STARS - 508

Wladimir (Wlad) Lyra Brian Levine

AMNH After-School Program

American Museumö Natural History

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells

Carbon \rightarrow O,Ne,Mg (600 million K)

Neon \rightarrow O, Mg (1.5 Billion K)

Oxygen \rightarrow Si, S, P (2.1 Billion K)

Silicon \rightarrow Fe, Ni (3.5 Billion K)

Onion-layer structure

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy.

atomic mass (number of protons and neutrons)

Copyright @ Addison Wesley

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy. The Iron core collapses and undergoes neutronization.

Proton + electron \rightarrow neutron + neutrino

 $(p + e^{-} \rightarrow n + v)$

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy. The Iron core collapses and undergoes neutronization.

Urca process produce a flood of neutrinos, that carry energy away and hasten the collapse

Neutron

 $(n \rightarrow p + e^{-} + v)$

Inverse Beta Decay

Proton + electron \rightarrow neutron + **neutrino**

 $(p + e^{-} \rightarrow n + v)$

A flood of neutrinos!!

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy. The Iron core collapses and undergoes neutronization. Urca process produce a flood of neutrinos, that carry energy away and hasten the collapse The core collapses to nuclear densities, overshoots and bounces back. Shockwave triggered.

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy. The Iron core collapses and undergoes neutronization.
 Urca process produce a flood of neutrinos, that carry energy away and hasten the collapse The core collapses to nuclear densities, overshoots and bounces back. Shockwave triggered. The shockwave travels outwards, deflagrating nuclear reactions along its path

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy. The Iron core collapses and undergoes neutronization.
 Urca process produce a flood of neutrinos, that carry energy away and hasten the collapse The core collapses to nuclear densities, overshoots and bounces back. Shockwave triggered. The shockwave travels outwards, deflagrating nuclear reactions along its path A few hours later, the shockwave reaches the surface. Boom!!

hotter cores than low mass stars and get to fuse beyond Helium develop onion-like structure of nuclear burning shells lead end. Fusion beyond it consumes energy. core collapses and undergoes neutronization. od of neutrinos, that carry energy away and hasten the collapse in densities, overshoots and bounces back. Shockwave triggered. els outwards, deflagrating nuclear reactions along its path later, the shockwave reaches the surface. *Boom!!*

Remnant is either a pulsar (neutron star) or a black hole, depending on the mass.

High mass stars have much hotter cores than low mass stars and get to fuse beyond Helium Higher mass stars develop onion-like structure of nuclear burning shells Iron is a dead end. Fusion beyond it consumes energy. The Iron core collapses and undergoes neutronization.
Urca process produce a flood of neutrinos, that carry energy away and hasten the collapse The core collapses to nuclear densities, overshoots and bounces back. Shockwave triggered. The shockwave travels outwards, deflagrating nuclear reactions along its path A few hours later, the shockwave reaches the surface. *Boom!!*Remnant is either a pulsar (neutron star) or a black hole, depending of the mass. Black holes are simple stuff. They have "no hair".

Stellar evolution summary

Outline

- Nucleosynthesis
 - Neutron capture
 - S and R process
- Metals and Metallicity
- •Chemical Enrichment of the Galaxy
 - Age-Metallicity Relationship
 - Galactic metallicity gradient
- •Stellar Populations
 - Is there a difference between halo, bulge and disk stars?
 - Metal poor and metal rich stars

Nucleosynthesis

In the beginning there was Hydrogen and Helium

Low mass stars produce elements up to Carbon and Oxygen

High mass stars produce all the rest of the periodic table

Up to Iron we have basically alpha reactions

Another look at the Sun's abundance pattern

Elements with even atomic number are more abundant than those with odd

An Iron peak.

Another look at the Sun's abundance pattern

Elements with even atomic number are more abundant than those with odd

Elements are made by Helium (alpha) capture.

An Iron peak.

Expected, since Iron is the end of the fusion sequence.

Nucleosynthesis

Beyond the Iron peak, nucleosynthesis occurs by **neutron capture** and **beta decay**

 $(n \rightarrow p + e^{-} + v)$

Neutron capture produces isotopes Neutron capture proceeds until the nuclide goes unstable (radioactive)

If a proton decays, the atomic number decreases But if a neutron decays, the atomic number increases!

A chart of nuclides

number of protons

33								As60	As61	As62	As63	As 64 >1 2 US	As 65	Аз 66 95.77 мз	As 67 42.5 s	As 68 151 £ 8	As 69 152 m	As70 26M	As71 6528 н	Аs72 260 н	As73 80.30 D	As74
32							Ge58	Ge59	Ge60 -30 xs	Ge61 40 MS	Ge62 маля	Ge63 95 MS	Ge64 ഒ78	Ge65 1098	Gебб 226 н	Ge67 189 ж	Ge68 270.8 D	Ge69 3905н	Ge70 20.37	Ge71 11.430	Ge72 27.31	Ge73 7.76
31						G156	Ga57	Ga58	Ga59	Ga60 >1.2 US	Ga61 0.158	Ga62 116.12 MS	Ga63 32.4 s	Ga64 2.627 M	Ga65 152 м	Gа66 949н	Ga67 32612 D	Ga68 <i>61 в</i> 9 м	Ga69 60.108	Ga70 21.14 M	Ga71 39852	Ga72
30					Zn54	Zn55	Zn56 16 MS	Zn57 40 MS	Zn58 BGMS	Zn59 182.0 MS	Zn60 2.38 M	Zn61	Zn62	Zn63 38.47 M	Zn64 48.ல	Zn65 244.26 D	Zn66 27.50	Zn67 4.10	Zn68 18.75	Zn69 564 M	Zn70	Zn71 245M
29				Cu52	Cu53	Cu54 <75N8	Cu55 ×шля	Cu56 78 MS	Cu57	Cu58 3204 8	Cu59 81.58	Сu60 23.7 м	Cu61 3.333 H	Сu62 9 <i>6</i> 7 м	Cu63 69.17	Сu64 12.700 н	Cu65 1083	Cu66 5.120 M	Сu67 авян	Cu68 31.1 8	Си69 2.85 м	Cu70 4.58
28		Ni49 »35D NS	Ni50 skuleks	Ni51 >200 NS	Ni52 YE MS	Ni53 45 MS	Ni54 143 MS	Ni55 204 MS	Ni56 60750	Ni57 Meih	Ni58 68.077	Ni59 7600 y	Ni 60 26223	Ni61	Ni62 3634	Ni63 100.1 Y	Ni 64 0526	Ni 65 2.5172 H	Ni66 46н	Ni 67 21 s	Ni 68 29 s	Ni69
27		Co48	C049 (35 NS	Co50 44 xs	Со51 ×шх	Co52	Co53 240 MS	Co54 19328 MS	Со55 17.53 н	Со56 77 233 D	Co57 271.74 d	Со58 70860	Co59 100	Co60	Соб1 1.650 н	Со62 1.50 м	C063 27 4 8	Co64 0.30 s	Co65	C066 0233 S	C067 0.425 s	Co68
26	Fe46 20 xcs	Fe47 27 мs	Fe48 44 x/s	Fe49 тжs	Fe50 155 MS	Fe51 305 MS	Fe52 8275 H	Fe53 в.я. м	Fe54 5845	Fe55 2.73 Y	Fe56 91.754	Fe57 2.119	Fe58 0282	Fe59 44.472 d	Fe60	Fe61 5ян м	Fe62 æs	Fe63 61 8	Fe64 203	Fe65 04 8	Fe66 0.44 s	Fe67 0.47 s
25	Mn45 <лотия	Mn46 41 мs	Mn47 100 MS	Mn48 1981 MS	Mn49 ¥z мs	Mn50 28529 MS	Mn51 462 м	Mn52 5.591 D	Mn53 374000 Y	Mn54 312.11 D	Mn55 100	Mn56 2.5789 н	Mn57 854 s	Mn58 308	Mn59 4£8	Mn60 sis	Mn61 o£7 s	Mn62 671 жs	Mn63 275 MS	Mn64 BOMS	Mn65 ⊞xs	Mn66 66 MS
24	Cr44 53 xcs	Cr45 SDMS	Cr46 026 8	Cr47 sm мs	Cr48 21.55 н	Cr49 42.3 м	Cr50 4345	Cr51 27.7025D	Cr52 83.789	Cr53 9.511	Cr54 2.365	Сr55 3497 м	Cr56 594 м	Cr57 21.1 8	Cr58 708	Cr59 0.74 8	Cr60 0.57 s	Cr61 027 8	Cr62	Cr63	Cr64 >1 US	Cr65
23	V43 жшжз	V44 111 MS	V45 547 MS	V46 422.50 MS	V47 22 б м	V48 159735D	V49 330 d	V50 0250	V51 99.750	V52 3.743 M	V53 1.£0 м	V54 498 s	V55 6.54 s	V56 024 S	V57 0.34 s	V58 205 MS	V59 118 MS	V60 020 S	V61 >1 бл вз	V62 >150 NS	V63 >150 № 8	V64 ы ял ял яз
22	Ti42	Ті43 509 мз	Ti44 cod y	Ті45 184.8 м	Ti46 825	Ti47 7.44	Ti48 73.72	Ti49 541	Ti50 518	Ті51 5.76 м	Ті52 1.7 м	Ti53 32.7 s	Ti54 >1 US	Ti55 0.32 s	Ti56 0.19 s	Ti57 0.18 s	Ті58 лаля			Тіб1 -10 мз		
21	Sc41 596.3 MS	Sc42 680.67 MS	Sc43 звял н	Sc44 357 н	Sc45 ա	Sc46 B3.79 D	Sc47 3.3492 D	Sc48 43 <i>6</i> 7 н	Sc49 572 м	Sc50 102.58	Sc51 124 8	Sc52 82 S	Sc53	Sc54 225 MS	Sc55 120 MS	Sc56 ED MS	Sc57				-	
20	Ca40 96.94	Ca41 105000 Y	Ca42 0.647	Ca43	Ca44 209	Ca45 162.61 D	Ca46 0.004	Ca47 4.536 D	Ca48	Са49 влам	Ca50	Ca51	Ca52 468	Ca53 50 MS	Ca54		Ca56 10 MS					
19	K39 552591	K40 одил	K41 6.7302	K42 12.360 н	К43 22.3 н	К44 22.13 м	K45 17.3 м	K46 105 s	K47 17.50 s	K48 683	K49 1 26 S	K50 472 MS	K51 365 MS	K52 105 MS	К53 зама	K54 10 мз		_				
18	Ar38	Ar39 269 Y	Ar40 99 sms	Ar41 109.34 M	Ar42 22.9 y	Ar43 5.37 м	Ar44 11 вт м	Ar45 21.48 s	Ar46 84 s	Ar47 -700 MS	Ar48	Ar49 ⊸iπins	Ar50 ->tπuns	Ar51 >200 NS	Ar52 10 MS	Ar53 3MS	1					
17	C137 2423	С138 3724 м	С139 556 м	C140	Cl41 384 S	C142 688	C143 3.38	Cl44 0.56 8	C145 400 MS	C146 223 MS	C147 >200 хз	C148 >200 NS	C149 ->170 NS		C151 >200 хя							
16	S36	S37 505м	S38 170.3 м	S39 11.58	S40 88 S	S41 263	S42 0.56 s	S43 220 MS	S44 123 MS	S45 ва ма	S46 >200 жя	S47 ×200 хз	S48 >200 NS	S49 ⊲шлз								

Color code represents lifetime Blue: Stable White: Unstable

number of neutrons

Climbing the periodic table

Neutron decays

Nucleosynthesis

Beyond the Iron peak, nucleosynthesis occurs by **neutron capture** and **beta decay** $(n \rightarrow p + e^{-} + v)$

The process is classified according to the neutron flux

S-process

(slow neutron capture)

Neutron capture occurs slower than beta decay

Works up to bismuth (Z=83)

Where? AGB stars + Supernovae

R-process

(rapid neutron capture)

Neutron capture occurs faster than beta decay

Really heavy stuff All the way to Uranium

Where? Supernovae

PERIODIC TABLE OF THE ELEMENTS

	1 IA-							///	/	111	11		http	://www.ktf-	split.hr/peri	odni/en/		18 VIIIA	
0	1 1.0079			RELATIV	E ATOMIC N	AASS (1)		4ml 🗖	Comimatal	E Norm	atal							2 4.0026	-
L RIO	H		CPO			BOUDCAS			Semmetar		cual							He	1
PE	HYDROGEN	2 114						Alkalia metal					13 IIIA	14 IVA	15 VA	16 VIA		HELIUM	
	3 6.941	4 9.0122	ATOMIC N	UMBER 5	10.811	_/_		insition metals	etai	18 Noble	ass element		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180	2
_2	Li	Be	s	YMBOL -	B	/ /		Lanthanide	STAN		125 °C- 101 I		B	C	N	0	F	Ne	
	LITHUM	BERVILLIM			BORON	_/_		Actinide	Ne	- gas	Fe - solid	(ra)	BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON	
	11 22,990	12 24.305			1	/	/ <u> </u>		Ga	- liquid	To - synthe	lic	13 26,982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948	L
-	No	Ma	/	ELEN	MENT NAME	/ /			-	1	1		A 1	C:	D	C	CI		
	INA	INIG		./	- /		-	-	VIIIB -				AI	SI	r	3	CI	Ar	-
/	SODIUM	20 40.079	3 1118	4 IVB	5 VB	6 /VIB	7 VIIB	8	9	10	20 62 546	12 118	ALUMINIUM	SILICON	22 74 022	SULPHUR	CHLORINE	ARGON	
	19 39.096	20 40.078	21 44.930	22 47.007	23 30.942 T	24 51.990	10 04.900	20 55.645	21 56.935	20 00.093	29 03.540	7	SI 09.725	52 12.04	33 14.922	S4 10.90	35 79.904	30 03.00	
-	K	Ca	Sc	11	V	Cr	win	ге	Co	INI	Cu	Zn	Ga	Ge	AS	Se	Br	Kr	
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON	
/	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	1
5	Rb	Sr	Y	Zr	Nb	Mo	Ic	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe	
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	-
/	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)	/	114 (289)			1		
7	Fr	Ra	Ac-Lr	TRI	Db	Sø	TBIh	THIS	Mit	ານທາ	ແມ່ນແມ	Մախ		เป็ากลา					
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM)	-	
	1		1		/		1								,	1		210	
/		/		LANTHANI	DE									<u>\</u>		Copyright © 19	98-2003 EniG. (eni@ktf-split.hr)	į.
(1) Pt R	re Appl. Chem., 7 lative atomic m	3. No. 4, 667-68 ass is shown	83 (2001) with five	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97	
sig	nificant figures. Fo	e enclosed in	e no stable brackets	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
ine	licates the mass n tope of the elemer	umber of the lor	ngest-lived	LANTHANUM	CERIUM	PRASECOYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
He	wever three such have a charact	elements (Th. I	Pa, and U) al isotopic	ACTINIDE			1										1		
cc tai	composition, and for these an atomic weight is tabulated.				90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
	/			Ac	Th	Pa	U	NID	IPm	Am	Cm	IBIk	Cf	IEs	IFim	Md	No	ILIP	

CURIUM

BERKELIUM

CALIFORNIL

FERMILIM

MENDELEVIUM

NOBELIUM

AWRENCIUM

NEPTUNIUN

PLUTONIUM

AMERICIUM

URANIUM

Editor: Aditya Vardhan (adivar@nettlinx.com)

ACTINIUM

THORIUM

PROTACTINIU

GROUP

Nucleosynthesis

Beyond the Iron peak, nucleosynthesis occurs by **neutron capture** and **beta decay** $(n \rightarrow p + e^{-} + v)$

The process is classified according to the neutron flux

S-process

(slow neutron capture)

Neutron capture occurs slower than beta decay

Works up to bismuth (Z=83)

Where? AGB stars + Supernovae

R-process

(rapid neutron capture)

Neutron capture occurs faster than beta decay

Really heavy stuff All the way to Uranium

Where? Supernovae

Nucleosynthesis

Element	# of Protons	Site
Н	1	Big Bang
He, C, O	2,6,8	Big Bang + Low and High Mass stars
Ne - Fe	10-26	High mass stars
Co - Bi	27-83	S and R process, ABG and SN
Po - U	84-92	R process in SN

Chemical Enrichment of the Galaxy

In the beginning there was Hydrogen and Helium

Stars form

Planetary Nebulae and **Supernovae** eject gas **enriched in metals** into the ISM

Recycling of matter

Remember, supernovae are massive stars, they live shortly (10 Myr or less). The SN recycling is practically instantaneous!

New generations of stars are enriched in metals.

Chemical Enrichment of the Galaxy

Metal: anything that is not Hydrogen or Helium

Metal: anything that is not Hydrogen or Helium

The Astronomer's Periodic Table

Metal: anything that is not Hydrogen or Helium

- X: Hydrogen abundance
- Y: Helium abundance
- **Z**: All the rest (i.e., abundance of metals)

X+Y+Z=1

Sun: X=0.749, Y=0.238, Z=0.013

Metal: anything that is not Hydrogen or Helium

The Astronomer's *Simplified* Periodic Table

Metal: anything that is not Hydrogen or Helium

- X: Hydrogen abundance
- Y: Helium abundance
- **Z**: All the rest (i.e., abundance of metals)

X+Y+Z=1

Sun: X=0.749, Y=0.238, Z=0.013

Metallicity

Iron abundance (normalized to solar)

$$[Fe/H] = \log\left(\frac{N_{Fe}}{N_{H}}\right) - \log\left(\frac{N_{Fe}}{N_{H}}\right) \odot$$

Sun: [Fe/H] = 0.0

Metallicity

Negative \rightarrow Less metals than the Sun Positive \rightarrow More metals than the Sun

Chemical Enrichment of the Galaxy

In the beginning there was Hydrogen and Helium

Stars form

Planetary Nebulae and **Supernovae** eject gas **enriched in metals** into the ISM

Recycling of matter

Remember, supernovae are massive stars, they live shortly (10 Myr or less). The SN recycling is practically instantaneous!

New generations of stars are enriched in metals.

Insight

The Sun (or stars in general) do NOT self-enrich its atmosphere. They were formed out of gas that already contained those elements.

Age-Metallicity Relationship

The overall metallicity of the Galaxy increases in time as successive generations of stars enrich the ISM

Where do we find the different populations?

Galactic Structure

Bulge Halo Disk

Galaxy formation

The **Halo** is the first structure that forms, during the collapse of the original cloud

The **Disk** forms later, as the gas settles

Halo: disordered motion Disk: ordered motion

Population II old and metal-poor *Halo Stars*

Star formation ceased long ago

Copyright © 2005 Pearson Prentice Hall, Inc.

Population I young and metal-rich

Disk Stars

Star formation is ongoing

Insight

Blue stars are invariably young

Red stars are usually (but not always) old

Example of Population I - Young Open Clusters

Open Clusters are usually young

Why? Because they are formed in the *disk*, and are subject to Galactic tides! (there is a lot of gas around)

They are disrupted in a few orbits

They retain their physical integrity only for a few millions of years, before the stars disperse Still hanging around their birthplaces - the **Spiral Arms**

All disk stars (the Sun included) were born in Open Clusters

The Pleiades

Are there old open clusters?

Yes, M67, for instance, which is 4 Gyr old

It is an open cluster that is massive enough to remain gravitationally bound

Example of Population II - Globular Clusters

Globular clusters are old systems of stars in the Halo

They are spherical (globular) because they are massive Gravity could shape the system into a spherical configuration

A "mass-sphericity" analogy...

Population II old and metal-poor *Halo Stars*

Star formation ceased long ago

Population I young and metal-rich

Disk Stars

Star formation is ongoing

Copyright © 2005 Pearson Prentice Hall, Inc.

How about the Bulge??

Population II old and metal-poor *Halo Stars*

Star formation ceased long ago

Copyright © 2005 Pearson Prentice Hall, Inc.

Population I young and metal-rich

Disk Stars

Star formation is ongoing

Bulge stars are old and metal rich

The Bulge is an old structure, but quite dense

Star formation rate (SFR) is proportional to the density

More gas, more stars....

So, the chemical enrichment was fast!!

The Galactic Radial Metallicity Gradient

Star formation rate (SFR) is proportional to the density

A galaxy's density decreases with radius **So, the SFR decreases with radius**

Central part (Bulge) \rightarrow High gas density \rightarrow Fast chemical enrichment Outer disk \rightarrow Low gas density \rightarrow Slow chemical enrichment

Stellar Populations Why we shouldn't use the terminology

Population I - young and metal-rich Population II - old and metal-poor

There exists **old metal rich stars** (bulge)

As well as young metal poor stars (outer disk)

Use of "stellar populations" is **discouraged**.

Use age and metallicity when you can.

Exception to the rule - Pop III stars

Pop I – metal rich, young

Pop II – metal poor, old

Pop III – metal free, extinct

COSMIC TIMELINE

The First Stars

Purely Hydrogen and Helium, nothing else.

We cannot see them since they are gone.

But... the second generation of stars may still be around

www.sciam.com

SCIENTIFIC AMERICAN 7

Very metal poor stars - HE 1327-2326

[Fe/H] = -5.2

How much less iron than the Sun? 300,000 times less

Beyond the Iron peak, nucleosynthesis occurs by **neutron capture** and **beta decay** $(n \rightarrow p + e^{-} + v)$

The process is classified according to the neutron flux

S-process

(slow neutron capture)

Neutron capture occurs slower than beta decay

Works up to bismuth (Z=83)

Where? AGB stars + Supernovae

R-process

(rapid neutron capture)

Neutron capture occurs faster than beta decay

Really heavy stuff All the way to Uranium

Where? Supernovae

Element	# of Protons	Site	
Н	1	Big Bang	6
He, C, O	2,6,8	Big Bang + Low and High Mass stars	
Ne - Fe	10-26	High mass stars	e collapse
Co - Bi	27-83	S and R process, ABG and SN	bath
Po - U	84-92	R process in SN	nass.

Black notes are simple stuff. They have "no hair".

Nucleosynthesis: Stars are where the periodic table is cooked

Some astrochemistry jargon

Metal: anything that is not Hydrogen or Helium

X: Hydrogen abundance

- Y: Helium abundance
- Z: All the rest (i.e., abundance of metals)

X+Y+Z=1

Sun: X=0.749, Y=0.238, Z=0.013

Some astrochemistry jargon

Successive generations of stars enrich the Galaxy in metals

Some astrochemistry jargon Successive generations of stars enrich the Galaxy in metals An age-metallicity relation can be traced

Some astrochemistry jargon Successive generations of stars enrich the Galaxy in metals An age-metallicity relation can be traced Stellar Populations

Pop I – Disk stars ; Pop II – Halo stars

Population II old and metal-poor *Halo Stars*

Star formation ceased long ago

Population I young and metal-rich

Disk Stars

Star formation is ongoing

Some astrochemistry jargon Successive generations of stars enrich the Galaxy in metals An age-metallicity relation can be traced Stellar Populations Pop T – Disk stars · Pop TT – Halo stars

Bulge stars break the classification. They are old and metal rich.

Some astrochemistry jargon **Star formation rate (SFR) is proportional to the density** Stellar Populations Pop I - Disk stars ; Pop II - Halo stars Bulge stars break the classification. They are old and metal rich.

That's because the bulge is dense. More gas, more stars. Fast chemical enrichment.

Star formation rate (SFR) is proportional to the density

Central part (Bulge) \rightarrow High gas density \rightarrow Fast chemical enrichment Outer disk \rightarrow Low gas density \rightarrow Slow chemical enrichment

Bulge stars break the classification. They are old and metal rich.

That's because the bulge is dense. More gas, more stars. Fast chemical enrichment. The Galaxy has a radial metallicity gradient

Galactocentric distance

COSMIC TIMELINE

The First Stars

Purely Hydrogen and Helium, nothing else.

We cannot see them since they are gone.

But... the **second** generation of stars may still be around

Some astrochemistry jargon Successive generations of stars enrich the Galaxy An age-metallicity relation can be traced Stellar Populations Pop I - Disk stars ; Pop II - Halo stars Bulge stars break the classification. They are old and That's because the bulge is dense. More gas, more stars. Fast The Galaxy has a radial metallicity gradier

Population III stars - Metal free, the first stars

HE 1327-2326: The most metal poor star ever found

[Fe/H] = -5.2

300,000 times less Iron than the Sun