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Planet-disk interaction model predictions:
gaps, spirals, and vortices.

(Lyra et al. 2009b)



Observational evidence: gaps, spirals, and vortices

HL Tau SAO 206462 Oph IRS 48

0.5 arcsec =70 AU

Spiral structure

Spiral structure

The ALMA Partnership et al. (2015) Muto et al. (2012) van der Marel et al. (2013)
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Planet formation in protostellar disks through vortices in
layered accretion flows

Wiladimir Lyra

The field of planet formation and extrasolar planets, one of the most fascinating topics of con-
temporary astronomy, is intimately related to the problem of accretion and star formation. Early
mathematical considerations by Laplace (1796) applied Newton’s theory of universal gravitation
and laws of motion to a slowly rotating spherical cloud, implying that it should collapse under its
own weight. Due to conservation of angular momentum, the gas settles into a flat disk orbiting
the condensing proto-sun in the center, in which planet formation occurs. However, as interstellar
clouds are huge in size, even the slightest initial rotation means far too much angular momentum.
Even a formed disk stores in its innermost astronomical unit two orders of magnitude more an-
gular momentum than a star can accommodate before achieving break-up velocities. In order to
accrete, the gas must somehow get rid of its angular momentum. Even more difficult is to explain
the leap of 14 orders of magnitude in size from micron-sized interstellar grains to giant planets
such as Jupiter.

The modern paradigm requires the presence of turbulence in the disk in order to provide the
anomalous viscosity necessary for star formation. Turbulence can also assist the trapping of solids
needed to quickly aggregate the dust into progressively larger bodies, leading to planet forma-
tion. The most-favored mechanism for this turbulence is the magnetorotational instability (MRIL;
Balbus & Hawley 1998, and references therein), in which the combination of a weak (subthermal)
magnetic field and the shear present in the Keplerian rotation of the gas destabilizes the flow.

The MRI, as the name suggests, depends on the coupling between the gas and the magnetic
field, which in turn only occurs in the presence of sufficient ionization. In the inner disk this
condition is met, since the high temperatures provide enough free electrons. In the outer regions
the gas is cold but the column density of gas is thin enough for cosmic rays to penetrate all the way
to the disk’s midplane and provide ionization throughout. Through most of the disk, however,
the gas is too cold and too dense to be ionized in either way. The result is that, when threaded by
a weak magnetic field, the disk displays MRI-active regions in the ionized surface layers, and an
MRI-dead zone in the neutral parts around the midplane (Gammie 1996; Turmner & Drake 2009).
We seek here to examine whether there are instabilities at work within the dead zone, that would
lead to a steady-state accretion through it.

A promising yet largely unexplored possibility is the development of barodlinic instabilities
in the dead zone. A baroclinic flow is one where the pressure depends on both density and
temperature, as opposed to a barotropic flow where the pressure only depends on density. In
a baroclinic flow, the misalignment between surfaces of constant density p (isopycnals) and sur-
faces of constant pressure p (isobars) generates vorticity. This mechanism has long been known in



Vortex Trapping

Geostrophic balance:
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Coriolis Pressure
force force
0 2 4
Vortex Distance to the vortex
streamline Barge & Sommeria (1995)

Grains do not feel the pressure gradient.

They sink towards the center, where they accumulate.

Aid to planet formation
(Barge & Sommeria 1995, Tanga et al. 1996, Barranco & Marcus 2005)

Speed up planet formation enormously
(Lyra et al. 2008b, 2009ab, Raettig et al. 2012)



Vortex at turbulent/non-turbulent transitions
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Vortices and Planet Formation

Mass Spectrum #/(2nQ;")=200
Gas r P 0 1

Grid mass
Bound mass
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Collapse into Mars mass objects

(Lyra et al. 2008b, 2009a,
Lambrechts & Johansen 2012)




Oph IRS 48
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A Major Asymmetric Dust Trap
in a Transition Disk

Nienke van der Marel,** Ewine F. van Dishoeck,™? Simon Bruderer,? Til Birnstiel,> Paola Pinilla,*
Cornelis P. Dullemond,* Tim A. van Kempen,»* Markus Schmalzl,* Joanna M. Brown,?
Gregory ]. Herczeg,® Geoffrey S. Mathews,” Vincent Geers’

The statistics of discovered exoplanets suggest that planets form efficiently. However, there are
fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary
disks during planet formation. Recent theories invoke dust traps to overcome this problem. We
report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from
the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter—wavelength
continuum map shows high-contrast crescent-shaped emission on one side of the star, originating
from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and
the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star.
The difference in distribution of big grains versus small grains/gas can be modeled with a
vortex-shaped dust trap triggered by a companion.

firmed almost daily by detections of of gas and dust around young stars remains a

3 Ithough the ubiquity of planets is con- tion mechanism of planetary systems in disks
new exoplanets (/), the exact forma- long-standing problem in astrophysics (2). In

iencemag.org SCIENCE VOL 340 7 JUNE 2013 1199

van der Marel et al. 2013

A huge vortex observed with ALMA



The Oph IRS 48 “dust trap”
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Gas detection:
Keplerian rotation

Micron-sized
dust follows gas



Vortices everywhere!

HD1353448B

HD142527




MWC 758
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Drag-Diffusion Equilibrium

Steady-state solution

04(a,2) =€pg (S +1)%2 exp {— [a2f2§71€1)2+ Z] (S + 1)}

Lyra & Lin (2013)

- -

Drag force Diffusion a = vortex semi-minor axis

H = disk scale height (temperature)
¥ = vortex aspect ratio

o0 = diffusion parameter

St = Stokes number (particle size)
f(x) = model-dependent scale function

Trapped particle St



Derived quantities

2 + 2
04(a,z) =epo (S +1)3/? exp{—[a fzéfl)z : ](S+1)}
B o ) L_yra &_Lin (2013) )
Gas distribution Maximum dust density
a? 3/2
Pg(a) = Pgmax €XP “oH2 )’ Pdmax = €po (S +1)
g
Gas contrast Dust contrast
Pgmax _ exp f2(x) pdmf‘x = pgm?x exp (S),
Total trapped mass Vortex size
[ pata,)av = (2m)*'? epo xHHE as = H(xwv)™!

H = disk scale height (temperature) St = Stokes number (particle size)
y = vortex aspect ratio f(x) = model-dependent scale function

6 = diffusion parameter ¢ = dust-to-gas ratio
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Analytical vs Numerical vs Observational

Dust distribution
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Observational vs Analytical
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Observational Evidence: Spirals

SAO 206462

0.5 arcsec =70 AU

Spiral structure

Spiral structure

Muto et al. (2012)
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Spiral arm fitting leads to problems

Analytical spiral fit Spirals are too wide,
hotter (300K) than ambient gas (50K).
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HD 100546

L band (~3.5 pm) H band (~1.6 pm)

Currie et al. (2014), Currie et al. (2015)
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March 31, 2012

Disk Feature/
Spiral Arm?

Observation vs Synthetic Image
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Scattering

— A puffed up outer gap

Meridional Density
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o [radians]

Primary and Secondary spiral arms

Midplane Density at Last Snapshot
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Primary and Secondary spiral arms

Scattered Light
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Fung & Dong (2015)



Planets in Transitional Disks?
HD 163296 and HD 100546
No? Yes?

V—n
>

Candidate planet not recovered Likely 2" epoch recovery of HD 100546 b and c;
(Rich et al. in prep) orbital motion (T. Currie, in prog.)

Slide by T. Currie




Planets in Transitional Disks? LkCa 15

the outer edge of a

bright extended inner L=
disk ‘ bS\

Currie, Margis, Cieza et al. in prep December 2017,
Keck/NIRC2 Lp

Slide by T. Currie
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Conclusions

Vortex-trapped dust in drag-diffusion equilibrium explains the observations

Pending: Are observed vortices caused by planets?

3D radiation-hydro models needed to explain spirals and extended features

Planet-induced shocks modify disk structure

Hot lobes near high-mass planets in high resolution

Planets puff up their outer gaps — visible in scattered light






HD 163296 V883 Ori
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V883 Orionis is an FU Orionis star
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Episodic Accretion — Loading a dead zone

dead zone

» cosmic
non-thermal ionization rays?

of full disk column

X-rays

resistive quenching
of MR, suppressed

coIIisiosnaI ionizationfat angular momentum MRI-aktive ambipolar diffusion
T>100K (r<1AUJ, transport surfacd\layer dominates
MRI turbulent

0.1 AU ~30 AU

There should be a magnetized, active zone
and a non-magnetic, dead zone



Possible FU Ori triggers

planet-indiced burst
disk-fragmentation burst]
disk-fragmentation burst-
MR burst (Gl trigger) |
MRI burst (IDZE trigger)

20 30 50 100

Time (yr)

Audard et al. (2014)

200 300

500 1000



Signature of a snowline: Spectral index
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Signature of a snowline: Optical depth

Optically thick

Optically thin
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Snowline pushed outward during outburst

(a) Quiescent

snow-line
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Cieza et al. (2016)



The model

2=2(g) o[- ()]

Girr = O Tipy = T [(Ii ) Hy, (dH H) 42 (&)3] Stellar heating

dr r 372\ r

q;;:c - iMQ%( - GSbT:cc
8 _ _
: Viscous heating
M
v = —
37
4 _ m4 4 Effective temperature
Teff — Crirr + Tacc P

T = STh( Tmia+ 2 +T;’lrr
mid — 4 acc mid 3 9

Chiang et al. (2001), Alarcon et al. (in prep)




104 Temperature Profile without Accretional Heating
| 43 —— 81 —— 89 |
— 710 — 82 *  Brightness Temp

Alarcon et al. (in prep)
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Viscous heating
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Conclusions

First water snowline observed;

Brightness temperature needs active heating;

Fit consistent with accretional inner disk, passive outer disk;

Self-shadowing reproduced;

Episodic accretion is powering V883 Ori !

« Whatis the mechanism???

« (Can we use it to study whatever is causing it?

Gravitational instability ?
Magnetorotational instability ?
Planet?

All of the above?



