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Narrow sharp eccentric ringNarrow sharp eccentric ring Detection of a source Detection of a source 
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it still seems to “quack” like a planetit still seems to “quack” like a planet
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Some of the Fom b controversySome of the Fom b controversy

Janson et al. 2011
Boley et al. 2012

Variability by 0.7-0.8 mag in F606W 
band

Astrometric orbit not apsidally aligned 
with the ring

No infrared emission

Not seen by ALMA

Emission in optical required scattering 
by cloud of several Jupiter radii

Outer ring edge also sharp

Currie et al. 2012

No variability found within 0.15 mag in 
the same band

Consistent with apsidal alignment

Thermal emission from a 0.5 MJ  
planet 

(enough to sculpt the debris disk) would 
not be detectable anyway. 



Are thereAre there
alternative explanations?alternative explanations?  



Debris disks are not completely gas-freeDebris disks are not completely gas-free

VLT imaging by 
Nilsson et al.  (2012)

Dust Dust 

GasGas



β Pictoris
51 Ophiuchi
σ Herculis
HD 32297
HD 135344
49 Ceti
AU Mic
HD172555

many species
many species
C II, N II
Na I, CII
H2, CO
H2, CO
H2
SiO

Lagrange et al. (1998), …
Roberge et al. (2002)
Chen & Jura (2003)
Redfield (2007), Donaldson et al. (2012)
Thi et al. (2001), Pontoppidan et al. (2008)
Dent et al. (2005), Roberge et al. (2012)
France et al. (2007)
Lisse et al. (2009)

Gas in debris disksGas in debris disks

Infalling comets
Grain sublimation

Grain-Grain collisions
Photo-stimulated desorption

Planet-Planet collisions
Primordial?

DetectionsDetections

Beust & Valiron (2007)
e.g. Rafikov (2012)

Czechowski & Mann (2007)
Chen et al. (2007)
Van den Ancker (2001), Lisse (2008)

Source of gas: Outgassing processesSource of gas: Outgassing processes



Dust and gas together leads to instability...Dust and gas together leads to instability...

Klahr & Lin (2005)

Suggested that an instability 
might cause dust in debris 
disks to clump together. 
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Dust pressure trapDust pressure trap
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Dust pressure trapDust pressure trap
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GasGas D u
Dt

=−∇  −−1 ∇ p
w=u −1 ∇ p

ParticlesParticles  

The drag force The drag force 
pushes the particles pushes the particles towardtoward  
the pressure gradientthe pressure gradient



Photoelectric heatingPhotoelectric heating

In optically thin debris disks,
the dust is the main heating agent for the gas. 

g
e-

Dust intercepts starlight directly,Dust intercepts starlight directly,
emits electron, that heats the gas. emits electron, that heats the gas. 

Gas is photoelectrically heated by the dust itself Gas is photoelectrically heated by the dust itself 



Dust heats gas
Heated gas = high pressure region
High pressure concentrates dust

Runaway process: instabilityRunaway process: instability



Dust heats gas
Heated gas = high pressure region
High pressure concentrates dust

Runaway process: instabilityRunaway process: instability



Model equationsModel equations

Klahr & Lin (2005) used a simplified, 1-D model.

Continuity equation

Terminal velocity

Equation of state



Model equationsModel equations

Inertia for both gas and dust

Energy equation

Drag force and 
drag force backreaction

Klahr & Lin (2005)
1D

Lyra & Kuchner (2012)
2D

Our simulation adds much more physics, and works in 2D. 
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Linear and nonlinear growthLinear and nonlinear growth

Linear growth only exists for ε < 1
But there is 

nonlinear growth 
beyond !



InstabilityInstability
Dust heats gas

Heated gas = high pressure region
High pressure concentrates dust
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Narrow hot dust rings
Cold gas collects between rings



Ring widthRing width
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Ring widthRing width

Ring spacing and width is determined by the 
wavelength of maximum growth. 

Which in turn is determined by viscosity

Ring width ~ 10 Kolmogorov lengthsRing width ~ 10 Kolmogorov lengths



RobustnessRobustness
Ti

m
e

Radius

Growth over 4 orders of 
magnitude in dust-gas 

coupling time (friction time)



Thermal coupling time

OscillationsOscillations

Oscillations appear 
with decreasing thermal time.



SolutionsSolutions
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SolutionsSolutions

Instability Instability 

OverstabilityOverstability

Damped Damped 
and freeand free

OscillationsOscillations

Wavenumber

D
us

t-
to

-g
as

ra
ti

o

=d /  g

A5B4C3D2EF=0

A=1
B=2  2
C=2  n22   3
D= 2n2  3n22   2
E= 22 n21  3 n22  2

F= 2n2 −  n2

Dispersion relationDispersion relation

n=kH =s /



SolutionsSolutions

Instability Instability 

OverstabilityOverstability

Damped Damped 
and freeand free

OscillationsOscillations

Wavenumber

D
us

t-
to

-g
as

ra
ti

o

=d /  g

A5B4C3D2EF=0

A=1
B=2  2
C=2  n22   3
D= 2n2  3n22   2
E= 22 n21  3 n22  2

F= 2n2 −  n2

Dispersion relationDispersion relation

n=kH =s /

Damped  

Free  

Free  
Over  

Free  

Over  

Damped  

Damped  



Instability Instability 

OverstabilityOverstability

OscillationsOscillations

SolutionsSolutions

Max growth rate: Omega/2.
Million-fold amplification in five orbits!

 
A very powerful instability.



The model in 2D: Eccentric ringsThe model in 2D: Eccentric rings

Epicyclic oscillations 
make the ring appear  eccentric !!! eccentric !!! 

Growth of axisymmetric modes 
+ 

Damping of nonaxisymmetric modes.
= Rings !!!Rings !!!
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star
ring “center”

Eccentricity e=0.04

Ring eccentricityRing eccentricity



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields

Ga
s 

pr
es

su
re

Direction of particle acceleration

Direction of gas acceleration

Su
pe

r-
Ke

ple
ria

n Sub-Keplerian

g
e-



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields



SummarySummary

Thermocentrifugal instability in Debris Disks with Gas:

Driven by pressure trapping + photoelectric heating.
 
     No radial drift, and axissymetric linear modes.
     Nothing to do with the streaming instability 

Robust to inertia, drag backreaction, thermal time, friction time

Rings of width ~10 l
n
 (l

n 
~ 1 AU for Fomalhaut at 100 AU)

Linear for dust-to-gas ratio <= 1, nonlinear beyond

Produces sharp narrow eccentric rings. Caution before shouting “Planet!”.
    Not all that glitters is gold... 

Future Work:

3D
Kinetic theory
Interplay with streaming instability
Extra physics: Photophoresis, Collisions, Magnetic Fields



arXiv:1204.6322arXiv:1204.6322



arXiv:1204.6322arXiv:1204.6322

Thanks for your attention !Thanks for your attention !
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