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Planet Formation

“Planets form 1n disks of gas and dust”

Kant 1755

HOW??2??

14 orders of magnitude in size




Planet Formation

Planetesimal Hypothesis (Safronov 1969)

From dust to boulders
pum ->m: Electrostatic forces cause sticking

From planetesimals to protoplanets
km -> 1000 km: Gravity

From protoplanets to planets
Rocky Planets: Protoplanets collide

Gas Giants: Attract gaseous envelope
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From meter to kilometer

Growth barrier
- through EM?
They don't stick, they break

- through Gravity?
They aren't massive enough

Timescale barrier
They migrate quite fast




Planet Formation

Planetesimal Hypothesis (Safronov 1969)

From dust to boulders
pum ->m: Electrostatic forces cause sticking

m ->km: HOW?2??
From planetesimals to protoplanets
km -> 1000 km: Gravity

From protoplanets to planets
Rocky Planets: Protoplanets collide

Gas Giants: Attract gaseous envelope

From meter to kilometer

Growth barrier
- through EM?
They don't stick, they break
Gentle Collisions
- through Gravity?
They aren't massive enough
High number density

Timescale barrier
They migrate quite fast

Stopping Mechanism




Star Formation - The B3 Simulation (Bate, Bonnell, Bromm 2003)

UK Astrophysical
SeiEFluids Facility

UK Astrophysical
4= Iids Facility

t=0 t=266 000 yr

Some stars are seen to be born with lots of surrounding gas.
This gas is bound to the star and referred to as

circumstellar disk or protoplanetary disk.


http://www.astro.uu.se/~wlyra/movies/cluster4.avi

“Extra-Solar Nebulae” - Circumstellar Disks

Protoplanetary Disks HST - WFPC2
Orion Nebula

PRC95-45b - ST Scl OPO - November 20, 1995
M. J. McCaughrean (MPIA), C. R. O’Dell (Rice University), NASA

Dust lane A light background Warm dust shines

blocks view reveals the disks in infrared

—_—
Size of Pluto’s Orbit

The disk of the star Beta Pictoris



Paper I — Testing the Code

Averaged density

Planet opening a gap in the gaseous disk
Pencil agrees well with the results of other 17 codes

Ao Mok B, Astrea, Soc. 370, 520-556 (20061 10,1 T11]. 136525966 2006, 10435 5

A comparative study of disc—planet interaction
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ABSTRACT
We perform numerical simulations of a diseplanet system using various gric-hased and . Jupiter viscous
T T

smecthed particle hydredynamics (SFH) codes. The tests are run for 4 simple setup where ) 25
Jupiter and Neplune mass plinets on & circular orbil open 8 gap in a protoplanetary dise during :
a Few hundred orhital pericds. We compare the surface density contours, potential vorticity and
smoothed radial profiles at several times. The disc mass and gravitational torgue time evolution
are analysed with high temporal resolution, There s overall consistency hetween the codes.
The density profiles agree within about 5 per cent for the Eulerian simulaticns, The SPH results
predict the correct shape of the gap although hive less resolution inthe low-density regions and
ceaber planetary wakes, The dise magses afler 200 orbital periods agree within 10 per cent.
The spread is larger in the tidal tergues acting on the planct which agree within a facior of

[

2 atthe end of the simulation. [n the Neptune case, the dispersion in the torgues i3 greater than
far Jupiter, passibly owing o the contribution from the net completely cleared region ¢

)
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the planct,

Angular momentum

Key words: accretion, acoretion dises — hydrodynamics — planets and satellites: general.
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Hyelroclyramics is a difficult subject, which has cavsed many prok- The basic equations of hydredynamics are the Mavier-Siokes 0 100 200 _ 300 400
Yems for many distinguished physicists, However, it is not a topie equations, and have been known foe almest 1w cenuries: Tirme [P]

p
T (pu) =
“E-mall: migueKii st s s ar +V (pu) =0

Angular Momentum

£ 2006 The Authors, Toumsl coepilation & X006 RAS




Paper Il — Turbulent Disk Models

Accretion disks are unstable to the Magneto-Rotational Instability (MRI)

The turbulence that ensues is the best candidate to explain accretion
(Balbus and Hawley 1991)

AeA 479, RE3-50]1 [2008) Astronomy
il 105 1000 653512
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Global magnetohydrodynamical models of turbulence
in protoplanetary disks
I. A cylindrical potential on a Cartesian grid and transport of solids
W, Lyra'. A Johanser®. H. Klahe®, and N. Piskunov'

riment of Astrocemy okl Space Physics, Uppeala Asiraneomisal Shsermiory, Bax 515, 751 20 Uppaala, 51
il: wlyragastro.m.se
lanck-Institut i Asircacaie, Kenigsihl 17, 69117 Heidelberg, Germamy

Build-up of magnetic tension:
tries to restore equilibirum (resists streching)
- tries to enforce rigid rotation (resists shear)
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1. Introduction

Planeis have Ic
araund young stars | e
their surrcundinge. Foemples and highly nonlinearpro-  (Lucas & "Roche 2000}, and super-Farihs (Rive et al. 2005).
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Turbulence stresses transport angular momentum

Closure model of Shakura & Sunyaev (1973)
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Solids in a turbulent disk
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Instantaneously, the drag force pushes the solids
towards the pressure gradient

t=614.3 t=614.3
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-Turbulent eddies are very efficient particle traps
-Correlation between gas and solids density maxima

Solids

200 0.50

0.25

0.00

100 1

max(p,)

%]
o
T
1

0 5 10 15 20
t/(2n<y;)

>3 orders of magnitude increase
in the solids-to-gas ratio.
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Including Self-Gravity: Gravitational Collapse into Dwarf Planets

Local model: MRI plus self-gravity
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Planet Formation

Planetesimal Hypothesis (Safronov 1969)

From dust to boulders
pum ->m: Electrostatic forces cause sticking

m ->km: HOW?2??
From planetesimals to protoplanets
km -> 1000 km: Gravity

From protoplanets to planets
Rocky Planets: Protoplanets collide

Gas Giants: Attract gaseous envelope
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Source: Lyra et al. (2008)
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Gentle Collisions

> High number density

Stopping Mechanism

Source: Johansen et al. (2007) R Tyl B>
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Source: Lyra et al. (2008a)
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> High number density OK
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The Dead Zone

Midplane 1s
- too dense (no cosmic ray ionization)
- too cold (no thermal ionization)

No ionization, no MRI turbulence...

2 Protosun/star
uv, ical, X-
optica '_r{y} J_:,.J

accretion
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Layered Accretion in a T Tauri Disk

e

" ACTIVE LAYER

- I
Q_—::_____ ~ DEAD ZONE
— ACTIVE Laypg

——

—_—

thermal COSIMic ray
ionizalion emzalion

critical radius
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Source: Gammie et al. (1996)
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iii. midplane
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disk in shadow?



T T T T T T T T
[
Paper Il - A szmple Dead Zone model
4 B 4
3 4
Astronomy & Astrophysics manuscript no. deadzone (€] ESO 2008 a
Tuly 16, 2008 §
‘=
=
[=9
w
2F .
Embryos grown in the dead zone Iegul‘q_r accretion
Assembling the first protoplanetary cores
in low mass self-gravitating circumstellar disks of gas and solids }
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Contest, In the borders of the dead wones of proteplanetary disks, the inflow of gas produces a local density masimum
that triggarrs the ossby wave instability. The vortioes that form are efficient in trapping solids.

Ainrzs, YW aim b assess the possibility of gravitational collapse of the solids within the Rossby vortices,

Methods We perform global simulatians of the dynamics of gas and solids in a law mass ran-magnetized s Fgravitating
thin protoplanetary disk with the Pencil code. We wse multiple particle species of radivs 1, 10, 3, and 100 cm. The dead
zone i mosdelled as a region of low vissosity,

Remults, The Feasby vortices excited in the edges of the dead zone are very efficient particle traps. Within 5 orbits after their
appearance, the solicds achieve crifical density and underge gravitational clapse ik Mars sieed objects. The velocity
dispersions are of the order of 10 ms~! for newly foemed embryos, laber lowering ko less than 1ms"! by drag force
cooling. Afwer 200 orbits, 38 gravittionally bound embryos were formed irside the vortioes, half of them being more
massive than Mars, The embeyas are composed pri of same-sieed particles,

Conciusions. The presence of a dead sone naturally gives rise o a population of (L1-0.6 My protoplanetary coves, on very

astro-ph]

Inflow discontinuity triggers the Rossby wave instability (RWI)...

Alpha-disk with viscosity jumps

Source: Varniere & Tagger (2006)

...that saturates into vortices
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A simple Dead Zone model with particles
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Alpha-disk with viscosity jumps
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* Time between apperance of the vortices and collapse into a Mars
sized embryo: 5 orbits
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*Internal velocity dispersion is far below escape velocity
*Even the maximum velocity is below escape velocity
*Internal velocities of the order of 1-10 m/s.

Gentle enough to prevent catastrophic collisions

-

*Mass spectrum by the end of the simulation
*38 bound clumps were formed, half of them above Mars mass
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The counter-intuitive role of Self-Gravity...
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Paper 1V — Enter the Dead Zone...
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Planet formation bursts in the edges of the dead zone
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ABSTRACT

Comtext. In the borders of the dead zones of protoplanetary disks, the inflaw af gas produces a local density masimum
at

that triggers the Rossry wave
i b e R‘tln'

lations af r]u-. mamics of 5

lty. The vortices that form are efficient in trapping salids.

vithin the Rossby vortices
and salids in a low mass nan-magnetized self-gravitating

fon 1Ia B
Ihnpl\l\p itk .:Iu with the Pencil Code. We use mulbples parficle species of radius 1, 10, 30, and 100 em. The dead

zome is modelled region of low visoo
ibed in the edp
eritical .:Il-m.m and undl

= are very efficient particle traps. Within 5 orbits after their
itab d sized chjects. The veloci
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1. Introduction

The ill fate of the building blacks of planets in gasecus
disks around young stars stands as one of the majpor un-
sclved problems in the theory of planet formation. Our
current level of undw-.i.:ndm;.. mdicates that solids in cir-
cumstellar disks migrate into the star (Weidensclulling
i collisions (Bere ot al. 2000) con
that are much too short bo allow the assem-
lwl\ of kilometer gized bodies that can grow further with-
ot siich problems. A major advancement was achieved
Ly Balliss & Hawley (1991), who showed that the gas in
ar dlisks is subject to the magnets-totatinnal
ARL; Velikhov 1959, Chandrasekhar 1960) in
ervcee of Sufficient ionization and weak magnetic
adling to the eiergence of & poverful burbulence.
lent pressure maxima ack to trap solids particles
(Haghighipour & Boss, 2003), recent models (fohansen ot
al, E\I\. 1 tely en such turbulence to breach these bare
the turbulence is hydromagnetic in natu
regenice of 4 zote in the midplane where ionization is
wimitle 1994) 14 a4 fain problem of hs scenario.
ciitly there was a suggestion that at the border of
dead” zooe, a pressure inversion oocours, also trap-
ping solid material. [f such mechanism is efficient enou;
o assemble planetary cores it would be the solution of a
major problem in understanding the formation of plane-
fary systems.

Send affri yraifastro.u.se

me-sized partic

es.
o populatian of 01116 Mg proteplanctary cares, on very

2. Dynamical Equations

We work in the thin disk ap) [i m\:m.:tmn, using the verti-
b

. which read

cally itteg fhpd
Ak,
= e VIL -V et i)
Iy
e Vue LL‘_V.*-W:_ =)
FE VW (VES) + il Ey)

o,

=Vt fy
GM,

I the above eqiiabons G i3 the gravitabonal constant,
Iy and Ly ase the vertically integrated gas density
Duilk density of solids, respectively; i stands for the
ity of thee gas parcels; x; is the p\whun and v is the veloe-
ity nf the solid particles, P is the vertically ine
siite, o, is the sound speed, @ the gravitational potential, v

Gory details not touched on in the letter

Width of the viscosity jump

Survival of vortices

Drag force cooling

Mass loss
Tidal disruption
Erosion

Aerodynamical sorting

Response of the RWI to
Drag force backreaction
Self-gravity

Accretion through the dead zone



The counter-intuitive role of Self-Gravity...

Gravitational Collapse — Resolution 512° — 4 x 10° particles
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A (very) simple tidal model

Tidal force
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Size sorting
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Preferential trapping for particles of 10 and 30 cm radii

Differential drag — aerodynamical sorting

First bound structures are formed of same-sized particles



Erosion

The liquid drop analogy of Cuzzi et al. (2008)

Stability: ram pressure vs surface tension Erosion - 1=5.0
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Tidal Disruption + Size sorting + Erosion = Hell in the inner disk
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Tidal Disruption + Size sorting + Erosion = Hell in the inner disk
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What triggers the vortices?

Rossby Wave Instability
(Lovelace et al 1999, Li et al 2000, Li et al 2001)

-Non-Axisymetric
> Q

2
K

-Triggered by an extremum of 7 — (P2 Y)Y (=pressure bumps)

HYDRO INSTABILITY IN DISKS:

Varying v jump Gas Surf Density — /210, =30
2r - . ——— 3 3
. - [ 2
radial perturbations !
- 1
K°+N°<0 g -2 ' ’ \
=z L = 0 :
A 5 |
epicyclic frequency Brunt-Viisili frequency T -1
-G 1 2miy }:13§ _o
azimuthal perturbations I 5
dL d’ L 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
;_O drz = trsh

-Perturbed enthalpy obeys  n’''+C(r)n=0 (i.e., Trapped! Modes experience growth)

- Dispersion relation similar to that of Rossby waves in planetary atmospheres
- Saturated state: Vortices when RWs break and coalesce
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Accretion through the dead zone

The Rossby waves carry angular momentum...

Accretion through the Dead Zone Dead Zone average
ar (o0 0T R R L R R L LRI LR LR I R B
-1
0.003
- _2- E
q 5 s n.002F
(2] #
L [
-3 -
0.001
4
-5 0,000 Eae e d e e e et
4 6 8 10 0 10 20 30 40
r (AU v 2meg' )

.. and accrete through the Dead Zone with alpha ~ 3e-3
Similar to the MRI itself!! (1e-2)

Does the RWI revive the Dead Zone?
Shall we speak of an “Undead Zone’ instead?



Paper V — Home on Lagrange

Assess the possibility of a giant planet triggering a second round of planet formation

Interesting locations:
Lagrangian points
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Gap edge vortices

Standing on the shoulders of giants Zz=0

Trojan Earths and vortex trapping
in low mass self-gravitating protoplanetary disks of gas and solids
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ABSTRACT

Context, Centimeter ard meter sized salid particles in protoplanctary disks are trapped within lang lived high pressure regions,
creat r\-.,\-pp\\rmnlt s for collapse into planetesimals and |\|.uh| v embryos.,
udy the effect of the high pressune regions generated in the gaseous disks by a giant planet perturbs
of gas retained in r.;.:lpoll' crbibs around the stable Lagrangian paints as a gap is carved, and the Rosl

L undu\i at kh\‘!\.‘]ho-cuf the gap.
Methads. We perfa s nan-magnetized sedf-gravitsting thin
protoplanetary disk 'M\elmph\ the Pencil code bo salve the E ulonan hydmo exquations, tracing the salids with  large number of
Lagrar 100000 o compute: the gravitational potential of the swarm ofsolids, we sabve the Poissan equation
using Partic] th muliple
Results. Hugge particle comcentrations are seen in the Lagrangian points of the :
in the edges of the carved gaps. For Lem to 10cm mdii, gravifational callapse accurs in the Lagrangian paints in Jess than 200
orhits. For Sc 2 planet is formed. For 10 cm, the final maximum collapsed mass The collapse of the L em

i indirec wing the imescale of depletion of gas from the tadpol I\‘\-li‘lla In the ed sap vorboes are excited,
trapping preferentially parkcles of 30cm radii. The mecky plant that i casth
For 40 em anwasds, collapse doss not occus. By wsing mulfiple par 5
the tadpole region around the classical L4 and L5 points. As a result, particles of different radii have their stable points shifted to
different Incations. Collapse therefare takes longer and produces planets of lower mass. 5 Esrth mass planets are formed in the
wortices, the mest magsive having 4.4 M
Conchesians. A [upiter mass planet can induce the formation of other planetary embryos in the outer edge of its gas gap, explaining,
perhaps, the farmation of Satum. Trojan Earth mass planets are easily formed, and although not existing in the solar system, might
bee comman in the exoplanetary zoo.
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1. Introduction ready rapid Hmescale of radial deift of the rocks (0.1-1

meter size) and boulders (1-10 meter gize).
Lostiyg angular momentum by frichon with the ambicnt

gaseous headwind, meter sized bodies in profoplanetary As colliding boulders have very poor sticking prep-
disks spiral inko the star in fimescales as short as a hun-  efHes (Benz 2000), 3 possible scenario for the formation
dred years (Weidenschilling 1977). Avolding this fate 15 of planetesimals i disect gravitabicaal collapse of the

a major unsolved prroblem in modern astrophysic layer of boulders (Goldreich & Ward 1973). This l"‘”" C are fOr Some p article S ?

question of the formation of rocky planets is in Ay esis was met with crificism because fo route for ac
connectid with this problem, since the kilometer sized 08 critical densities could be found (Wesdenschilling &
Dodies (planetesimals) whence ey are believed to form  Cuiel 1993, buit it has recently gained momentum due o

from (Saftonov, 1969) must be formed faster than the al- 8 Serles of major progresses in modeling the coupled dy-
namics of gas and solids through both analytical calcu-

i : wlyrailastroom se lations and numencal simulations. Youdin & Goodman
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Summarizing...

Gravitational collapse of an interstellar cloud

Outward transport of angular momentum through turbulence generated by
the MRI. Dust coagulates into pebbles and boulders, sedimenting towards
the midplane.

Rocks in the turbulent medium are trapped in transient pressure maxima
and undergo collapse into planetesimals and dwarf planets.

The presence of a dead zone excites the RWI. Inside vortices, the first
dozens of Mars-mass embryos are formed.

Embryos collide and give rise to the oligarchs (?)

When Jupiter is formed, a second round of planet formation is
triggered (Trojan planets, Saturn?)

Nice model: Jupiter and Saturn cross 2:1 MMR and define the architecture

of the Solar System




Work in progress

*Extend the simplistic model to a 3D configuration, modeling the dead zone with the MRI and
ambipolar diffusion, to study how the RWI reacts to these more realistic conditions.

3D Vortices

Expected date of disputation — March 2009

Future Work

- Inclusion of a coagulation/fragmentation model (?)
(with Frithjof Brauer, Kees Dullemond, and Andras Zsom, MPIA-Heidelberg)



Theoretical Modelling
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