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Planet Detection Methods

/ Transits
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/Timing variations
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Circumstellar/Protoplanetary Disks

PP disk fact sheet

Density: 1073 — 10" cm™3
(Air: 10" cm-3)

Temperature: 10-1000 K
Scale: 0.1-100AU
Mass: 103 — 101 Mg,
Composition:

5:2 Hy-He mixture.
1% “metals”




Before ALMA ALMA

HL Tau

Credit: ALMA Partnership







Disk spectra
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Vortices — an ubiquitous fluid mechanics phenomenon
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Vortex Trapping

Geostrophic balance:

o]
3
O
' g
h
» ]
A
T °
Coriolis Pressure g
force force E
-4 -2 0 2 4
Vortex Distance to the vortex
streamline Barge & Sommeria (1995)

Grains do not feel the pressure gradient.

They sink towards the center, where they accumulate.

Aid to planet formation
(Barge & Sommeria 1995, Tanga et al. 1996, Adams et al. 1996)

Speeds up planet formation enormously
(Lyra et al. 2008b, 2009ab, Raettig & Lyra + 2021, Lyra et al. 2024)
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Vortex Trapping

Geostrophic balance:
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Vortex

streamline Barge & Sommeria (1995)

Grains do not feel the pressure gradient.

They sink towards the center, where they accumulate.

Aid to planet formation
(Barge & Sommeria 1995, Tanga et al. 1996, Adams et al. 1996)

Speeds up planet formation enormously
(Lyra et al. 2008b, 2009ab, Raettig & Lyra + 2021, Lyra et al. 2024)
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Drag force

Trapped particle

Drag-Diffusion Equilibrium

-

Diffusion

Dust continuity equation
%a _ —(v-V)pg — paV - v+ DV?py,

ot l

compression

advection

diffusion

Lyra & Lin (2013)
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Analytical Solution for dust in Drag-Diffusion Equilibrium

Steady-state solution

Intensity (Jg/beam
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Solution for St = Stokes number (particle size)
f(x) = model-dependent scale function
r=4 S=1
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ADec ()

Analytical Solution for dust in Drag-Diffusion Equilibrium

Steady-state solution
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H =disk scale height (temperature)
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St = Stokes number (particle size)
f(x) = model-dependent scale function
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Lyra & Lin (2013)



MWC 758

Marino+Lyra (2015), Dong et al. (2018), Casassus+Lyra (2019)
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Pebble trapping
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Take home message

» Vortex-trapped dust in drag-diffusion equilibrium explains the observations

04(a,z) =epg (S +1)>2 exp
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KR Muscae (HD 100546)

L band (~3.5 um) H band (~1.6 um)

Currie et al. (2014), Currie (2015)



Spiral arm fitting leads to problems

Analytical spiral fit Spirals are too wide,
hotter (300K) than ambient gas (50K).

MWC 758
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Supersonic wake of high mass planets
does not follow the linear prediction
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Pinning down the temperature

HD 100546
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14

ma

20 |-

H band

Currie et al. (2014, 2015)

o 16~
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Lyra et al. (2016)



Planet-driven turbulence

timestep:
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Richert & Lyra + (2015)



Some crazy turbulence showing up at high planet mass....

15 orbits 30 orbits
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Turbulence in high-mass planets in adiabatic disks

Planet mass

>

Isothermal

Adiabatic

-4-3-2-10 1 -4-3-2-101 2 3 -4-3-2-101 2 3 4

Richert & Lyra + (2015)



The energy source: shock heating!
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Richert & Lyra + (2015)




Shocks (velocity convergence)

A%

3D: Shock bores

Temperature
T (K)
100. 150. 200. 250. 300.

Lyra et al. (2016)




3D shocks: bores and breaking waves
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Lyra et al. (2016)




DEC offset ["]

Synthetic image with RADMC3D and shock heating
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Observation vs Synthetic Image

March 31, 2012 A-LOCI

i

HD 100546 b —> ‘
& Disk Emission

Disk Feature/
Spiral Arm?

Currie et al. (2015)

DEC offset ["]

1.5

1.0

0.5

0.0

-1.0

-1.5
-1.5

-1.0

A=

-0.5

10.00000um

0.0 0.5
RA offset ["]

Hord & Lyra + (2017)

1.0

B

0.0072

0.0064

0.0056

0.0048

0.0040

0.0032

0.0024

0.0016

0.0008

0.0000

S, [Jy/beam]



DEC offset ["]

15

1.0

0.5

0.0

-1.0

-1.5

Effect of shocks alone

1 um
0.00027 15
0.00024
1.0
0.00021
0.00018 0.5
0.00015
0.0
0.00012 .
0.00009 05
0.00006
-1.0
0.00003
0.00000
1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -15

=1.5

S. [Jy/beam]
DEC offset ["]

RA offset ["]

Hord & Lyra + (2017)

=1.0

=0.5

10 um

0.0
RA offset []

0.5

1.0

1.5

0.0225

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

S. [Jy/beam]



Scattering — A puffed up outer gap
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Inner disk shadowing

C offset []

Locations of Maximum Normalized Height at r=1
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The pattern is stationary

T = 39 orbits T =40 orbits T = 41 orbits
Density

[ B 44402 [

1 2 0 1 2 0 1 2

20

v

Y (AU)
o

n— 10 . 10}

» ’ | —

-10 - -10}

w
w

Y (AU)
o

Y (AU)
o

-15 -15

=15 -10 -5 0 >} 10 15 =15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

DEC offset [*]

X (AU) X (AU) X (AU

Intensity

\=3,50000um \=3.50000um

15

0.0045
0.0054

0.0040

10 0.0048
0.0035 0.0042

05
0,0030 ; 00036
0.0025 § 00 0.0030 &
0.0020 0.0024
0.0015 =03 00018
0.0010 0.001

1.0 &
0.0005 0.0006
0.0000 -1.5 0.0000

~1.5 1.0 0.5 0.0 0.5 1.0 15 15 -1.0 -0.5 0.0 05 1.0 15
RA offset [] RA offset [*]

Hord & Lyra + (2017)

S. [Jy/beam]
DEC offset [*]
S, [Jy/beam)
DEC offset [*]

S. (Jy/beam|)



Z (AU)

50.

Temperature
T (K) )
100. 150. 200. 250. 300. 350. 400. 5

450.

R (AU)

10

12

Z (AU)

Convection

Entropy

(s-s,) x 10°

dinT/dInP

P AT AR




Take Home Message

Meridional Density

Planet-induced shocks modify disk structure

Hot lobes near high-mass planets in high resolution

y [AU]

Convection puffs up the outer gap — visible in scattered light
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Subaru Telescope Image of AB Aurigae

HST/STIS " | HST/NICMOS
(2021) o (2007)

Size of
Neptune's orbit

HST/STIS
(2021)

Protoplanet
AB Aur b

Currie et al (+Lyra) 2022



AB Aurigae: Long considered a planet formation laboratory

CIAO+AO36 HiCIAO + AO188 ALMA SPHERE ALMA

Sub-mm dust

Ring gap

Sub-mm gas

spiral arm

S« Center of the
S outer ring

_—

‘
1"=144 AU

—_—
Inner ring Outer ring

Fukagawa et al. 2004 Hashimoto et al. 2011 Tang et al. 2017 Boccaletti et al. 2020 Francis & van der Marel 2020



... with film appearances

_ Don’t Look ﬁ.

Ring gap 1" =144 AU

< Center of the
Sy outer ring

2021 R 2h18m "

Two astronomers goona wam humankind of illing i
response from a distracted I i planet-lqllingmumvm Earth. The

Inner ring Outer ring




AB Aur b: CHARIS

g{iﬁi‘fﬂi?“aw 201 8.(ue) 0.06 Subaru Telescope Image of AB Aurigae :
ret
(radius-scaled) 1
0.05 1.0 140
Size of _ ]
0.04 Neptune's orbit _.3.5
0.5 ]
0.03
L
0.0
0.02 &
0.01 -0.5
0.00 Protoplanet_/

AB Aur b
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—0.01

Currie et al (+Lyra) 2022



AB Aur b: HST

HST/NICMOS HST/STIS
September 2007 January—-February 2021

Currie et al (+Lyra) 2022



AB Aur b: Evidence for Orbital Motion

2.0

HST/NICMOS CHARIS/September 19 2016 (ADI/ALOCI)
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1.5

1.0

0.5

0.0

-0.5

-1.0

-1.9

250 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0 10 05 olo 0.5 D

HST: Oct 2007 to Jan 2021 SCEXAOQO: Sept 2016 to Oct 2020
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What is it?

* Disk feature?

 Planet?

U 0 e B 100 120
(mly / arcsec?) « r

Currie et al (+Lyra) 2022



AB Aur b: Emission

Detection in total intensity Non-detection in polarized light Detection in H-alpha

CHARIS/October 2020 (total intensity) CHARIS/October 2020 (polarized intensity) VAMPIRES Oct 2 2020, H-alpha (smoothed)

Currie et al (+Lyra) 2022



Explaining AB Aur b’s Appearance

Disk Model, H band Total Intensity Disk Model, H band Polarized Intensity

Embedded Planet Embedded Planet

1.0 0.5 0.0 —-0.5 -1.0 1.0 0.5 0.0 —0.D -1.0

Embedded blackbody point source
appears spatially extended because of reprocessing from the disk



Analogy: seeing a lamp through fog
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AB Aur b: Spectrum

T T T T T T
— GCaled AB Aur opt./near-IR SED |
— STIS scattered light (pred.) l
—  Accreting Planet Model '/. w

CHARIS/Jan 2018 spectrum
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Keck/NIRC2 Sa Upper Limat
1 1 L 1 1 1
0.25 0.50 1.00 1.50 2.50 5.00
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Currie et al (+Lyra) 2022

Inconsistent with pure scattered starlight;

Reproduced by ~2000 K thermal source +
~10,000K magnetospheric accretion source

Luminosity consistent with ~9-12 M, object



Log,, (Luminosity) (in solar units)
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0 e B 100
(m]y / arcsec?) ' r

Currie et al (+Lyra) 2022

Photometric constrains

« Detectionat J (1.25 mm), H (1.65 mm)

« Weaker at K (2.2 mm)
* No detection at Lp (3.8 mm)

« Colors suggest 2300 K

A planet is plausible

Gravitational Instability or Core Accretion?



AB Aur

Gravitational Instability model
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Safronov-Toomre Stability

Q=c,0Q/(mGZ) < 1 (instability)

¢, = sound speed - STABLE '
Q) = Keplerian frequency
2 = column density —

pressure ,
£

ravit + — collapse >
g y p QQJ A rotation
g %‘1 N T o
Q 3
(W}

pressure <—I—> — prevents collapse

gravity

shear | | — prevents collapse UNSTABLE

}

>
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What is the density of the AB Aur Disk?

Mygisk / M, = 0.05 Mygisk /M, = 0.1 Myisk / M, = 0.25



Density Estimate

if (AB Aur b is a planet seen through haze) then:

optical depth ~ 1

T=KpgH

Py~ 1/(xH)

0.5°
~ 1014 g/cm3

78.0 au

P~ 102 g/cm?

0 <U ) e 100 120

(mly / arcsec?) « r

3 ~3g/cm?



107 1

10* 1

109 1

Toomre Q of the disk

Gravitationally

_—" Unstable!

0.5 10 15 20 25 3.0
r/100 AU

Currie et al (+Lyra) 2022



Consistent with the pebble ring

0.06

CHARIS/January 2018 (blue)
ALMA (red)

0.05
107 1
0.04
0.03

10* 1
0.02

0.01

107 0.00

—0.01

0.5 10 15 20 25 30
r100 AU

Currie et al (+Lyra) 2022
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Toomre Q of the clump

» 10 Jupiter masses, spread
over area T(fRy;)?
« T =2000K

° r = 100 AU CPD radius = fx Rhin
175 1

150 H

125 . .
The clump is consistent

1004 with a Q~1 clump filling
075 - its Hill sphere.

0.50 -

0.25 1

0.00 A

0.5 0.2 0.4 0.6 0.8 10

78.0 au

0 <U 0 e o 100
(m]y / arcsec?) ' r

Currie et al (+Lyra) 2022



Bonnor—Ebert mass

Density vs Bonnor-Ebert mass
10? ]
« T=30K
« y=14
s ]
225 c 1
MBgg(po) = —
1071 - 3245 (aG) /2 \/Po
10-_14 | o I:I_I(I)l_:|-3 I o '1'0"_12 I S -1-(-)1_11 I T I1I0I—10
pgas

Consistent with Jupiter-mass!

Currie et al (+Lyra) 2022
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10* 1

107 1

05 10 15 20 25 30
r/100 AU

Currie et al (+Lyra) 2022

Model

« 2D r¢ Resolution 432 x 864

* Log grid Ar/r = const

« Radial range 30 — 300 AU

« Exponential truncated disk

« f-cooling: 10 orbits at 100 AU



Density
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Scale height
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Control Model without Self-Gravity

Scale height 52 Density Temperature
0.552 e 1.28
0.483 — 1.12
0.414 - 0.96
0345 o 078 & 0.80 °
0276 = = 064 =
o 0207 T 0.52 R > ’ (s
' 0.26 0.48 |
0138 =T 2 =
= 0.00 0.32
0.069
-0.26 0.16
0.000
-0.069 022 000
' -0.16
X
1.6 micron :
3.8 micron
300 300
200 200
100 100
0 0
-100 -100
-200 -200
-300 -300
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300

Currie et al (+Lyra) 2022



Scale height

0.476

0.424

F0.372

F0.320

F0.216

0.164

0.112

0.060

0.008

AB Aur model

Density

r0.268
T

Currie et al (+Lyra) 2022

"—‘;; 1.050
0.525
0.000
~0.525
-1.050 S
1575 8
~2.100
-2.625
~3,150

-3.675

300

200

100

—100

—200

—300

—300

—200

—100

0

100

200

300



300

200

100

—100

—-200

—-300

-300 -200 -100 0 100 200 300

Currie et al (+Lyra) 2022



30

204

LCH)

— L)

2040

0 20 &0 ed) ) 00 120 T
(mly / arcsec?) « r

=3l =By =113 il 100 o L] 2N

Currie et al (+Lyra) 2022



Synthetic Image + Planet

Star + Gl Blob Star Subtraction
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AB Aur b’s Formation

CHARIS October 2020 (total intensity)

Currie et al (+Lyra) 2022
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Simulated 2.2 pm image from GlI
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The future

After nearly 15 years of ALMA...

Nearly all nearby disks observed at <0.1” (< 20-30AU)
show substructures.

3 main types of substructures
- Crescent-shaped

- Spiral arms

- Rings/Gaps
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Next Generation Very Large Array (ngVLA)

Angular Resolution [arcsec]

1 mai
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Wavelength and Frequency
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Planets at 5AU

Jupiter Saturn Neptune 10 Megarh

o
o
@

o
o
-3

o
o
b

o
Q
]

ALMA @ 0.87mm

—-0.02
—0.04

—0.06

Relative J2000 Declination (arcsec)
o

—-0.08

o
o
@

ol
o
>

o
o
=

NngVLA @ 3mm

o
Q
]

S5mas=0.7 AU
rms = 5x10-7 Jy/beam

Relative J2000 Declination (arcsec)
o

1 | |
o o o
o o o
[+ > N

0.08 0.04 0 -0.02 -0.06 J.08 0.06 0.04 0.02 0 -0.02 -0.06 0.08 0.04 0 -0.02 —-0.06 0.08 0.04 0 -0.02 -0.06
Relative J2000 Right Ascension (arcsec) Relative J2000 Right Ascension (arcsec) Relative J2000 Right Ascension (arcsec) Relative J2000 Right Ascension (arcsec)

ngVLA identifies gaps/substructures down to ~5-10 Mg,
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ngVLA: Proper motions

Jupiter at 5 AU

Ricci etal. 2018
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Conclusions

“Crescents” seen in observations of disks
» Properties match those of vortices

» \Vortex-trapped dust in drag-diffusion equilibrium explains the observations

Shocks from high-mass planets
» Planet-induced shocks modify disk structure
« Hot lobes near high-mass planets in high resolution
« Convection puffs up the outer gap — visible in scattered light

Massive disks (AB Aurigae)

» First embedded protoplanet, compatible with Gravitational Instability
» Density derived from optical depth ~ 1 implies Q~1
* Q<1 between 50 and 150 AU
« Explains inner spirals ~50AU and outer pebble ring ~150 AU
« Bonnor-Ebert mass 1-10 M, for this disk pressure

* 10 M, blob spread over ~ 1 Hill radius at measured temperature also implies Q~1.
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The Missing Mass Problem

Exoplanets have more mass than the disks

=
o

=

T 1 |||||||'|

=
o
o
1 IIIIIII]
’

=
o
S

- = Cores (single exoplanets)
Dust mass in disks
Cores (systems of exoplanets)

g
Stellar Mass [M s ]

=
o
&

Mass in dust or planetary cores [M;]
=
o
|

77
Manara et al. (2018)



What gives?

Mass is derived by:

2.d obs =
,ODS BVKV

Assumptions:
Homogeneous
Optically thin

No scattering




Small-Scale Turbulence Concentrates the Grains
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Scattering

Size Averaged Opacities at ALMA Bands
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Godines & Lyra + (2025)

Radiative Transfer Results
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Conclusions

“Crescents” seen in observations of disks
» Properties match those of vortices

» \Vortex-trapped dust in drag-diffusion equilibrium explains the observations

Shocks from high-mass planets
» Planet-induced shocks modify disk structure
« Hot lobes near high-mass planets in high resolution
« Convection puffs up the outer gap — visible in scattered light

Massive disks (AB Aurigae)

» First embedded protoplanet, compatible with Gravitational Instability
» Density derived from optical depth ~ 1 implies Q~1
* Q<1 between 50 and 150 AU

« Explains inner spirals ~50AU and outer pebble ring ~150 AU
« Bonnor-Ebert mass 1-10 M, for this disk pressure

* 10 M, blob spread over ~ 1 Hill radius at measured temperature also implies Q~1.

Missing Mass Problem (Disks vs Exoplanets)
» Factor 2-7 in mass taking into account scattering and unresolved (sub-beam scale) turbulence
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Pebble definition

Geologist: particles 2 mm <d < 6.4 cm

Astrophysical: particles that drift

at 100 au for power-law disk
particle size [cm]
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Kelvin-Helmholtz Instability

> N

b) /\V

Lovelace & Hohlfeld 1978, Toomre 1981, Papaloizou & Pringle (1984), Hawley (1987), Lovelace et al (1999), Li et al. (2000), Varniere & Tagger (2005), Cheng & Youdin (2023).
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Lyra & Klahr (2011)
Klahr & Hubbard (2014)
Lyra (2014)
Latter (2016)
Volponi (2016)
Reed & Latter (2021)
Raettig et al. (2021)

Convection

Sketch of the
Convective Instability

Armitage (2010)
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Vortex Trapping
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dN/dM (Mg1)

Vortex Trapping — Initial Mass Function

Mass function of vortex-formed protoplanets at 50T,

MfMEarth
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Headwind and Grain Drift

Low pressure

Grains

High pressure The gas has some pressure support (sub-Keplerian).

Gas
The grains do not feel gas pressure (Keplerian).



PDS 70 and PDS 70b

Keppler et al. (2018); Isella et al. (2019); Benisty et al. (2021) Balsalobre-Ruza et al. (2023)



Planetary traps
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Time series of planet formation?

Stage | Stage Il Stage Il Stage IV

& O

WLY 2-63 1SO-Oph 17 ELIAS 2-24 DoAr 44 RXJ1633.9-2442

OOO

1SO-Oph 37 DoAr 25 WSB 82 1SO-Oph 2

- - O

ELIAS 2-20

ol ol Il
at mm continuum

Stage | No obvious gaps. Disks form without deep

.

Press Releases

ALMA Inspires New Models for the
Evolution of Planet-Forming Disks

ELIAS 2-27

gaps.
1S0-Oph 54
Stage Il  One or multiple deep Deep gaps form as
narrow gaps. protoplanets grow.
3 Stage Ill  Bright ring at the edge of A gas giant has formed,
the gap. Inner disk still creating a strong pressure
present. bump at gap edge.

Stage IV Dissipation of the inner Dust filtration at gap edge.
disk. Brightening of ring.  Dust accumulates in ring.

StageV  Anarrow ring ora Most mm dust
collection of narrow accumulates in one or
rings. more rings.

Orcajo et al. (2025)



Kelvin-Helmholtz Instability

> N

b) /\V

Lovelace & Hohlfeld 1978, Toomre 1981, Papaloizou & Pringle (1984), Hawley (1987), Lovelace et al (1999), Li et al. (2000), Varniere & Tagger (2005), Cheng & Youdin (2023).
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Zhang et al. (2024)
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Vertical shear instability

Angular velocity not constant in cylinders: unstable
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< Convective Overstability
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—
Sketch of the

Convective Overstability
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Global 3D Model
with vertical stratification

Convective Overstability
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Gravitational Collapse

logio (pa/po)

Lyra et al. (2024)



Gravitational Collapse

Gas Vorticity
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Vortex Trapping - 1283
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Primary and Secondary spiral arms

Scattered Light
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Fung & Dong (2015)



Streaming Instability

The dust drift through the gas is hydrodynamically unstable
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Primary and Secondary spiral arms

Midplane Density at Last Snapshot

¢ [radians]
w

2B
1k
0
4 6 8 10 12
r [AU]

Hord & Lyra + (2017)

-12.2

-12.4

-12.6

-12.8

-13.0

-13.2

-13.4

-13.6

-13.8

[ W2B] 07 Soy



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: Time series of planet formation?
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

