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Sharp and eccentric rings in debris disks:
Signposts of planets

Fomalhaut Debris Ring Hubble Space Telescope « ACS HRC
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Narrow sharp eccentric ring Detection of a source
quickly heralded as a planet

Fomalhaut b



Sharp and eccentric rings in debris disks:

Signposts of planets ?
However.....
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ARSTRACT

The nearky Ad-type star Fomalhaut hosts a debns belt in the foom of an ecoentne nng, which 15 thought to b
caused by dynamical influence from a giant planet companicn, In 2008, a detecticn of a poinl source inside the
inner edge of the ring was reported and was inlerpreted as a divect image of the planet, named Fomalhaut b The
datection was made al ~600-800 nm, but no corresponding signatures were found in the near-infraved range. where
the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut wath
Spitzer/ITRAL a1l 4.5 ppm, using a novel poini-spread funchion subtracton technigue based on angular differcatial
imaging and Lecally Optimized Combination of Images, in order to subsianbially improve the Spitzer contrast al
small =oparaticns. The results provide more than an order of magnitude improvement in the wpper Aux limit of
Fomalhaut b and exclude the p-.'\-s.s.ihi“l:.' that any Aux from = 5i:1n| p|'.1nq.'l surface contributes b the chserved lus
at visible wavelengths, This renders any direct connection belween the chsarved light souree and the dynamically
infenred giant planct highly unlikely. We discuss several possible interpreiations of the total body of observalions
ol the Fomalhaut systemn and find that the interpretation that best matches the evailable data For the observed sownce
is scattered light from a bransienl or semi-transient dusi clowd.
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Planet not detected in infrared



Are there
alternative explanations?
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Gas in debris disks

Detections

B Pictoris many species Lagrange et al. (1998), ..

51 Ophiuchi many species Roberge et al. (2002)

oHerculis CII,NII  cChen & Jura (2003)

HD 32297 NalI, CII Redfield (2007), Donaldson et al. (2012)

HD 135344 H2, CO Thi et al. (2001), Pontoppidan et al. (2008)
49 CeTl H2, CO Dent et al. (2005), Roberge et al. (2012)
AU Mic H? France et al. (2007)
HD172555 SiO Lisse et al. (2009)
Source of gas
Primordial

'Infalling comets Beust & Valiron (2007)

Grain sublimation e.g. Rafikov (2012)
Grain-Grain collisions  Czechowski & Mann (2007)

Photo-stimulated desorption Chen et al. (2007)

Planet-Planet collisions Van den Ancker (2001), Lisse (2008)
Radiogenic heating of planetesimals




Dust density

Dust and gas together leads to instability...

Klahr & Lin (2005)

Suggested that an instability
might cause dust in debris
disks to clump together.



Particles move toward pressure maxima
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Particles move toward pressure maxima
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Photoelectric heating

In optically thin debris disks,
the dust is the main heating agent for the gas.

Dust intercepts starlight directly,
emits electron, that heats the gas.

Gas is photoelectrically heated by the dust itself




Runaway process: instability

Dust heats gas
( Heated gas = high pressure region )
High pressure concentrates dust



Model equations

Klahr & Lin (2005) used a simplified, 1-D model.
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Model equations

Our simulation adds much more physics, and works in 2D.

Klahr & Lin (2005)
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Inertia for both gas and dust
Energy equation

Drag force and
drag force backreaction

Lyra & Kuchner (2012)
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Instability

Dust heats gas
Heated gas = high pressure region
High pressure concentrates dust
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Linear Analysis
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Instability

Overstability
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Overstability

Instability

Oscillations
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Max growth rate: Omega/2.
Million-fold amplification in five orbits!

A very powerful instability.
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Linear growth only exists for e <1
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Azimuth

The model in 2D: Eccentric rings

Growth of axisymmetric modes

. = Rings W

Damping of nonaxissymetric modes.
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Ring eccentricity
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Summary

Hydrodynamical instability in Debris Disks with Gas
Different instability than Klahr & Lin (2005):
* short time scale:
dynamical time, not radial drift time
Robust to inertia, drag backreaction, 2-D effects

Yields narrow rings with eccentricities up to ~0.04 so far

Future Work:
3-D
Magnetic fields

Collisions
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ABSTRACT

Debris disks should not be cc-mpletelv gas—free since there is second generation gas from out-
gassing of planetesimals and dust grains via sublimation, hc:tcdeac-rpt‘ion or collisions, genernﬁn
a system of dust-to- as ratio close to unity, where hydrodynamics cannot be ignored. A clum ing
l.l'lst"lblllt‘r' exists in this configuration, that has been hitherto explored only in one-dimensional, in-
cc:mpresmble models. We performed 2D numerical compressible models of a disk with com arable
amounts of gas and dust to study the growth and development of this instability. Our model solves
the momentum equation for the gas and dust, together with energy and cc-nhnultv equ’lhnns We
uncover that the backreaction of the drag force from the gas onto the dust shepherds rings, similar
to those observed in debris disks and usually attributed to the presence of hypothetical undetected

lanets. We also uncover that the e-:-:entrlcltv of these rings, usually presented as convincing evi-
dence for the presence of a planet, can actuallv be simply explained bv a standing wave propagating
along the ring. The rings support a spech'u.tn of oscillations, with one particular mode representing
eplcvchc motion. The apparent eccentricity matches the eccentricity in observed systems. This sug-
gests that the planet possibility, though thrilli.ng,. is not necessarily requirecl toex pla.in these systems.

1. INTRODUCTION

Disks around young stars : appear to pass through an
evolutionary phase when the disk is Dphmllv ~-thin and
the dust to gas ratio is of order unity give or take an or-
der of magnitude. It can be hard to recisely measure
the total masses of the dust and gas in such “disks, but
the nearby stars § Pictoris (Lagrange et al. 1998; Olofs-
son et al. 2001; Brandeker et al. 2004; Roberge et al. 2006;
Troutman et al. 2011), HD32297 (Redfield 2007), 49 Ceti
(Zuckerman et al. 1995) and HD 21997 (Moor et al. 2011)
all host disks of dust resembling ordinary debris disks
and also have stable circumstellar gas detected in molec-
ular CO, Na I or other metal lines; the inferred mass of

The result of this instability could be that the dust and
gas clump into rings or splrnl patterns or other struc-
tures that could be detected via coronogr dphl:: imag-
ing or other methods. Indeed, images of debris disks
and transitional disks show a range of asymmetries
and other structures that beg for explanation. Klahr
& Lin (2005) raised the possibility that the instability
they hypothesized could explain some of the observed
structures. Alternative explanations for these structures
sometimes rely on planetary perturbers—a tantalizing
possibility. But we are interested in investigating any
possible explanation for these disk structures that does
not require a ]'udden planetarv cc:mp’uuc-n

h W 3 b | 1 ™
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ABSTRACT

Debris disks should not be Lc-mp]ete]v gas—free since there is second generation gas from out-
gassing of planetesimals and dust grains via sublimation, hc:tcde&c-rption or collisions, generating
a svstem of dust-to- as ratio close to unity, where hydrodynamics cannot be ignored. A c]uml:mg
instability exists in this configuration, that has been hitherto explored only in one-dimensional, in-
cc:mpresmble models. We performed 2D numerical compressible models of a disk with comparable
amounts of gas and dust to study the growth and development of this instability. Our model solves
the momentum equation for the gas and dust, together with energy and continuity equ’lhnns We
uncover that the backreaction of the drag force from the gas onto the dust 5hepher-|:15 rings, similar
to those observed in debris disks and usually attributed to the presence of hypothetical undetected
planets. We also uncover that the eccentricity of these rings, usually presented as convincing evi-
dence for the presence of a planet, can actually be simply explained by a standing wave propagating
along the ring. The rings support a spea..tmm of oscillations, with one particular mode representing
eplcvcllc n‘n:rh::m The apparent eccentricity matches the eccentricity in observed systems. This sug-
gests that the planet possibility, though thrilling, is not necessarily required to explain these systems.

1. INTRODUCTION

Disks around yvoung stars : appear to pass through an
evolutionary phase when the disk is optically-thin and
the dust to gas ratio is of order unity give or take an or-
der of magnitude. It can be hard to precisely measure
the total masses of the dust and gas in such “disks, but
the nearby stars § Pictoris (Lagrange et al. 1998; Olofs-
son et al. 2001; Brandeker et al. 2004; Roberge et al. 2006;
Troutman et al. 2011), HD32297 (Redfield 2007), 49 Ceti
(Zuckerman et al. 1995) and HD 21997 (Moor et al. 2011)
all host disks of dust resembling ordinary debris disks
and also have stable circumstellar gas detected in molec-
ular CO, Na I or other metal lines; the inferred mass of

The result of this instability could be that the dust and
gas clump into rings or spiral patterns or other struc-
tures that could be detected via coronogr dphlc imag-
ing or other methods. Indeed, images of debris disks
and transitional disks show a range of asymmetries
and other structures that be for explanation. Klahr
& Lin (2005) raised the possﬂ:ulll'v t]gat the instability
they hypothesized could explain some of the observed
structures. Alternative explanations for these structures
sometimes rely on planetary perh,ubers—a t111tallzlng
possibility. But we are interested in investigating any
possible exphnanon for these disk structures that does
not require a ]'udden p]anetarv cc:mp’uuc-n
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