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Planet 
Formation



Circumstellar/Protoplanetary Disks

PP disk fact sheet

Density: 1013 – 1015 cm-3

(Air: 1021 cm-3)

Temperature: 10-1000 K

Scale: 0.1-100AU

Mass: 10-3 – 10-1 Msun



Planet Formation

“Planets form in disks of gas and dust”

A miracle happens



ISM 
dust

Dust evolution

Here be dragons…Coagulation
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Sun

High pressure

Low pressure

Gas

Pebble

The gas has some pressure support (sub-Keplerian).

The pebbles do not feel gas pressure (Keplerian).

Headwind and Dust Drift



Dust coagulation and drift

Brauer et al. (2008)

• Grains grow and start 
drifting inward (white 
line is the line of 
maximum drift)

• If that was the whole
picture, planets should 
not exist, as all dust is 
lost to the star

• Either planets form very 
fast, or something must 
be at work to retain the 
dust



Streaming Instability

The dust drift is hydrodynamically unstable

Lesur et al. (2022)

Youdin & Goodman ‘05, Johansen & Youdin ‘07, Youdin & Johansen+ ‘07, Kowalik+ ’13, Lyra & Kuchner ‘13, 
Schreiber+ ‘18, Klahr & Schreiber ’20, Simon+ ‘16, ‘17, Carrera+ ‘15, ‘17, ‘20, Gole+ ’20, Li+ ‘18, ‘19, Abod+ ’19, Nesvorny+ ’19



10





Direction of dust acceleration

Turbulence
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Sun

• Grains more toward high pressure
• High pressure regions behave like excellent dust traps
• Turbulence is a way to generate numerous transient high pressure regions
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• MRI-active disk.

• Grains more toward high 
pressure

• High pressure regions behave
like excellent dust traps

• Turbulence is a way to generate
numerous transient high
pressure regions

• Bright areas are saturated with 
dust grains



Dead zones

0.1 AU ~30 AU

There should be a magnetized, active zone
and a non-magnetic, dead zone

• MRI is problematic in 
protoplanetary disks because
• These disks are cold 
• Lack of ionization

• Huge swaths “dead” to the MRI
• No MRI turbulence where we 

expect planets to form 



Lyra et al. (2008b, 2009a); 
After Lovelace & Hohlfeld 1978, Toomre 1981, Papaloizou & 
Pringle (1984), Hawley (1987), Lovelace et al (1999), Li et al. 
(2000), Varniere & Tagger (2005).
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• The boundary between the 
MRI-active and MRI-dead 
zones is a location or vortex 
formation via Rossby wave 
instability

• The Rossby wave instability is a 
form of the Kelvin-Helmholtz 
instability



Rossby wave instability
(Kelvin-Helmholtz Instability in rotating disks)

17
Lovelace & Hohlfeld 1978, Toomre 1981, Papaloizou & Pringle (1984), Hawley (1987), Lovelace et al (1999), Li et al. (2000), Varniere & Tagger (2005), Cheng & Youdin (2023).



Vortices – an ubiquitous fluid mechanics phenomenon

Von Kármán vortex street
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Coriolis
force

Pressure 
force

Vortex 
streamline

Geostrophic balance:

Grains do not feel the pressure gradient. 
They sink towards the center, where they accumulate.

Aid to planet formation 
(Barge & Sommeria 1995, Tanga et al. 1996, Adams et al. 1996)

Speeds up planet formation enormously
(Lyra et al. 2008b, 2009ab, Raettig et al. 2012, 2021)

Vortex Trapping

Barge & Sommeria (1995)
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Vortex Trapping

Lyra et al. (in prep)

Ti
m
e
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Vortex Trapping – Initial Mass Function

Lyra et al. (in prep)



Lyra et al. (in prep)

Initial Mass Function - Convergence

Ti
m
e

Mass



Take home message

• Two routes for planet formation

Johansen+ 07 Lyra+08,18 Raettig+Lyra 12,15,21

Streaming Instability Vortex Trapping 

• Planet formation and turbulence. 
• Does turbulence help (concentration at large scales) or hinder (diffusion at small scales)?
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Disk Instabilities



Instability Map

Lesur et al. (2022) 25
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Fromang & Lesur (2017)

Angular velocity not constant in cylinders: unstable

Vertical shear instability

Nelson et al. (2013)

Buoyancy stabilizes. The most unstable mode is isothermal.
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Vertical shear instability

Pfeil & Klahr (2020) 27



Convective Overstability

Sketch of the
Convective Overstability

Armitage (2010)

Lesur & Papaloizou (2010)
Lyra & Klahr (2011)

Klahr & Hubbard (2014)
Lyra (2014)

Latter (2016)
Volponi (2016)

Reed & Latter (2021)
Raettig et al. (2021)

1. Radial entropy gradient

2. Finite cooling time
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Resonant Buoyant Instability (née Zombie Vortex Instability)

Cascade of baroclinic critical layers

Marcus et al. (2015, 2016), Barranco et al. (2018)
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Vertical Shear 
Instability

Convective 
Overstability

Resonant Buoyant 
Instability

Nelson et al. 2013, Lin & Youdin 2015, Umurhan et al. 2016 Klahr 2003, Lesur & Papaloizou 2010, Lyra & Klahr 2011, Lyra 2014
Marcus et al. 2012, 2013, 2015, 2016

Umurhan et al  2016, Lesur & Latter 2016

Fast cooling times
(More isothermal)

k < 1 cm2/g

Cooling time ~ dynamical time

k ~ 1-50 cm2/g

Opacity

Hydrodynamical Instabilities

30

Long cooling times
(More adiabatic)

k > 50 cm2/g



Convective Overstability
saturates into 

vortices

Vertical Shear Instability
saturates into 

vortices

Lyra (2014)

Take-home message

Barranco et al. (2018)

Resonant Buoyant Instability
saturates into 

vortices

Manger & Klahr (2018)
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Disk 
Observations



Disk spectra

• Stellar Blackbody

• Dust infrared excess
(optically thick)

• Optically thin Rayleigh-
Jeans tail in mm.



A class of disks with missing hot dust. 

• CTTS: Classic T-Tauri star

• ”Transition” disks are disks 
with missing hot dust.

• The original interpretation is 
that they could be related to 
disk evolution, 
“transitioning” from gas-rich 
to gas-poor from the inside 
out. 



Disks with missing hot dust. 



Planetary companion

(Lyra 2009)

• Yet, planets could be 
another possibility for the 
missing hot dust.

• A companion carves a gap, 
isolating the outer disk 
from the inner disk, which 
then accretes onto the star



These cavities may be the telltale signature of forming planets

A way to directly study planet-disk interaction

(Lyra et al. 2009b)

PDS 70 and PDS 70b

(Muller et al. 2018)

• Hydrodynamical models
have predicted that the
result of disk-planet
interaction should be: gaps, 
spirals, and vortices. 

• These are starting to be 
seen in ALMA images of 
protoplanetary disks.

• In a few cases, the young 
luminous planets has been 
identified (PDS70).



Planet-disk interaction: gaps, spirals, and vortices.

(Lyra et al. 2009b) 38

• Hydrodynamical models 
have predicted that the 
result of disk-planet 
interaction should be: 

• Gaps (rings), 
• Spirals, and 
• vortices. 



Observational evidence: gaps, spirals, and vortices

HL Tau SAO 206462 Oph IRS 48

The ALMA Partnership et al. (2015) Muto et al. (2012) van der Marel et al. (2013)

• Disk observations have seen exactly the structured predicted by hydrodynamical models 
of disk-planet interactions. Although 
• Not in the same disk
• The planets themselves are elusive (small dim source)

• The lack of planet confirmation leaves room for other interpretation.



The Atacama Large (sub-)Millimeter Array (ALMA)



0.15’’, or 20 AU at 140 
pc

0.7” resolution

At 140 pc

0.3”
0.02” ~ 3au

ALMA

The ALMA Revolution
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Before ALMA ALMA



van der Marel+ 13, Casassus+ 13, Perez+ 14

HD 142527SR 21IRS 48

Dust traps in disks: ALMA Cycle 0 (2012)
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Oph IRS 48

van der Marel+ ‘13

A huge vortex observed with ALMA
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The Oph IRS 48 “comet formation factory”

asymmetric
mm dust
at 63 AU

Gas detection:
Keplerian rotation

Micron-sized
dust follows gas

van der Marel+. ‘13
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Drag-Diffusion Equilibrium

Dust continuity equation

compression

diffusionadvection

Drag force Diffusion

Trapped particle
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• The trapped dust is in a steady state between 
• The drag, pushing it into the vortex and,
• Turbulent diffusion, kicking it out

• We can solve for the steady state distribution analytically by
solving the dust continuity equation.   



Analytical Solution for dust in Drag-Diffusion Equilibrium

a    = vortex semi-minor axis
H = disk scale height (temperature)
c    = vortex aspect ratio
d    = diffusion parameter
St   = Stokes number (particle size)
f(c) = model-dependent scale function

Lyra & Lin ‘13

S = St
δ

Steady-state solution

Solution for 

H/r=0.1  c=4 S=1

48



SPHERE (µm)

ALMA ( ~ mm)

VLA (cm-m)

Disk Tomography
SPHERE-ALMA-VLA overlay of MWC 758

Marino+Lyra ’15

Dong+ ‘18

ALMA
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• Verify the solution by 
checking it against 
observations in different 
wavelengths.

• Infrared stops at the surface
of the disk.

• Sub-mm and radio trace the 
bigger dust, that is settled to 
midplane and trapped in 
vortices



Pebble trapping

ALMA
(mm)

VLA
(cm-m)

Overlay

Casassus+Lyra ’19
50

• ALMA traces mm grains
• VLA traces cm grains

• Observations of MWC 758 in 
ALMA and VLA show that 
mm-grains are in a more 
spatially extended than cm-
grains.



Model vs Observation

Raettig+Lyra ‘15

Casassus+Lyra ‘19

51

• Compatible with theoretical expectations:
• Bigger trains less prone to diffusion

VLA-like

ALMA-like



Take home message

• Vortex-trapped dust in drag-diffusion equilibrium explains the observations

Lyra-Lin solution Observed Disk
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The future

Nearly all nearby disks observed at <0.1” (< 20-30AU)
show substructures.

3 main types of substructures
- Crescent-shaped
- Spiral arms
- Rings/Gaps

After 10 years of ALMA…

53
Slide from: Luca Ricci



Next Generation Very Large Array (ngVLA)

54
Slide from: Luca Ricci

• JWST is exciting, but for 
planet-formation the 
holy grail is resolution.

• ngVLA will afford
resolution approaching 
1 mas.



Jupiter Saturn Neptune

ALMA @ 0.87mm

ngVLA @ 3mm

5 mas = 0.7 AU
rms = 5x10-7 Jy/beam

5au

Planets at 5AU

10 MEarth

ngVLA identifies gaps/substructures down to ~5-10 MEarth

Ricci et al. 2018

55
Slide from: Luca Ricci



ngVLA: Proper motions

ngVLA @ 3mm

(beam = 5mas
rms = 2e-7 Jy/b) 

1 frame per month

1 orbit in 12 years

Circum-planetary disk:

Mdisk = 10-4 Mpl

rdisk = 0.5 rHill

Macc = 10-7 Mpl yr -1

Tests to models of triggered planet/planetesimals formation

1au

Jupiter at 5 AU

56
Slide from: Luca Ricci

• ngVLA simulated 
observation of a Jupiter-
like planet at 5AU, 140 pc 
away

• The resolution will allow to 
look for inner planets, with 
orbital periods short 
enough that we can follow 
their orbital motion.



Conclusions

• Two routes for planet formation (streaming instability and vortices, complementary)
• Does turbulence help (concentration at large scales) or hinder (diffusion at small scales)?

• Three dynamical instabilities in the Ohmic dead zone

• Different regimes of opacity, operate in different regions 
• Saturate into vortices

• Dust trapped in drag-diffusion equilibrium explains the observations

• Issues:
• Are the dynamical instabilities (chiefly the Vertical Shear Instability) responsible for the observed crescents?
• Overlap between instabilities unclear
• Global model of Convective Overstability needed
• Relevance of Resonant Buoyant Instability (“zombie vortex”) unclear/unlikely.
• Planet formation properties / Synergy with streaming instability

ZVI COV VSI

Global model

Vertical Stratification

Boundaries with other instabilities

Interaction with dust

Observational Validation/Rule out

Planet Forming Properties 57


