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Observational Evidence

The Atacama Large (sub-)Millimeter Array (ALMA)
has been returning high-resolution images of circumstellar disks, resolving structure

The ALMA Partnership et al. (2015)

HL Tauri
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0.15’’, or 20 AU at 140 
pc

0.7” resolution

At 140 pc

0.3”
0.02” ~ 

3au

ALMA
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The ALMA Revolution
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Before ALMA ALMA
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van der Marel+ 13, Casassus+ 13, Perez+ 14

HD 142527SR 21IRS 48

ALMA Cycle 0 (2012)
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ALMA Disk Substructure in High-Angular Resolution (DSHARP) Survey (2018) 0 (2012)

PI: Sean AndrewsW. Lyra



Structure: gaps, spirals, and vortices

HL Tau SAO 206462 Oph IRS 48

The ALMA Partnership et al. (2015) Muto et al. (2012) van der Marel et al. (2013)
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Observational Evidence

The Ophiucus Disk Survey Employing ALMA (ODISEA)

ODISEA (2018); PI: Lucas Cieza

HL Tauri
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Time series of planet formation?

Orcajo et al. (2025)
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Polarization maps: dust properties and magnetic fields

Observational Evidence

Ohashi et al (2025)

Field geometry

|Br| : |Bφ| : |Bz| ~ 0.26 : 1.0 : 0.23

Field strength           Plasma beta

|B| ~ 0.3 mG            β ~ 2.0 x 102

Ambipolar Elsasser number

Am ~ 0.4
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Observational Evidence

The JWST Mid-Infrared Survey

(MINDS)

Arabavi et al. (2024, 2025)

PI Thomas Henning

Ramirez-Tannus et al. (2023)

PI Maria Ramirez-Tannus & Arjan Bik

The Extreme UV Environments JWST program
(XUE)
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Observational Evidence

JWST vs Spitzer

Tabone et al. (2023); MINDS PI Thomas Henning
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Observational Evidence

Bajaj et al (2024)

JWST: disk spectra (chemistry, ice/gas tracers)
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Detection of Circumplanetary Disk

HL Tauri

ALMA

Keppler et al. (2018); Isella et al. (2019); Benisty et al. (2021)

Balsalobre-Ruza et al. (2023)

JWST Interferometry

Blakely et al. (2025)
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Observations demand models that are: 

• 3D,

• High-resolution,

• Multiscale

• Multiphysics (+chemistry)

W. Lyra
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Reading Material

• PP7 Chapter 13 - Hydro-, Magnetohydro-, and Dust-Gas Dynamics of Protoplanetary Disks, 
Lesur et al. 2022.

• The Initial Conditions for Planet Formation: Turbulence Driven by Hydrodynamical Instabilities 
in Disks around Young Stars, Lyra & Umurhan 2019, PASP, 131, 1001. 

• Astrophysics of Planet Formation, 2nd edition 2020, Armitage, Cambridge University Press.  
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Square One: Star Formation
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Disk evolution

Armitage (2024)
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Core 

Accretion
Streaming
Instability

coagulation

Dust grains Pebbles

0.1 – 1 μm mm – cm

1-100km

Planetesimals

Protoplanets
Rocky Planets

Planetary Cores

Pebble
Accretion

Gas Accretion
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Dust growth and planet formation

Armitage (2024)
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Planetary Growth

Armitage (2024)
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Circumplanetary disks

Armitage (2024)
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Global hydro & MHD models

Magneto-Rotational Instability

Simulations

Flock et al (2011)

Resolution
384 x 192 x 768

1000 orbits

8M CPU hours
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Global hydro & MHD models

Vertical Shear Instability

Simulations

Flock et al (2020)

Resolution
1024 x 512 x 2044

1000 orbits
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Global hydro & MHD models

Convective Overstability

Simulations

Lyra et al (2024)

Resolution
512^3

400 orbits

x/H

𝛻S
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Dust and grains

Simulations

Lyra et al. (2024)

Resolution
512^3
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Streaming Instability

Simulations

Resolution
2048 x 2048 x 128

Schafer et al. (2024)

Johansen & Youdin (2007)
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Radiative Transfer - Postprocessing

Simulations
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Coagulation

Simulations

Why now?
Theory
State of the Art
Next Generation
Roadmap

W. Lyra

29
Stammler & Birnstiel (2022)



Simulations

Planet Migration – The need for multiphysics
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Planet Migration – The need for multiphysics

Simulations
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Migration Torques

Density Torque

The planet generates a non-axisymmetric wake

Non-zero torque

𝚪 = 𝑟𝑝𝐺𝑚𝑝 ඵ Σ
 𝑟2

|𝒓 − 𝒓𝒑|3
sin 𝜙 𝑑𝑟𝑑𝜙

Planet Migration – The need for multiphysics

Simulations

Why now?
Theory
State of the Art
Next Generation
Roadmap

W. Lyra

32



Density Torque

The planet generates a non-axisymmetric wake

Non-zero torque

𝚪 = 𝑟𝑝𝐺𝑚𝑝 ඵ Σ
 𝑟2

|𝒓 − 𝒓𝒑|3
sin 𝜙 𝑑𝑟𝑑𝜙

Inner Wake

Outer Wake

Migration Torques

Planet Migration – The need for multiphysics

Simulations
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Features of Next-Gen models

Non-ideal MHD and Radiative Transfer

Gressel et al. (2020)
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Features of Next-Gen models

Dust coagulation and Hydrodynamics

Drazkowska et al. (2019)
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Features of Next-Gen models

Multiscale for dust grains – Global streaming instability

Flock et al. (2021)
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Features of Next-Gen models

High-resolution 3D

Lesur et al. (2025)

Resolution 3872 x 2000 x 12544

( Equivalent resolution ~ 4597 3 ) 
~200 points per H
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Features of Next-Gen models

On-the-fly detailed radiative transfer
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Time-dependent implicit on-the-fly 

Radiative Transfer in Athena++ (Jiang, 

2021)

Still isothermal, Newton cooling, and 

FLD widely used in the community

 



Features of Next-Gen models

GPU Exascale

GPU-exascale ready astrophysics codes

• AthenaK (Jim Stone)

• Idefix (Geoffroy Lesur)
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Features of Next-Gen models

Machine-learning

AEGIS: Advanced Emulator for Giant Impact Simulations (Timpe et al. 2020)
Planetary masses from gaps (Auddy & Lin 2020)
Key parameters in planet-disk systems (Shunyuan et al. 2024)

• Parameter space exploration

• Pattern Recognition

• Inverse Problems

Shunyuan et al. (2024)
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Features of Next-Gen models

Machine-learning

ML could be used for sub-grid physics
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Features of Next-Gen models

Machine-learning

ML could be used for sub-grid physics

ML emulators for bridging scales: 

Sub-grid processes 
 Turbulent dissipation and angular momentum transport 

High-res local sims
(4096³ boxes,
lab experiments)

Machine Learning Training
(Neural nets, Gaussian 
Processes)

Emulator in Global Disk 
Model
(AU-scale)
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Features of Next-Gen models

Machine-learning

ML could be used for sub-grid physics

ML emulators for bridging scales: 

Sub-grid processes 
Dust coagulation,
fragmentation,
and porosity evolution

High-res local sims
(4096³ boxes,
lab experiments)

Machine Learning Training
(Neural nets, Gaussian 
Processes)

Emulator in Global Disk 
Model
(AU-scale)
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Features of Next-Gen models

Machine-learning

ML could be used for sub-grid physics

ML emulators for bridging scales: 

Sub-grid processes 
Pebble accretion and 
processing in planetary 
atmospheres;

High-res local sims
(4096³ boxes,
lab experiments)

Machine Learning Training
(Neural nets, Gaussian 
Processes)

Emulator in Global Disk 
Model
(AU-scale)
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Features of Next-Gen models

Machine-learning

ML could be used for sub-grid physics

ML emulators for bridging scales: 

Sub-grid processes 
 Chemistry and opacity

High-res local sims
(4096³ boxes,
lab experiments)

Machine Learning Training
(Neural nets, Gaussian 
Processes)

Emulator in Global Disk 
Model
(AU-scale)

Why now?
Theory
State of the Art
Next Generation
Roadmap

W. Lyra

45
Schneider et al (2024)



Features of Next-Gen models

Prepare for ngVLA

Nearly all nearby disks observed at <0.1” (< 20-30AU)
show substructures.

3 main types of substructures

- Crescent-shaped

- Spiral arms
- Rings/Gaps

After ~15 years of ALMA…
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Features of Next-Gen models

Prepare for ngVLA
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Jupiter Saturn Neptune

ALMA @ 0.87mm

ngVLA @ 3mm

5 mas = 0.7 AU

rms = 5x10-7 Jy/beam

5au

Planets at 5AU

10 MEarth

ngVLA identifies gaps/substructures down to ~5-10 MEarth

Ricci et al. 2018
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Prepare for ngVLA
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ngVLA: Proper motions

ngVLA @ 3mm

(beam = 5mas
rms = 2e-7 Jy/b) 

1 frame per month

1 orbit in 12 years

Circum-planetary disk:

Mdisk = 10-4 Mpl

rdisk = 0.5 rHill

Macc = 10-7 Mpl yr -1

Tests to models of triggered planet/planetesimals formation

1au

Jupiter at 5 AU
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Roadmap (for next 5 years?)

• Develop a community code?

• Build modular, open, interoperable codes (several post-

processing codes exist, they should talk to each other and be 

included in hydrodynamics)

• Optimize for GPU / exascale computing

• Develop community benchmark problems

• Pipelines for synthetic observations with sophisticated physics

• Support ML emulators

Conclusions

• Next-gen models must be 

• multiphysics, multiscale, high-res 3D, modular and scalable

• Community benchmarks & open GPU-ready codes are essential
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