
Prof Wladimir Lyra ———– SELECTED TOPICS IN ASTROPHYSICS

Class notes - 4 (Sep 2nd, 2015)

1 Microphysics of radiative transfer

Local radiative equilibrium means that all processes are in detailed balance (emission = absorp-
tion, excitation = de-excitation, ionization = recombination). No change in the quantities.

Get Kirchhoff 1st law, Sν = Bν for a blackbody. So, Sν = jν/κν = Bν. That is

jν = κνBν (1)

This implies some relationship emission and absorption at the microscopic level. Einstein
unveiled that relationship. Consider two discrete energy levels (draw them).

Processes:
Spontaneous emission (2-1) : A21, transition probability per unit time for spontaneous emis-

sion.
Radiative excitation : B12 transition probability per unit time for radiative excitation. Presence

of a photon hν, proportional to density of photons, B12 J.
Stimulated emission: B21 transition probability per unit time for stimulated emission.
In LTE,

n1B12 J = n2A21 + n2B21 J (2)

n1 and n2 are the number densities of atoms in 1 and 2. Isolating J

J =
A21/B21

(n1/n2)(B12/B21)− 1
(3)

In LTE, the ratio n1/n2 is given by the Boltzmann relation (see Sect 2.1)

n1

n2
=

g1e−E1/KT

g2e−(E1+hν)/KT
=

g1

g2
ehv/KT (4)

So,

J =
A21/B21

(g1B12/g2B21ehν/KT − 1)
(5)

J ≡ Bν for black body,

Iν =
2hν3

c2
1

ehν/KT − 1
(6)

For Eq. (5) and Eq. (6) to be equal at all temperatures, one needs

g1B12 = g2B21 (7)

A21 =
2hν3

c2 B21 (8)
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These are the Einstein relations. Consider the energy absorbed:

κνρIν = hνn1B12 Jν, (9)

and the energy emitted:

jνρ = hνn2B21 Jν + hνn2A21. (10)

It is seen that the 1st term, being proportional to the intensity, can be treated as negative ab-
sorption. So, we can write the effective absorption as

κνρIν =
hνIν

4π
(n1B12 − n2B21) (11)

and the effective emission as

jνρIν =
hν

4π
n2A12 Iν (12)

crossing Iν and using the Einstein relation B21 = g1/g2B12.

κνρ =
hν

4π

(
n1B12 − n2

g1

g2
B12

)
hν

4π
n1B12

(
1− n2

n1

g1

g2

)
(13)

This leads us to the source function in term of the Einstein coefficients:

Sν =
jν
κν

=
n2A12

n1B12(1− n2
n1

g1
g2
)

(14)

We can identify three behaviors here. The first one is thermal radiation, for which n2/n1 =
g2/g1e−hν/KT.

S =
A21

B12g1/g2(ehν/KT−1)
(15)

=
2hν3

c2
1

ehν/KT − 1
(16)

κνρ =
hν

4π
n1B12

(
1− e−hν/KT

)
(17)

Second: Nonthermal radiation.

n1

n2
6= g1

g2
ehν/KT (18)

Third : Maser.

n1g2 < n2g1 (19)

If n2 � n1 there are too many atoms in the upper state. The Intensity increases along the ray
due to intense stimulated emission. This is called a maser.
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2 Scattering

Scattering is any process that changes the direction of a radiation ray. The scatterers in stars are
mostly nonrelativistic electrons. For these, scattering is isotropic and coherent. The scattering is
also elastic, so the energy aborbed is equal to the energy emitted.∫

κνρIνdω =
∫

jνρdω (20)

jν = σνρJν (21)

For pure scattering,

dIν

ds
= −σνρ(Iν − Jν) (22)

Considering both absorption and scattering

dIν

ds
= −κνρ(Iν − Bν)− σνρ(Iν − Jν) (23)

= −(κν + σν)ρ(Iν − Sν) (24)

with the source function being given by

Sν =
κνBν + σν Jν

κν + σν
(25)

κν + σν is the net absorption coefficient, or extinction coefficient.

dτν = (κν + σν)ρds (26)

2.1 Boltzmann ratios

In LTE, the ratio n1 and n2 between the occupancy of excitation levels is given by Boltzmann’s law

P(E) = g(E)e−E/KT (27)

where P(E) is the probability of the system being at the state of energy E, and g(E) is the degen-
eracy of that level, its statistical weight.

It can be derived by the definition of entropy

S = −k ∑
i

pi ln pi (28)

with the constrains that ∑i pi = 1 and < E >= ∑i piEi = U where U is the total energy. The
probability pi is that that maximizes the entropy. We rewrite the equation above using Lagrange
multipliers

S = −k ∑
i

pi ln pi + λ1

(
∑

i
pi − 1

)
+ λ2

(
∑

i
piEi −U

)
(29)

We find λ2 directly by derivating wrt U, and applying the second law of thermodynamics
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dS
dU

= −λ2 =
1
T

(30)

Whereas derivating wrt pi, which should be zero (probability that maximizes entropy) yields

dS
dpi

= 0 = −k ln pi − k + λ1 −
Ei

T
(31)

Now isolate pi

pi = exp
[

1
k

(
−1 + λ1 −

Ei

T

)]
= exp

[
1
k
(λ1 − 1)

]
exp (−Ei/kT) (32)

To find λ1 we now apply ∑i pi = 1

exp
[

1
k
(λ1 − 1)

]
∑

i
exp (−Ei/kT) = 1 (33)

that is

λ1 = 1− k ln Z (34)

where

Z = ∑
i

e−Ei/kT (35)

is the partition function. We can also write

pi =
1
Z

e−Ei/KT (36)

2.2 Radiation Pressure

Radiation also carries momentum, so it exerts pressure over a surface. To get the momentum flux,
recall that the momentum of a photon is E/c, in the direction of the beam n̂′

dpν =
dEν

c
n̂′ =

Iν

c
dA · dωdtdνn̂′ =

Iν cos θ

c
dAdωdtdνn̂′ (37)

The pressure is found by finding the normal of this momentum to the area element, which is
normal to n̂

dpperp
ν = dpν · n̂ (38)

=
Iν cos θ

c
dAdωdtdνn̂′ · n̂ (39)

=
Iν cos2 θ

c
dAdωdtdν (40)

And the pressure is the force over area,
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dPν =
dpperp

dtdA
(41)

=
Iν cos2 θ

c
dωdν (42)

Integrating it over all directions, we get the total pressure

Pν =
1
c

∮
Iν cos2 θdω (43)

2.3 The quantities Hν and Kν

Similarly to the mean intensity, which is the directional average of the intensity, we can divide the
flux and pressure by

∮
dω to write

Jν =
1

4π

∮
Iνdω (44)

Hν =
1

4π

∮
Iν cos θdω (45)

Kν =
1

4π

∮
Iν cos2 θdω (46)

Hν = Fν/4π and Kν = cPν/4π. These are just normalizations to remove factors of 4π that
sometimes appear in equations. The interesting fact to notice is that J, H, and K are, respectively,
the zeroth, first, and second moments of the intensity with respect to the direction. (moment =
combination of a physical quantity and a coordinate).

2.4 Spherical coordinates and the plane-parallel approximation

Let’s now find some solutions to the equation of radiative transfer. The optical depth is defined
along a ray, whereas in the case of a star, we want to define a direction, towards the observer, that
we call the axis z. We can write

d
dz

=
dr
dz

∂

∂r
+

dθ

dz
∂

∂θ
(47)

with dr = cos θdz and rdθ = − sin θdz. The RT equation

∂Iν

∂r
cos θ

κνρ
− ∂Iν

∂θ

sin θ

κνρr
= Sν − Iν (48)

In the plane-parallel approximation, we assume that r >> 1, ignoring the curvature. The RT
equation then becomes

µ
dIν

dτν
= Sν − Iν (49)

where µ = cos θ. This is similar to rewriting it in terms of an effective optical depth τν → µ−1τν.
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2.5 Radiative equilibrium

The atmosphere of a star simplys transports all energy that flows through it, produced in the core.
Without sources and sinks, the energy is rigorously conserved. Applying energy conservation to
the interior of the star and using Gauss theorem

∂E
∂t

= 0 =
∮

F · dA =
∫

(∇ · F) dV (50)

The integrand must be zero for all volume elements. So,

∇ · F = 0 (51)

For the plane-parallel approximation, that is simply dF/dx = 0, or F ≡ const. We can define∫ ∞

0
Fνdν = F0 =

L
4πr2 = σT4

eff (52)

Also, in radiative equilibrium, we see that

cos θ
dIν

dτν
= Sν − Iν (53)

integrating in solid angle

d
dτν

∮
Iν cos θdω =

∮
Sνdω−

∮
Iνdω (54)

assuming that Sν is isotropic (radiative equilibrium)

d
dz

Fν = 4πκνρ(Sν − Jν) (55)

and we integrate that in frequency

d
dz

∫ ∞

0
Fνdν = 4πρ

∫ ∞

0
κν(Sν − Jν)dν (56)

The LHS is ∇ · F, which in radiative equilibrium is zero. Therefore, the RHS is also zero. So,
we find the result ∫ ∞

0
κνSνdν =

∫ ∞

0
κν Jνdν (57)

Or, recalling Sν = jν/κν, ∫ ∞

0
jνdν =

∫ ∞

0
κν Jνdν (58)

Bolometric emission = bolometric absorption. What is emitted in a wavelength is absorbed in
another. The total energy is conserved.

In radiative equilibrium, the condition for pressure can be found by multiplying the RT equa-
tion by cos θ, and integrating in angle.

d
dτν

∮
Iν cos2 θdω =

∮
Iν cos θdω− Sν

∮
cos θdω (59)

The first integral is 4πKν, the second the flux, and the latter zero. So,
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dKν

dτν
= Hν (60)

Integrating it in frequency,∫ ∞

0

dKν

dτν
dν =

1
4π

∫ ∞

0
Fνdν =

F0

4π
= H0 (61)

2.6 Gray approximation

The gray approximation assumes that the opacity does not depend on wavelength. So, we simply
integrate the RT equation in frequency, to find

µ
dI
dτ

= S− I (62)

With that approximation, the eqs of radiative equilibrium are

F = F0 (63)
J = S (64)

K =
F0

4π
τ + const (65)

In the gray atmosphere, the source function is simply the mean intensity.
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