

Ultima Thule (MU₆₉) Formation and binary hardening

Wladimir Lyra

New Mexico State University

In the shuffle from

California State University

Next Generation Very Large Array

Exoplanet Research Program XRP - 2018

NRAO 2017

XRP - 2016

HST Cycle 24, 2016

Computational Facilities

MPIA, July 16th, 2019

Ultima Thule (MU₆₉)

New Horizons Flyby, Jan 2019

MU₆₉: Dimensions

New Horizons Trajectory

2014 MU₆₉: Discovery

Cold Classical Kuiper Belt Object

W. Lyra

Gladman+ '08, Batygin+ '10, Dawson & Murray-Clay '12

Cold Classicals (CCs)

low inclinations: CCs not much affected by Neptune's migration

no very large bodies: accretion halted at sizes <300 km

weakly bound binaries: CCs not affected by disruptive collisions

Implication: CCs formed at >40 au and survived relatively unscathed

Slide by David Nesvorny

THE HST LIGHTCURVE OF (486958) 2014 MU

S.D. Benecchi, S. Porter, M.W. Buie, A.M. Zangari, A.J. Verbiscer, K.S. Noll, S.A. Stern, J.R. Spencer, and A. Parker

ABSTRACT

We report *Hubble Space Telescope* (HST) lightcurve observations of the *New Horizons* spacecraft encounter Kuiper Belt object (KBO) (486958) 2014 MU_w acquired near opposition in July 2017. In order to plan the optimum flyby sequence the *New Horizons* mission planners needed to learn as much as possible about the target in advance of the encounter. Specifically, from lightcurve data, encounter timing could be adjusted to accommodate a highly elongated, binary, or rapidly rotating target. HST astrometric (Porter et al. 2018) and stellar occultation (Buie et al. 2018) observations constrained MU69's orbit and diameter (21 - 41 km for an albedo of 0.15 - 0.04), respectively. Photometry from the astrometric dataset suggested a variability of \geq 0.3 mags, but they did not determine the period or provide shape information. To that end we strategically spaced 24 HST orbits over 9 days to investigate rotation periods from approximately 2-100 hours and to better constrain the lightcurve amplitude. Until *New Horizons* detected MU69 in its optical navigation images beginning in August 2018, this HST lightcurve campaign provided the most accurate photometry to date. The mean variation in our data is 0.15 magnitudes which suggests that **MU69** is either nearly spherical (a:b axis ratio of 1:1.15), or its pole vector is pointed near the line of sight to Earth; this interpretation does not preclude a near-contact binary or bi-lobed object.

Occultation data suggests binary

Approach sequence: Contact binary at inclination 98 degrees

Departure sequence: Shape

The Cartoon Image

The Formation of 2014 MU69

About 4.5 billion years ago...

A rotating cloud of small, icy bodies starts to coalesce in the outer solar system.

Eventually two larger bodies remain.

The two bodies slowly spiral closer until they touch, forming the bi-lobed object we see today.

New Horizons / NASA / JHUAPL / SwRI / James Tuttle Keane

Formation

About 4.5 billion years ago...

A rotating cloud of small, icy bodies starts to coalesce in the outer solar system.

Beyond the cartoon image

How?

Streaming Instability

The dust drift is hydrodynamically unstable

Youdin & Goodman (2005), Johansen & Youdin (2007), Youdin & Johansen (2007), Squire & Hopkins (2018)

Planetesimal Formation

Larger planetesimals: planetary embryos formed

Yang & Johansen (2014); Schäfer, Yang, & Johansen (2017)

Planetesimals' Initial Mass Function

Johansen et al. (2015), Schäfer et al. (2017)

In the lookout for binaries

Nesvorny+'19, model by Rixin Li

W. Lyra

Filaments form and fragment into gravitationally bound clumps

Cold Classical Binaries

Cold Classicals

Ultima Thule is retrograde

Obliquity is ~98°

Angular Momentum: Prograde vs Retrograde

Protractor Plot

Noll+08, Grundy+19, Nesvorny+19

Angular Momentum: Prograde vs Retrograde

~80% of TNO binaries are prograde

Grundy+19, Nesvorny+19

Simulation results from YJ14

Data from Yang & Johansen (2014)

Gas vorticity and clump angular momentum

No strong correlation No preference for prograde or retrograde

Data from Yang & Johansen (2014)

Effect of Gravity: Preference for Prograde (~80%)

W. Lyra

Data from A. Johansen (private communication)

Preference for Prograde (~80%)

Nesvorny+19

Hardening

How was angular momentum lost?

Mutual orbit (i.e., not captured)

Inferred from: alignment of component minor axes, small angular momentum, similar colors. Slow merger (~ 2 m/s: human walking speed)

Inferred from: Negligible evidence for impact damage

Sputnik Planitia – N₂ frost

Retention of volatiles

If Pluto is formed from similar bodies to MU69, they must retain N₂

MU69 equilibrium temperature ~ 40K

N₂ should be gone too early unless temperature is kept under 20K

Needs shielding from starlight!!

Retention of volatiles

If Pluto is formed from similar bodies to MU69, they must retain N_2

Needs shielding from the starlight flambé.

Brown, Burgasser, & Fraser (2011); Lisee+'19

Retention of volatiles

Formation of MU69 in an optically thick disk keeps the interior cold enough to allow the volatiles to remain frozen.

W. Lyra

Angular momentum loss via nebular drag

For equal mass:

$$r\ddot{\phi} + 2\dot{r}\dot{\phi} = -\frac{r}{\tau}\frac{\phi}{\tau}$$
$$\frac{dh}{dt} = -\frac{h}{\tau}$$

Exponential decay of angular momentum !

$$h = h_0 e^{-t/\tau}$$

Angular momentum loss via nebular drag

For equal mass:

$$r\ddot{\phi} + 2\dot{r}\dot{\phi} = -\frac{r}{\tau}\frac{\dot{\phi}}{\tau}$$
$$\frac{dh}{dt} = -\frac{h}{\tau}$$

Exponential decay of angular momentum !

 $h = h_0 e^{-t/\tau}$

W. Lyra

Hardening during disk lifetime

For unequal mass the physics is similar, the drag time is just replaced by an effective drag time:

Effective drag time
$$au_{
m eff}=(m_1+m_2)rac{ au_1 au_2}{ au_2m_2+ au_1m_1}.$$

Exponential decay of angular momentum

$$h = h_0 e^{-t/\tau_{\text{eff}}}$$

Analytical solution

Exponential decay of angular momentum Exponential decay of semimajor axis Exponential

 $a=a_0 \, e^{-2t/\tau_{\rm eff}}$

Exponential increase of orbital velocity

$$v_{\phi} = v_{\phi,0} \; e^{t/ au_{
m eff}}$$

 $h = h_0 e^{-t/\tau_{\rm eff}}.$

Analytical solution

Time until contact

$$t = \frac{\tau}{2} \ln \frac{a_0}{a}$$

For $a = 0.1 r_H$ (6000 km), hardening to a_0 =20km and $\tau \Omega$ =10⁷...

Wind

Binary orbital velocity ~ 10 cm/s

Solar orbit velocity at 42AU ~ 4.5 km/s

Subkeplerian pressure support $\Omega = \Omega_k (1-\eta)$; $\eta \sim 1\%$ (50 m/s)

Subkeplerian wind on the binary = 100 times orbital velocity

$$\begin{split} \frac{d\left\langle a\right\rangle}{dt} &= -\frac{2\left\langle a\right\rangle}{\tau} \\ \frac{d\left\langle e\right\rangle}{dt} &= \sqrt{\left\langle a\right\rangle}\,\mu^{-1}(1-\left\langle e\right\rangle^2)\frac{3u}{2\tau} \\ \frac{d\left\langle h\right\rangle}{dt} &= -\frac{\left\langle h\right\rangle}{\tau} - ae\frac{3u}{2\tau} \end{split}$$

Wind

Wind solution

Wind solution

$$\begin{aligned} \langle a(t) \rangle &= a_0 e^{-2t/\tau} \\ \langle e(t) \rangle &= \cos \left[\cos^{-1} e_0 + \frac{3u}{2} \sqrt{\frac{a_0}{\mu}} \left(1 - e^{-t/\tau} \right) \right] \\ \langle h(t) \rangle &= e^{-t/\tau} \left\{ h_0 - 1 + \cos \left[\frac{3}{2} a_0 u \left(1 - e^{-t/\tau} \right) \right] \right\} \end{aligned}$$

Coriolis force

Coriolis force – "Precession"

 $u \rightarrow u \cos \omega$

$$\begin{aligned} \frac{d \langle a \rangle}{dt} &= -\frac{2 \langle a \rangle}{\tau} \\ \frac{d \langle e \rangle}{dt} &= \sqrt{\langle a \rangle \, \mu^{-1} (1 - \langle e \rangle^2)} \frac{3u}{2\tau} \cos \omega \\ \frac{d \langle h \rangle}{dt} &= -\frac{\langle h \rangle}{\tau} - ae \frac{3u}{2\tau} \cos \omega \end{aligned}$$

Inclination

I=30°

Kozai-Lidov

Conserved quantity is not angular momentum, but vertical angular momentum

Inclination

Kozai-Lidov cycles!

I=30°

Inclination 90° Kozai-led collapse

Kozai-Lidov "hardening"

V_{contact} ~ 3 m/s

W. Lyra

Asteroid belt vs Kuiper belt

Conclusions

...1 January 2019.

The two bodies slowly spiral closer until they touch, forming the bi-lobed object we see today.