Evolution of Circumstellar Disks and Planet Formation

Wladimir (Wlad) Lyra

California State University Northridge (CSUN) Jet Propulsion Laboratory

UPPSALA UNIVERSITET

+ + + Observatório

Collaborators

Aaron Boley (Vancouver), Axel Brandenburg (Stockholm), Kees Dullemond (Heidelberg), Mario Flock (JPL), Anders Johansen (Lund), Tobias Heinemann (KITP), Hubert Klahr (Heidelberg), Min-Kai Lin (ASU), Mordecai-Mark Mac Low (AMNH), Colin McNally (Copenhagen), Krzysztof Mizerski (Warsaw), Satoshi Okuzumi (JPL), Sijme-Jan Paardekooper (London), Nikolai Piskunov (Uppsala), Natalie Raettig (Heidelberg), Alex Richert (PSU), Neal Turner (JPL), Miguel de Val-Borro (Princeton), Andras Zsom (MIT).

University of California Santa Cruz, Nov 14th, 2016

Outline

- Observational constraints
- Planet Formation
 - The need for turbulence
 - Active and dead zones
 - Magneto-rotational instability
 - Convective Overstability
- Active/dead boundary
 - Rossby wave instability
- Vortex-trapping mode of planet formation
- Spiral features in circumstellar disks

Protoplanetary Disks

Disk lifetime

Disks dissipate with an e-folding time of 2.5 Myr

Planet Formation

Gas-rich phase (< 10 Myr) *Primordial Disks*

Gas-poor phase (>10 Myr) Debris Disks

Planet Formation

Planetesimal Hypothesis (Safronov 1969)

From dust to peebles μm -> cm : hit-and-stick by van der Walls

From planetesimals to planetary embryos km -> 1000 km : Gravity

From planetary embryos to planets

Rocky planets: binary collisions Gas giants: Attract gaseous envelope

Planet Formation

Planetesimal Hypothesis (Safronov 1969)

From dust to peebles μm -> cm : hit-and-stick by van der Walls

> From pebbles to planetesimals Here be dragons....

From planetesimals to planetary embryos km -> 1000 km : Gravity

From planetary embryos to planets

Rocky planets: binary collisions Gas giants: Attract gaseous envelope

Particle drift

Particle Coagulation and drift

Dust particle coagulation and radial drift

F.Brauer, C.P. Dullemond Th. Henning

Brauer et al. (2008)

Streaming Instability

The particle drift is linearly unstable

Streaming Instability does not "work" for solar metallicity

Turbulence and Accretion in 3D Global MHD Simulations of Stratified Protoplanetary Disk

Magneto-Rotational Instability

Turbulence in disks is enabled by the Magneto-Rotational Instability (Balbus & Hawley, 1991)

Particle drift

Pressure Trap

Pressure Trap

Stellocentric distance

Turbulence concentrates solids mechanically in pressure maxima

Gravitational collapse into planetesimals

Johansen et al. (2007)

Dead zones

Lyra et al. (2008b, 2009a); See also Varniere & Tagger (2006)

radius

Rossby wave instability (or... Kelvin-Helmholtz in differentially rotating disks)

Vortices – an ubiquitous fluid mechanics phenomenon

Vortices – an ubiquitous fluid mechanics phenomenon

Von Kármán vortex street

Inner (0.1 AU) active/dead zone boundary

Magnetized inner disk + resistive outer disk Lyra & Mac Low (2012)

Inner (0.1AU) active/dead zone boundary

The Tea-Leaf effect

Particles do not feel the pressure gradient. They sink towards the center, where they accumulate.

Aid to planet formation

(Barge & Sommeria 1995, Tanga et al. 1996, Barranco & Marcus 2005)

Speed up planet formation enormously

(Lyra et al. 2008b, 2009ab, Raettig et al. 2012)

The Tea-Leaf effect

Particles do not feel the pressure gradient. They sink towards the center, where they accumulate.

Aid to planet formation

(Barge & Sommeria 1995, Tanga et al. 1996, Barranco & Marcus 2005)

Speed up planet formation enormously

(Lyra et al. 2008b, 2009ab, Raettig et al. 2012)

Vortices and Planet Formation

Collapse into Mars mass objects

(Lyra et al. 2008b, 2009a, Lambrechts & Johansen 2012)

Vortices and Planet Formation

Collapse into Mars mass objects

(Lyra et al. 2008b, 2009a, Lambrechts & Johansen 2012) Gas drag makes the motion dissipative. Enhances accretional radius.

Sustaining vortices in disks

Lovelace & Hohlfeld (1978), Toomre (1981), Papaloizou & Pringle (1984, 1985), Hawley et al. (1987), Lovelace et al. (1999), Li et al. (2000,2011), Tagger (2001), Varniere & Tagger (2006), de Val-Borro et al. (2007), Lyra et al. (2008b,2009ab), Mehuet et al. (2010, 2012abc), Lin & Papaloizou (2011ab, 2012), Lyra & Mac Low (2012), Regaly et al. (2012, 2013), Lin (2012ab, 2013), Ataiee et al. (2013, 2014), Lyra et al. (2014)

Powered by: Modification of shear profile (external vorticity reservoir)

Convective Overstability

Klahr & Bodenheimer (2003), Klahr (2004), Johnson & Gammie (2005), Petersen et al. (2007ab), Lesur & Papaloizou (2010), Lyra & Klahr (2011), Raettig et al. (2013) Klahr & Hubbard (2014), Lyra (2014), Latter (2015)

> Powered by: Buyoancy, thermal diffusion (baroclinic source term)

Convective Overstability (née Baroclinic Instability)

Sketch of the Convective Overstability

Lesur & Papaloizou (2010)

Armitage (2010)

Convective Overstability

Vortices and MHD

What happens when the disk is magnetized?

Lyra & Klahr (2011)

Vortices and MHD

H^N

Observational evidence in protoplanetary disks (Exonebulae)

Oph IRS 48

A Major Asymmetric Dust Trap in a Transition Disk

Nienke van der Marel,¹* Ewine F. van Dishoeck,^{1,2} Simon Bruderer,² Til Birnstiel,³ Paola Pinilla,⁴ Cornelis P. Dullemond,⁴ Tim A. van Kempen,^{1,5} Markus Schmalzl,¹ Joanna M. Brown,³ Gregory J. Herczeg,⁶ Geoffrey S. Mathews,¹ Vincent Geers⁷

The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star, originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.

lthough the ubiquity of planets is con- tion mechanism of planetary systems in disks firmed almost daily by detections of of gas and dust around young stars remains a new exoplanets (1), the exact forma- long-standing problem in astrophysics (2). In

iencemag.org SCIENCE VOL 340 7 JUNE 2013

1199

Down

van der Marel et al. 2013

A possible huge vortex observed with ALMA

asymmetric mm dust at 63 AU

Gas detection: Keplerian rotation

Micron-sized dust follows gas

"Asymmetries" everywhere

"Asymmetries" everywhere

Drag-Diffusion Equilibrium

Trapped particle

Drag-Diffusion Equilibrium

Analytical solution for dust trapping

Solution

$$\rho_d(a) = \rho_{d\max} \exp\left(-\frac{a^2}{2H_V^2}\right),$$

$$H_V = \frac{H}{f(\chi)} \sqrt{\frac{1}{S+1}}$$

$$S = \frac{St}{\delta}$$
$$\delta = v_{\rm rms}^2 / c_{\rm s}^2$$

a	= vortex semi-minor axis
H	= disk scale height (temperature)
χ	= vortex aspect ratio
δ	= diffusion parameter
St	= Stokes number (particle size)
f(X) = model-dependent scale function

Derived quantities

H = disk scale height (temperature)St = Stokes number (particle size) $\chi = \text{vortex aspect ratio}$ $f(\chi) = \text{model-dependent scale function}$ $\delta = \text{diffusion parameter}$ $\epsilon = \text{dust-to-gas ratio}$

Lyra & Lin (2013)

asymmetric mm dust at 63 AU

Gas detection: Keplerian rotation

Micron-sized dust follows gas

Turbulence in vortex cores

uzlc_s 0.0

0.0

х

0.1

0.2

-0.1

0.1

Lesur & Papaloizou (2010)

Turbulence in vortex cores:

max at ~10% of sound speed rms at ~3% of sound speed

Observed asymmetries consistent with vortices...

But origin still elusive...

Outer Dead/Active zone transition KHI

The **outer** dead zone transition in ionization supposed **TOO SMOOTH** to generate an KH-unstable bump.

Outer Dead/Active zone transition: 3D MHD

Resistive inner disk + magnetized outer disk Lyra et al (2015)

Outer Dead/Active zone transition KHI

Resistive inner disk + magnetized outer disk Lyra, Turner, & McNally (2015)

Outer Dead/Active zone transition RWI

Lyra, Turner, & McNally (2015)

Other Dead Zone Instabilities

Zombie Vortex Instability

Other Dead Zone Instabilities

Vertical Shear Instability

Observational evidence: gaps, spirals, and vortices

HL Tau

SAO 206462

Oph IRS 48

Observational evidence: Spirals

SAO 206462

MWC 748

Benisty et al. (2015)

Muto et al. (2012)

Spiral arm fitting leads to problems

Spirals are **too wide**, **hotter** (300K) than ambient gas (50K).

Benisty et al. (2015)

The strange case of thermal emission in HD 100546

L band (~3.5 μ m)

H band (~1.6 μm)

Currie et al. (2014), Currie et al. (2015)

Pinning down the temperature

L band

Lyra et al. (2016)

H band

Supersonic Wakes of High Mass Planets

Shock bores

Shocks (velocity convergence)

Radiative Transfer post-processing

Scattering in Image

Light scattered off gap outer edge

"Bird's eye view" synthetic image

Synthetic Images

λ = 3.5 microns (L' Band)

 λ = 1.65 microns (H Band)

Made with 138 degree position angles and 50 degree inclination angles to match Currie et al. (2014) observations.

Disk scaled by factor of 10 to map T Tauri 5 AU to Herbig Ae 50 AU

Comparison

Matching general morphologies

Effect of shocks alone

Hord et al. (2016, in prep)

Prediction for spectroscopy: Turbulent surf

Possible explanation for the brown dwarf desert?

Conclusions

- Two modes of planet formation: Streaming Instability and Vortices
- Two sustenance modes: Rossby Wave Instability and Convective Overstability
- Vortices do not survive magnetization
- Vortex-assisted and streaming instability are complementary
- Vortex-trapped dust in drag-diffusion equilibrium explains the observations

- Two modes of planet formation: Streaming Instability and Vortices
- Two sustenance modes: Rossby Wave Instability and Convective Overstability
- Vortices do not survive magnetization
- Vortex-assisted and streaming instability are complementary
- Vortex-trapped dust in drag-diffusion equilibrium explains the observations

- Two modes of planet formation: Streaming Instability and Vortices
- Two sustenance modes: Rossby Wave Instability and Convective Overstability
- Vortices do not survive magnetization
- Vortex-assisted and streaming instability are complementary
- Vortex-trapped dust in drag-diffusion equilibrium explains the observations

- Two sust
- Vortices (

ive Overstability

ces

· Vortex-assisted and streaming instability are complementary

- Two modes of planet formation
- Two sustenance modes: Rosst
- Vortices do not survive magne

$$\begin{split} \rho_d(a,z) &= \varepsilon \rho_0 \, (S+1)^{3/2} \, \exp\left\{-\frac{\left[a^2 f^2(\chi) + z^2\right]}{2 H^2} (S+1)\right\} \\ & \text{Lyra & Lin (2013)} \end{split}$$

Intensity (Jy/beam) .05 0.11 0.16 0.21 0.27 0.32

327

30 AU

- Vortex-assisted and streaming instability are complementary
- Vortex-trapped dust in drag-diffusion equilibrium explains the observations

0.00 0

Several candidates: RWI/COI/Planets

- Several possible culprits for asymmetries: RWI/COI/Planets
- Very high-mass planets: spirals, turbulent surf and high accretion rates (BD desert?)

- Two modes of planet formation: Streaming Instat
- Two sustenance modes: Rossby Wave Instability
- Vortices do not survive magnetization
- Vortex-assisted and streaming instability are corr
- Vortex-trapped dust in drag-diffusion equilibrium
- Several possible culprits for asymmetries: RWI/C

Very high-mass planets: spirals, turbulent surf and high accretion rates (BD desert?)

- Predictions:
 - Hot lobes next to high mass planets at high resolution
 - High(er) turbulence around the orbit of a high-mass planet
- Shocks from high-mass planets (~> 5 Mjup) is a significant source of radiation in disks.
- Shocks due to high mass planets better fits to observed spirals.

