ocean. Phys., 11, 617
Goldreich, P., & Ward, W. R. 1973, ApJ, 183, 1051
Haghighipour, N. & Boss, A. P. 2003, ApJ, 583, 996
Johansen, A., Andersen, A. C., & Brandenburg, A. 2004, A&A, 417, 361
Johansen, A., & Youdin, A. 2007, ApJ, 662, 627
Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, Th., &

Youdin, A. 2007, Nature, 448, 1022
Johansen, A., Brauer, F., Dullemond, C., Klahr, H., & Henning, T. 2008,

A&A, 486, 597
Johansen, A., Henning, Th., & Klahr, H. 2006, ApJ, 643, 1219
Johnson, B.M., & Gammie, C.F. 2005, ApJ, 635, 149
Kerswell, R.R. 2002, Annu. Rev. Fluid Mech., 34, 83
Klahr, H., & Bodenheimer P., 2006, ApJ, 639, 432
Klahr, H., & Bodenheimer P. 2003, ApJ, 582, 869
Klahr, H. 2004, ApJ, 606, 1070
Li, H., Finn, J. M., Lovelace, R. V. E., & Colgate, S. A. 2000, ApJ, 533, 1023
Li, H., Colgate, S. A., Wendroff, B., & Liska, R. 2001, ApJ, 551, 874
Lodato, G. 2008, New Astronomy Reviews, 52, 21
Lovelace, R. V. E., Li, H., Colgate, S. A., & Nelson, A. F. 1999, ApJ, 513,

805
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008a, A&A, 479, 883
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008b, arXiv0807.2622

(LJKP08)
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008c, arXiv0810.3192
Lyttleton, R. A. 1972, MNRAS, 158, 463
Mamatsashvili G.R., & Rice, W.K.M. 2009, arXiv:0901.1617
Marcus, P. 1990, Journal of Fluid Mechanics, 215, 393



Lyra et al.: Planet formation bursts 19
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Appendix A: Resolution study

In Fig. A.1 we present a resolution study of our models.
The upper panels show Cartesian models, including self-
gravity and solids, while the lower panels show cylindri-
cal models with dustless non-selfgravitating gas. Both are
shown in selected snapshots at 10, 20, and 30 orbits.

In the Cartesian runs, the vortices in the high-
resolution run (5122) are excited earlier than in the mid-
dle resolution run (2562). At later times, the vortices in the
high-resolution run also appear sharper. While in the two
runs the vortices in the outer edge of the dead zone look
remarkably similar, the inner edge displays very different
behavior. Up to 30 orbits the middle resolution run has not
shown signs of prominent vortices. In contrast, the high
resolution run had the inner edge developing vortices as
early as 10 orbits. This is not only due to the high resolu-
tion run having a larger inertial range, but also because a
flow with cylindrical symmetry is more coarsely resolved
near the origin in a Cartesian grid. Because of this, the
most unstable modes are under-resolved in the inner disk
of the middle resolution run. A Cartesian run with low res-
olution (1282, not shown) did not develop vortices even in
the outer disk by the same time. At 30 orbits, the density
inside the vortices peak at similar values, Σ/Σ0=3.3 and
3.7 for the middle and high resolution runs, respectively.

The cylindrical runs also evidence the small amount
of differences between the vortices in different runs. With
better azimuthal resolution, the vortices are excited even
in the 1282 run, and in both runs they peak with surface
density Σ/Σ0=4.6. In fact, the main effect of resolution ap-
pears to be that, as it increases, the RWI is excited increas-
ingly earlier. The high-resolution run displays weaker vor-
tices than the others because in this case we were forced to
use shock viscosity.

Appendix B: Emulating turbulent motions

In this study, we considered the dead zone to be repre-
sented by a static viscosity profile. In a more realistic sce-
nario, turbulent motions caused by the MRI and variations
in the coupling between the magnetic field and the plasma
will give rise to a turbulent resistivity. This is expected to
cause the border of the dead zone to vary in space and
time, with implications for the evolution of the RWI.

To assess the impact of space and time variability of
the edges of the dead zone, we model the viscous jumps
using Δr=0.01 but make the jumps shift radially in time by
substituting r1 and r2 in Eq. (13) by

r1(t) → r1 [1 + h sin (ΩK(r1)t)] (B.1)
r2(t) → r2 [1 + h sin (ΩK(r2)t)] (B.2)

where h=H/r is the aspect ratio. So, the location shifts by
two scale heights over a Keplerian revolution. The results
are shown in Fig. B.1, where we show the appearance of
the disk at 30 orbits and the azimuthal average of (κ2 +
N2)/Ω2

K (in the same 2D model, as opposed to 1D as in
Sect. 3.2).

In this simulation, the RWI is still excited and vor-
tices are launched. The main difference when compared
to simulations with static profiles is that the instability
takes more time to violate the Solberg-Høiland criterion,

C
ar

te
si

an

2562

5122

log10(Σ/Σ(t=0))
−0.5 −0.3 −0.1 0.1 0.2 0.4 0.6 0.8

t/(2πΩ0
−1)=10 t/(2πΩ0

−1)=20 t/(2πΩ0
−1)=30

−2

−1

0

1

2

Y

−2 −1 0 1 2
X

−2 −1 0 1 2
X

−2 −1 0 1 2
X

−2

−1

0

1

2

Y

C
yl

in
dr

ic
al

1282

2562

5122

t/(2πΩ0
−1)=10 t/(2πΩ0

−1)=20 t/(2πΩ0
−1)=30

−2

−1

0

1

2

Y

−2

−1

0

1

2

Y

−2 −1 0 1 2
X

−2 −1 0 1 2
X

−2 −1 0 1 2
X

−2

−1

0

1

2

Y
Fig.A.1. The development of the dead zone vortices in different
resolution and grid geometry. With increased resolution the RWI
is excited increasingly earlier. In general the vortices in cylindri-
cal runs look sharper than in the Cartesian ones, due to the bet-
ter azimuthal resolution. The Cartesian run of middle resolution
(2562) has too coarse azimuthal resolution in the inner disk, and
only developed vortices in the inner edge of the dead zone at
later times (≈ 40 orbits). Apart from these differences, the vor-
tices look remarkably similar, having nearly the same peak den-
sity and same vorticity.

≈ 10 orbits, compared to 5 in the static case. This is due
to the fact that the shifting viscosity jump smears the pres-
sure maximum, so the amplitude of the pressure jump is
shorter and the width is larger than in the static case.

Appendix C: Onset of erosion

According to Eq. (30), a tight distribution of particles un-
der Epstein drag should suffer erosion if

WeG =
MacsΩ

(τΩ)πGΣp
≥ 1 (C.1)
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Fig.B.1. Evolution of the RWI with a time-varying viscosity jump as specified by Eq. (13) and Eqs. (B.1)–(B.2). The panel on the
left-hand side measures the violation of the Solberg-Høiland criterion. The right-hand side panel shows the appearance of the disk
at 30 orbits. Both the inner and outer edge quickly reach the threshold of instability (left panel). At 30 orbits, the inner edge already
reached a saturated state and launched vortices (right panel).
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Fig.C.1. A clump of 1000 massive particles moving against headwinds of Ma=0.5 and Ma=0.05, for different values of the friction
time τΩ. In the case of Ma=0.5, self-gravity cannot hold the clump together for τΩ � 10−2. In our simulations it corresponds to 1 cm
sized particles, approximately. Clumps formed of larger particles to not experience erosion. For the more subsonic motion, the effect
of ram pressure is lower so the clump of τΩ=10−2 is more stable against erosion. The case of τΩ=1.0 takes longer to contract because
of the weaker drag force, that provides less dynamical cooling than in the case with τΩ=0.1. It eventually shrinks, as seen in the time
series (bottom plot).
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In this appendix, we perform numerical simulations
to test the validity of this condition. We model a clump
of 103 particles suffering a strong headwind from the gas
(Ma=1/2). The blob of particles is initially set as a tight
Gaussian distribution about the center of the grid, with
surface density peak of Σp/Σ0 = 2.31. In units where
G=cs=Σ0=Ω0=1, the initial gravitational Weber number at
the surface of the blob is therefore WeG � 7 × 10−2/(τΩ).

We plot in Fig. C.1 the evolution of clumps for four
different values of τΩ. For τΩ=1.0 and τΩ=0.1, WeG is
less than 1 so the clump is stable against ram pressure
and contracts. The other clumps (τΩ=0.01 and τΩ=0.001)
have WeG above unit, and experience intense erosion. We
also considered a flow of Mach number Ma=0.05. In this
case the initial gravitational Weber number is WeG �
7 × 10−3/(τΩ), and the clumps of smaller particles are
supposed to be more stable. Indeed, this is what we see
in the figure. The clump of particles of τΩ=0.01 is now
marginally stable and contracts, experiencing much less
erosion than in the Ma=0.5 case.

We would like to draw attention to an interesting fea-
ture of Fig. C.1. The cases of τΩ=1 and τΩ=0.1 (upper
panels) provide yet another perspective for the action of
drag force cooling. Both clumps are stable against erosion
but the clump of τΩ=0.1 has shrunk considerably more
than the clump of τΩ=1.0, that looks very extended. What
is happening is that the clump with τΩ=1 is too weakly
coupled to the gas and therefore takes longer to collapse,
as seen in the time series of the rms position (Fig. C.1,
lower panels).
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ABSTRACT

Context. Centimeter and meter-sized solid particles in protoplanetary disks are trapped within long-lived, high-pressure
regions, creating opportunities for collapse into planetesimals and planetary embryos.
Aims. We aim to study the effect of the high-pressure regions generated in the gaseous disks by a giant planet perturber.
These regions consist of gas retained in tadpole orbits around the stable Lagrangian points as a gap is carved, and the
Rossby vortices launched at the edges of the gap.
Methods. We performed global simulations of the dynamics of gas and solids in a low mass non-magnetized self-
gravitating thin protoplanetary disk. We employed the Pencil code to solve the Eulerian hydro equations, tracing the
solids with a large number of Lagrangian particles, usually 100 000. To compute the gravitational potential of the swarm
of solids, we solved the Poisson equation using particle-mesh methods with multiple fast Fourier transforms.
Results. Huge particle concentrations are seen in the Lagrangian points of the giant planet, as well as in the vortices they
induce at the edges of the carved gaps. For 1 cm to 10 cm radii, gravitational collapse occurs in the Lagrangian points in
less than 200 orbits. For 5 cm particles, a 2 M⊕ planet is formed. For 10 cm, the final maximum collapsed mass is around
3 M⊕. The collapse of the 1 cm particles is indirect, following the timescale of gas depletion from the tadpole orbits.
Vortices are excited at the edges of the gap, primarily trapping particles of 30 cm radii. The rocky planet that is formed is
as massive as 17 M⊕, constituting a Super-Earth. Collapse does not occur for 40 cm onwards. By using multiple particle
species, we find that gas drag modifies the streamlines in the tadpole region around the classical L4 and L5 points. As
a result, particles of different radii have their stable points shifted to different locations. Collapse therefore takes longer
and produces planets of lower mass. Three super-Earths are formed in the vortices, the most massive having 4.5 M⊕.
Conclusions. A Jupiter-mass planet can induce the formation of other planetary embryos at the outer edge of its gas gap.
Trojan Earth-mass planets are readily formed; although not existing in the solar system, might be common in the exo-
planetary zoo.

Key words. Keywords should be given

1. Introduction

Losing angular momentum by friction with the ambient
gaseous headwind, centimeter to meter-sized bodies in
protoplanetary disks spiral into the star on timescales as
short as a hundred years (Weidenschilling 1977). Avoiding
this fate is a major unsolved problem in modern astro-
physics. The question of the formation of rocky plan-
ets is intimately connected with this problem, since the
kilometer-sized bodies (planetesimals) whence they are
believed to form (Safronov 1969) must be formed faster
than the already rapid timescale of radial drift of the rocks
(0.1-1 meter-size) and boulders (1-10 meter-size).

As colliding boulders have very poor sticking proper-
ties (Benz 2000), a possible scenario for the formation of
planetesimals is direct gravitational collapse of the layer
of boulders (Goldreich & Ward 1973). This hypothesis has
met with criticism because no route for achieving crit-

Send offprint requests to: wlyra@astro.uu.se

ical densities could be found (Weidenschilling & Cuzzi
1993), but it has recently gained momentum due to a se-
ries of advances in modeling the coupled dynamics of gas
and boulders through both analytical calculations and nu-
merical simulations. Youdin & Goodman (2005) showed
that when rocks and boulders migrate due to the drag
force, they trigger a streaming instability that develops
into a traffic jam in their migrating flow, with dramatic ef-
fects for the particle concentrations (Johansen et al. 2006b,
Paardekooper 2006, Johansen & Youdin 2007, Balsara et al.
2008). Fromang & Nelson (2005) modeled the dynamics
of particles in magnetized global disks and showed that
trapping occurs in the pressure maxima of the turbulence
generated by the magneto-rotational instability (MRI). The
number of particles, however, was too low (≤ 3000) to say
anything about possible gravitational collapse. Johansen
et al. (2006a) simulated the flow in an MRI-active local box
using a statistically significant number of particles (106),
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and showed that the particle concentration is high enough
to achieve critical densities.

Studies with self gravity to follow the collapse are re-
stricted to local boxes (Johansen et al. 2007) and the mas-
sive disk case (Rice et al. 2004, Rice et al. 2006). The for-
mer couples the effects of particle concentrations due to
the streaming instabilities with those due to the turbulence
generated by the MRI to show that the turbulent layer
of boulders locally collapse into dwarf planets on very
short timescales. The latter is a global disk calculation of
marginally gravitationally unstable gaseous disks, where
boulders are shown to concentrate in the spiral arms that
develop, where they also achieve critical density.

A broad conclusion that can be drawn from these stud-
ies is that any region with higher pressure than its sur-
roundings tends to concentrate solids (Haghighipour &
Boss 2003). Therefore, in order to trigger collapse of the
solids, one has to create long-lived, high-pressure regions
in the gas phase. A perturber, then, is expected to have
major consequences in the dynamics of embedded rocks
and boulders. Paardekooper & Mellema (2004) studied
the dynamics of dust in a gaseous disk, finding that even
low mass planets carve a deep dust gap. An update by
Paardekooper (2007) showed an interesting feature. As
early as 20 orbits, meter-sized particles tend to concen-
trate at the gap edges and at co-rotation in tadpole orbits.
However, as Lagrangian trapping was not the main scope
of their study, they did not further assess the consequences
of particle concentration in 1:1 resonance, focusing instead
on the other mean motion resonances brought about by
the planet.

Fouchet et al. (2007) also explored the same problem,
in 3D SPH simulations, considering not only different par-
ticle radii, but also different masses for the perturber. The
results are very similar to those of Paardekooper (2007),
but they argue against the accumulation they see being
the result of resonance trapping. They come to this con-
clusion because the signatures of resonance trapping, eas-
ily identifiable in a eccentricity vs. semi-major axis plot for
decoupled particles, disappears when one considers gas
drag. Instead, they claim that it occurs more likely due
to the dust concentrating at the gas pressure maxima at
the edges of the gap. Fouchet et al. (2007) also notice that
the 1 m sized boulders are found in 1:1 resonance at later
times. They speculate that the same occurs for other par-
ticle sizes they considered (10 cm and 1 cm sized pebbles),
but as the dust gap in this case was too narrow compared
to the extended disk they considered (20 AU), they could
not spot the rocks trapped in the co-orbital region.

One possibility that was unexplored in these works is
whether a direct collapse can occur at the enhanced par-
ticle concentrations. There are significant gas overdensi-
ties in co-rotation, especially at the Lagrangian points, for
at least 200 orbits (de Val-Borro et al. 2006). In these re-
gions, the solids are subject to drag forces for a period long
enough to allow concentration and eventual collapse into
kilometer-sized bodies in 1:1 resonance. In this paper, we
show that the trapping provided in the Lagrangian points
is so efficient that the final mass of the collapsed body is
that of terrestrial planets.

The collapse of the solids that get trapped at the edges
of the gas gap is also an interesting issue. As shown by
de Val-Borro et al. (2007), the gap that the planet carves
has a density gradient propitious to the excitation of the

Rossby wave instability (RWI; Li et al. 2001). The anti-
cyclonic vortices that form are entities of great interest,
since they induce a net force on solid particles toward
their centers, raising the local solids-to-gas ratio and fa-
voring gravitational collapse (e.g. Barge & Sommeria 1995,
Bracco et al. 1999, Chavanis 2000). We show in this pa-
per that the combination of the particle concentration seen
by Paardekooper (2007) and Fouchet et al. (2007), together
with the vortices predicted by de Val-Borro et al. (2007)
lead to a powerful particle trap, raising the density of
solids by three to four orders of magnitude. The collapse
leads not to a kilometer-sized body or to a dwarf planet,
but to masses comparable to that of the terrestrial planets
and in some cases, super-Earths.

An initial step towards modeling this scenario was put
forth by Beaugé et al. (2007). In this recent study, these au-
thors perform pure N-body calculations of a few number
(usually 500) of dwarf planets of 0.3 MMoon around the
L4 point of Jupiter. They find that a reasonable fraction
of the bodies escape the tadpole orbit by close encounters
with the giant. The rest of the particles successfully con-
centrate into a single Trojan planet, but no more massive
than 0.6 M⊕. They do not solve concurrently for the dy-
namics of gas and solids, but they assess how the forma-
tion process would work in a gas rich scenario by perform-
ing planet-disk simulations and verifying the gas condi-
tions around the Lagrangian points. The densities and ve-
locities are then used to quantify coefficients for the drag
laws. This ad hoc drag force is then added in the pure N-
body calculations.

In this paper we model gas and dust self-consistently,
using 105 particles to represent the solids phase. Unlike
Beaugé et al. (2007), we do not assume the particles to
be as massive as dwarf planets. Instead, we treat them as
meter-sized bodies, their gravitational potential computed
by solving the continuous Poisson equation. Although the
formation of Trojans is our primary interest, we model a
radially extended region of the disk, and are able to ex-
plore the gap edge as well, where the anti-cyclonic vortices
form.

In the next sections we describe the model equations,
the Poisson solver and drag law used. The results are pre-
sented in Sections 3-6, followed by a concluding discus-
sion in Sect. 7.

2. Dynamical equations

We work in the thin disk approximation, using the verti-
cally averaged equations of hydrodynamics
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Fig. 1. a. The potential generated by an exponential disk computed by Eq. (11) is compared with the analytical expression. The
accuracy (b.) is at the percent level.
c. The potential generated by a single particle agrees very well with its Newtonian prediction. In particular, the scheme ensures that
the gravity (d.) is smooth and the particle does not suffer self-acceleration.

DΣg

Dt
= −Σg∇ · u + fD (Σg) (1)

Du
Dt

= − 1
Σg

∇P − ∇Φ − Σp

Σg
fd + fν(u, Σg) (2)

dvp

dt
= −∇Φ + fd (3)

dxp

dt
= vp (4)

Φ = Φsg −
n

∑
i

GMi√
R2

i + b2
i

(5)

∇2Φsg = 4πGΣδ(z) (6)

P = Σgc2
s (7)

fd = −
(

3ρgCD|Δv|
8a•ρ•

)
Δv. (8)

In the above equations, Σg and Σp are the vertically
integrated gas density and bulk density of solids, respec-
tively. In Eq. (6), Σ is their sum. u stands for the velocity
of the gas parcels; vp is the velocity of the solid particles,
and xp is their position; P is the vertically integrated pres-
sure, cs is the sound speed, Φ the gravitational potential
and fd is the drag force by which gas and solids inter-
act. In Eq. (8), ρ• is the internal density of a solid particle,

a• its radius, and Δv = vp − u its velocity relative to the
gas. The nature of the drag is concealed in the dimension-
less coefficient CD, discussed in section 2.2. The operator
D/Dt = ∂/∂t + u ·∇ represents the advective derivative.

The gravitational potential Φ has contributions from
the star, the giant planets, and the disk’s self-gravity. The
star and the planets are treated as massive particles with a
simple N-body code. In Eq. (5), G is the gravitational con-
stant, Mi is the mass of particle i and Ri = |r − rpi | is the
distance relative to particle i. The quantity bi is the dis-
tance over which the gravity field of particle i is softened
to prevent singularities.

The function fD (Σg)=D3∇6Σg is a third order hyper-
diffusion term. In Fourier space, it is proportional to k6,
where k is the wavenumber. Being so, it behaves as a
high-frequency filter, and is very effective in providing nu-
merical stabilization near the grid scale while having lit-
tle effect in the more quiescent larger scales. The function
fν(u, Σg) has both a hyperviscosity and a shock viscosity
term

fν(u, Σg) = Σ−1
g ∇ ·

(
2Σgν3S(3)

)
+

ζν
[
∇(∇ · u) + (∇ln Σg + ∇ln ζν)∇ · u

]
(9)

where S(3)
ij =∂5

j ui is a simplified (third-order) rate-of-strain
tensor and the shock term ζν follows the formulation of
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Haugen et al. (2004), being proportional to the smoothed
(over three grid cells in each direction) maximum (also
over three grid cells) of the positive part of the negative
divergence of the velocity, i.e.

ζν = νshock

〈
max

3
[(−∇ · u)+]

〉
(Δx)2 . (10)

The shock viscosity coefficient νshock is a parameter of
order unity. We use νshock=1 and ν3=D3=5 × 10−12. This
hyperviscosity relates to the usual Laplacian viscosity by
ν3=νk4. Therefore, it corresponds to ν � 3 × 10−3 (or
α � 1) at the grid scale where k=π/Δx, and ν � 10−11 (α �
4 × 10−9) at the largest scale of the box. Here α=νΩKc−2

s is
the usual Shakura-Sunyaev viscosity parameter (Shakura
& Sunyaev 1973) and ΩK the Keplerian frequency.

The simulations were done with the Pencil Code1 in
Cartesian and cylindrical geometry. We write Cartesian co-
ordinates as (x,y) and cylindrical coordinates as (r,φ).

2.1. Self-gravity

We solve the Poisson equation Eq. (6) using the tradi-
tional rapid elliptic solvers with multiple Fast Fourier
Transforms. For a single Fourier component Σ̂ the solution
to Eq. (6) is

Φ̂ = −2πGΣ̂

|k| , (11)

where k = (kx, ky) is the in-plane wavenumber and the
hat denotes Fourier transformed quantities. The potential
is then found by taking the inverse transform to real space.

As the Fourier transform assumes periodic boundaries,
the potential derived is as if the disk was accompanied
by mirror images of itself, the gravity of these images in-
fluencing the motion of the fluid. To reduce this prob-
lem, we expand the grid by a factor 2 prior to solving the
Poisson equation. In this expanded grid, the mirrors are
still present, but they are now located so far away from the
regions of interest that no spurious behavior is introduced
by the periodic boundaries. We show in Fig. 1a the poten-
tial of an exponential disk, typical of galaxies, in which
case the analytical solution is well known (Freeman 1970).
The deviations are at the percent level, as seen in Fig. 1b.

The gravitational potential of the swarm of particles
is found by the same method outlined above. The sur-
face density of particles is assigned to the mesh using
the Triangular Shaped Cloud (TSC) scheme (Hockney &
Eastwood 1981, Youdin & Johansen 2007), whereby the in-
fluence of a particle is assigned to three grid points in each
direction. After finding the potential, the acceleration is in-
terpolated back to the position of the particles, using the
same TSC scheme, to avoid self-acceleration (Johansen et
al. 2007).

Analytical prediction and numerical solution for the
potential of a single particle are compared in Fig. 1c.
Deviations occur only near the particle position, as ex-
pected for a particle-mesh method. Fig. 1d shows the
gravitational acceleration generated by this potential. The
agreement is excellent and the particle does not experience
any self-acceleration.

1 See http://www.nordita.org/software/pencil-code

2.2. Drag force

Solid particles and gas exchange momentum due to in-
teractions that happen at the surface of the solid body.
The many processes that can occur are generally described
by the collective name of “drag” or “friction”. The drag
regimes are controlled by the mean free path λ of the gas,
which can be expressed in terms of the Knudsen number
of the flow past the particle Kn = λ/(2a•). High Knudsen
numbers correspond to free molecular flow, or Epstein
regime. Stokes drag applies at low Knudsen numbers. In
this section we describe our numerical implementation of
drag forces in the Pencil Code for general values of Kn.
We use the formula of Woitke & Helling (2003; see also
Paardekooper 2007), which interpolates between Epstein
and Stokes regimes

CD =
9Kn2CEps

D + CStk
D

(3Kn + 1)2 . (12)

where CEps
D and CStk

D are the coefficients of Epstein and
Stokes drag, respectively. They read

CEps
D ≈ 2

(
1 +

128
9πMa2

)1/2

(13)

CStk
D =

⎧⎨⎩ 24 Re−1 + 3.6 Re−0.313 ; Re ≤ 500;
9.5 × 10−5 Re1.397 ; 500 < Re ≤ 1500;
2.61 ; Re > 1500.

(14)

where Ma = |Δv|/cs is the Mach number, Re =
2a•ρg|Δv|/μ is the Reynolds number of the flow past the
particle, and μ =

√
8/πρgcsλ/3 is the kinematic viscosity

of the gas.
The approximation for Epstein drag (Kwok 1975) con-

nects regimes of low and high Mach number (Ma =
|Δv|/cs) to good accuracy, and is more numerically
friendly than the general case (Baines et al. 1965). The
piece-wise function for the Stokes regime are empirical
corrections to Stokes law (CD = 24Re−1), which only ap-
plies for low Reynolds numbers.

Fig. 2a shows the value of this coefficient in the plane
of Mach and Knudsen numbers. As stressed by Woitke &
Helling (2003), at intermediate Knudsen numbers, the true
friction force yields smaller values than in both limiting
cases, which is illustrated in Fig. 2b. Another measurement
of the strength of the drag force is the friction time τf , de-
fined as the inverse of the quantity in parentheses in Eq.
(8)

τf =
4λρ•

3ρgCDcS

1
MaKn

. (15)

The drag acceleration can then be cast in the compact form

fd = − 1
τf

Δvp. (16)

2.3. Initial conditions

We use a Cartesian box ranging x, y ∈ [−2.0, 2.0]r0, with
resolution 256×256. The small extent in radius is justified
because we want to understand what is happening at the
vicinity of the planet’s orbit at r0 and the gap it opens. The
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density profile follows the power law Σg=Σ0r−0.5 and the
sound speed is also set as a power law cs = cs0r

−0.5.
The gravitational potential is then computed via the

Poisson solver and the initial velocity profile is set to
match the condition of centrifugal equilibrium

φ̇2 = Ω2
K +

1
r

[
1
Σg

∂P
∂r

+
∂Φsg

∂r

]
(17)

The planet is placed initially at (r,φ)=(r0,0), and the star at
(r,φ)=(0,π). To avoid giving the gas and the particles too
much impulse when the planet is introduced in the un-
perturbed disk, we ramp its mass up from 0 to its final
mass in five orbits, in the way described in de Val-Borro
et al. (2006). We computed simulations with companion
mass ratios q=10−3 (Jupiter) and q=10−4 (“Neptune”). The
quotation marks are used because calling this mass ratio
“Neptune” is a jargon, since the actual mass of the planet

is the equivalent to q=5 × 10−5. The Earth has a mass ratio
of q=3 × 10−6.

We use units such that r0=Σ0=GM�=1. We choose
cs0 = 0.05 and a Toomre Q parameter of 30 at the position
of the planet, so the gas there is stable against gravitational
instability. Assuming that r0 is the position of Jupiter (5.2
AU) and that Σ0=300 g cm−2, the disk has 10−2M� of gas
within the modeled range.

For the solids, we use 105 Lagrangian numerical par-
ticles, and the interstellar solids-to-gas ratio of 10−2. Each
numerical particle therefore is a super-particle containing
10−9M� � 3 × 10−2MMoon of material. The super-particle
formalism considers that each numerical particle is an en-
semble of a large number of individual smaller physical
particles of radius a•. These particles share the same po-
sition and velocity, interacting gravitationally by their col-
lective mass (the mass of the super-particle). The aerody-
namics, however, is controlled by the radius a•, which in
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Fig. 4. Snapshots of the gas and solid phase of the disk for several single particle species runs, for a perturber of Jupiter’s mass. At
the end of the simulations at 100 orbits, the swarms of particles in the L4 and L5 points of the a•=1 m run remain unbound. The 10 cm
and 30 cm particles underwent collapse at the Lagrangian points, with the fragmentation being more efficient for the 10 cm particles
than for the 30 cm ones. In the a•=10 cm case, the particles underwent collapse in both Lagrangian points, L5 harboring a 2.6 M⊕
planet, L4 a 0.6 M⊕. At the edges of the gap, even a•=1 cm particles are trapped within the vortices. In the a•=10 cm run, the effect of
the anti-cyclonic motion lead to a final collapsed mass of 0.3 M⊕. When the vortices merge into a single giant vortex, the a•=30 cm
particles are seen to have undergone runaway growth of solids, reaching 17 M⊕.
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Fig. 5. a). Time evolution of the maximum concentration of mass for different particle radii. From 40 cm onwards, the drag force is too
weak to provide enough damping for collapse. For 1 cm to 30 cm radii, gravitational collapse occurs forming Earth-mass planets. For
5 cm, a 2 M⊕ planet is formed. For 10 cm, the final maximum collapsed mass is around 3 M⊕. The particles of 30 cm radius collapse
in a planet as massive as 17 Earths. The a•=1 cm are subject to strong coupling and undergo growth on the timescale of depletion of
gas in the Lagrangian points. This leads to a delay in the collapse, taking twice the time it took in the 5-30 cm case. The final mass is
1 M⊕.
b). The mass spectrum in the end of the simulations. Along with the super-Earths formed with the 30 cm, 10 cm and 5 cm particles,
dozens of Mars sized and hundreds of Moon sized objects were also formed. The two symmetric Trojan Earths in the 1 cm case are
apparent. The runs with particles of a•=40 cm and a•=1 m were excluded for clarity.

turn means that there is free space between the physical
particles, so that each of them exposes its whole surface
area to the nebular gas.

We stress that the mass resolution of solids in the mod-
els presented in this paper is not much greater than that
used by Beaugé et al. (2007). The main difference between
this study and theirs lies in the global character of our
study; the greater number of numerical particles; and the
radius a• of the individual pebbles and boulders, which
translates into a much stronger drag force.

We survey several particle radii. The dimensionless
friction time as a function of particle size is found by plug-
ging Eq. (12) into Eq. (15), which yields

Tf = τf ΩK

=

√
32π

Kn′Ma
λρ•
Σg

(Kn′ + 1)2(
Kn′2CEps

D + CStk
D

) (18)

where we already substituted ρg=Σg/(
√

2πH). Here, H =
cs/ΩK is the pressure scale height. We consider that the
particles have an internal density ρ•=3 g cm−3. The mean
free path λ is

λ =
μmol

ρgσmol
(19)

where μmol = 3.9 × 10−24 g is the mean molecular weight
of a 5:1 H2-He mixture, and σmol = 2 × 10−15 cm2 is the
cross section of molecular hydrogen. For our densities and
sound speed, it corresponds to 20 cm at the inner radius
r=0.3, and to 1.3 m at the outer radius r=2.0.

The result of Eq. (18) for our choice of parameters (at
the position of Jupiter’s orbit) is shown in Fig. 3a for the
grid of Knudsen and Mach numbers. Fig. 3b shows a slice
of the grid at the subsonic regime. For particle of 1m di-

ameter, the coupling due to Eq. (18) is 50% looser than pre-
dicted by Epstein law. A factor 2 in the friction time is seen
at 2m diameter between Eq. (18) and the Stokes law.

The particles are initialized as to yield a surface density
following the same power law as the gas density, and their
velocities are initialized to the Keplerian value.

We use reflective boundaries and damp waves in the
way described in de Val-Borro et al. (2006). Particles are re-
moved from the simulation if they cross the inner bound-
ary or if they approach the giant planet by less than 1/5 of
its Hill’s radius.

3. Simulations with single particle species

In Fig. 4 we show the time evolution of the disk under
the influence of a q=10−3 companion, for different particle
radii. Each run has only one particle size, but as the gas
density does not change significantly between the runs, we
just show the gas for the a•=1 cm case.

3.1. Collapse in the Lagrangian points L4 and L5

As the planet opens a gap in the gas, the particles also
move out of the co-rotational region, in the same manner
seen in Paardekooper (2007) and Fouchet et al. (2007). The
solids at the border of the gap are expelled and those in
the immediate vicinity of the planet are accreted. The par-
ticles inside the co-rotational region librate in horseshoe
orbits. The stable leading (L4) and trailing (L5) Lagrangian
points retain high gas densities even after the planet has
carved a deeper gas gap in its orbit, which has a beneficial
effect for the particle concentration. Due to the presence
of high gas densities, the Lagrangian islands are not only
a region of convergence of streamlines, but also a region
with higher pressure than its surroundings. The drag force
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therefore forces the particles into them, also damping the
motion caused by eventual perturbations that could other-
wise make a particle drift away from it. These effects com-
bined make L4 and L5 highly stable points in the motion
of a solid particle.

At 20 orbits, an asymmetry is seen in the particle con-
centration between L4 and L5, as the trailing Lagrangian
point is more efficient in trapping than the leading one.
The 10 cm, 30 cm and 1 m particles achieve high concen-
trations in the vicinity of L5, while experiencing depletion
in L4. The 1 cm particles are too coupled to the gas to be
affected by particle-gas drift.

At 50 orbits, the concentration in the Lagrangian points
has increased by two orders of magnitude relative to the
initial condition in the 10 cm, 30 cm and 1 m runs. The
particles of 10 cm and 1 m still present an azimuthally ex-
tended cloud of material in L4 and L5, but the particles of
30 cm radii have already concentrated into a small swarm
spanning but a few grid cells. Inspection of the snap-
shot reveals that the maximum mass in this swarm is of
0.03 M⊕. The L4 concentration is more extended, but the
maximum density is greater, achieving 0.25 M⊕, already
exceeding the mass of planet Mars (0.1 M⊕).

At the end of the simulation at 100 orbits, the swarms
of particles in the L4 and L5 points of the a•=1 m run re-
main unbound. We ran for additional 50 orbits, but no
progress in the maximum mass was seen. If collapse hap-
pens, it requires timescales longer than 150 orbits. The to-
tal mass in L4 is 0.29 M⊕, peaking at 0.05. The L5 point
has 1.9 M⊕ in total, with maximum mass concentration of
0.3 M⊕. The 10 cm and 30 cm particles underwent collapse
at the Lagrangian points, with the gravitational fragmen-
tation being more efficient for the 10 cm particles than for
the 30 cm ones. For the a•=30 cm case, what appears in
Fig. 4 as a single clump at L4 has a mass of 0.18 M⊕. The
L5 point is still azimuthally extended, with a total mass
of 2.5 M⊕ but maximum concentration of only 0.27 M⊕ by
the end of the simulation.

The a•=10 cm particles underwent collapse in both
Lagrangian points, L5 harboring a 2.6 M⊕ planet, L4 a
0.6 M⊕. In Fig. 5a we plot the time evolution of the max-
imum mass of solids for different runs. In addition to the
runs showed in Fig. 4 we add runs with particles of 5 cm
and 40 cm radii. Collapse in the Lagrangian points occurs
for the 5 cm case as well, forming a planet of 2 M⊕. In
this figure, the difference between a run where collapse
occurred and a run where collapse did not occur is read-
ily apparent by the behavior of the time-series. The non-
collapsed ones are very noisy at late times, as the number
of particles in a cell fluctuates up and down. When col-
lapse is achieved, the maximum mass stays constant un-
less more mass is accreted. This gives the time series a
ladder-like appearance, as seen in the figure for the 5,10,
and 30 cm cases. Collapse is hindered for a•=40 cm on-
wards.

The 1 cm particles present an interesting behavior.
They are so strongly coupled to the gas that their collapse
does not occur at the same time-scale, as seen from Fig. 5a.
Instead, as Fig. 4 evidences, it occurs on the timescale of
depletion of gas in the tadpole orbits. As the gap is cleared
and its depth increases, the gas clouds in the Lagrangian
islands shrink in size. As the particle are strongly coupled,
they are forced to concentrate as the cloud shrinks, even-
tually achieving high densities. As the time series of Fig. 5

shows, after 100 orbits the steady increase due to gas clear-
ing gives place to a runaway growth that lasts for about 20
orbits. In the end, one gravitationally bound planet encer-
ring one Earth mass of solids - purely out of 1 cm sized
pebbles -, is formed in each stable Lagrangian point.

3.2. Collapse at the gap edge vortices

Concurrently, at the edges of the gap, the considerable
density gradient resulting from the gap opening process
excites the RWI, leading to a large generation of potential
vorticity. At fifty orbits, two vortices are seen to have been
excited by the planet at the outer edge of the gap, seen in
Fig. 4 at 5 and 10 o’clock. The effect of these vortices in
the motion of the solids can be readily seen in the a•=1 cm
run, as even for these tightly coupled particles, the con-
centration reaches an order of magnitude higher than in
the immediate surroundings.

In the a•=10 cm run, as the particles are more loosely
coupled to the gas, the effect of the anti-cyclonic motion is
better appreciated. The particles are forced in spiral trajec-
tories towards the center of the vortices, raising the density
of solids by another order of magnitude when compared
to the a•=1 cm particles.

In the a•=30 cm and a•=1 m runs, the coupling is too
loose to form the extended structure seen for the a•=1 cm
and 10 cm particles. However, the looseness is a benefit as
long as the goal is to increase the concentration of solids.
As the coupling weakens, the particles are not forced away
from the center, and concentrate more efficiently. A mas-
sive clump of particles is seen in the 4 o’clock vortex in
the a•=30 cm run, that already concentrates 2 M⊕ of solid
material. High particle concentration is also seen for the
a•=1 m particles, but they do not seem to get dense enough
to achieve gravitational collapse. Instead, they form a very
azimuthally extended belt of particles at the outer and
inner edge. No collapse is seen at the inner edge of the
gap in any of the runs. At 100 orbits, the vortices have
merged into a single giant vortex. Inside it, in the 30 cm
run, the collapsed mass underwent runaway growth of
solids, reaching 17 M⊕. The 10 cm particles have a max-
imum mass in the vortex of 0.3 M⊕. The 1 m particles
show a similar maximum mass, of 0.25 M⊕. The high mass
achieved in the 30 cm run is quite likely overestimated,
since it is seen that the efficient and unimpeded particle
drift had the effect of feeding this radial region with virtu-
ally all particles present in the simulation. Such a situation
may be made quite different in a more realistic case, where
particle drift is stalled by turbulence, for instance.

In Fig. 5b, we show the mass spectrum at the end of the
different simulations. In addition to the super-Earths, two
planets in the 0.5-0.8 M⊕ range were formed out of 5 cm
particles, and other two in the 0.3-0.5 range with the 30 cm
particles. Dozens of Mars-sized planets in the 0.08-0.3 M⊕
range, along with hundreds of smaller Moon-sized objects,
were also formed in all simulations.

4. A spectrum of particle sizes - segregation and

the counter-intuitive role of self-gravity

To understand the effect of self-gravity in the runs, we
perform a control run with only gas drag. To diminish
the computational time, we include in this run a spec-
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Fig. 6. Comparison between the runs with resolution 2562, 105 particles and multiple particle species, with and without self-gravity
(upper and lower panels, respectively). Counter-intuitively, self-gravity is seen to work against collapse as in the second run the
maximum mass is never high enough to allow it. In the presence of self-gravity, the tadpole orbits are modified, and gas tides from
the massive vortices can be disruptive for planets forming within them. The motion of the particles inside the vortices are also
modified in the presence of self-gravity. Notice in particular how the 30 cm and 1 m particles are spatially split in the vortex at 10
o’clock, near L5. Collapse proceeds only if the grid resolution is refined (see text and Fig. 7.)
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trum of particles radii, including four species: 5, 10, 30,
and 100 cm. Each particle species is represented by 1/4 of
the total number of particles. To compare with this non-
selfgravitating run, we also compute a self-gravitating run
with a size spectrum. These runs not only shed light onto
the role of self-gravity, but can also discern the possible
artificial effects introduced by the single-species approxi-
mation used by us so far.

4.1. Excluding self-gravity: gas drag alone assembles
super-Earths

In Fig. 6a we show the time evolution of the maximum
mass in the non-selfgravitating run, along with the disk
appearance in the gas phase as well as the contribution of
each particle species in the solids phase. As stated before,
the drag provides a very efficient damping, so that the par-
ticles of all species except 1 cm concentrate in the L4 and
L5 as well as in vortices as early as 50 orbits. The 30 cm
and 1 m particles successfully concentrate all its remain-
ing particles that lie in the co-orbital region in a single cell
in each of the stable Lagrangian points. The 30 cm particles
concentrate with 0.66 M⊕ in L5 and 0.04 in L4; the 1 m par-
ticles with 0.54 M⊕ in L5 and 0.1 in L4. The concentration
of 10 cm particles is less efficient, with a maximum concen-
tration of only 25% of the particles in L5 (which nonethe-
less means 0.13 M⊕). Of the 2.1 Earth masses of material in
L5, the representation is 0.25 M⊕ in 1 cm particles, equal
shares of 0.66 M⊕ of 10 and 30 cm, and 0.54 M⊕ of 1 m
particles. The L4 point has 0.55 M⊕, distributed 0.23, 0.17,
0.04, and 0.1 M⊕ for 1, 10, 30, and 100 cm, respectively.

At the outer edge of the gap, as more material is avail-
able, the concentration achieves higher masses. Without
self-gravity, the clumps cannot collapse, quickly dispers-
ing and regrouping instead. The maximum mass then is
highly fluctuating. After 60 orbits, it has grown to 2 Earth
masses, but sporadicly reaching as high as 6 M⊕, due to
gas drag alone. The vortex closest to L5 seen in Fig. 6, a
snapshot at 62 orbits, concentrates 2.9 M⊕ in the densest
cell. The 1 m particles have a maximum concentration of
2.75 M⊕, similarly to the 30 cm ones, which peak at 2.3 M⊕.
It shows that the different particle species preferentially
concentrate in different cells, a result of the different drag
they feel. The same was seen in the Lagrangian points. The
10 cm is more extended, peaking at 0.1 M⊕, a relatively
low mass. The leading vortex presents the same qualita-
tive behavior, with a peaking mass of 1.64 M⊕, 10, 30, and
100 cm particles showing highest concentration of 0.3, 1.3
and 1.25 M⊕, respectively.

4.2. Including self-gravity: collapse hampered

When self-gravity is considered (Fig. 6b), the accretion is
seen to be stalled. Sparse episodes of high particle concen-
tration happen at ∼38 and 65 orbits, reaching maximum
masses of 1 M⊕, but the collapse of this mass did not oc-
cur and the clump quickly dispersed. After a hundred or-
bits, the maximum mass was still at the 0.2 M⊕ level. The
L4 point was cleared of particles compared to the non-
selfgravitating run, displaying 0.7 M⊕ of solid material,
more than half of it in 1 cm particles. The highest concen-
tration is of 0.19 M⊕, which is mostly represented by 10 cm
particles, contributing 0.17 M⊕, 100% of the 10 cm particles

remaining in the L4 vicinity. The totality of 30 cm particles
in the region are also concentrated in a single cell, but its
mass is of only 0.04 M⊕, and although spatially close to the
0.17 M⊕ clump of a•= 10 cm, they are not at the same cell.
The 1 m particles still show a slightly extended cloud, with
total mass 0.1 M⊕, some degrees away from both 10 cm
and 30 cm concentrations. The tadpole of particles around
L5 is still highly extended spatially. We ran the simulation
for additional 50 orbits, but the conditions remained un-
changed. In particular, the 3 nearby clumps of different
particle species did not collapse into a single body.

There are four reasons as to why collapse did not pro-
ceed as in the single species runs. First, the mass of solids
was equally split in particles of different size. The 1 cm
particle retain 1/4 of the mass, and they concentrate very
poorly due to their short friction time. This mass is thus ef-
fectively removed from the mass of potentially collapsable
bodies. Running for longer times to allow the shrinking
Lagrangian gas clouds to squeeze the 1 cm particles into a
collapsed body (as occurred in the single species a•=1 cm
run after 150 orbits) did not produce the same results, as
seen in the time series in the lower panels of Fig. 6.

Second, the gravitational potential of the massive par-
ticles acts to de-stabilize the Trojan orbits. As the mass
in the Lagrangian points grow, the massless approxima-
tion ceases to apply, and the body starts to librate around
the otherwise stable point. As the mass increases, the li-
brations increase in amplitude and lead the other parti-
cles into close encounters with the giant, that are thence
accreted or ejected from the system. In the limiting case
that the mass of the Trojan body becomes comparable to
the mass of the planet itself, the amplitude of libration
would become so high that an encounter between the two
would occur. Beaugé et al. (2007) find that a 0.15 M⊕ ob-
ject is enough to de-stabilize the orbits of other bodies in
the vicinity of L4.

The effect of this libration in our simulations is evident
when comparing Fig. 6a and Fig. 6b. Instead of concentrat-
ing at L4 and L5 as the massless particles do, the massive
particles display an azimuthally extended structure, evi-
dence of the enhanced librating motion.

Third, the inclusion of gas gravity leads to tides that
can be disruptive for a prospective planet (Lyra et al.
2008b). In a simple yet informative approximation, the
tides can be taken as proportional to the radius R of the
clump and to the gradient of the gravitational acceleration
which, by the Poisson equation, is proportional to the lo-
cal value of the density, FT ∝ Rρg. For a spherical clump of
constant density ρp = 3Mp/(4πR3), the self-gravitational
pull it exerts on its own surface is FG=GMp/R2 ∝ Rρp. The
ratio FT/FG is therefore proportional to the gas-to-solids
ratio. For a protoplanet forming inside high-pressure re-
gions such as vortices or the Lagrangian clouds, the gas
tides can lead to destruction or significant erosion of the
forming planets (Lyra et al. 2008b).

Fourth, a common feature of all simulations is that the
particles of different radii tend to concentrate in different
locations within the tadpole region. This is somewhat sim-
ilar to the effect of self-gravity. Gas drag taps energy from
the Keplerian motion, so the stability conditions on the
Lagrangian points are modified. As gas drag depends on
radius, the location of the stable points of the 3-body prob-
lem with gas drag also depend on particle size. In other
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words, the L4 and L5 points of the restricted 3-body prob-
lem are defined as points where there is a balance between
the gravitational attraction between the 2 massive bodies
and the centrifugal force. When including gas drag, a third
force comes into play in the particle motion, and the sta-
ble points will be displaced accordingly. In general, a par-
ticle of a given size will librate about its own particular
stationary point. Numerical and analytical investigations
by Peale (1993) and Murray (1994) confirm that the loca-
tion of the stable points is a function of particle radius.
Asymmetries between L4 and L5 are also expected from
the analytical treatment, which are seen in our simulations
as well, with L4 shifting further away than 60◦ ahead of
the planet, while L5 is displaced closer behind it. In some
extreme cases, the stable points can vanish altogether. As
the drag force increases and L5 approaches the planet, it
can merge with the shifted L2 point. L4 experiences the
same as it moves further out and merges with the shifted
L3 point. Both Murray (1994) and Peale (1993) find a limit-
ing location of 108◦ ahead of the planet for L4. At this max-
imum angular separation, the merging with L3 takes place
and the leading stationary point disappears. For a 13 M⊕
proto-Jupiter, Peale (1993) finds that L4 does not exist for
objects smaller than a•=15 m. L5 is seen to be more stable,
but the stable point of a a•=50 cm particle is expected to lie
only a few degrees behind the proto-Jupiter. In this loca-
tion, they speculate, the wake of the planet (not taken into
account in their model) might effectively eliminate L5.

Increasing the mass of the perturber to that of Jupiter’s
present mass tends to increase stability and to bring L4
and L5 closer to the “classical” locations predicted by the
restricted 3-body problem. In a gap homogeneously de-
pleted by 1 order of magnitude relatively to the initial den-
sity, the shift for the 10 m particles is less than 2◦. However,
the analysis of Peale (1993) and Murray (1994) did not con-
sider the presence of higher gas densities in the (classi-
cal) Lagrangian points as the gap is cleared. As we see,
it has an effect similar to a potential well, keeping the par-
ticles around the classical tadpole. As the 1 cm particles
have shorter friction time, the gas trap is more efficient,
and the prediction of their particular L5 getting too close
to the planet, or L4 merging with L3 is avoided as long
as a local pressure maximum is present at the classical L4
and L5. The more loosely coupled 1 m particles had their
L4 shifted to 90◦ ahead of the planet, and L5 to 50◦ behind
it.

5. Resolution study

Motivated by the failure of the run just presented above
to assemble massive gravitationally bound structures, we
explore the effects of particle and grid resolution in our
simulations. We first raise the total number of particles to
Np=400 000, to verify the effect of particle resolution. The
mass of the disk is the same, so the mass of an individual
super-particle decreases, being now 2.5 × 10−10M� � 7 ×
10−3MMoon. This first run has the same grid resolution as
used before, 2562. The second is twice as fine, 5122.

The Nx ×Ny=2562 and Np = 4× 105 run does not show
major differences when compared to the simulation with
same resolution but only 105 particles. The same behav-
ior of sparse episodes of high concentrations but never
achieving critical densities is seen. At the end of the simu-

lation, the maximum mass is still around only 0.2 M⊕. We
conclude from this that changing the particle resolution by
at least a factor 4 does not change the results significantly.

On the other hand, the situation changes consider-
ably when changing the grid resolution. In the run with
Nx ×Ny=5122 and Np=4× 105 (Fig. 7), the maximum mass
steadily increases towards 1 M⊕ in 30 orbits. Inspection of
the snapshots reveals that this high concentration occurs
inside the vortices excited in the outer gap. At fifty or-
bits, the leading vortex shows two planets, one of 1.43 M⊕,
and a smaller one of 0.38 M⊕. Unlike the 2562 run, the
mass peaks of different particles species occur at the same
cell, attesting to the boundness of the structures. The first
planet is 57.6% composed of 30 cm particles, 35.0% of
10 cm, 6.5% of 1 m and 0.9% of 1 cm particles. The second
is 87% composed of 30 cm particles, about equal shares
(6.5%) of 10 cm and 1 m particles, with only trace amounts
of 1 cm particles.

The trailing vortex also shows two gravitationally
bound planets, both of high mass. The most massive one
has 3.1 M⊕, its composition of 1, 10, 30, and 100 cm parti-
cles being 0.2%, 17.9%, 63.0%, and 18.9%, respectively. The
other planet is of 1.9 M⊕, being constituted by 0.2%, 27.8%,
48.9%, and 23.1% of 1, 10, 30, and 100 cm, respectively.

A common trait of these planets is, therefore, that they
are formed by a majority of 30 cm particles, with approxi-
mately equal shares of 10 cm and 1 m particles. This is ex-
pected, since for our choice of parameters, the 30 cm par-
ticles are those for which the drift due to gas drag is max-
imum. The 1 cm are too well coupled to the gas to con-
tribute significantly to the growth of terrestrial planets in-
side the vortices. For reasons of load imbalance, we termi-
nated the simulation at 83 orbits, when a large fraction of
the computational time was idle and one orbit took 6 hours
in 64 processors. The most massive planet had grown to
4.5 M⊕ by then. The other planets formed at the outer
edge of the gap show masses of 4.36, 4.14, and 0.80 Earth
masses.

In Fig. 8a we show the time evolution of the mass of
this massive planet. The black solid line represents the
maximum mass of solids contained in a single grid cell.
The red dashed line marks the maximum mass that is
gravitationally bound. We decide for boundness based on
two criteria. First we consider the clump defined by the
black line, and calculate the center of mass of its particles.
The Hill’s sphere associated with this mass is drawn, cen-
tered on the center of mass. As the Hill’s sphere encom-
passes more/less than a grid cell, particles inside/outside
are added/removed from the total mass, and the center
of mass and Hill’s radius recomputed. The process is iter-
ated until convergence. After the clumps’ mass and Hill’s
radius are defined, we compare the internal velocity dis-
persion vrms of its constituent particles with the escape ve-
locity of the enclosed mass, defined at the Hill’s radius. If
vrms< vesc, we consider that the cluster of particles is grav-
itationally bound. As seen in Fig. 8b, the internal veloci-
ties are usually lower than 10 m s−1. We also plot the max-
imum speed and escape velocity of the planet (defined at
the Hill’s radius). The maximum speed is usually greater
than the escape velocity, which means that not all particles
present in the cluster are actually bound, and the planet
(as we define it) can lose mass during the accretion pro-



12 Lyra et al.: Trojan Planets

0 20 40 60 80
t/(2πΩ0

−1)

1
2
3
4

m
ax

 (M
/M

E
ar

th
)

−2

−1

0

1

2

Y

−2 −1 0 1 2
X

−2

−1

0

1

2

Y

−2 −1 0 1 2
−2

−1

0

1

2

Y

1cm
−2 −1 0 1 2

10cm

−2 −1 0 1 2
X

−2

−1

0

1

2

Y

30cm
−2 −1 0 1 2

X

1 m

Selfgravity − Resolution 5122 − 4x105 particles

0.

300.

600.

900.

Σ g
 (g

/c
m

2 )

−5.

−4.

−3.

−2.

−1.

0.

lo
g(

M
/M

E
ar

th
)

Fig. 7. Results of the high-resolution run (5122 grid points and 4 × 105 particles) with multiple particle species. Four rocky planets
form at the outer edge of the gap, the most massive one with 4.5 M⊕. They are easily spotted in the solids plot as very bright small
dots. A movie of this simulation can be found at http://www.astro.uu.se/∼wlyra/planet.html

cess. However, the low vrms compared to vesc attests that
the vast majority of the particles is gravitationally bound.

At the end of the simulation, the gas in co-rotation is
still spread over the whole horseshoe region, so a mas-
sive loss of particle from L4 is observed. The same process
was seen in the other runs, with single and/or multiple
species. But in this case, the effect is more severe as the
L4 point of the 30 cm particles disappeared. At the end of
the simulation, a small cloud of 2 MMars of 10 cm parti-
cles is observed in the tadpole region around L4, peaking
at a maximum mass of 3.5 MMoon. L5 presents 3.3 M⊕ of
solid material, but still in extended clouds. The boundness
analysis shows that these clouds are fragmented into ≈20
sub-Mars sized bodies of mass between 1-5 lunar masses.

6. Neptune-mass perturber

In this section, we consider the case of a giant planet
perturber of mass ratio q=10−4, dubbed “Neptune”. This
case is important to assess since, according to our cur-
rent understanding, a forming gas giant is expected to
spend a long time (of the order of millions of years) with
a mass similar to this value - corresponding to the phase
II of the model of Pollack et al. (1996). Even models that
predict a faster transition from Neptune to Jupiter mass
(Klahr & Bodenheimer, 2006) still predict timescales of
(∼105 years). Therefore, when the perturber has achieved
Jupiter’s mass, the state of the solids subdisk should be

more similar to the state left by a Neptune-mass perturber
than to the unperturbed disk of particles we have used so
far.

We observe that when the perturber has a smaller
mass, a more pronounced asymmetry between the L4 and
L5 point is observed, as expected from the analysis of Peale
(1993) and Murray (1994). The 1 m and 30 cm sized parti-
cles experience more depletion, with their L4 point having
vanished altogether and the L5 shifted to but a few degrees
behind the planet (Fig. 9). The 10 cm particles also experi-
ence depletion but not as severe as the larger particles. The
1 cm particles are well coupled and remain in co-rotation
as no deep gas gap is carved.

The shifted L5 points of the 30 cm and 1 m parti-
cles concentrate about only 0.01 M⊕ of solids, each.
Nevertheless, a Trojan planet of 0.16 M⊕ was formed at the
vicinity of L5, its bulk consisting of 99.4% of particles of
10 cm radii. A second bound clump of 0.09 M⊕, also con-
sists of a large majority of 10 cm particles, is observed at
the vicinity of L5, 0.39 AU away from the former.

We conclude that a Neptune Trojan can only be formed
with a very narrow range of particle species around 10 cm,
at least for our choice of parameters. A simulation at high-
resolution (with 5122 grid points and 4 × 105 particles)
showed the same behavior for the first 100 orbits.

A distinct difference from the Neptune runs when
compared to the Jupiter runs is that there are no visible
vortices formed at the edge of the gas gap, even when run-
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Fig. 8. Time-series of the most massive clump present in Fig. 7. a). The maximum mass in a grid cell and the maximum bound mass.
Even though the Hill’s radius exceeds the dimension of a grid cell, the planet has most (or all) of its mass within a single cell. This is
evidence of subgrid compactness.
b). The internal velocity dispersion vrms of the planet, compared with its escape velocity vesc defined at the Hill’s radius. Throughout
most of the simulation, vrmsis below 10 m s−1. The maximum internal speed is plotted for comparison. It usually exceeds the escape
velocity, so some particles are not bound to the planet.

ning as long as 200 orbits. This was unexpected, since the
gap is shallow when compared to the one carved by the
Jovian tides, but deep enough to excite the RWI. Therefore,
there is no clear reason as to why vortices do not form.
The solution was hinted by de Val-Borro et al. (2007), who
notice the same feature. They identify it as being due to
the Cartesian grid, as vortices are seen in a cylindrical run.
Furthermore, in de Val-Borro et al. (2006), where several
codes were compared in the specific problem of a planet
opening a gas gap, vortices are seen in some of the inviscid
runs with cylindrical codes. Indeed, we ran simulations
with the cylindrical version of Pencil, and some weak vor-
tices were excited after 100 orbits. This is readily under-
standable in view of the fact that for a flow with cylindri-
cal symmetry, a Cartesian grid has exaggerated numeri-
cal dissipation for the same resolution (rΔφ=Δy). To make
matters worse, the azimuthal modes responsible for the
RWI, are more coarsely resolved in a Cartesian grid. We
are drawn to the conclusion that the combination of both
drawbacks quenched the growth of the unstable modes of
the RWI in the case of the shallow Neptune gap.

In the cylindrical run at two hundred orbits, the vor-
tices had trapped large amounts of particles, with a few
cells achieving masses above 0.1 M⊕. However, the cylin-
drical Poisson solver- which relies on discretization of the
analytical potential based on continuous Hankel trans-
forms (Toomre 1963, Binney & Tremaine, 1987) - does not
ensure that a particle is free of self-acceleration. Therefore
we do not trust its accuracy to draw definitive conclusions
on the possibility or impossibility of gravitational collapse
in the cylindrical runs.

We stress that the expulsion of particle of radii >10 cm
from the co-rotational region during the Neptune-phase
does not imply that these particles will not be present
when the giant planet achieves Jupiter’s mass. As the
planet grows in mass, the width of the gas gap increases.
This has the positive effect of feeding the co-rotational re-
gion with fresh larger particles from the outer and inner

edge of the narrow and shallow gap carved during phase
II. Moreover, it is reasonable to suspect that growth by co-
agulation should be continuously replenishing the pop-
ulation of these particles, as the pebbles sweep up dust
grains that remain in the co-rotational region.

We show in Fig. 10 the mass spectrum at the end of the
Neptune simulation, comparing it with the one from the
Jupiter case (Sect. 5). In addition to the two Trojans, the
Neptune run also shows a smaller planet, of mass 4.6 times
that of the Moon, which was formed at the outer edge of
the gap. The outer edge also displays hundreds of other
Moon-sized objects. In the Jupiter case the three super-
Earths are conspicuous in the plot. The smaller 0.80 M⊕
planet is also visible. Of the seven lunar-sized bodies in the
bin centered at log(M/ M⊕)=−1.4 (M≈4MMoon), three are
in the co-rotational region. Their masses are 4.8, 4.3, and
4.2 MMoon. Other sixteen lunar-sized bodies in the mass
range 1-4MMoon are also observed in the co-rotational re-
gion. As more mass is trapped in the bigger planets, the
Jupiter run shows a smaller number of Moon-mass gravi-
tationally bound clumps when compared to the Neptune
case.

7. Summary and conclusions

We have undertaken simulations of low mass self-
gravitating disks with gas and solids. While the gas is
gravitationally stable (Q ≈ 30), the solid phase undergoes
rapid collapse in the Lagrangian points of a giant planet.
A companion with the mass of Jupiter (mass ratio q=10−3)
produces Earth-mass Trojan planets for particle radii up to
a•=30 cm. The particles of a•=40 cm and 1 m remained un-
bound. The 10 cm and 30 cm particles underwent collapse
at the Lagrangian points, with the gravitational fragmen-
tation being more efficient for the 10 cm particles than for
the 30 cm ones. In the a•=10 cm case, the particles under-
went collapse in both Lagrangian points, L5 harboring a
2.6 M⊕ planet, L4 a 0.6 M⊕. The 30 cm particles show only
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Fig. 9. Same as Fig. 7 but for a Neptune-mass perturber. The Lagrangian point L4 has vanished and the L5 shifted to a position much
nearer to the planet than in the Jupiter case. The wake of the planet does not destroy the stability of the shifted L5, and a Trojan of 1.6
MMars was formed.

a low mass 0.1 M⊕ at L4, and an extended unbound swarm
at L5. Particles of 5 cm radius assembled in Trojans of 1.8
M⊕, 0.8 and 0.5 M⊕. The 1 cm particles present an inter-
esting behavior. As they are too well coupled to the gas,
their density increase primarily not due to their mutual
attraction, but due to the shrinking of the gas cloud re-
tained in the tadpole region. Their collapse therefore oc-
curs on the timescale of gas depletion in the L4 and L5
points. Two symmetric Trojans of 1 M⊕ are formed out of
particles of a•=1 cm after 150 orbits. The boundness of the
formed planets is confirmed as the internal velocities are
much lower than the escape velocity.

Fast rocky planet formation also occurs in the vortices
the giant planets induce at the edges of the gas gaps they
open. In this case, the 30 cm particles set the record of high-
est concentration, by collapsing into a super-Earth encer-
ring as much as 17 Earth masses. The mass is likely to be
overestimated, since the vortex captured virtually all of
the influx of particles from the outer disk, but this result
nonetheless illustrates that the efficiency of vortex trap-
ping for particles this size is superb. For other particle
radii, the mass spectrum shows that dozens of Mars-sized
planets were formed, along with hundreds of Moon-sized
objects.

We compare runs with single and multiple particle
species, finding that gas drag modifies the streamlines in
the tadpole region around the classical L4 and L5 points.
As a result, particles of different species have their stable

points shifted to different locations. This brings down the
mass of the Trojan planets, as now the clumps are seg-
regated spatially by size, each of them having less mass
available for assemblage. As a result, collapse is hindered
in a low-resolution run with 2562 grid points and 105

particles equally distributed in mass and number among
four species (1, 10, 30, and 100 cm). Counter-intuitively,
a run with the same parameters but without self-gravity
achieved higher mass concentrations (up to 6 M⊕). We
conclude that the gravity of the solids modifies the stabil-
ity of the tadpole orbits. Inside the massive vortices, the
tidal forces from the gas also stall the gravitational growth
of the solids into planets. The same negative results are
observed when the number of numerical super-particles
is raised by a factor 4.

Collapse resumed when the grid resolution was re-
fined by a factor 2, producing 3 super-Earth mass plan-
ets at the outer edge of the gap. The most massive one
has 4.5 M⊕ by the end of the simulation. The other super-
Earths are of 4.36 and 4.14 M⊕. In addition, a fourth,
smaller, planet of 8.0 MMars was also formed within the
gap edge vortices. These planets are composed primarily
of 30 cm particles ( ≈50%), with smaller and almost equal
shares of 10 cm and 1 m, and only trace amounts of 1 cm
particles. Judging by their mass and location, these ob-
jects may be the embryos that gave rise to planet Saturn.
Although the distance of formation of Saturn in this model
seems too close to Jupiter, it is not at all unlikely that
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Fig. 10. Mass spectrum at the end of the Jupiter (Sect. 5) and
Neptune (Sect. 6) simulations. The most massive planet in the
Neptune case is the Trojan of 0.16 M⊕. It is followed by another
Trojan of 0.09 M⊕. In the Jupiter case the most massive planets
are formed within the vortices at the outer edge of the gas gap. It
includes the three super-Earths and a 8 MMars planet. The Jupiter
simulation was terminated at 83 orbits. At that time, the mass in
the tadpole orbits was split into 19 lunar-sized objects in the mass
range 1-5 MMoon. Other 26 gravitationally bound objects of mass
between 0.5 and 1 MMoon are also observed in the co-rotational
region.

Saturn was indeed formed in this orbital position. The ice
giants Uranus and Neptune are presently located in re-
gions of the solar system where the dynamical timescales
are too large and the densities are too low to account for
their current masses (Thommes et al. 2002, and references
therein). This is an indication that they were formed fur-
ther in and, therefore, that the giant planets displayed a
much more compact spacing in the early Solar system than
they present today. Our results seem to corroborate this
scenario

When the mass of the perturber is reduced to that of
Neptune, the asymmetry between L4 and L5 is accentu-
ated. The L5 point of the particles of a•=10 cm moves to
≈35◦behind Neptune, and the a•=1 m to ≈25◦. The L4
point was shifted too far ahead of the planet and even-
tually lost all particles, a behavior attributed to its merg-
ing with the shifted unstable L3 point (Peale 1993, Murray
1994). Of the particles retained at L5, the ones of 10 cm con-
centrated into a 1.6 MMars Trojan planet.

One question to ask is if the formation of Trojan bod-
ies as massive as terrestrial planets is so easily achievable,
why we do not see it in the Solar System. The answer
might lie in the fact that, according to recent models by
Morbidelli et al. (2005), all Trojan orbits of the Jovian sys-
tem were de-stabilized when Jupiter and Saturn crossed
the 2:1 mean motion resonance. The initial Trojan popu-
lation of Jupiter was lost and a new one was captured.
Without the gas to damp their motions and increase the
number density, the new Trojan population could not as-
semble into rocky planets. This scenario raises the possibil-
ity that in extrasolar planetary systems with only one giant
or with giants that did not undergo the destructive reso-
nance crossing that Jupiter and Saturn underwent, Trojan

Earth-mass companions to the giant planets are common.
This includes the giants in Earth-like orbits in a list of po-
tentially habitable stellar systems.

Of course, it might as well be that the formation sce-
nario we present is overly simplistic and that some im-
portant piece of physics that prohibits the process is miss-
ing. We did not include, for instance, the possibility of de-
structive collisions between boulders. Checking the veloc-
ity dispersion at the bound clumps, we find that they are
typically lower than 10 m s−1for a formed planet. As the
initial stages of collapse, however, the speeds are greater,
10-30 m s−1, eventually reaching as fast as 80 m s−1. These
speeds are comparable to or larger than the break-up col-
lisional speeds (∼10 m s−1, Benz 2000). These high col-
lision speeds indicate that collisional fragmentation will
play an important role during the gravitational collapse in
a more realistic coagulation-fragmentation model (Brauer
et al. 2008a). On the other hand, the fact that collapse
occurs for particles of 1-10 cm radius is particularly rel-
evant since they are too small to be easily destroyed by
collisions. Moreover, the escape velocities of the formed
clumps are high enough so that most debris of catastrophic
collisions might remain bound. Johansen et al. (2008) find
that cm-sized fragments of such collisions are easily swept
up away from the midplane by turbulent motions. This
leaking is anticipated to not occur in the cases presented
in this paper, where planets are formed inside vortices.
As vortices do not have vertical shear and revolve at the
Keplerian orbital rate (Klahr & Bodenheimer 2006) the sed-
imenation of the solids layer does not trigger the Kelvin-
Helmholtz instability (Johansen et al. 2006b) when this
sedimentation happens inside a vortex. The sedimentation
is therefore more efficient, which helps collapse.

Our neglecting of coagulation is also an issue that
causes pause. Solid bodies grow by sweeping up smaller
dust grains, so coagulation raises the possibility that the
trapped rocks and boulders might breach the meter-size
barrier inside the gap edge vortices and Lagrangian gas
clouds. If so, they would produce km-sized bodies that
are too loosely coupled to undergo gravitational col-
lapse in the way presented in this paper. Brauer et al.
(2008b) has indeed showed that growth to kilometer-size
is highly favored within gas pressure maxima. However,
the timescale for coagulation seems to be slow (∼1000 yr)
compared to the timescales we observe for gravitational
collapse in all cases except for the formation of Trojan plan-
ets with the a•=1 cm particles. In this case, the timescales
are comparable and we can expect coagulation to influence
the growth. In particular, coagulation onto the 1 cm parti-
cles can aid on replenishing the population of 10 cm and
30 cm particles lost during the Neptune phase.

Once a cluster of particles collapses to form a single
object, aerodynamical drag ceases to be the most impor-
tant driver of particle dynamics. Instead the planet enters
the regime of gravitational drag in which it interacts with
its own gravitational wakes. Since we solve for both the
particle gravity (that causes the wakes) and gas gravity
(that makes the wakes backreact on the particles), our sim-
ulations in principle resolve this stage as well, although
limited by the grid resolution. However, the drag influ-
ence of the planet on the gas is strongly exaggerated, since
the influence of particles is always spread over the nearest
three grid points in each direction. The friction time is also
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still that of the individual rocks, where as a solidified body
of a few thousand kilometers in size should have a much
longer friction time. A better treatment would thus be to
replace the ensemble of particles by a single particle repre-
senting the planet. This would also allow a much longer
integration time, and we plan to go this way to model
the long term evolution of the planet system in a future
project.

An immediate question to ask is how (or if) the collapse
would occur in three dimensions. Johansen & Klahr (2005),
Fromang & Papaloizou (2006) and Lyra et al. (2008a) show
that the particles are stirred up by the hydromagnetic tur-
bulence to form a layer of finite vertical thickness, main-
tained by turbulent diffusion. We performed a 3D simu-
lation of planet-disk interaction in spherical coordinates,
similar to those of Bate et al. (2003), Kley et al. (2005) and
Edgar & Quillen (2008), but inviscid instead of viscous.
The Lagrangian points of the planet do not change much
in 3D, with the scale height being about the same as in the
unperturbed disk case. Fromang et al. (2004) and Lodato
(2008) calculate the effects of self-gravity in the vertical ex-
tent of the disk, showing that the thickness is reduced by
the disk’s self-gravity. This flattening of the scale height in
self-gravitating disks bring it closer to the 2D configura-
tion.

Of course, we are only assessing this by simple esti-
mates based on isolated bits of physics done by individ-
ual works. A definite answer to this question has to be ad-
dressed by a 3D simulation that combines these effects.

The collapse of the solids is triggered by the gravita-
tional influence of a perturber, but more fundamentally
due to the presence of long-lived, high-pressure regions:
the vortices and the accumulation of gas in the Lagrangian
points. As such, a giant is not necessary for the rapid for-
mation of rocky planets. Paardekooper et al. (2008) show
that passing binaries can stir the material in the disk. Such
encounters usually last for long times, and therefore grav-
itational collapse of the boulders might happen in such
case. Vortices similar to the ones presented in this paper,
excited by a giant planet, are also expected at the border of
the dead zone (Varnière & Tagger, 2006; Lyra et al. 2008b).
Therefore, the accumulation into rocky planets shown to
occurs inside the vortices induced by a giant planet should
also happen inside these dead zone vortices. If so, this pa-
per provides not only a plausible mechanism for the for-
mation of Trojan planets and Saturn, but also of the very
first planetary embryos that - in the core accretion scenario
- gave rise to Jupiter.
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