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Star Formation - The B3 simulation (Bate, Bonnell, Bromm 2003)
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Some stars are seen to be born with lots of surrounding gas.
This gas is bound to the star and referred to as

circumstellar disk or protoplanetary disk.
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Accretion

“The central problem
of nearly 30 years of accretion disk theory
is to understand how they accrete”

Source: Balbus & Hawley 1998

Accretion time for molecular viscosity
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For a newly formed disk
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Observations reveal that disks only live up to 107 - 10° yr

Much more powerful viscosity needed!



Accretion needs turbulent viscosity

Turbulence in disks is enabled by
the Magneto-Rotational Instability

MRI sketch
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Dead zones are robust features of accretion disks
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Source: Armitage (2010)

A substantial portion of the disk
is of low ionization
and therefore dead to the MRI



Planet Formation

"Planets form in disks of gas and dust"




Planet Formation

Planetesimal Hypothesis (Safronov 1969)

From dust to boulders
pm ->m: van der Wall forces cause sticking
m -> km: A miracle happens

From planetesimals to protoplanets
km -> 1000 km: Gravity

From protoplanets to planets
Rocky Planets: Protoplanets collide
Gas Giants: Attract gaseous envelope
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The meter size barrier

Growth barrier
- through EM?
They don't stick, they break

- through Gravity?
They aren't massive enough

Timescale barrier
They migrate quite fast
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The meter size barrier

Growth barrier
- through EM?
They don't stick, they break
Gentle Collisions
- through Gravity?
They aren't massive enough
High number density

Timescale barrier
They migrate quite fast
Stopping Mechanism




All you need to know about aerodynamics
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The drag force pushes
the solids fowards the pressure gradient



solids move
toward
pressure maxima




Solids in a turbulent disk
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Solids in a turbulent disk
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Alas... Dead zones are robust features of accretion disks
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The planet formation region Therefore....

(inner 10AV) The search for hydrodynamical routes
falls squarely within the dead zone for turbulence continues.



A possibility: Baroclinic Instability

- Well known in planetary atmospheres
- Leads to the formation of vortices

And vortices are:
- A solution of the NS equations: persistent structures
- Very interesting for planet formation
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Tropical Depression
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Vortex Eguilibrium

Geostrophic balance:

» 20xv=—p"'Vp

Pressure
gradient

<

Coriolis
force

Vortex
streamline

- Particles do not feel the pressure gradient.
- They just sink fowards the center, where they accumulate.
- Aid to planet formation (von Weizsacker, 1946)
- Revisited by Barge & Sommeria (1995)



A simple Dead Zone model
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Source: Varniere & Tagger (2006)
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Inflow discontinuity triggers the Rossby wave instability (RWI)...

Source: Lyra et al. (2008b)
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...that saturates into vortices
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Planet formation and vortices

* Vortex generated near a dead zone: «planets» produced in ~5 orbits
(Lyra et al. 2008a).
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*Mass spectrum by the end of the simulation
300 bound clumps were formed

*Power law d(log N)/d(log M)=-2.3 +/-0.2
*2(0 of these are more massive than Mars
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Vortex trapping
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Summarizing
Gravitational collapse of an interstellar cloud

Outward transport of angular momentum through turbulence generated by
the MRI. Dust coagulates into pebbles and boulders, sedimenting towards
the midplane.

Rocks in the turbulent medium are trapped in transient pressure maxima
and undergo collapse into planetesimals and dwarf planets.

Vortices may be excited in the dead zone. Inside them, the first dozens of
Mars-mass embryos are formed.

Embryos collide and give rise to the oligarchs (?)

When Jupiter is formed, a second round of planet formation is
triggered (Trojan planets, Saturn?)

Nice model: Jupiter and Saturn cross 2:1 MMR and define the architecture
of the Solar System



Vortex Stability

Words of a referee...

“The formation mechanism presented depends on the presence of vortices, the existence of which
is well known to be problematic in 3D (Barranco & Marcus 2005; Shen, Stone & Gardiner 2006).”

Shen et al. (2006) — Unstructured Noise

2D 3D
Inverse Cascade No Inverse Cascade



Vortex Stability — Much Ado About Nothing

NS: (2_?:—<u-v)u—v¢—pIVp+vV2u (Vx )

Vorticity Equation:

aﬁ_(f =—(uV)w —w(V-u)+(wV)u+ %VpXVp +vViw
P



Vortex Stability — Much Ado About Nothing
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Vortex Stability — Much Ado About Nothing

B %:—(u-v)u—V¢—plvp+vV2u (Vx )

Vorticity Equation:

68_(? =—(uV)w —w(V-u)+(w-V)u+ %VpXVp +vViw
: "y

compression baroclinicity

advection stretching dissipation

The baroclinic term is the only source term!



Barotropic x Baroclinic

Vorticity Equation:

aa_‘f =—(uV)owo—-—w(V-u)+(w-V)u+ %VpXVp + vV’
' T

compression baroclinicity

advection stretching dissipation

Barotropic equation of state: p=p()

Trope = direction (e.g. isotropic)
Baro + tropic = pressure gradient same direction as the density gradient

Baroclinic equation of state: p=p(p, T)

Cline = inclination (e.g. tachocline)
Baro + clinic = pressure and density planes inclined



Vortex Stability — Much Ado About Nothing

Shen et al. (2006) — Local Box
p=p(p) - Pressure is a function of density only
NO BAROCLINICITY

2D — No stretching 3D - Stretching

Pw _ —w(V-u)+ (w-V)u+ %VpXVp +vViw

o R

compression baroclinicity

stretching dissipation



Vortex Stability — Much Ado About Nothing

Shen et al. (2006) — Local Box
p=p(p) - Pressure is a function of density only
NO BAROCLINICITY

2D — No stretching

D w
—Dt =—w(V-u)+(w-V)u+ p—l—vvzw
compression
stretching

dissipation



Vortex Stability — Much Ado About Nothing

Shen et al. (2006) — Local Box
p=p(p) - Pressure is a function of density only
NO BAROCLINICITY

2D — No stretching 3D - Stretching
Dw _ Dw
Dr Dr Sl V)

Without baroclinity, nothing counters the stretching term

No surprise that the vortices decay...



Baroclinic Instability - Excitation and self-sustenance of vortices

The situation changes considerably when including an entropy gradient.

Why entropy?

Entropy: s=plp”

n+1)n

Polytropic eq. of state: p=k p'

1
=~

For n=—— S

1
y—1

Entropy is the constant in the polytropic equation of equation

Therefore:

A spatial gradient of entropy translates into
a departure from barotropic conditions
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Baroclinic Instability - Excitation and self-sustenance of vortices

The Baroclinic Instability in three dimensions
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Elliptic Instability

No background rotation
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Instability of elliptic streamlines
* In the non-rotating case:
- Resonance between
vortex turnover frequency and inertial waves

* In the rotating case:
- Strong “horizontal” (theta=0) unstable mode:
Exponential growth of epicyclic disturbances

Source: McWilliams (2010)



Elliptic Instability

No background rotation

Y
80
B
- R 60
[an]
o1 40
1.6
20
18
2
5 10 15
%

Including Coriolis

05 '
15 3
25 *
, " ®)
-35
> 46 10 20 4 8
1

Source: Lesur & Papaloizou (2009) Source: Mizerski & Bajer (2009)

80

60

T

40

20

0 0

Despite the elliptical instability,
baroclinity keeps the vortex coherent.

The result is "core turbulence” only
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Interaction of Baroclinic and Magneto-Rotational Instabilities

What happens when the vortex is magnetized?
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Vortex gone!
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Magneto-Elliptic Instability

No background rotation Including Coriolis Including Lorentz

X ye

Mizerski & Bajer (2009, Journal of Fluid Mechanics)

“The presence of magnetic fields widens the range of existence of the
horizontal instability to an unbounded interval of aspect ratios when

2
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Magneto-Elliptic Instability

No background rotation Including Coriolis Including Lorentz
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“The presence of magnetic fields widens the range of existence of the
horizontal instability to an unbounded interval of aspect ratios when
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Magneto-Elliptic Instability — No vortex limit

0<klk, <3



Magneto-Elliptic Instability — No vortex limit

0<klk, <3

MRI




Magneto-Elliptic Instability — No vortex limit

0<klk, <3

“This spells MRI in huge neon letters
for the seasoned disk modeller”



Magneto-Elliptic Instability — No vortex limit.
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Note on consistency

In the no-vortex limit (w=0) , Ro=-3/4

30 3 x’-1
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A vortex of infinite aspect ratio is equivalent to a shear flow



Growth rates

Vortex turnover resonance
with Alfvén waves
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Common ground between MRI and MEI

Elliptic streamlines have shear
even in uniform rotation



Conclusions

- 3D non-magnetized vortices reach a steady state
* Unstable yet coherent
* Balance between baroclinicity (+) and stretching (-)
* Subsonic core turbulence (10% of sound speed)




Conclusions

- Vortices do not survive the MRI
* Channel flows
* Violent core turbulence
- Magneto-elliptic instability
- MRI is a limit of the MEI
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Conclusions

Hydro MHD
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Vorticity
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A n+uu Mag Ener‘gY

- Fits neatly in the layered accretion paradigm.
* Active layers are unmodified
* Dead zone only is endowed with vortices



Conclusions

Open questions:
- Vertical stratification
- Realistic entropy gradients and thermal diffusion
- Particles??
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Theoretical Modelling

op
Continuity eq. (density) a—l‘g = — (u V) P ¢ P gV-u
Navier-Stokes eq. (momentum) g_u — —(uV)u _ V¢ . D;I(Vp-I-JXB-I-prd)
4

0B
ot
Entropy equation 0s 1 ( r-T 0) 2

Py —(u-V)s + ﬁ V(KVT)- poov——— F nHyJ

Induction eq. (magnetic field)

VX(uXB—UHOJ)

Cc

Eq. of state (pressure)

Gravitational potential

Poisson equation

Drag force

Momentum

Position
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