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Shocks driven by high-mass planets
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ABSTRACT

Recent observations of gaps and non-axisymmetric features in the dust distributions of transition disks have been
interpreted as evidence of embedded massive protoplanets. However, comparing the predictions of planet-disk
interaction models to the observed features has shown far from perfect agreement. This may be due to the strong
approximations used for the predictions. For example, spiral arm fitting typically uses results that are based on low-
mass planets in an isothermal gas. In this work, we describe two-dimensional, global, hydrodynamical simulations
of disks with embedded protoplanets, with and without the assumption of local isothermality, for a range of planet-
to-star mass ratios 1-10 M, for a 1 Mg star. We use the PexciL Copk in polar coordinates for our models. We find
that the inner and outer spiral wakes of massive protoplanets (M 2 5 Mj) produce significant shock heating that
can trigger buoyant instabilities. These drive sustained turbulence throughout the disk when they occur. The
strength of this effect depends strongly on the mass of the planet and the thermal relaxation timescale; for a 10 M,
planet embedded in a thin, purely adiabatic disk, the spirals, gaps, and vortices typically associated with planet—
disk interactions are disrupted. We find that the effect is only weakly dependent on the initial radial temperature
profile. The spirals that form in disks heated by the effects we have described may fit the spiral structures observed
in transition disks better than the spirals predicted by linear isothermal theory.

Key words: hydrodynamics — planet-disk interactions — planets and satellites: formation — protoplanetary disks —
shock waves - turbulence
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ABSTRACT

Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks
often present spiral features. Spiral arms are among the structures predicted decades ago by numeri-
cal simulations of disk-planet interaction and thus it is tempting to suspect that planetary perturbers
are responsible for the observed signatures. However, such interpretation is not free of problems.
The spirals are found to have large pitch angles, and in at least one case the spiral feature appears
effectively unpolarized, which implies thermal emission at roughly 1000 K. We have recently shown
in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can
lead to significant heating if the disk is sufficiently adiabatic. In this paper we extend this analysis to
three dimensions in thermodynamically evolving disks. We use the PENCIL CODE in spherical coor-
dinates for our models, with a prescription for thermal cooling based on the optical depth of the local
vertical gas column. We use a 5M| planet, and show that shocks in the Lindblad lobes around the
planet heat the gas to substantially higher temperatures than the ambient disk gas at that radius. The
gas is accelerated vertically away from the midplane by the shocks to form shock bores, and the gas
falling back toward the midplane breaks up into a turbulent surf near the Lindblad resonances. This
turbulence, although localized, has high a values, reaching 0.05 in the inner Lindblad resonance, and
0.1 in the outer one. We also find evidence that the disk regions heated up by the planetary shocks
eventually becomes superadiabatic, generating convection far from the planet’s orbit.

Subject headings: hydrodynamics — planet-disk interactions — planets and satellites: formation —
protoplanetary disks — shock waves — turbulence
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Transition Disks: Disks with missing hot dust.
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Planet-disk interaction: gaps, spirals, and vortices.

sgrt(rho)

t=100.00

Lyra (2009)

See Clement Baruteau'’s talk



Observational evidence: gaps, spirals, and vortices

SAO 206462
0.5 arcsec =70 AU
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Observational evidence: Spirals
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SPHERE-ALMA-VLA overlay of MWC 758
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Spiral arm fitting leads to problems

Analytical spiral fit

Density wave shaped by planet
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The code comparison
project of 2006
(de Val-Borro et al. 2006)

Problem of choice:
2D ‘vanilla’ planet-disk interaction.
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The “hot spiral problem” has never been a problem

Wakes of high-mass planets are not sonic, but supersonic.

Jupiter-mass (non-linear)
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Spiral wake of high-mass planets in non-isothermal disks
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Some crazy turbulence showing up at high planet mass....

15 orbits 30 orbits
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Shows up for high-mass planets in adiabatic disks

Isothermal
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Shows up for long cooling times....

Tro = 0.1 orbits Tr0 = 1 orbit
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The energy source: shock heating!

Adiabatic

Adiabatic, but no shock heating
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The spiral is buoyantly unstable
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Shock bores
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3D shocks: bores and breaking waves
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Turbulent surf
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Turbulent surf
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Convection
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Convection
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log column density
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Outer Dead/Active zone transition:
Spirals without planets

Density Turbulent Potential

Waves launched at the active zone
propagate into the dead zone as a coherent spiral.

Lyra et al (2015a)



$=95.58 T,

Spirals without planets

Lyra et al (2015a)
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Summary and Conclusions

Shocks due to high mass planets yield good fits to observed spirals.

In addition to supersonic pitch angles, we predict:

« high-temperature lobes and turbulent surf near the planet
convection far from the planet’s orbit

Waves propagating into non-turbulent regions will be shaped into spirals
(careful before you shout “Planet!”)
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