Evolution of Circumstellar Disks and Planet Formation

Wladimir Lyra

New Mexico State University

UNSAM – Buenos Aires - Aug 8th, 2024

ST**A**T**E**

Quick Bio

Wladimir Lyra

Interests: Planet formation, accretion disks, hydrodynamics, computational methods.

Faculty New Mexico State University, NM 2019 – (tenured 2022). California State University, Northridge CA, 2015-2019. Visiting Faculty Nagoya University, Nagoya, Japan 2015. Max-Planck Institute for Astronomy, Heidelberg Germany 2018, 2019. **Postdocs** Hubble Fellow @ Jet Propulsion Laboratory – Caltech, 2011-2015. American Museum of Natural History (New York NY), 2009-2011. Ph.D. Uppsala University (Uppsala, Sweden), 2004-2009. Nordic Institute for Theoretical Physics (Stockholm, Sweden). Max-Planck Institute for Astronomy (Heidelberg, Germany). **Research Assistant** European Southern Observatory (Garching, Germany, 2003). Cerro Tololo Interamerican Observatory (La Serena, Chile, 2003-2004). Lisbon Observatory, Portugal (2003). Space Telescope Science Institute (Baltimore MD, 2002). B.Sc. Federal University of Rio de Janeiro (Brazil), Astronomy, 1999-2003.

The PFITS+ Collaboration

Planet Formation in the Southwest

ΡΙ

Wladimir Lyra – New Mexico State University

Co-ls

Andrew Youdin - University of Arizona Jake Simon – Iowa State University Chao-Chin Yang – University of Nevada, Las Vegas (now University of Alabama) Orkan Umurhan – NASA Ames

Postdocs

Debanjan Sengupta - Ames -> NMSU Leonardo Krapp - UA -> Universidad Concepción Daniel Carrera - ISU -> NMSU Rixin Li - UA -> UC Berkeley Tabassum Tanvir - ISU

Graduate Students

NMSU - Daniel Godines, Victoria de Cun, Manuel Cañas. ISU – Jeonghoon Lim, David Rea, Olivia Brouillette UNLV – Alex Mohov, Stanley Baronett, Sricharan Balaji UA – Eonho Chang

Astronomy and

'20, '21, '24

Exoplanet Research Program - '23 Emerging Worlds - '21, '22, '23, '24 Astrophysics grants Future Investigators in NASA Earth and Space Science and Technology - '23,'24 Theoretical and Computational Astrophysics Networks - '20

NMSU Computational Astrophysics group

Postdoctoral Scholars

Debanjan Sengupta Dust growth, meteoritics, Turbulence and accretion.

Daniel Carrera Planetesimal formation, pebble accretion

Graduate Students

Harrison Cook 5th year Black hole mergers Transients in AGN

Sarah Chinski 3rd year Europa's ice shell convection

Daniel Godines 3rd year Observational signatures of streaming instability

Graduated and former members

Ali Hyder Jupiter's atmospheric dynamics and geochemistry.

Manuel Cañas Formation of Kuiper ^{y.} belt objects.

Victoria de Cun Planets in AGN disks

Incoming graduate students

Eleanor Serviss (U Montana) Gravitational Instability Leopold Hutnik (U Wisconsin) Kuiper belt objects

Olivia Brouilette (Iowa State) Early planet formation

Planet Formation

Matthew Bate University of Exeter

Circumstellar/Protoplanetary Disks

PP disk fact sheet

Density: 10¹³ – 10¹⁵ cm⁻³ (Air: 10²¹ cm⁻³)

Temperature: 10-1000 K

Scale: 0.1-100AU

Mass: $10^{-3} - 10^{-1} M_{sun}$

Composition: 5:2 H₂-He mixture. 1% metals.

The Astronomer's Periodic Table

Planet Formation

"Planets form in disks of gas and dust"

A miracle happens —

Dust evolution

Headwind and Dust Drift

The gas has some pressure support (sub-Keplerian).

The pebbles do not feel gas pressure (Keplerian).

Dust coagulation and drift

Dust particle coagulation and radial drift

F.Brauer, C.P. Dullemond Th. Henning

Brauer et al. (2008)

Streaming Instability

The dust drift is hydrodynamically unstable

Youdin & Goodman '05, Johansen & Youdin '07, Youdin & Johansen+ '07, Kowalik+ '13, Lyra & Kuchner '13, Schreiber+ '18, Klahr & Schreiber '20, Simon+ '16, '17, Carrera+ '15, '17, '20, Gole+ '20, Li+ '18, '19, Abod+ '19, Nesvorny+ '19

Gravitational collapse into planetesimals

Johansen et al. (2007)

nature astronomy

Fingerprints of streaming instability

How can we verify the streaming instability hypothesis?

Planetesimal Formation

Initial mass function consistent with mass distribution of asteroid belt. Slope 1.6

Space Facts / Laurine Moreau

Structure of the Kuiper Belt

Classicals: Presumably pristine planetesimals

Gladman+ '08, Lacerda '09, Batygin+ '10

New Horizons Trajectory

Arrokoth (MU₆₉)

New Horizons Flyby, Jan 2019

Classical KBOs: Preference for Prograde

Counting binaries: Preference for Prograde (~80%)

Preference for Prograde (~80%)

Exponential tapering at high mass end of IMF

Simulations

Observations (OSSOS survey)

Figure 1. The H_r distribution of the cold main Kuiper Belt. The gray dashed line represents the distribution of raw detections in the OSSOS++ sample. The orange curve (shown as a dotted line for $H_r > 8.3$, where our sample debiasing is less secure) represents the debiased OSSOS++ sample, with the shading indicating the Poisson 95% confidence range. The black lines represent two exponentially tapered functions matched (see Section 3) to the debiased OSSOS++ data with forced large- H_r (small object) asymptotic slopes (dotted: $\alpha = 0.5$; solid: $\alpha = 0.4$). For $H_r < 9$, the two model curves are nearly identical. The debiased OSSOS++ measurements are well matched by the exponential taper form. The boxes represent literature-derived estimates; see Table 1 and Section 2.2.1. The cyan diamond with uncertainty represents a direct debiasing of detected cold classicals in B04. The black open circles are located where the MPC database indicates a cumulative total of 3 ($H_r \sim 5.1$) and 11 ($H_r \sim 5.51$) main-belt cold objects.

The mass-density relationship of Kuiper Belt objects

The Astronomer's Periodic Table

The Astronomer's Periodic Table

Bimodal pebble composition

Heating and UV irradiation remove ice on Myr timescales (Harrison & Schoen 1967)

- Small grains lofted in the atmosphere lose ice
- Big grains are shielded and remain icy.

Split into icy and silicate pebbles

The first planetesimals are icy

Pebble Accretion

Klahr & Henning '97, Klahr '06, Lyra+ '08, '09, '23, Inaba & Barge '08, Ormel & Klahr '10, **Lambrechts & Johansen '12** See Johansen & Lambrechts '17 for a review

Pebble Accretion

Bondi Accretion

i≡ view	On spherically symmetrical accretion Show affiliations Bondi, H. The special accretion problem is investigated in which the motion is steady and spherically symmetrical, the gas being at rest at infinity. The pressure is taken to be proportional to a power of the density. It is found that the accretion rate is proportional to the square of the mass of the star and to the density of the gas at infinity, and varies inversely with the cube of the velocity of sound in the gas at infinity. The factor of proportionality is not determined by the steady-state equations, though it is confined within certain limits. Arguments are given suggesting that the case physically most likely to occur is that with the maximum rate of accretion.	
Abstract		
Citations (1857)		
References		
Co-Reads		
Similar Papers		
Volume Content		
Graphics	Publication	Monthly Natices of the David Astronomical Society Vol. 112, p. 105
Metrics	Pub Date:	1952
Export Citation	DOI:	10.1093/mnras/112.2.195 🖸
E FEEDBACK	Bibcode:	1952MNRAS.112195B 🚱

Feedback/Corrections?

Pebble Accretion: Geometric, Bondi, and Hill regime

Bondi accretion - Bound against thermal (dynamic) kinetic energy Hill accretion - Bound against stellar tide

'н.

Bondi radius

Capture radius

$$\xi \equiv \left(\frac{R_{\rm acc}}{2H_d}\right)^2 \qquad \dot{M}_{\rm 3D} = \lim_{\xi \to 0} \dot{M} = \pi R_{\rm acc}^2 \rho_{d0} \delta v,$$
$$\dot{M}_{\rm 2D} = \lim_{\xi \to \infty} \dot{M} = 2R_{\rm acc} \Sigma_d \delta v,$$

Integrate pebble accretion

Pebble Accretion: Pebbles of different size accrete differently

Drag time = Time to cross Bondi sphere

Drag time ~ Orbital Time

$$\rho_d(a, z) = \int_0^a m(a') F(a', z) da'.$$

$$F(a, z) \equiv f(a) \ e^{-z^2/2H_d^2},$$

$$f(a) = \frac{3(1-p)Z\Sigma_g}{2^{5/2}\pi^{3/2}H_g\rho_{\bullet}^{(0)}a_{\max}^{4-k}}\sqrt{1+a\frac{\pi}{2}\frac{\rho_{\bullet}(a)}{\Sigma_g\alpha}} \ a^{-k}.$$

$$\begin{split} S &\equiv \frac{1}{\pi R_{\rm acc}^2} \int_{-R_{\rm acc}}^{R_{\rm acc}} 2\sqrt{R_{\rm acc}^2 - z^2} \exp\left(-\frac{z^2}{2H_d^2}\right) dz, \\ W(a) &= \frac{3(1-p)Z\Sigma_g}{4\pi \rho_{\bullet}^{(0)} a_{\rm max}^{4-k}} a^{-k}, \\ \delta v &\equiv \Delta v + \Omega R_{\rm acc}, \\ R_{\rm acc} &\equiv \hat{R}_{\rm acc} \exp\left[-\chi(\tau_f/t_p)^{\gamma}\right], \end{split} \qquad \hat{R}_{\rm acc}^{({\rm Bondi})} &= \left(\frac{4\tau_f}{t_{\rm B}}\right)^{1/2} R_{\rm B}, \\ \frac{\partial \Sigma_d(a)}{\partial a} &\propto a^{-p}; \\ \rho_{\bullet} \propto a^{-q}; \end{cases} \qquad t_p &\equiv \frac{GM_p}{(\Delta v + \Omega R_{\rm H})^3} \end{split}$$

$$\dot{M}(a) = \int_0^a \frac{\partial \dot{M}(a')}{\partial a'} da',$$
$$\frac{\partial \dot{M}(a)}{\partial a} = \pi R_{\rm acc}^2(a) \,\delta v(a) S(a) m(a) f(a).$$

$$\dot{M}_{2\mathrm{D, Hill}} = 2 \times 10^{2/3} \Omega R_H^2 \int_0^{a_{\mathrm{max}}} \mathrm{St}(a)^{2/3} m(a) W(a) \, da.$$
$$\dot{M}_{3\mathrm{D, Bondi}} = \frac{4\pi R_B \Delta v^2}{\Omega} \times \int_0^{a_{\mathrm{max}}} \mathrm{St} \ e^{-2\psi} m(a) f(a) \bigg[1 + 2 \bigg(\mathrm{St} \frac{\Omega R_B}{\Delta v} \bigg)^{1/2} e^{-\psi} \bigg] da,$$
$$\psi \equiv \chi [\mathrm{St}/(\Omega t_p)]^{\gamma}.$$

Monodisperse (single species)

$$\dot{M}_{3D} = \lim_{\xi \to 0} \dot{M} = \pi R_{acc}^2 \rho_{d0} \delta v,$$

 $\dot{M}_{2D} = \lim_{\xi \to \infty} \dot{M} = 2R_{acc} \Sigma_d \delta v,$
Lambrechts & Johansen (2012)

Polydisperse (multiple species)

$$\dot{M}_{\rm 2D,Hill} = \frac{6(1-p)}{14-5q-3k} \left(\frac{St_{\rm max}}{0.1}\right)^{2/3} \Omega R_H^2 Z \Sigma_g.$$

$$\dot{M}_{\rm 3D,Bondi} \approx C_1 \frac{\gamma_l \left(\frac{b_1+1}{s}, j_1 a_{\rm max}^s\right)}{s j_1^{(b_1+1)/s}} + C_2 \frac{\gamma_l \left(\frac{b_2+1}{s}, j_2 a_{\rm max}^s\right)}{s j_2^{(b_2+1)/s}} + C_3 \frac{\gamma_l \left(\frac{b_3+1}{s}, j_3 a_{\rm max}^s\right)}{s j_3^{(b_3+1)/s}} + C_4 \frac{\gamma_l \left(\frac{b_4+1}{s}, j_4 a_{\rm max}^s\right)}{s j_4^{(b_4+1)/s}},$$

Lyra et al. (2023)

Lyra et al. 2023

Accretion Rates

Bondi (low-mass) regime is 1-2 orders of magnitude more efficient than monodisperse

Lyra et al. 2023

Growing Pluto by silicate pebble accretion

Growing Pluto by silicate pebble accretion

Resulting Densities vs Mass relations

Simon et al. 2023

Vortices – an ubiquitous fluid mechanics phenomenon

Von Kármán vortex street

Kelvin-Helmholtz Instability

Convection

Lyra & Klahr (2011) Klahr & Hubbard (2014) Lyra (2014) Latter (2016) Volponi (2016) Reed & Latter (2021) Raettig et al. (2021)

Vortex Trapping

Grains do not feel the pressure gradient. They sink towards the center, where they accumulate.

Aid to planet formation

(Barge & Sommeria 1995, Tanga et al. 1996, Adams et al. 1996)

Speeds up planet formation enormously

(Lyra et al. 2008b, 2009ab, Raettig et al. 2012, 2021)

Vortex Trapping

Vortex Trapping – Initial Mass Function

Disk Observations

Disks are optically thick in infrared and optically thin in millimeter

To witness planet formation we must observe in millimeter

A class of disks with missing hot dust.

Disks with missing hot dust.

☆

al line

Planetary companion

These cavities may be the telltale signature of forming planets

PDS 70 and PDS 70b

A way to directly study planet-disk interaction

Planet-disk interaction: gaps, spirals, and vortices.

Observational evidence: gaps, spirals, and vortices

The ALMA Partnership et al. (2015)

Muto et al. (2012)

van der Marel et al. (2013)

The Atacama Large (sub-)Millimeter Array (ALMA)

The Very Large Array (VLA)

The ALMA Revolution

Before ALMA

ALMA

Dust traps in disks: ALMA Cycle 0 (2012)

Oph IRS 48

A Major Asymmetric Dust Trap in a Transition Disk

Nienke van der Marel,¹* Ewine F. van Dishoeck,^{1,2} Simon Bruderer,² Til Birnstiel,³ Paola Pinilla,⁴ Cornelis P. Dullemond,⁴ Tim A. van Kempen,^{1,5} Markus Schmalzl,¹ Joanna M. Brown,³ Gregory J. Herczeg,⁶ Geoffrey S. Mathews,¹ Vincent Geers⁷

The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter–wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star, originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.

A lthough the ubiquity of planets is confirmed almost daily by detections of new exoplanets (1), the exact formalong-standing problem in astrophysics (2). In

iencemag.org SCIENCE VOL 340 7 JUNE 2013

1199

ک

van der Marel+ '13

A huge vortex observed with ALMA

Drag-Diffusion Equilibrium

Trapped particle

Analytical Solution for dust in Drag-Diffusion Equilibrium

Steady-state solution

$$\rho_d(a,z) = \epsilon \rho_0 (S+1)^{3/2} \exp \left\{ -\frac{\left[a^2 f^2(\chi) + z^2\right]}{2H^2} (S+1) \right\}$$
Lyra & Lin '13

$$S = \frac{St}{d'}$$
$$\delta = v_{\rm rms}^2 / c_s^2,$$

- *a* = vortex semi-minor axis
- H = disk scale height (temperature)
- χ = vortex aspect ratio
- δ = diffusion parameter
- St = Stokes number (particle size)
- $f(\chi)$ = model-dependent scale function

Disk Tomography SPHERE-ALMA-VLA overlay of MWC 758

Marino+Lyra '15

Pebble trapping

Model vs Observation

• Vortex-trapped dust in drag-diffusion equilibrium explains the observations

$$\rho_d(a,z) = \varepsilon \rho_0 (S+1)^{3/2} \exp\left\{-\frac{\left[a^2 f^2(\chi) + z^2\right]}{2H^2} (S+1)\right\}$$

The future

After 10 years of ALMA...

Nearly all nearby disks observed at <0.1" (< 20-30AU) show substructures.

3 main types of substructures

- Crescent-shaped
- Spiral arms
- Rings/Gaps

Next Generation Very Large Array (ngVLA)

Planets at 5AU

ALMA @ 0.87mm

ngVLA @ 3mm

5 mas = 0.7 AU

Ricci et al. 2018

ngVLA identifies gaps/substructures down to ~5-10 M_{Earth}

ngVLA: Proper motions

Jupiter at 5 AU

Planet Formation

"Planets form in disks of gas and dust"

A miracle happens —

Planet Formation

Protoplanets Rocky Planets Planetary Cores

Conclusions

- Two routes for planet formation
 - Streaming instability
 - Vortex trapping
- Streaming Instability fits
 - slope of asteroid belt distribution,
 - prograde-retrograde distribution of Kuiper belt objects
 - Low density of small classical Kuiper belt objects
- Pebble accretion is a very efficient planetary growth mechanism
 - Polydisperse Bondi accretion 1-2 orders of magnitude more efficient than monodisperse
 - Silicate pebble accretion explains densities of high-mass Kuiper belt objects
- "Crescents" seen in observations of disks
 - Properties match those of vortices
 - Vortex-trapped dust in drag-diffusion equilibrium explains the observations