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Collapse of gas cloud

A disk life story

Formation of proto-star GOS-I“iCh phase (< 10 MYI")
T-Tauri Disks
Accretion and Planet Formation

Dust settling

Thinning phase (~10 Myr)
Transitional Disks
Planet retention

Planetesimal formation

Gas dispersal

Gas-poor phase (>10 Myr)
Debris Disks
Stabilization of architecture and Planet Detection




Debris disks - The gas-poor phase
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Debris disks are not completely gas-free
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Gas in debris disks

Detections

B Pictoris many species Lagrange et al. (1998), ...

51 Ophiuchi  many species Roberge et al. (2002)

o Herculis CII,NII  Chen & Jura (2003)

HD 32297 Na I, CIT Redfield (2007), Donaldson et al. (2012)

HD 135344 HZ,CO Thi et al. (2001), Pontoppidan et al. (2008)
49 Ceti H2, CO Dent et al. (2005), Roberge et al. (2012)
AU Mic H? France et al. (2007)

HD172555 Si0 Lisse et al. (2009)

Source of gas: Outgassing processes

Infallmg comets
Grain sublimation
Grain-Grain collisions
Photo-stimulated desorption
Planet-Planet collisions
Primordial?

BeusT & Valiron (2007)
g. Rafikov (2012)
Czechowsku Mann (2007)
Chen et al. (2007)
Van den Ancker (2001), Lisse (2008)




What is the dynamical
effect of this gas?
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Formation of sharp eccentric rings in debris disks
with gas but without planets

W. Lyra"?? & M. Kuchner®

‘Debris disks’ around young stars (analogues of the Kuiper Belt in
our Solar System) show a variety of non-trivial structures attri-
buted to planetary perturbations and used to constrain the pro-
perties of those planets'. However, these analyses have largely
ignored the fact that some debris disks are found to contain small
quantities of gas*®, a component that all such disks should contain
at some level'™"". Several debris disks have been measured with a
dust-to-gas ratio of about unity*®, at which the effect of hydrodyn-
amics on the structure of the disk cannot be ignored'*"*. Here we
report linear and nonlinear modelling that shows that dust-gas
interactions can produce some of the key patterns attributed to
planets. We find a robust clumping instability that organizes the
dust into narrow, eccentric rings, similar to the Fomalhaut debris
disk'*. The conclusion that such disks might contain planets is not
necessarily required to explain these systems.

Disks around young stars seem to pass through an evolutionary phase
when the disk is optically thin and the dust-to-gas ratio & ranges from 0.1
to 10. The nearby stars B Pictoris®**>"'7, HD32297 (ref. 7), 49 Ceti (ref. 4)
and HD 21997 (ref. 9) all host dust disks resembling ordinary debris
disks and also have stable circumstellar gas detected in molecular CO,
Na1 or other metal lines; the inferred mass of gas ranges from lunar
masses to a few Earth masses (Supplementary Informatlon) The gas in
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We present simulations of the fully compressible problem, solving
for the continuity, Navier-Stokes and energy equations for the gas, and
the momentum equation for the dust. Gas and dust interact dynami-
cally through a drag force, and thermally through photoelectric heating.
These are parametrized by a dynamical coupling time 7sand a thermal
coupling time 7 (Supplementary Information). The simulations are
performed with the Pencil Code?*~**, which solves the hydrodynamics
on a grid. Two numerical models are presented: a three-dimensional
box embedded in the disk that co-rotates with the flow at a fixed dis-
tance from the star; and a two-dimensional global model of the disk in
the inertial frame. In the former the dust is treated as a fluid, with a
separate continuity equation. In the latter the dust is represented by
discrete particles with position and velocities that are independent of
the grid.

We perform a stability analysis of the linearized system of equations
that should help interpret the results of the simulations (Supplemen-
tary Information). We plot in Fig. 1a-c the three solutions that show
linear growth, as functions of ¢ and n = kH, where k is the radial
wavenumber and H is the gas scale height (H=c, / /782, where ¢,
is the sound speed, £y the Keplerian rotation frequency and y the
adiabatic index). The friction time 7 is assumed to be equal to 1/€2y.
The left and rmddle panels show the growth and dampmg rates. The
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Lyra & Kuchner (2013, Nature, 499, 184)




Dust density

Dust and gas together leads to instability...

Amplitude
grows in time

Klahr & Lin (2005)

Suggested that an instability

i causes dust in debris disks
S | to clump together.
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Particle drift
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High pressure ring

Star

Adapted from Whipple (1972)

Pressure Trap
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Pressure Trap
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Photoelectric heating

In optically thin debris disks,
the dust is the main heating agent for the gas.

Dust intercepts starlight directly,
emits electron, that heats the gas.

Gas is photoelectrically heated by the dust




Runaway process: instability

Dust heats gas
Heated gas = high pressure region
High pressure concentrates dust



Runaway process: instability

Dust heats gas
( Heated gas = high pressure region
High pressure concentrates dust



Model equations

Klahr & Lin (2005) used a simplified, 1-D model.

0 10
—Xg+ ——rX4v, = 0. Continuity equation
ot " ror ¢ Y e

1 0 : :
Vo=0r+ oe o Terminal velocity

SRV
Iy=1y (2—Z> : Equation of state



Model equations

Our simulation adds much more physics, and works in 2D.

Klahr & Lin (2005) Lyra & Kuchner (2012)
1D 2D
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Missing physics

Radiation Forces
Radiation pressure
Poynting-Robertson drag
Photophoresis

Collisions

Detailed treatment of heating and cooling

Multiple particle species



Linear Analysis
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But there is

nonlinear growth
beyond !



Photoelectric Instability - Nonlinear evolution in 1D

Dust heats gas
( Heated gas = high pressure region

High pressure concentrates dust
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t,

Time

Robustness

Growth over 4 orders of
- magnitude in dust-gas >
coupling time (friction time)
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Re[s]/2

Photoelectric Instability

Other heating sources

2o ) pon(2)

All other sources Photoelectric
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log B x/H

3 2

Instability exists only when photoelectric heating dominates.



Photoelectric instability - 3D stratified local box
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Oscillations

Thermal coupling time
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Oscillations
Low Reynolds number High Reynolds number

a Fluid e=0.2 b Particle e=0.2
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Epicyclic oscillations
clear at high Reynolds numbers!



Solutions
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Growth rate Re[s]/Q

0.25

o
o
=1

Instability

Ine
|
n
|
-
o

Overstability

|
n

|
—_
o

Dispersion relation

Aw +Bw’ +Cw +D w4+Ew+F=0

A=1
B=2¢ + 2
C=e¢'+ e(n"+2)+3
D= c:n: ('3nz+2' + 2
E=¢ [271 +1)4+€(3n4+2)+ 2

F—c n - cn'

e=2,;/ Z, n=kH w=s/Q

Solutions

Damping rate log, ,(—Re[s]/Q) Oscillation frequency Iog,o(llm[ 1/€2)

0.50 -1.00 0.00 -1 00

n

Inn

n

Ine
o —

I
=i

|
n
]
4 1
|
i
4 3
i
F 4

n

Dust-to-gas
ratio

b
_I‘
5o
L
_I‘
o
Z,

Inr

Wavenumber

Damped
and free
Oscillations




Growth rate Re[s]/Q
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Overstability

Instability

Oscillations

Solutions

Growth rate Oscillation frequency
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Max growth rate: Omega/2.
Million-fold amplification in five orbits!

A very powerful instability.




Azimuth

The model in r-¢: Eccentric rings

Growth of axisymmetric modes

‘ = Rings Il
Damping of nonaxissymetric modes.
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Epicyclic oscillations
make the ring appear eccentric !
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Lyra & Kuchner (2013, Nature, 499, 148)




Ring Offset

Dust Density
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Original Klahr and Lin 2005 does not work in 2D to make rings

Excluding the drag force backreaction
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Break of axisymmetry
Power collects at high azimuthal wavenumbers.



Conclusions

There is a robust ring-forming

photoelectric instability
in optically thin gas-dust disks

Reproduces gross properties of observed systems
(rings, sharp edges, eccentricity)

Maximum for gas-to-dust ratio ~ 5
(probably more applicable to transitional disks)

Future work:

3D turbulence, Radiation forces, Collisions....
... (suggestions?)



Dust-to-gas ratio

In €

Ring Spacing

Ring spacing is determined
by the wavelength of maximum growth.

Growth rate Re [S]J,'Q Ring width vs Viscosity
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Which in turn is determined by viscosity

Ring spacing ~ 10 Kolmogorov lengths
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Photoelectric vs Streaming Instability

Dust heats gas
Heated gas = high pressure region
High pressure concentrates dust

Maximum Dust Density vs Time
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