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Kowalik et al. (2013)



Kowalik et al. (2013)

Missing
• Radial variation of clumps’ IMF?
• Dominant azimuthal mode?
• Lagrangian particles
• Selfgravity
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3D Global Models of Streaming Instability

Analytical solution Youdin (2010)



Breakdown

Deviations from analytical solution for u/c ~ 0.5.
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Halting the drift

Localized e=1 pressure-bump 
survives during whole simulation
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Vortices

Gas Pebbles

Rossby wave instability at the dust front !



Caveat: Convergence. 

10 Earth masses; a=10-3

Convergence: 15,000 orbits

Figure by Jeff Fung
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How to drift past a propeller?

A pebble has to cross the co-rotational region 
faster than a planet can scatter it
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Streaming Instability

Preliminary Model

• H=0.3

• Nr,Nphi,Nz = 384,1024,32

• 12 million particles

• lSI/Dr = 20



Streaming Instability

Time

Denser. 
The drift is not divergenceless.



Azimuthal spectral power distribution?

Not axisymmetric!
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Azimuthal spectral power distribution?

Mass not converged yet

A Ceres-mass
clump



Vortex at inner dust edge

RWI at dust sublimation radius?



Conclusions

• High dust-to-gas ratio (e ~ 0.1 -1)
• Depresses pressure bumps
• Slows/halts pebble drift

• Vortices (RWI) at dust fronts 
• Outer front as pebbles drift inwards (?)
• Inner -- sublimation radius (?)

• Planets as dust dams 
• Criterion drift vs dynamical time

• Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen

• Streaming Instability in 3D 
• Non-axisymmetric
• High-mass embryos
• Convergence….  

Gap modifiedGap 
modified

Pebble flux slowed 
down/halted.



Conclusions

• High dust-to-gas ratio (e ~ 0.1 -1)
• Depresses pressure bumps
• Slows/halts pebble drift

• Vortices (RWI) at dust fronts 
• Outer front as pebbles drift inwards (?)
• Inner -- sublimation radius (?)

• Planets as dust dams 
• Criterion drift vs dynamical time

• Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen

• Streaming Instability in 3D 
• Non-axisymmetric
• High-mass embryos
• Convergence….  



Conclusions

• High dust-to-gas ratio (e ~ 0.1 -1)
• Depresses pressure bumps
• Slows/halts pebble drift

• Vortices (RWI) at dust fronts 
• Outer front as pebbles drift inwards (?)
• Inner -- sublimation radius (?)

• Planets as dust dams 
• Criterion drift vs dynamical time

• Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen

• Streaming Instability in 3D 
• Non-axisymmetric
• High-mass embryos
• Convergence….  



Conclusions

• High dust-to-gas ratio (e ~ 0.1 -1)
• Depresses pressure bumps
• Slows/halts pebble drift

• Vortices (RWI) at dust fronts 
• Outer front as pebbles drift inwards (?)
• Inner -- sublimation radius (?)

• Planets as dust dams 
• Criterion drift vs dynamical time

• Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen

• Streaming Instability in 3D 
• Non-axisymmetric
• High-mass embryos
• Convergence….  



Areli Castrejon Chris Malek

The M.Sc. students who did this work



Conclusions

• High dust-to-gas ratio (e ~ 0.1 -1)
• Depresses pressure bumps
• Slows/halts pebble drift

• Vortices (RWI) at dust fronts 
• Outer front as pebbles drift inwards (?)
• Inner -- sublimation radius (?)

• Planets as dust dams 
• Criterion drift vs dynamical time

• Low-mass planets (small corotation radius) in hot disks (fast drift) not good dutchmen

• Streaming Instability in 3D 
• Non-axisymmetric
• High-mass embryos
• Convergence….  



Influence on Gap Carving

Jupiter-mass planetNeptune-mass planet



e=1,	drift

e=0.1,	no	drift
e=1,	no	drift

e=0.1,	drift


