Hydrodynamical Instabilities in protoplanetary disks: a synthesis.

Wladimir Lyra

California State University

Jet Propulsion Laboratory

Computational Facilities

Publications of the Astronomical Society of the Pacific

INVITED REVIEW

The Initial Conditions for Planet Formation: Turbulence Driven by Hydrodynamical Instabilities in Disks around Young Stars

Wladimir Lyra^{1,2} and Orkan M. Umurhan^{3,4} Published 2019 June 12 • © 2019. The Astronomical Society of the Pacific. All rights reserved. <u>Publications of the Astronomical Society of the Pacific, Volume 131, Number 1001</u>

+ Article information

Abstract

This review examines recent theoretical developments in our understanding of turbulence in cold, non-magnetically active, planetesimal-forming regions of protoplanetary disks that we refer to throughout as "Ohmic zones." We give a brief background introduction to the subject of disk turbulence followed by a terse pedagogical review of the phenomenology of hydrodynamic turbulence. The equations governing the dynamics of cold astrophysical disks are given and basic

Dead zones

Rossby wave instability

Magnetized inner disk + resistive outer disk

Lyra & Mac Low (2012)

Hydrodynamical Instabilities

Hydrodynamical Instabilities

Vertical shear instability

Angular velocity not constant in cylinders: unstable

1

0.5

0

-0.5

-1

Vertical shear instability

$$ho_{
m mid} =
ho_0 \left(rac{R}{R_0}
ight)^p,$$
 $c_{
m s}^2 = c_0^2 \left(rac{R}{R_0}
ight)^q,$

$$\Omega = \Omega_{\rm K} \left[1 + \frac{1}{2} \left(\frac{H}{R} \right)^2 \left(p + q + \frac{q}{2} \frac{Z^2}{H^2} \right) \right]$$

Solberg-Hoiland Criteria

Halvor Solberg

Buoyancy stabilizes! Einar Hoiland The most unstable mode is **isothermal**

$$d\Omega/dz != 0 \implies dL^2/dz < 0$$
$$ds/dz = 0$$

3rd criterion violated

Convective Overstability (née "Subcritic Baroclinic Instability")

Sketch of the Subcritic Baroclinic Instability

Lesur & Papaloizou (2010)

Armitage (2010)

Convective Overstability (née "Subcritic Baroclinic Instability")

Sketch of the Subcritic Baroclinic Instability

Convective Overstability

Klahr & Hubbard (2014), Lyra (2014), Latter (2015)

Lyra (2014)

Convective Overstability

Cooling renders the 2nd Solberg-Hoiland criterion irrelevant

$$k_{\rm eq}^2 + N_R^2 > 0,$$

Figure 2. Four panels indicating the convective overstability mechanism. In panel (a) a fluid blob is embedded in a radial entropy gradient. In panel (b) it undergoes half an epicycle and returns to its original radius with a smaller entropy than when it begun $S_1 < S_0$. It hence feels a buoyancy acceleration inwards and the epicycle is amplified. The process occurs in reverse once the epicycle is complete, shown in panel (c), where now $S_2 > S_0$. The oscillations hence grow larger and larger.

Prevalence of Convective Overstability in actual disks

Zombie Vortex Instability

 ∞_z at x-y plane z=0.40431 t=0

Cascade of baroclinic critical layers

Marcus et al. (2015, 2016)

Zombie Vortex Instability

Cascade of baroclinic critical layers

Marcus et al. (2015, 2016)

Zombie Vortex Instability

Reproduced with hyperviscosity, But not with Laplacian viscosity (needs 2048³, Re $\sim 10^7$)

Figure 1. Vertical vorticity ω_z in a x-z cut of our fiducial simulation with $\text{Re}_6 = \text{Pe}_6 = 5 \times 10^5$ at t = 500. Similarly to Marcus et al. 2013, we observe the formation and replication of anticyclonic vortices on a fixed lattice.

The critical layer should have width $\sim 10^{-4}H$. Buoyancy (near-adiabatic conditions) needs to be maintained over long times at that length.

Figure 5. Photon mean free path $\ell_{\rm ph}$ compared to the disc scale height *H* in a $0.01 M_{\odot}$ disk model. Shortest mean free paths are found close to the midplane in the innermost parts of the disc.

Only in the very inner disk, that may be MRI-unstable anyway

Lesur & Latter (2016)

Hydrodynamical Instabilities

$$\begin{array}{ll} \Omega \tau << 1 & \Omega \tau \sim 1 & \Omega \tau >> 1 \\ (\kappa < 1 \ cm^2/g \) & (\kappa \sim 1-50 \ cm^2/g \) & (\kappa > 50 \ cm^2/g \) \end{array}$$

Synthesis

Malygin et al. 2017, Lyra & Umurhan 2019, Pfeil & Klahr 2019

MHD regimes

Decouple ions and electrons.

MHD regimes

Electron

Neutrals dominate. Decouple ions and electrons.

Magnetocentrifugal wind

Bai & Stone (2013)

Bhétune et al. (2017)

MHD regimes

Neutrals dominate. Decouple ions and electrons.

Hall MHD

Self-organization

A butcher diagram for disk instabilities and structure

Height

Saturation – vortices and α between 10⁻⁴ and 10⁻³

ZVI saturates into vortices

COV saturates into vortices

Lesur & Papaloizou (2010)

What sets the size of a vortex? Not shocks....

TABLE 2 Hydrodynamical instabilities summary characteristics.

Instability	Violation of	Mechanism Type	Linear growth	Length scale	Opacity	Thermal	ac
	Rayleigh criterion		rate	of linear growth	$\kappa \left(\frac{cm^2}{g}\right)$	time $(\Omega \tau)$	
Vertical Shear	$d\Omega/dz \neq 0$	Angular momentum exchange	$\sqrt{m} q h\Omega/4$	$\pi q hH$	< 1	$\ll 1$	$10^{-4} - 10^{-3}$
		between adjacent elements.					
Convective	$N_{R}^{2} < 0$	Buoyant amplification	$ N^2 /4\Omega$	$\sqrt{\chi/\Omega}$	1 - 50	~ 1	$10^{-4} - 10^{-3}$
		of epicyclic oscillations.					
Zombie Vortex	$N_{z}^{2} > 0$	Resonance between Rossby	-	-	> 50	$\gg 1$	$10^{-4} - 10^{-3}$
		and buoyancy frequency.					

Outstanding issues

	ZVI	COV	VSI
Global model	\bigotimes	\bigotimes	\bigcirc
Vertical Stratification	\checkmark	\bigotimes	\bigotimes
Boundaries with other instabilities	\bigotimes	\bigotimes	\bigotimes
Interaction with dust	\bigotimes	\checkmark	\checkmark
Observational Validation/Rule out	\bigotimes	\bigotimes	\bigotimes
Planet Forming Properties	\bigotimes	\bigotimes	\bigotimes

Dust in Vertical-Shear turbulence

Synergy with streaming instability?

Carrera et al. (2015)

Conclusions

- Three dynamical instabilities in the Ohmic dead zone
 - Vertical Shear Instability
 - Vertical violation of Solberg-Hoiland criterion
 - Convective Overstability
 - *Amplification of epicyclic motion by buoyancy*
 - Zombie Vortex Instability
 - *Resonance between epicyclic and buyoancy frequency*
 - Different regimes of opacity, operate in different regions
 - Saturate into vortices, $\alpha \sim 10^{-4} 10^{-3}$
 - Issues:
 - Are they responsible for the observed crescents?
 - Overlap unclear
 - Global model of COV needed
 - Relevance of ZVI unclear/unlikely.
 - Planet formation properties / Synergy with streaming instability