Vortex theory meets observation: Is ALMA seeing vortices in transitional disks?

Wlad Lyra

Sagan Fellow

Caltech-JPL

The 5th Subaru International Conference, Dec 8-12, Kona, HI.

Collaborators: Hubert Klahr (MPIA), Min-Kai Lin (CITA), Mordecai-Mark Mac Low (AMNH) Natalie Raettig (MPIA), Neal Turner (Caltech-JPL)

Vortices – An ubiquitous fluid mechanics phenomenon

Dust does not feel the pressure gradient. Particles sink to the center

Also independently suggested by: Tanga et al. 1996 Adams & Watkins 1996

Drag-Diffusion Equilibrium

Trapped particle

Drag-Diffusion Equilibrium

Analytical solution for dust trapping

Solution

$$\rho_d(a) = \rho_{d\max} \exp\left(-\frac{a^2}{2H_V^2}\right),$$

$$H_V = \frac{H}{f(\chi)} \sqrt{\frac{1}{S+1}}$$

$$S = \frac{St}{\delta}$$
$$\delta = v_{\rm rms}^2 / c_{\rm s}^2$$

а	= vortex semi-minor axis
Η	= disk scale height (temperature)
χ	= vortex aspect ratio
δ	= diffusion parameter
St	= Stokes number (particle size)
$f(\chi)$ = model-dependent scale function	

Lyra & Lin (2013)

Analytical solution for dust trapping

Analytical vs Numerical

Gas

St=1

St=0.05

St=0.01

1.5

1.0

Derived quantities

$$\rho_{d}(a,z) = \varepsilon \rho_{0} (S+1)^{3/2} \exp \left\{ -\frac{[a^{2}f^{2}(\chi) + z^{2}]}{2H^{2}} (S+1) \right\} \qquad S = \frac{St}{\delta} \qquad \delta = v_{\rm rms}^{2} / c_{s}^{2},$$

$$F_{g}(a) = \rho_{g} \max \exp \left(-\frac{a^{2}}{2H_{g}^{2}} \right), \qquad Maximum dust density$$

$$\rho_{d} \max = \varepsilon \rho_{0} (S+1)^{3/2}$$

$$Gas \ contrast$$

$$\frac{\rho_{g} \max}{\rho_{g} \min} = \exp \left[\frac{f^{2}(\chi)}{2\chi^{2}\omega_{V}^{2}} \right], \qquad Dust \ contrast$$

$$\frac{\rho_{d} \max}{\rho_{d} \min} = \frac{\rho_{g} \max}{\rho_{g} \min} \exp(S),$$

$$Total \ trapped \ mass$$

$$Vortex \ size$$

$$\int \rho_d(a,z)dV = (2\pi)^{3/2} \varepsilon \rho_0 \chi H H_g^2$$

$$a_s = H(\chi \omega_V)^{-1}$$

H = disk scale height (temperature)St = Stokes number (particle size) $\chi = \text{vortex aspect ratio}$ $f(\chi) = \text{model-dependent scale function}$ $\delta = \text{diffusion parameter}$ $\epsilon = \text{dust-to-gas ratio}$

asymmetric mm dust at 63 AU

Gas detection: Keplerian rotation

Micron-sized dust follows gas

Turbulence in vortex cores

Lesur & Papaloizou (2010)

Lyra & Klahr (2011)

0.0

х

0.1

0.2

 u_z/c_s 0.0

-0.1

0.10

0.1

Turbulence in vortex cores:

max at ~10% of sound speed rms at ~3% of sound speed

It seems to have the properties of vortices.

But... is it really a vortex?

Sustaining vortices in disks

Known mechanisms

Rossby wave instability

Lovelace et al. (1999) Lyra & Mac Low (2012)

Powered by: Modification of shear profile (external vorticity reservoir)

Baroclinic instability

Klahr & Bodenheimer (2003) Raettig et al. (2013)

Powered by: Buyoancy, thermal diffusion (baroclinic source term)

Sustaining vortices

Rossby Wave Instability (or.... Kelvin-Helmholtz in rotating disks)

Rossby wave instability

Meheut et al (2010)

Needs a pressure bump.

Rule of thumb:

Modest ~30% local increase yet SHARP sharper than 2H.

(Lovelace & Hohlfeld 1978 Toomre 1981 Papaloizou & Pringle 1984,1985 Hawley 1987 Lovelace 1999 Li et al. 2000, 2001 Tagger 2001 Varniere & Tagger 2006 de Val Borro et al. 2007 Lyra et al. 2008b, 2009ab Meheut et al. 2010, 2012abc Lin & Papaloizou 2011ab,2012 Lyra & Mac Low 2012 Lin 2012,2013) Planetary gap RWI

The gap walls are sharp pressure transitions and thus RWI-unstable.

de Val-Borro et al. (2007)

The dust trap is too far from the planet!

A gap in gas emission suggests a 10 MJ planet at 15-20 AU.

The trap is centered at 63 AU.

Dead zone edge RWI?

Magnetized inner disk + resistive outer disk Lyra & Mac Low (2012)

Dead zone RWI fails!

The outer dead zone transition in ionization is TOO SMOOTH to generate an RWI-unstable bump.

Outer active zone/inner dead zone transition

The outer active/dead zone transition is TOO SMOOTH to generate an RWI-unstable bump.

Waves from turbulent zone propagate into dead zone as SPIRALS.

Baroclinic Instability - Excitation and self-sustenance of vortices

Baroclinic instability

Too close to isothermal for the baroclinic instability.

Addendum

The dust trap WAS too far from the planet!

New analysis (Bruderer et al. 2014) better explains the system, with a shallow gap at 60 AU, consistent with a (~x) Neptune-mass planet.

asymmetric mm dust at 63 AU

Gas detection: Keplerian rotation

Micron-sized dust follows gas

Drag force backreaction

HD 142527

Conclusions

We derived an analytical solution for vortex trapping (Lyra & Lin 2013).

Planetary gap RWI by a few x Neptune mass-planet at 60AU is feasible.

The revised gas density (Bruderer et al. 2014) makes it harder to interpret the dust trap of Oph IRS 48 as a drag-diffusion equilibrium phenomenon.

Maybe drag force backreaction (?).

