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Al will be able to summarize works

° You

Did Steve Lubow work on Kuiper Belt objects?

® ChatGPT
Yes, Steve Lubow is an astronomer who has worked on Kuiper Belt objects. He has
been involved in research related to the outer solar system, including studying
objects within the Kuiper Belt. The Kuiper Belt is a region of the solar system beyond
the orbit of Neptune that is populated with small icy bodies, including dwarf planets

like Pluto, as well as comets and other objects.

‘ You

Give me a summary of Steve Lubow's work on Kuiper Belt objects.

@ ChatGPT
Steve Lubow has made significant contributions to the study of Kuiper Belt objects
(KBOs). His work in this field often revolves around understanding the dynamics,
characteristics, and formation processes of these distant icy bodies. Some key

aspects of his research on Kuiper Belt objects include:

1. Dynamical Studies: Lubow has likely conducted research to understand the
orbital dynamics of KBOs, including their interactions with other objects in the
Kuiper Belt and the influence of Neptune's gravitational effects on their orbits. This
research helps elucidate the stability of KBOs' orbits over long timescales.

2. Formation and Evolution: Lubow may have investigated the formation
mechanisms of Kuiper Belt objects and their evolutionary history. This could involve
theoretical modeling and simulations to explore how these objects formed from the
primordial solar nebula and how they have evolved since then.

3. Physical Properties: Lubow might have studied the physical characteristics of
KBOs, such as their size, shape, composition, and surface properties. Understanding
these properties provides insights into the nature of these distant bodies and their
similarities or differences with other solar system objects.

4. Occultations and Surveys: Lubow may have been involved in observational
campaigns aimed at studying KBOs through techniques such as stellar occultations
or large-scale surveys. These efforts help identify and characterize KBOs,

contributing to our overall understanding of the Kuiper Belt population.

Overall, Lubow's work on Kuiper Belt objects likely spans theoretical modeling,
numerical simulations, observational studies, and data analysis, all aimed at

advancing our knowledge of these intriguing remnants of the early solar system.



Al will replace ADS, Google scholar, etc

Q You

Who are Steve Lubow's most frequent co-authors?

@ ChatGPT
To provide accurate and up-to-date information on Steve Lubow's most frequent co-authors, | would
need access to a recent database of his publications or academic profiles. Unfortunately, | don't have
real-time access to such data. However, you can find this information by searching academic databases
like Google Scholar, NASA Astrophysics Data System (ADS), or university research portals using Steve
Lubow's name as the primary author. These databases often list co-authors along with their frequency

of collaboration, which can give you insight into his most frequent collaborators.
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Abstract

Kuiper Belt objects (KBOs) show an unexpected trend, whereby large bodies have increasingly higher densities,
up to five times greater than their smaller counterparts. Current explanations for this trend assume formation at
constant composition, with the increasing density resultmg from gravnanoual compaction. However, this scenario
poses a timing problem to avoid early melting by decay of 2°Al. We aim to explain the density trend in the context
of streaming instability and pebble accretion. Small pebbles experience lofting into the atmosphere of the disk,
being exposed to UV and partially losing their ice via desorption. Conversely, larger pebbles are shielded and
remain icier. We use a shearing box model including gas and solids, the latter split into ices and silicate pebbles.
Self-gravity is included, allowing dense clumps to collapse into planetesimals. We find that the streaming
instability leads to the formation of mostly icy planetesimals, albeit with an unexpected trend that the lighter ones
are more silicate-rich than the heavier ones. We feed the resulting planetesimals into a pebble accretion integrator
with a continuous size distribution, finding that they undergo drastic changes in composition as they preferentially
accrete silicate pebbles. The density and masses of large KBOs are best reproduced if they form betwecn 15 and
22 au. Our solution avoids the timing problem because the first planetesimals are primarily icy and 2°Al is mostly
incorporated in the slow phase of silicate pebble accretion. Our results lend further credibility to the streaming
instability and pebble accretion as formation and growth mechanisms.

Unified Astronomy Thesaurus concepts: Dwarf planets (419); Kuiper Belt (893); Pluto (1267); Hydrodynamics
(1963); Planet formation (1241)
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An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse
Pebble Accretion
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Abstract

Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized
(monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for
Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution.
We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in
pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also
the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In
addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the
polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor
3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion
rates 1-2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to
1-2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion
on top of planetary seeds of masses 10~ to 107 M, over a significant range of the parameter space. This mass
range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is
possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal
collisions as a major contribution to planetary growth.

Unified Astronomy Thesaurus concepts: Planet formation (1241); Planetary system formation (1257)
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THE DENSITY OF MID-SIZED KUIPER BELT OBJECT 2002 UX25
AND THE FORMATION OF THE DWARF PLANETS
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ABSTRACT

The inferred low rock fraction of the 2002 UX25 system o imoking
makes the formation of rock-rich larger objects difficult to ) ‘oo for

»n occurs for

explain in any standard coagulation scenario. For example, * 3% kn

? >ould provide

to create an object with the volume of Eris would require rctriztion.

a diameter of

assembling ~40 objects of the size of 2002 UX25. Yet the sola system
assembled object, even with the additional compression, would cpresntation
still have a density close to 1 g cm™> rather than the 2.5 gcm™ " ™"

density of Eris (Sicardy et al. 2011).

2s: formation

«  Extremely low porosity;
» Biased sample;

«  Compaction through giant impacts

None of these alternatives appears likely. We are left in
the uncomfortable state of having no satisfying mechanism to
explain the formation of the icy dwarf planets. While objects up
to the size of 2002 UX25 can easily be formed through standard
coagulation scenarios, the rock-rich larger bodies may require a
formation mechanism separate from the rest of the Kuiper belt.

The density dichotomy of Kuiper Belt objects
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Porosity removal by gravitational compaction

Problems

« Low-mass objects need to
be unreasonably porous

« Timing! 26Al would melt if
formed within 4 Myr

Assumptions
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Abandoning Constant Composition

Heating and UV irradiation remove ice on Myr
timescales (Harrison & Schoen 1967)

« Small grains lofted in the atmosphere lose ice

« Big grains are shielded and remain icy.
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The first planetesimals are icy
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Ice Mass Fraction
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Pebble Accretion: Geometric, Bondi, and Hill regime

Bondi accretion - Bound against headwind
Hill accretion - Bound against stellar tide
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Bulk Density (g / cm?)

Integrate pebble accretion
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Pebble Accretion: Pebbles of different size accrete differently

Bondi Regime
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Polydisperse (Multi-Species) Pebble Accretion
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Analytical theory of polydisperse (multi-species) pebble accretion

Monodisperse (single species)
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Analytical Solution for

General Monodisperse (single species) Pebble Accretion
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Analytical Solutions for

2D and 3D Polydisperse (multi-species) Pebble Accretion
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Accretion Rates

10-1 Accretion at 5AU - Polydisperse max(a.)=10 cm
m— Actual
--==Hill -
-3 | —ccaill
10 —=- Bondi T
Loose Coupling . .
107>1 —— Monodisperse -

M (Mg /yr)

106 105 104 103 1072
Mp/MEarth

Lyra et al. 2023

101

10°

101



Accretion Rates
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Accretion Timescales
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Density (g cm~3)

Growing Pluto by silicate pebble accretion

T =5.3513e+02 Years
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Pebble Internal Density

Ice Volume Fraction

Mass Accretion rate
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Growing Pluto by silicate pebble accretion

T =5.3513e+02 Years
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Resulting Densities vs Mass relations
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Density (g cm~3)
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M (Mputolyr)

The window of silicate accretion
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Conclusions

Polydisperse Bondi accretion 1-2 orders of magnitude more efficient than
monodisperse

* Best accreted pebbles are those of drag time ~ Bondi time, not the largest ones
+ The largest ones dominate the mass budget, but accrete poorly

Onset of Bondi accretion 1-2 orders of magnitude lower in mass compared to
monodisperse

« Bondi accretion possible on top of Streaming Instability planetary embryos
within disk lifetime
* Reaches 100-350km objects within Myr timescales

Analytical solution to

* Monodisperse general case
* Polydisperse 2D Hill and 3D Bondi

KBO density dichotomy problem:

«  Two different pebble populations, maintained by ice desorption off small grains
«  Streaming instability: icy-rich small objects; nearly uniform composition
* Polydisperse pebble accretion: silicate-rich larger objects; varied composition
+ Melting avoided by

* ice-rich formation

«  26A]incorporated mostly in long (>Myr) phase of silicate accretion
 KBOs best reproduced between 15-25 AU
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