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Sharp and eccentric rings in debris disks:
Signposts of planets
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Sharp and eccentric rings in debris disks:

Signposts of planets ?
However.....
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ARSTRACT
The nearky Ad-type sizr Fomalhaut hesis a debns belt in the form ol an sccentne nng, which is thought to ke
caused by dynamical influence from a gianl planct companicn. In 2008, a detection of a poinl souwrce inside the
inner edge of the ring was reported and was tnterpreted as a direct image of the planet. named Fomalhaut b The
detection was made al ~600-800 nm, but po corresponding signatures were found i the near-infrared range, where
the bulk emission of such a planet should be expected. Here, we present deop obsorvations of Fomalhaut wath
Spatzer/ITAL at 4.5 pm, using a novel poinl-spread funchon subiraction technicgue based on angolar differential
imul.'in;.: and |.-.'-\.'u|'|:|-' []plirni..-:q.'d Combination of |n1'.1l.'q..'.-:. in order to :.|.||'~:-.I:~|nli:1||3.' imrll'--'.'\-..' the ."",r-'-;n':ﬂ'.l' conlrzsl at
small separations. The mesults previde more than an order of magnitude improvement in the upper Aus limit of
Fomalhaut b and exclude the possability that any Aux from a giant planet surface contributes o the ohserved flus
NASA ESA P Kala at visible wavelengths, This menders any divect connection between the observed light source and the dynamically
and M. Clampin (NA | infermred giant planct highly unlikely, We discuss several possible interprelations of the total body of chsarvations
af the Fomalhaut sysiem and find that the inlerpretation that best matches the available data For the ohserved sowree
is scattered |ip|'|l from a bransienl oo semi-transient dust clowd.
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Sharp and eccentric rings in debris disks:

Signposts of planets ?
However.....

Fomalhaut Deb
Direct Imaging Confirmation and Characterization of a

Mo Dust-Enshrouded Candidate Exoplanet Orbiting Fomalhaut
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ABSTRACT

We present Subaru/IRCS J band data for Fomalhaut and a (re)reduction of
archival 2004-2006 HST/ACS data first presented by Kalas et al. (2008). We
confirm the existence of a candidate exoplanet, Fomalhaut b, in both the 2004
and 2006 F606W data sets at a high signal-to-noise. Additionally, we confirm
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it still seems to "quack” like a planet



Some of the Fom b controversy

Janson et al. 2011
Boley et al. 2012

Variability by 0.7-0.8 mag in F606W
band

Astrometric orbit not apsidally aligned
with the ring

No infrared emission
Not seen by ALMA

Emission in optical required scattering
by cloud of several Jupiter radii

Outer ring edge also sharp

Currie et al. 2012
No variability found within 0.15 mag in
the same band
Consistent with apsidal alignment

Thermal emission from a 0.5 M_ planet

(enough to sculpt the debris disk) would
not be detectable anyway.




Are there
alternative explanations?



Debris disks are not completely gas-free

Beta Pictoris Hubble Space Telescope » ACS/HRC
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Gas in debris disks

Detections

B Pictoris many species Lagrange et al. (1998), ..

51 Ophiuchi  many species Roberge et al. (2002)

oHerculis CII,NII  Chen & Jura (2003)

HD 32297 Na I, CII Redfield (2007), Donaldson et al. (2012)

HD 135344 HZ2,CO Thi et al. (2001), Pontoppidan et al. (2008)
49 Cefti H2, CO Dent et al. (2005), Roberge et al. (2012)
AU Mic H? France et al. (2007)

HD172555 Si0 Lisse et al. (2009)

Source of gas: Outgassing processes

Infalling comets Beust & Valiron (2007)
Grain sublimation e.g. Rafikov (2012)
Grain-Grain collisions  Czechowski & Mann (2007)
Photo-stimulated desorption Chen et al. (2007)
Planet-Planet collisions Van den Ancker (2001), Lisse (2008)
Primordial?




Dust density

Dust and gas together leads to instability...

Klahr & Lin (2005)

Suggested that an instability
might cause dust in debris
disks to clump together.



Dust pressure trap

G: Gas

High pressure ring
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Dust pressure trap

P: Particles
G: Gas N
High pressure ring Direction of particle acceleration
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Dust pressure trap

Du _
Gas —=—Vo—p 1Vp The drag force
Di w=u+tp 'Vp pushes the particles toward
Particles d_w: Vo _M the pressure gradient
dt T
P: Particles
G: Gas N
High pressure ring Direction of particle acceleration
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Photoelectric heating

In optically thin debris disks,
the dust is the main heating agent for the gas.

Dust intercepts starlight directly,
emits electron, that heats the gas.

Gas is photoelectrically heated by the dust itself




Runaway process: instability

Dust heats gas
Heated gas = high pressure region
High pressure concentrates dust



Runaway process: instability

Dust heats gas
t Heated gas = high pressure region )
High pressure concentrates dust



Model equations

Klahr & Lin (2005) used a simplified, 1-D model.

0 10
—Xg + ——r2v, = 0. Continuity equation
ot ror
i Terminal veloci
¢ = 0%, ar erminal velocity

7\ 8
1q =1y (E—g) : Equation of state



Model equations

Our simulation adds much more physics, and works in 2D.

Klahr & Lin (2005)

1D
0 10
I+ -Lrnw =0,
ot r@rr dv
V¢=QT+2912'9;1P

) 6]
nen ().
0

Inertia for both gas and dust
Energy equation

Drag force and
drag force backreaction

Lyra & Kuchner (2012)
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Linear Analysis
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Instability

Dust heats gas )
High pressure concentrates dust
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Ring width

Ring spacing and width is determined by the
wavelength of maximum growth.

Growth rate Re[s]/Q Ring width vs Viscosity
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Which in turn is determined by viscosity

Ring width ~ 10 Kolmogorov lengths



Time

1,

Robustness

Growth over 4 orders of
- magnitude in dust-gas >
coupling time (friction time)
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Oscillations

Thermal coupling time
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Growth rate Re[s)/Q
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Solutions

Growth rate Re[s)/Q Damping rate log, (—Re[s]/Q)  Oscillation frequency log, ,(|Im[s]|/2)
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Solutions
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Overstability

Instability

Oscillations
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Max growth rate: Omega/2.
Million-fold amplification in five orbits!

A very powerful instability.
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Azimuth

The model in 2D: Eccentric rings

Growth of axisymmetric modes

‘ = Rings W

Damping of nonaxisymmetric modes.
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make the ring appear eccentric nm







Ring eccentricity
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Summary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.

+ Direction of particle acceleration

Gas pressure




Summary

Thermocentrifugal instability in Debris Disks with Gas:

No radial drift, and axissymetric linear modes.
Nothing to do with the streaming instability



Summary

Thermocentrifugal instability in Debris Disks with Gas:

Robust to inertia, drag backreaction, thermal time, friction time
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Summary

Thermocentrifugal instability in Debris Disks with Gas:

Rings of width ~10 4 (A ~ I AU for Fomalhaut at 100 AU)

Ring width vs Viscosity
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Summary

Thermocentrifugal instability in Debris Disks with Gas:

Linear for dust-to-gas ratio <=1, nonlinear beyond

Growth rates o=10"" Nonlinear growth
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Summary

Thermocentrifugal instability in Debris Disks with Gas:
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Produces sharp narrow eccentric rings. Caution before shouting "Planet!”.
Not all that glitters is gold...



Summary

Future Work:

3D

Kinetic theor

Interplay wi‘rK streaming instability

Extra physics: Photophoresis, Collisions, Magnetic Fields
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ABSTRACT

Debris disks should not be cc-mpletelv gas—free since there is second generation gas from out-
gassing of planetesimals and dust grains via sublimation, hc:tcdeac-rpt‘ion or collisions, genernﬁn
a system of dust-to- as ratio close to unity, where hydrodynamics cannot be ignored. A clum ing
l.l'lst"lblllt‘r' exists in this configuration, that has been hitherto explored only in one-dimensional, in-
cc:mpresmble models. We performed 2D numerical compressible models of a disk with com arable
amounts of gas and dust to study the growth and development of this instability. Our model solves
the momentum equation for the gas and dust, together with energy and cc-nhnultv equ’lhnns We
uncover that the backreaction of the drag force from the gas onto the dust shepherds rings, similar
to those observed in debris disks and usually attributed to the presence of hypothetical undetected

lanets. We also uncover that the e-:-:entrlcltv of these rings, usually presented as convincing evi-
dence for the presence of a planet, can actuallv be simply explained bv a standing wave propagating
along the ring. The rings support a spech'u.tn of oscillations, with one particular mode representing
eplcvchc motion. The apparent eccentricity matches the eccentricity in observed systems. This sug-
gests that the planet possibility, though thrilli.ng,. is not necessarily requirecl toex pla.in these systems.

1. INTRODUCTION

Disks around young stars : appear to pass through an
evolutionary phase when the disk is Dphmllv ~-thin and
the dust to gas ratio is of order unity give or take an or-
der of magnitude. It can be hard to recisely measure
the total masses of the dust and gas in such “disks, but
the nearby stars § Pictoris (Lagrange et al. 1998; Olofs-
son et al. 2001; Brandeker et al. 2004; Roberge et al. 2006;
Troutman et al. 2011), HD32297 (Redfield 2007), 49 Ceti
(Zuckerman et al. 1995) and HD 21997 (Moor et al. 2011)
all host disks of dust resembling ordinary debris disks
and also have stable circumstellar gas detected in molec-
ular CO, Na I or other metal lines; the inferred mass of

The result of this instability could be that the dust and
gas clump into rings or splrnl patterns or other struc-
tures that could be detected via coronogr dphl:: imag-
ing or other methods. Indeed, images of debris disks
and transitional disks show a range of asymmetries
and other structures that beg for explanation. Klahr
& Lin (2005) raised the possibility that the instability
they hypothesized could explain some of the observed
structures. Alternative explanations for these structures
sometimes rely on planetary perturbers—a tantalizing
possibility. But we are interested in investigating any
possible explanation for these disk structures that does
not require a ]'udden planetarv cc:mp’uuc-n

h W 3 b | 1 ™
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