Evolution of MU69 from a binary planetesimal into contact via Kozai-Lidov oscillations and nebular drag

AAG - 2020, 2010

TCAN – 2020 NFDAP – 2019 XRP – 2016, 2018

NRAO - 2017

HST - 2016

Computational Facilities

Wladimir Lyra

New Mexico State University

The Cartoon Image

The Formation of 2014 MU69

About 4.5 billion years ago...

...1 January 2019.

A rotating cloud of small, icy bodies starts to coalesce in the outer solar system.

New Horizons / NASA / JHUAPL / SwRI / James Tuttle Keane

Eventually two larger bodies remain.

The two bodies slowly spiral closer until they touch, forming the bi-lobed object we see today.

Hardening

Angular momentum loss via nebular drag

Solve for angular momentum:

$$r\ddot{\phi} + 2\dot{r}\dot{\phi} = -rac{r_{\phi}}{\tau}$$

 $rac{dh}{dt} = -rac{h}{\tau}$

Exponential decay of angular momentum !

 $h = h_0 e^{-t/\tau}$

Analytical solution

Getting quantitative...

Time until contact

$$t = \frac{\tau}{2} \ln \frac{a_0}{a}$$

For $a = 0.1 r_H$ (4000 km), hardening to a_0 =20km and $\tau \Omega$ =10⁷...

Wind solution

Wind solution

Angular momentum loss at constant energy.

Eccentricity increase at constant semimajor axis

Timescales

Wind has a strong effect in the distances of the asteroid belt.

Little effect in the Kuiper belt.

Linear vs quadratic drag

Lyra, Youdin, & Johansen 2020

Effect of Inclination

Kozai-Lidov Oscillations

Effect of Inclination

Critical Inclination

Effect of Drag

Conclusions

- Solved the binary planetesimal problem with gas drag
- Implemented the solution into a Kozai plus tidal friction code
- Contact possible in the asteroid belt within 0.1 Myr (depleted of binaries)
- Contact via Kozai cycles in the Kuiper belt, orbits become grazing
- Window of contact increased by J₂ and drag

- Model predictions:
 - ~ 10% of KBCC binaries should be contact binaries
 - Velocities at contact should be about 3-4 m/s
- Open questions:
 - Single-averaged (or N-body) needed to reproduce final inclinations
 - Combine our model with single-averaged Kozai (or N-body)

The two bodies slowly spiral closer until they touch, forming the bi-lobed object we see today.

Sketch by J.T. Keane