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ARTICLEINFO ABSTRACT

The New Horizons flyby of the cold classical Kuiper Belt object MU69 showed it to be a contact binary. The

Keywords:
Bt existence of other contact binaries in the 1-10 kin range raiss the question of how common these bodies areand /- | Received 31 October 2019 Received in revised form 20 April 2020;|Accepted 27 April 2020

" how they evolved into contact. Here we consider that the pre-contact lobes of MUG9 formed as a bin:
;:fe':’ ml?:::;x embedded in the Solar nebula, and calculate its subsequent orbital evolution in the presence of gas drag. We find
w that the sub-Keplerian wind of the disk brings the drag timescales for 10 km bodies to under 1 Myr for quadrgtic-

velocity drag, which is valid in the asteroid belt. In the Kuiper belt, however, the drag is linear with velocipy and
the effect of the wind cancels out as the angular momentum gained in half an orbit is exactly lost in other
half; the drag timescales for 10 km bodies remain 210 Myr. In this situation we find that a combigfation of
nebular drag and Kozai-Lidov oscillations is a promising channel for collapse. We analytically solvg the hier-
archical three-body problem with nebular drag and implement it into a Kozai cycles plus tidal friction/model.

permanent quadrupoles of the pre-merger lobes make the Kozai oscillations stochastic, and we find that when gas
drag is included the shrinking of the semimajor axis more easily allows the stochastic fluctuatiohs to bring the
system into contact. Evolution to contact happens very rapidly (within 10% yr) in the pure/ double-a¥erage
quadrupole, Kozai region between =85 — 95", and within 3 Myr in the drag-assisted regign beyond it. The
synergy between J» and gas drag widens the window of contact to 80" — 100" initial inclination, ovef a larger

in the asteroid belt, and an initial contact binary fraction of about 10% for the cold classjcals in Kuiper belt.
The speed at contact is the orbital velocity; if contact happens at pericenter at high eccentricity, i€ deviates from
the escape velocity only because of the abl ind. dently of the i or axis,/For MU69, the
oblateness leads to a 30% decrease in contact velocity with respect to the escape!v/%:lty, the/latter scaling wi*’

you for submitting

Thank

the square root of the density. For mean densities in the range 0.3-0.5 g cm >, the gontact velocity should
— 4.2 m s ', in line with the observational evidence from the lack of deformatigh featurgs and estime
tensile strength.

1. Introduction The flyby showed MU69 to be a fontact/binary where the two lobes
have dimensions 20.6 x 19.9 x 9.4 and 15.4 x 13.8 x 9.8 km

On Jan 1st 2019 the New Horizons spacecraft flew past 2014 MUG9 (+£0.5%0.5%2, Stern et al., 2019)/ Their Aimilar colors and composition,
(hereafter referred to as MU69), a small (=30 km) trans-Neptunian as well as axial alignment indicafe thatthe individual lobes formed close

WIladimir Lvra
October 31, 2019

object, recently renamed “Arrokoth”. Its low-eccentricity and low- to one another, and underwent orbitil evolution that led to contact. The
inclination orbit identifies it as a “cold classical” Kuiper Belt object close formation is backed by 6bservational data suggesting a high binary Pa per Subm|tted. Because THlS S hOW to 50|Ve
(CCKBO, Brown, 2001; Kavelaars et al., 2008; Petit et al., 2011). Unlike fraction among CCKBOs (: , and possibly larger due to observational

ariddle!

the heavily processed comet 67P/Churyumov-Gerasimenko visited by limitation, Noll et al., 2008a; Aeillet et al.,, 2002; Petit et al., 2008;
the Rosetta mission, MUG9 is presumably a pristine planetesimal kept Grundy et al., 2011; Frgker et/al., 2017). Nearly equal-sized contact bi-
undisturbed for the entirety of its 4.6 Gyr residence in the Kuiper belt. naries represent 10%/25% 6f cold classicals (Thirouin and Sheppard,
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I'm afraid that | don't see a Nature paper in this. It's fairly generic and obvious, and as we didn't publish any of the original MUG9
papers, there's not an obvious connection. I'm rather skeptical that Nature Astronomy would be interested.
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The Cartoon Image

The Formation of 2014 MUG69

About 4.5 billion years ago... = -..1 January 2019.

< Qa

A rotating cloud of small, icy bodies starts to

Eventually two larger bodies remain.
coalesce in the outer solar system.

The two bodies slowly spiral closer

until they touch, forming the bi-lobed
object we see today.
& riew Horzons / NASA / JHUAPL / SwRI / James Tuttle Keane ! 4

W. Lyra Sketch by J.T. Keane



Arrokoth and Pluto ices are different

Arrokoth : Methanol, H,0O, HCN

I/F

0.25

0.201

0.151

CH3;0H + H,0
(Grundy et al. 2019)

Pluto : CH,, N,, CO

Methane Nitrogen

Carbon Monoxide

0.10-
=== Scaled Pholus
Scaled 2002 VE95
—4— 2014 MU69 Global
0.05- $ Lobe 1 MVIC
$ Lobe2MVIC
$ Spots MVIC
$ Neck MVIC
0.00 - . . . - . . .
0.4 0.6 0.8 1.0 1.2 1.4 1.6 18 20 22 24

Wavelength (microns)

W. Lyra

Grundy et al. (2016), Lisse et al. (2020)




Retention of volatiles

If Pluto is formed from similar bodies to Arrokoth, they must retain volatiles
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Retention of volatiles

| .|
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Hypervolatiles (CH, / CO / N,)
lost under vacuum pressure and microgravity in ~1 Myr
for 40 K
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Formation via Streaming Instability
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Hardening

W. Lyra

Sketch by J.T. Keane



How was angular momentum lost?

Before After

Slow merger

Mutual orbit (~2 m/s: human walking speed)

(i.e., not captured)

P ol

Inferred from:
alignment of component minor axes, Inferred from:
small angular momentum, Negligible evidence for impact damage
similar colors.

W. Lyra



Angular momentum loss via nebular drag

gravity drag
e
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W. Lyra Lyra, Youdin, & Johansen (2021)
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Hardening during disk lifetime

For unequal mass the physics is similar, the
drag time is just replaced by an effective drag time: T

—

Effective drag time Angular momentum
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W. Lyra Lyra, Youdin, & Johansen (2021)



Analytical solution

Exponential decay of angular momentum Exponential decay of semimajor axis Exponential increase of orbital velocity

Angular momentum Semimajor axis Azimuthal Velocity
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W. Lyra Lyra, Youdin, & Johansen (2021)



Semimajor axis
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Analytical solution

Time until contact

T ap
t=—In—2
2na

For a=0.1ry, (6000 km), hardening to a,=20km and z2=107 ...

t ~ 100 Myr

Lyra, Youdin, & Johansen (2021)



wind

Low pressur

The gas has some pressure support.

The planetesimal has none.

W. Lyra



At initial separation a ~ 4000 km:

Binary orbital velocity ~ 0.1 m/s

Solar orbit velocity at 45AU
Vk - 45 km/S

Sub-Keplerian pressure support
V=V (I-n)
n~0.01

Headwind velocity (v,-v):
nv ~ 50 m/s

Subkeplerian wind on the binary
= 500 times orbital velocity

W. Lyra

Lyra, Youdin, & Johansen (2021)




W. Lyra
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Wind solution

Orbit

1.00 -
075 -
0.50
025 -

T 0.00 -
—0.25
—0.50
—0.75 4

—1.00 A

W. Lyra

T
—1.5

|
110 0.5 0.0 0.5 1.0
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Angular momentum loss at constant energy.

Eccentricity increase at constant semimajor axis



Timescales

Drag time vs distance - MMSN
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Lyra, Youdin, & Johansen (2021)

Wind has a strong effect in the
distances of the asteroid belt.

Little effect in the Kuiper belt.
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Linear vs quadratic drag

fdrag(v)

| — General
Linear drag
Quadratic drag

Viscous

W. Lyra
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W. Lyra

THE ASTROPHYSICAL JOURNAL, 733:56 (9pp), 2011 May 20
© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/733/1/56

WIND-SHEARING IN GASEOUS PROTOPLANETARY DISKS AND THE EVOLUTION

3.2.1. Linear Drag Regime

In the following treatment, we assume that vy, remains
constant over a single binary orbital period Py;,, which is good
for Ubin/Vbin 3> Poin- Note that this assumption requires not only
that Timerge 5> Pyiy/2 but also that m;vyin/ Fp gisk > Poin, Where
Fp gisk 1s the drag force experienced by the small body moving
at relative velocity vgisx with respect to the gas. We address the
complication of non-circular orbits in future work.

In the linear regime, Fp o< vy, With ve equal to the relative
velocity of the small body with respect to the gas, containing
components from the binary orbit and from the overall motion
of the binary through the gas disk. Therefore, Fp | = Fp/v
is constant over the binary orbit. The linear regime is valid
for the Epstein and Stokes drag regimes, but the value of Fp
in the two regimes differs (see Section 2.1). We may now express
the orbit-averaged drag force as

(Fo) = 5 [ Fodo wind averages out
0
B FD.l 2

= (Upin 10 6 + Vgik) dO = Fp 1Uhin,  (21)
27?.' 0

where 6 is the angle of the binary in its orbit. The term vy, sin @
is the bulk velocity component of the small planetesimal parallel
to the direction of motion in the binary frame of reference, so
that ve] = Upin SING + vgig. Over a full orbit the contribution
from vy averages out and

t
Tmerge = ? ’ (22)

OF BINARY PLANETESIMALS

HAGA1 B. PERETS AND RUTH A. MURRAY-CLAY

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02338, USA
Received 2010 December 13; accepted 2011 March 18; published 2011 May 4

PERETS & MURRAY-CLAY

with z,, equal to the stopping time of a single small planetesimal
in the gaseous protoplanetary disk:

(pp) f—’ Epstein
Liop = ms Pg /) Vth )
w0 = T4 :
Fp.1 5 (pp) krj Stokes.
Pg Uth

Recall that in the linear regime, the stopping time is independent
of the relative velocity between the planetesimal and the gas.
Note that single planetesimals with stopping times longer than
an orbital time inspiral into the star on a timescale of ~Zsp /7.
The same processes are at work in both cases—infall into the
star is slower than binary coalescence because the gas and
planetesimals orbit the star together, reducing their relative
velocities.

The timescale for coalescence is independent of dy;y,, and the
total merger time for a binary is

d
Tmerge = Tmerge In (r_[)) ) (23)
b

where dyi, = dj initially, and r, is the final binary separation
before coalescence.

Perets & Murray-Clay (2011)

3.2.2. Quadratic (Ram Pressure) Regime

‘We now consider the quadratic regime, for which Fpp o ”rzep

appropriate for ram pressure drag. Following the same procedure
as above, but using Fp» = Fp/ vfel with Fp » a constant, we get

{Fp) = i fuzn(vbm $in 6 + vaigk)>d6 wind doesn It
Vaisk \ > average out
. (ﬂ) } : (24) g

2

= Fpavg, [1+ 3
£:2%in [ 2\ Vbin
In other words, the ram pressure drag force requires an effective
relative velocity correction of [1+0.5(vgisk/ Upin)?]—in this case
the contribution from the bulk velocity drag did not average out.
Now,

Tsiop(Vbin) /2
Tmerge = smp—_m/_z ’ (25)
1+ O-S(Udlsk/”bm)

where fyop(Vpin) is the stopping time for vy = vpip. In the
quadratic regime, #y,, is not independent of vy, so to make
dependences clearer, we rewrite this expression as

. __ m/QFp)
BT Ubinl L+ 0.5(Vaiskc/ Vbin)?]
mg
m, Ubin 2> Vdisk
Maths (26)
s Ubin
=2 Vbin K Vdisk
Fp avgi
Plugging in Fp, for ram pressure drag and vy, =
(Gmp/dyin)'?, this corresponds to
~ 2 (Pr
Tierge ~ 0.66 ;g Fs
{ dy)2 //Gmy, Vbin 3> Vgisk @n
X
2/Gmy/ (dyf v3)s  Vbin <K Vaisk



W. Lyra
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McKinnon et al. (2020) considers only quadratic drag

2
Torque x (Uwind + Uorb)
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Torque x (Uwind - Uorb)z

Fig. 7. Illustration of the protosolar nebula headwind interacting with a co-orbiting equal
mass binary. The averaged torque is proportional to the product of the lobe orbital velocity and

the differential velocity between the nebular gas and the binary’s center-of-mass about the Sun.
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W. Lyra

Semimajor Axis

= Numerical

Analytical

T

T
40000 60000

t(yr)

T
20000

T
80000

At the linear range

The average reverts to the no-wind solution:

Eccentricity Angular Momentum
0.30 - 1.0 -
04 - .
N marical —— Numerical
— mence
3 - 094 ¢ M 0000 e tic
0.25 - 00 T Analytical 0, =0 Analytical
) I | | S Gt nts 1 | [ (1 I - F | 77 Analytical )., =0
0.8 1
020 07 4
T T T
200 )0 0 ).6
. 015 - 200 400 600 < 06 .
05 1 \
0.10 -
0.4 1
0.05 031 :097 4
. T . T T T
02 1 0 200 400 600
0.00 T T T T T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
t(yr) t(yr)
I! ll." T.
.Ir — .Ir 1né Ll i
1 NE
'_:II! foe
— L) L
a=ape eff
24

Lyra, Youdin, & Johansen (2021)



More massive nebula?

Drag time vs distance - 10x MMSN Drag Times - 10x MMSN
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Inclination 99.3°

W. Lyra



Effect of Inclination

27
W. Lyra Lyra, Youdin, & Johansen (2021)



W. Lyra
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Effect of Inclination
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W. Lyra Lyra, Youdin, & Johansen (2021)
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Kozai-Lidov Oscillations

Conserved quantity is not angular momentum,
but vertical angular momentum

b /41\\
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Kozai-Lidov Oscillations

Cycles of inclination and eccentricity

cos |
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Kozal + Tidal Friction + Permanent Quadrupole + Drag

ji —e [V1+V2+Vf+5(1_82)5 T]'
j;l —h (Wl + Wa + Wy — 5325‘-"3) !
% _(z+za+ (1-&) (5u-5y)] 4
_ :Yl + Y2+ (1 - f’z) Sah] h,
% = :Yl + Y5 + (1 - 92) S*I“} é
_ _X1+X2+(4E’2+1) ’}q
d;? _ F‘Ilh ( Yié+ X4+ Wy )
-8 )

33

W. Lyra Lyra, Youdin, & Johansen (2021)



@ © & GitHub, Inc. (US) | https://github.com/wlyra/yoshikozai 67% w

O Why GitHub? Enterprise Explore Marketplace Pricing Sign in |S|'gn up|

wlyra [ yoshikozai @watch | 1 *Star 0 YEork 0

4 Code Issues @ Pull requests 0 Projects @ Security Insights

Join GitHub today — «10-11 Semimajor Axis «10-11 Kozai Constant

GitHub is home ta over 40 million developers working togsther ta host

and review code, manage projects, and build software together.

Public code for Kozai-Lidov oscillations with tidal friction, permanent guadrupole, and gas drag.
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Public code for Kozai-Lidov oscillations with tidal friction, permanent guadrupole, and gas drag.
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Critical Inclination

Initial Inclination vs Semimajor Axis - Kozai onl}r
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Kozal + Tidal Friction + Drag

Initial Inclination vs Semimajor Axis - Kozai only Initial Inclination vs Semimajor Axis - Kozai and Tides
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Kozal + Tidal Friction + Drag

Initial Inclination vs Semimajor Axis - Kozai only
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Kozal + Tidal Friction + Drag

Initial Inclination vs Semimajor Axis - Full Model
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Effect of Drag

Semimajor Axis Inclination Pericenter
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Caveat: limited by double-averaging

P Double-Averaged vs Single-Averaged
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W. Lyra

Alignment of the Spin Vectors

»

Mainly driven by J, (permanent quadrupole)

Timescale proportional to a* (4™ power of semimajor axis)

5 Gyr for a/R ~ 100

0.5 Myr for a/R ~ 10

Lyra, Youdin, & Johansen (2021)
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W. Lyra

N-body simulations (no tides, J2, or drag)

- 10*
2
o 10*
b
g 80 INANAS V\/\MWW\/\/V\/\} /\/\/\/\/\/\./\/\/\/1
= 60|C
\\( i “Y” ~

W

104 d

1000 2000 3000 4000
time [yr]

Inclination not limited to the double-averaged constraint.
Cycles lead to lower inclination than initial.
Prograde/retrograde flipping possible.

Grishin et al. (2020)



W. Lyra

N-body simulations (no tides, J2, or drag)

Pericenter

Inclination at contact
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Grishin et al. (2020)
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N-body simulations (no tides, J2, or drag)

Inclination at contact

Uniform
any inclination (from 40° to 140°) equally likely

40 60 80 100120140
final inc [deg]
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N-body simulations (no tides, J2, or drag)
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Stokes number in McKinnon et al. 1-2 Myr vs Lyra et al. 10-20 Myr

Traced to four different assumptions:

1) Disk model (density and temperature)

2) Viscosity
3) Drag coefficient
4) Drag time
Quantity McKinnon et al. (2020) Lyra, Youdin, & Johansen Impacton 1,
(2021) g
110 3 11 3
Density 1010 kg/m 3x1011 kg/m
(Desch et al.) (MMSN) 1.15 23 Myr -> 20 Myr
Temperature 30K 42K
: .. . 7x10% m%/s 1.4 x 10° m?2/s i
MU AT (used sound speed) (used mean thermal velocity) et DW= D s
Drag coefficient C, 24/Re06 24/Re(1+0.27)% + 0.47[1-exp(-0.04Re® )] 1.5 13 Myr -> 9 Myr
Drag time t,,,, PR/(Cyp 4 Uying 8/3 x pR/(Cyp g Uying) 2.7 9 Myr -> 3 Myr

W. Lyra 40



Conclusions

* Solved the binary planetesimal problem with gas drag
...1 January 2019.

* Contact possible in the asteroid belt within 0.1 Myr (depleted of binaries)

* Window of contact increased by J, and drag

* Model predictions:

o The two bodies slowly spiral closer
* Velocities at contact should be about 3-4 m/s until they chh, form‘i'ngpt'he bi-lobed

object we see today.

° Open questlonS. Sketch by J.T. Keane

e Combine our model with single-averaged Kozai (or N-body)

47
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