The modern view of planet formation

Wladimir Lyra

New Mexico State University

Los Alamos NM, May 3rd, 2025

Planet Formation is an active and evolving field of research

XQQ

Astronomers have unlocked the sharpest visual yet of planets beginning to form within young solar systems.

21 hours ago

Google

planet formation

National Radio Astronomy Observatory

exoALMA Gives Astronomers A New Look At How Planets Are Formed

An artist's impression of new data collected by the exoALMA large program, which studied young star systems to map the motions of gas to...

4 days ago

S Space

These are the sharpest images yet of planets being born around distant stars

ALMA observations of carbon monoxide emission from 15 protoplanetary disks reveal a stunning variety of gas structures, including gaps,...

2 days ago

🕢 Universe Today

Scientists Gain a New Understanding of How Stars and Planets Form

As young stars form, they exert a powerful influence on their surroundings and create complex interactions between them and their...

1 day ago

Center for Astrophysics | Harvard & Smithsonian

exoALMA and CfA Provide a New Look at How Planets Are Formed

Beyond planet hunting, this survey with significant CfA contributions will reveal the mechanics behind planet forming discs.

4 days ago

🐔 MSUToday

New research shatters long-held beliefs about asteroid Vesta

Why this matters: · New findings change how Vesta is defined as not quite an asteroid or a planet. · This research challenges previous...

Voyager 10 approach sequence

The Solar Nebula

Nebular hypothesis – planets form in disks of gas and dust (Kant 1755, Laplace 1794)

Matthew Bate University of Exeter

100 Earth masses

不

10 Earth masses

1 Earth mass

Chemical Composition of the Sun

Refractories in meteorites: Solar Composition

Periodic Table

1 H Hydrogen																	² Helium
3 Lithium	⁴ Be Beryllium											5 Boron	6 Carbon	7 N Nitrogen	8 Oxygen	9 F Fluorine	10 Neon
11 Na Sodium	12 Mg Magnesi											13 Aluminium	14 Silicon	Phosph	16 Sulfur	17 Cl Chlorine	18 Argon
19 K Potassium	20 Calcium	Scandium	22 Titan	i Vanad	lium ²⁴ Chromiun	Mangan	Fe Iron	Cobalt	28 Ni Nickel	29 Cu Copper	³⁰ Zn Zinc	31 Gallium	32 Germani	Arsenic	34 Seenium	³⁵ Bromine	36 Kr Krypton
Rubidium	Strontium	39 Yttrium	40 Zirco	ium Niobi	b Mo um Molybde	. Techneti	Ruthenium	Rhodium	Palladium	A7 Ag Silver	48 Cd Cadmium	49 In Indium	Sn Tin	Sb Antimony	Tellurium	53 Iodine	Xe Xenon
Caesium	56 Ba Barium	57 La Lanthan	72 Hafn	f Tanta	a W Ium Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	Platinum	79 Au Gold	80 Hg Mercury	81 TI Thallium	Pb Lead	Bismuth	Polonium	Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	89 Actinium	104 Ruthe	f Dubn	b Sg Seaborg	107 Bh Bohrium	108 HS Hassium	109 Mt Meitneri	110 Ds Darmsta	111 Rg Roentge	Coperni	113 Nh Nihonium	114 Fl Flerovium	Moscovi	LV	117 Ts Tenness	Oganes
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ceri 90	e P um Prased 91	n Nd Neodym 92	Pm Prometh 93	Samarium 94	Europium 95	Gadolini 96	Tb Terbium 97	Dy Dysprosi 98	Ho Holmium 99	Erbium	Tm Thulium	Ytterbium 102	LU Lutetium 103	
			Thor	um Protac	a U _{Uranium}	Np	Plutonium	Am Americium	Curium	Berkelium	Cf Californi	Es Einsteini	Fermium	Md Mendele	No Nobelium	Lr Lawrenc	

Alkali metals

O Alkaline earth metals

O Transition metals

O Post-transition metals

O Metalloids

O Actinides

Reactive nonmetals

O Unknown properties

Noble gases

C Lanthanides

The Astronomer's Periodic Table

The Planetary Astronomer's Periodic Table

Beatty et al. (1999): The New Solar System

Classes of planets

Rocky Planets

Earth

Ice Giants

Uranus/Neptune

Gas Giants

Jupiter

Beatty et al. (1999): The New Solar System

Snowline

The idea, *roughly*

"Frost line" Inward of snowline Hydrogen-helium gas nebula Rocks only and a second of all and (small) Protosun Accreting rocky Accreting rock-ice planetesimals planetesimals These two got so big they started accreting gas from the nebula

Ice comes to aid! Growing big icy/rocky cores.

Outward of snowline

These two never did. They are simply the icy/rocky cores.

0 🎯 0

"Core Accretion"

"Bottom-Up": Dust Growth and Core Accretion

Grain collision outcomes

Bouncing

Sticking

Destruction

Dust Growth and Drift

Dust particle coagulation and radial drift

F.Brauer, C.P. Dullemond Th. Henning

"Streaming" Instability

The dust drift is not orderly, but turbulent

Gravitational collapse into km-sized objects ("planetesimals")

Johansen et al. (2007)

Core Accretion (...30 yrs ago)

nature astronomy

Fingerprints of streaming instability

How can we verify the streaming instability hypothesis?

Pluto sponsor?

Evolution of the orbits of the giant planets

Tsiganis et al. (2005); Gomes et al. (2005); Morbidelli et al. (2005); Video credit: Alessandro Morbidelli
Structure of the Kuiper Belt

Classicals Scattered Resonants

Structure of the Kuiper Belt

Lacerda (2009)

"Cold" Classical Kuiper Belt Object

+ Resonant and Scattered Cold Classical *i*<2° "Ambiguous" 2°<*i*<6° *Hot Classicals i*>6°

A dynamically cold population: low inclination and low eccentricity orbits, like the planets. **Presumably pristine planetesimals**

Dawson & Murray-Clay (2012)

New Horizons Trajectory

Arrokoth: Discovery

Discovery: Marc Buie. Video credit: Bruce Murray

Occultation data suggests binary

Approach sequence: Contact Binary

"The Snowman"

Departure sequence: Shape

"The Snowman"

Preference for Prograde

Prograde vs Retrograde

Protractor Plot

Finding binaries

Video credit: Rixin Li

Preference for Prograde (~80%)

Nesvorny et al. (2019)

The Formation of Arrokoth

About 4.5 billion years ago...

A rotating cloud of small, icy bodies starts to coalesce in the outer solar system.

Eventually two larger bodies remain.

The two bodies slowly spiral closer until they touch, forming the bi-lobed object we see today.

New Horizons / NASA / JHUAPL / SwRI / James Tuttle Keane

© Alexander Heger (2023)

 $time = -1.3 \; kyr$

Wenu - Weeyo

The Hubble Space Telescope view of disks in Orion

The Electromagnetic Spectrum

Optical vs Infrared

Optical vs Infrared

Disk spectra

The Atacama Large (sub-)Millimeter Array (ALMA)

The Very Large Array (VLA)

Before ALMA

ALMA

Hubble Space Telescope (HST)

Atacama Large (sub-)Millimeter Array (ALMA)

Planets carve gaps in disks

Lyra et al (2009); Video Credit: Wladimir Lyra

PDS 70b: A young planet spotted inside a gap

PDS 70 and PDS 70b

Keppler et al. (2018) © ESO / A. Müller, MPIA

Lyra et al (2009)

Dong et al. (2018)

Vortices – an ubiquitous fluid mechanics phenomenon

Vortex Trapping

Video credit: Natalie Raettig

Barge & Sommeria (1995)

Disk Tomography SPHERE-ALMA-VLA overlay of MWC 758

Marino et al. (2015); Dong et al. (2018)

Vortex trapping

Casassus et al. (2019)

Model vs Observation

Model
Vortex Trapping

Mass Function

Lyra et al. (2024)

Next Generation Very Large Array (ngVLA)

Planets at 5AU

ngVLA will identify gaps/substructures down to ~5-10 M_{Earth}

Credit: Luca Ricci

ngVLA

Jupiter at 5 AU – 500 light years away

Credit: Luca Ricci