
Prof Wladimir Lyra ———– SELECTED TOPICS IN ASTROPHYSICS

Class notes 5 - (Sept 9th, 2015)

1 Pressure and flux in radiative equilibrium

In radiative equilibrium, the condition for pressure can be found by multiplying the RT equation
by cos θ, and integrating in angle.

d
dτν

∮
Iν cos2 θdω =

∮
Iν cos θdω− Sν

∮
cos θdω (1)

The first integral is 4πKν, the second the flux, and the latter zero. So,

dKν

dτν
= Hν (2)

Integrating it in frequency,∫ ∞

0

dKν

dτν
dν =

1
4π

∫ ∞

0
Fνdν =

F0

4π
= H0 (3)

2 Gray approximation

The gray approximation assumes that the opacity does not depend on wavelength. So, we simply
integrate the RT equation in frequency, to find

µ
dI
dτ

= S− I (4)

With that approximation, the eqs of radiative equilibrium are

F = F0 (5)
J = S (6)

K =
F0

4π
τ + const (7)

In the gray atmosphere, the source function is simply the mean intensity.

3 Rossland approximation

Use the plane-parallel approximation

µ
dIν

dz
= κνρ(Sν − Iν) (8)

Iν ≈ Bν −
µ

κν

∂Bν

∂z
(9)
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Fν =
∮

Iν cos θdω = 2π
∫ 1

−1
Iνµdµ (10)

= − 2π

κnu
∂Bν

∂z

∫ 1

−1
µ2dµ = − 4π

3κν

∂Bν

∂z
(11)

= − 4π

3κν

∂Bν

∂T
∂T
∂z

(12)

F =
∫ ∞

0
Fνdν = −4π

3
∂T
∂z

∫ ∞

0

1
κν

∂Bν

∂T
dν (13)

To bypass the frequency integration, we can define the Rossland mean opacity

1
κR
≡
∫ ∞

0
1
κν

∂Bν
∂T dν∫ ∞

0
∂Bν
∂T dν

(14)

And because ∫ ∞

0

∂Bν

∂T
dν =

∂

∂T

∫ ∞

0
Bνdν =

∂σ/πT4

∂T
=

4σ

π
T3 (15)

So,

F(z) = −16
3

σT3

κR

∂T
∂z

(16)

Rossland is a very good approximation for the optically thick case, where τν � 1. It is valid
whenever the radiation field is isotropic over distances comparable to or less than a radiation
mean free path, such as in local thermal equilibrium. The Rossland mean opacity is a weighted
average of κ−1

ν , so that frequencies at which the opacity is small tend to dominate the flux: the
Rossland mean opacity controls the transport of radiation.

4 Rossland vs Planck mean opacities

The Planck mean opacity is defined as

κP ≡
∫ ∞

0 κνBνdν∫ ∞
0 Bνdν

(17)

In constrast to the Rossland mean opacity, that favors transparent wavelengths and thus con-
trols the radiation flux, the Planck opacity is a weighted averaged that favors high opacities, strong
absorption lines. So, the Planck opacity is the opacity of choice for describing processes such as
absorption and emission.

4.1 The Eddington approximation

An ingeniuous solution to the gray case in the plane-parallel approximation was presented by
Eddington. Eddington assumed that the intensity could be decomposed into the contribution
from two directions. In this two-ray approximation, we have I+ as the intensity directed outwards
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(from the stellar interior toward the surface), and I− as the intensity directed intwards (from the
surface to the interior). That is, the radiation field is

I =
{

I+ for 0 ≤ θ < π/2, 0 < φ < 2π
I− for π/2 ≤ θ < π, 0 < φ < 2π

(18)

We can then express J, F, and P in terms of this intensity field.
The mean intensity is J is

J =
1

4π

∮
Idω (19)

=
1

4π
2π

(∫ π/2

0
I+ sin θdω +

∫ π

π/2
I− sin θdω

)
(20)

=
1
2
(I+ + I−) (21)

The flux is

F =
∮

I cos θdω (22)

= 2π

(∫ π/2

0
I+ cos θ sin θdω +

∫ π

π/2
I− cos θ sin θdω

)
(23)

= π (I+ − I−) (24)

And the quantity K is

K =
1

4π

∮
I cos2 θdω (25)

=
1
6
(I+ + I−) =

J
3

(26)

That is,

P =
4π

3c
J (27)

And, according to radiative equilibrium,

4π

3c
J =

Fτ

c
+ C (28)

We can evaluate the constant of integration C by the boundary condition, that at the surface
τ = 0 and I− = 0. So, at the upper layer J(τ = 0) = F/(2π), and thus C = 2F/(3c). So,

4π

3
J = F

(
τ +

2
3

)
(29)

And, since F = σT4
eff

J =
3σ

4π
T4

eff

(
τ +

2
3

)
(30)
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In LTE, Sν = Bν, so S = B =
∫ ∞

0 Bνdν = π−1σT4.
And this must be S = J given the gray approximation. So,J = π−1σT4. Plugging that into Eq.

(30), we have

T4 =
3
4

T4
eff

(
τ +

2
3

)
(31)

This result shows that the temperature is equal to the effective temperature not at the surface
(τ=0), but at the depth where τ = 2/3. Though an approximation, this pertains reasonable well
to real stars. This stems from the fact that in the outer atmosphere of a star, the mean free path
of a photon is comparable to the length scale of the temperature stratification, so we see not only
a single temperature, but layers in a range of temperatures. The depth of τ = 2/3 is the average
point of origin of the observed photons.

5 Stellar Structure

We will now derive the equations that determine the interior structure of a star. Consider the
amount of mass in a volume element

dm = ρdV = ρr2 sin θdrdθdφ (32)

So, the amount of mass in a spherically symmetric shell of constant density is

dM =
∮

ω
dm =

(
ρr2dr

) ∮
sin θdrdθdφ = 4πr2ρdr (33)

From that we can write the mass continuity equation

dM
dr

= 4πr2ρdr (34)

We can also derive an equation for the force balance. A gas parcel feels a gravity force towards
the center of star, given by the mass inside its shell

dFg = −GMrdm
r2 (35)

where Mr =
∫ r

0 4πρr′2dr′ and m is the mass of the gas parcel. This gravity has to be balanced
by the pressure force, the difference in pressure from the base of the gas parcel to its top.

Considering the gas parcel to have area dA, the force above is PdA and the force below is
(P + dP)dA. The difference is thus

dFp = −dPdA (36)

We now consider the forces to be in balance

dPdA = −GMrdm
r2 (37)

and considering that dm = ρdAdr,

dP
dr

= −GMr

r2 ρ (38)
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6 A constant density star

Mr =
4π

3
r3ρ =

r3

R3 M (39)

dP
dMr

= − GM
4πR4

(
Mr

M

)−1/3

(40)

Integrate that with a zero pressure boundary

P =
∫ M

0

dP
dMr

dMr (41)

= Pc

[
1−

(
Mr

M

2/3
)]

(42)

= Pc

[
1−

( r
R

)2
]

(43)

Pc is the central pressure,

Pc =
3

8π

GM2

R4 (44)

= 1.34× 1015
(

M
M�

)2 ( R
R�

)−4

dyne cm−2 (45)

≈ 109
(

M
M�

)2 ( R
R�

)−4

atm (46)

(47)

Substituting the equation of state, we have the temperature

P = cvρT (48)

Tc =
1
2

GM
R

µ

NAk
≈ 107

(
M

M�

)(
R

R�

)−1

K (49)
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