3D Global Models of Streaming Instability

Wladimir Lyra

California State University

Jet Propulsion Laboratory

Funding

HST Cycle 24

Exoplanet Research Program XRP - 2016, 2018

NRAO 2017

Computational Facilities

Frejus, Mar 18th, 2019

3D Global Models of Streaming Instability

The M.Sc. students who did this work

Areli Castrejon

Chris Malek

MNRAS **434**, 1460–1468 (2013) Advance Access publication 2013 July 11 doi:10.1093/mnras/stt1104

Streaming instability in the quasi-global protoplanetary discs

K. Kowalik,^{1*} M. Hanasz,^{1*} D. Wóltański¹ and A. Gawryszczak²

¹Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, PL-87-100 Toruń, Poland ²Poznań Supercomputing and Networking Centre, Noskowskiego 10, PL-61-704 Poznań, Poland

Accepted 2013 June 17. Received 2013 June 13; in original form 2013 May 15

Time =

[yr]

Kowalik et al. (2013)

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **434**, 1460–1468 (2013) Advance Access publication 2013 July 11 doi:10.1093/mnras/stt1104

Streaming instability in the quasi-global protoplanetary discs

K. Kowalik,^{1*} M. Hanasz,^{1*} D. Wóltański¹ and A. Gawryszczak²

¹Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, PL-87-100 Toruń, Poland ²Poznań Supercomputing and Networking Centre, Noskowskiego 10, PL-61-704 Poznań, Poland

Accepted 2013 June 17. Received 2013 June 13; in original form 2013 May 15

Time =

[yr]

Missing

- Radial variation of clumps' IMF?
- Dominant azimuthal mode?
- Lagrangian particles
- Selfgravity

Kowalik et al. (2013)

3D Global Models of Streaming Instability

Global Models of Streaming Instability

Global Models of Streaming Instability

Analytical solution Youdin (2010)

Breakdown

Deviations from analytical solution for $u/c \sim 0.5$.

Global Models of Streaming

Jupiter-mass planet

Jupiter-mass planet

Gap modified at high dust-to-gas ratio.

Jupiter-mass planet

- Gap modified at high dust-to-gas ratio.
- Pebble drift slows down at high dust-to-gas ratio and halted at ε=1

Halting the drift

Localized ε =1 pressure-bump survives during whole simulation

Jupiter-mass planet

- Gap modified at high dust-to-gas ratio.
- Pebble drift slows down at high dust-to-gas ratio and halted at ε=1

Vortices

Rossby wave instability at the dust front !

Caveat: Convergence.

10 Earth masses; α =10⁻³

Figure by Jeff Fung

Not all planets are dust dams

Not all planets are dust dams

o drift pas planet

How to drift past a propeller?

A pebble has to cross the co-rotational region faster than a planet can scatter it

How to drift past a propeller?

A pebble has to cross the co-rotational region faster than a planet can scatter it

Not all planets are dust dams

Dust dam

Planet Mass

Dust able to drift past planet

$$\begin{split} \Theta &= \frac{t_{\text{drift}}}{t_{\text{orb}}} \\ &\approx 0.4 \ q^{1/2} h^{-5/2} \chi^{-1} \text{St}^{-1} \left(1 + \text{St}^2\right) \end{split}$$

q = planet mass ratio

- h = disk aspect ratio
- χ = power law of pressure gradient
- St = Stokes number

Not all planets are dust dams

Streaming Instability

Preliminary Model

- *H*=0.3
- Nr,Nphi,Nz = 384,1024,32
 - 12 million particles
 - $\lambda_{SI}/\Delta r = 20$

Streaming Instability

Time

Denser. The drift is not divergenceless.

Azimuthal spectral power distribution?

Not axisymmetric!

Azimuthal spectral power distribution?

Not axisymmetric!

Azimuthal spectral power distribution?

Vortex at inner dust edge

RWI at dust sublimation radius?

- High dust-to-gas ratio ($\varepsilon \sim 0.1$ -1)
 - Depresses pressure bumps
 - Slows/halts pebble drift
- Vortices (RWI) at dus
 - Outer front as pe
 - Inner -- sublimati
- Planets as dust dams
 - Criterion drift vs c
 - Low-mass pla
- Streaming Instability
 - Non-axisymmetri
 - High-mass embry
 - Convergence....

- High dust-to-gas ratio ($\varepsilon \sim 0.1$ -1)
 - Depresses pressure bumps
 - Slows/halts pebble drift
- Vortices (RWI) at dust fronts
 - Outer front as pebbles drift inwards (?)
 - Inner -- sublimation radius (?)
- Planets as dust dams
 - Criterion drift vs dynamical time
 - Low-mass planets (small corotation radius) i
- Streaming Instability in 3D
 - Non-axisymmetric
 - High-mass embryos
 - Convergence....

- Criterion drift vs dynamical time
 - Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen
- Streaming Instability in 3D
 - Non-axisymmetric
 - High-mass embryos
 - Convergence....

- High dust-to-gas ratio ($\varepsilon \sim 0.1$ -1)
 - Depresses pressure bumps
 - Slows/halts pebble drift
- Vortices (RWI) at dust fronts
 - Outer front as pebbles drift inwarc
 - Inner -- sublimation radius (?)
- Planets as dust dams
 - Criterion drift vs dynamical time
 - Low-mass planets (small corc
- Streaming Instability in 3D
 - Non-axisymmetric
 - High-mass embryos
 - Convergence....

jood dutchmen

The M.Sc. students who did this work

Areli Castrejon

Chris Malek

- High dust-to-gas ratio ($\varepsilon \sim 0.1$ -1)
 - Depresses pressure bumps
 - Slows/halts pebble drift
- Vortices (RWI) at dust fronts
 - Outer front as pebbles drift inwards (?)
 - Inner -- sublimation radius (?)
- Planets as dust dams
 - Criterion drift vs dynamical time
 - Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen
- Streaming Instability in 3D
 - Non-axisymmetric
 - High-mass embryos
 - Convergence....

Neptune-mass planet

Jupiter-mass planet

