STARS - S02

Wla<mark>dimir (Wlad) Lyra</mark> Brian Levine

AMNH After-School Program

American Museumö Natural History

From last class

From last class

Stars are fusors in hydrostatic equilibrium Four Hydrogen nuclei (protons) -> Helium nucleus. Difference in mass is converted into energy.

Below 0.08 M_{\odot} , no nuclear fusion, above 120 M_{\odot} , no hydrostatic equilibrium

HR Diagram (Luminosity-Temperature) is a powerful tool to study stars OBAFGKM – the spectral sequence

Oh Be A Fine Girl/Guy Kiss Me

Hot stars – Blue Cold stars – Red

Hundreds of billions of stars in the Milky Wa We only see 6000 in the night sky Dust obscures our vision

From last class

Most stars are in multiple systems

Hundreds of billions of stars in the Milky Way We only see 6000 in the night sky Dust obscures our vision

Outline

•Math primer : logarithms and exponentials

- •How bright are stars?
 - Apparent and absolute magnitudes
 - Flux
 - Luminosity
- •Parallax and distances
- Thermal radiation
 - Stefan-Boltzmann law
 - Wien's law

Brian's examples

$$\log xy = \log x + \log y \iff 10^{m} 10^{n} = 10^{m+n}$$

$$\log x/y = \log x - \log y \iff 10^{m} / 10^{n} = 10^{m-n}$$

$$\log x^{y} = y \log x \qquad \iff (10^{m})^{n} = 10^{mn}$$

$$10^{\log x} = x$$

The logarithmic function is the inverse of the exponential function!

 $5^{x} = 7$

 $5^{x} = 7$ $\log 5^x = \log 7$

 $5^{x} = 7$ $\log 5^{x} = \log 7$ $x \log 5 = \log 7$

$$5^x = 7 \quad \iff \quad x = \log_5 7$$

$$5^{x} = 7 \iff x = \log_{5} 7$$
$$\log_{b} x = n \iff b^{n} = x$$

To say that

" the logarithm of x at base b is n "

means that

" the base b to the power n is equal to x"

What is the log of 1?

What is the log of 1?

$$\log_b 1 = x \iff b^x = 1$$

$$\log_b 1 = x \iff b^x = 1$$

 $x = 0$

$$\log_b 1 = 0$$

Stellar Magnitudes

Now here goes something *really* ancient....

A guy called Hipparchus (190BC - 120BC) thought it a good idea to come up with the following scheme

- The brightest stars we see are of **first magnitude**
- Stars not so bright are of second magnitude
- The faintest stars we can see are of sixth magnitude

Stellar Magnitudes

Now here goes something *really* ancient....

A guy called Hipparchus (190BC - 120BC) thought it a good idea to come up with the following scheme

- The brightest stars we see are of **first magnitude**
- Stars not so bright are of second magnitude
- The faintest stars we can see are of sixth magnitude

Bright – Magnitude 1 Dim – Magnitude 6

The scale is *reverse!*

Big magnitude – Dim

Small (or negative) magnitude - Bright

Stellar Binocular Magnitude 9

Amateur 6 inch Magnitude 13

Hubble Space Telescope Magnitude 30

Stellar Binocular Magnitude 9

15 times dimmer than faintest for the naked eye

Amateur 6 inch Magnitude 13 630 times dimmer than faintest for the naked eye

Hubble Space Telescope Magnitude 30 4×10⁹ times dimmer than faintest for the naked eye

The magnitude scale is *logarithmic!*

Why?

Because the eye's response is (nearly) logarithmic

Because the eye's response is (nearly) logarithmic

Really?

The Moon is 500,000 times dimmer than the Sun as seen from Earth

Yet one can read with nothing but moonlight....

The Moon is 500,000 times dimmer than the Sun as seen from Earth

Because of the huge day-night contrast, we are adapted to a *WIDE RANGE* in brightness

Yet one can read with nothing but moonlight....

For wide range, use a Logarithmic Axis

Logarithmic axes turn logs into straight lines

OF

ORRENT

own

S

How about magnitudes?

m - stuff that Hipparchus came up with

F - stuff that has physical meaning

 \mathcal{C} - constant that make the two systems match

The system is tied so that Vega's magnitude is ZERO

Sun

Comet

Full Moon Quarter Moon

Venus at brightest Jupiter at brightest Vega Polaris

Naked-eye limit at dark site

50mm binocular limit

Visual limit of 3-in telescope Visual limit of 6-in telescope Visual limit of 12-in telescope

Visual limit of 200-in telescope Photographic limit of 200-in telescope

18-hour exposure with HST

Energy is conserved...

So Area*Flux is constant

Energy is conserved...

So Area*Flux is constant

Energy over time = *power* (in astronomy called *Luminosity*)

Energy is conserved...

So Area*Flux is constant

Energy over time = *power* (in astronomy called *Luminosity*)

Luminosity = Area*Flux = Const

Luminosity = Area*Flux = Const

$$L=4\pi R^2 F_R$$
$$=4\pi d_1^2 F_1$$
$$=4\pi d_2^2 F_2$$

$$F(r) \propto 1/r^2$$

The flux follows an inverse square law!

Luminosity = Area*Flux = Const $L=4\pi R^2 F_R$ $=4\pi d_{1}^{2}F_{1}$ $=4\pi d_{2}^{2}F_{2}$ $F(r) \propto 1/r^2$

The flux follows an inverse square law!

As distance increases, the same energy spreads through a larger area

Flux follows an inverse square law

$$F(r) \propto 1/r^2$$

$$m = -2.5 \log F + C$$

 Flux, thus the magnitude, depends on distance.

•The stellar magnitudes we **measure** are therefore **apparent**, because stars are at different distances from us.

•For an **absolute** magnitude, we need a **standard distance**.

As distance increases, the same energy spreads through a larger area

Astronomical distances or... say goodbye to *light-year*

Parallax

Astronomical distances or... say goodbye to *light-year*

Astronomical distances or... say goodbye to *light-year*

Define a standard distance where to compare magnitudes

D=10 pc

Apparent magnitude

The magnitude of a star as we see it.

$$m = -2.5 \log \left(\frac{L}{4\pi d^2}\right) + C$$

Absolute magnitude

The magnitude a star would have if placed 10 pc away

$$M = -2.5 \log \left(\frac{L}{4 \pi D^2} \right) + C$$

Define a standard distance where to compare magnitudes

D=10 pc

Apparent magnitude

The magnitude of a star as we see it.

$$m = -2.5 \log \left(\frac{L}{4 \pi d^2}\right) + C$$

The magnitude a star would have if placed 10 pc away

$$M = -2.5 \log \left(\frac{L}{4 \pi D^2}\right) + C$$

$$m - M = -5 + 5 \log d$$
$$d(pc) = 10^{0.2(m-M)+1}$$
$$\mu = m - M$$
Distance modulus

.....

At the surface of the star, $L = 4 \pi R^2 F_R$

R

At the surface of the star, $L=4\pi R^2 F_R$

At the surface of the star, $L=4\pi R^2 F_R$

At the surface of the star, $L=4\pi R^2 F_R$

At the surface of the star, $L=4\pi R^2 F_R$

Wien's displacement law

$L=4\pi R^2\sigma T^4$

 $\lambda_{max} \propto 1/T$

•Luminosity is a function of radius and a strong function of temperature

•The wavelength of peak brightness goes bluer as the temperature rises

Logarithms convert multiplications into additions Useful when dealing with numbers that span a large range (many orders of magnitude)

$$\log xy = \log x + \log y$$

or $4 = 10^{x} 10^{y} = 10^{x+y}$ with the square of the distance

Logarithms convert multiplications into additions Useful when dealing with numbers that span a large range (man magnitude)

Magnitude scale: A reverse scale Logarithmic: 5 magnitudes mean a factor 100 in brightness

Physical brightness is called Flux falls with the square of the dista Big magnitude – Dim

Parallax: apparent movement of a star as the Earth moves around Parsec: dist Small (or negative) Bright csec = 3.26 ly

Absolute magnitude: Magnitude from the standard distance of 10

Black body (thermal) radiation: a property of nature, every body temperature emits thermal radiation.

Steffan-Boltzmann law: thermal radiation is a strong function of ter

Wien's law: peak wavelength is uniquely determined by temperate

Luminosity is a function of radius and a strong function of tempera

Physical brightness is called Flux, falls with the square of the distance

 $F(r) \propto 1/r^2$

perature

e

Logarithms convert multiplications into additions Useful when dealing with numbers that span a large range (many orders of magnitude)

Absolute magnitude: Magnitude from the standard distance of 10 parsecs

) additions at span a large range (many orders of

Black body (thermal) radiation: a property of nature, every body with a non-zero temperature emits thermal radiation.

Steffan-Boltzmann law: thermal radiation is a strong function of temperature

Wien's law: peak wavelength is uniquely determined by temperature

Luminosity is a function of radius and a strong function of temperature

) additions at span a large range (many orders of

Black body (thermal) radiation: a property of nature, every body with a non-zero temperature emits thermal radiation.

Steffan-Boltzmann law: thermal radiation is a strong function of temperature

Wien's law: peak wavelength is uniquely determined by temperature

Luminosity is a function of radius and a strong function of temperature

Wien's displacement law: peak wavelength is uniquely determined by temperature

Luminosity is a function of radius and a strong function of temperature $\lambda_{max} T = const = 2.898 \times 10^{-3} mK$

dditions pan a large range (many orders of

 $I = 4 \pi R^2 \sigma T^4$

vith the square of the distance

s the E λ_{max} $T = const = 2.898 \times 10^{-3} m K$ le is one arcsec = 3.26 ly

e standard distance of 10 parsecs

/ of nature, every body with a non-zero

n is a strong function of temperature

determined by temperature

Luminosity is a function of radius and a strong function of temperature The wavelength of peak brightness goes bluer as the temperature rises