
Prof Wladimir Lyra ———– SELECTED TOPICS IN ASTROPHYSICS

Class notes - 3 (Aug 31st, 2015)

1 Emission and absorption of radiation

1.1 Absorption

The amount of radiation absorbed as a ray traverses a slab of material is proportional to the in-
coming intensity, and to the path length traversed.

dIν = −αν Iνds (1)

αν is called absorption coefficient, and dIν is negative. Frequently we also use

dIν = −κνρIνds (2)

where the units are κνρ→ cm−1 and κν → cm2 g−1.
κν is usually called mass absorption coefficient, or opacity.
The absorption law is phenomenological. Imagine an ensemble of absorbers of number density

n, all having cross section σν. The total number of absorbers in a volume dV = dA′ds is N =
ndA′ds, and collectively they offer an absorbing area ndA′dsσν. So, the amount of energy absorbed
from the beam is

dEν = −dIνdAdωdtdν ∝ (ndA′dsσν)dωdtdν (3)

The proportionality constant has to have dimension of intensity, and whatever constant present
can be absorbed into σν. Thus,

dEν = Iν(ndA′dsσν)dωdtdν (4)

Comparing both,

dIν = −nσν Iνds (5)

So

αν = nσν = ρκν (6)

Opacity is the resistency of matter to the passage of radiation.

dIν = −κνρIνds→ dIν

Iν
= −κνρds (7)

Iν = Iν(0) exp
{
−
∫

κνρds
}

(8)

Define the optical depth infinitesimal dτν = κνρds. Optical depth is the path integral of the
opacity. So, the absorption is

Iν = Iν(0)e−τν (9)
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Radiation is attenuated as it travels through the medium. The atenuation increases rapid;y
with optical depth. For τ = 5 only 0.007 of the original radiation escapes. For τ = 10 is it 5× 10−5.
In general, τ is the number of mean free paths of a photon, and we see down to only to τ ≈ 1.

1.2 Optical depth as mean free path

Let us show that τν = 1 means one photon mean free path.

τν = 1 =
∫ l̄

0
κνρds (10)

The average optical depth over which a photon travels before being absorbed.

< τν >=
∫ ∞

0
τν p(τν)dτν (11)

where p(τν)dτν is the probability of being absorbed in the interval (τν, τν + dτν), after having
traveled (0, τν), before being absorbed. In other words, it is the probability of not being absorbed
in (0, τν) and being absorbed in dτν.

Probability of absorption:

p =
∆I(τν)

I0
(12)

the equation above is 0 for ∆I = 0 (not absorbed) and 1 for ∆I = I (absorbed).

p =
∆I(τν)

I0
=

I0 − I(τν)

I0
= 1− Iν(τν)

I0
(13)

Probability p1 that the photon is not absorbed until τν: p1 = 1− p = Iν(τν)/I0 = e−τν .
Probability p2 that the photon is absorbed in (τν, τν + dτν) is

p2 =
∆I(τν, τν + dτν)

Iν(τν)
(14)

=
dIν

Iν(τν)
= dτν (15)

So, the total probability is p1 × p2

total probability :
(

Not absorbed in [0, τν]
e−τν

)
×
(

absorbed in [τν, τνdτν]
dτν

)
= e−τν dτν (16)

Therefore,

< τν > =
∫ ∞

0
τν p(τν)dτν =

∫ ∞

0
τν exp(τν)dτν (17)

= −(1 + x)e−x|∞0 = 0 + (1)e0 = 1 (18)

The average optical depth traveled before being absorbed is < τν >=1
For a homogeneous material, κρ ≡ const
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< τν >= 1 =
∫

κρdz = κρlmfp (19)

So

lmfp =
1

κρ
(20)

1.3 Emission

Emission is parametrized as energy per unit time per unit solid angle per unit volume.

dEν = jνρdVdωdtdν (21)
= jνρdAdsdωdtdν (22)

so,

dIν = jνρds (23)

with dIν > 0.

1.4 The radiative transfer equation

Combine absorption and emission

dIν = −κνρIνds + jνρds (24)

dIν

κνρds
= −Iν +

jν
κν

(25)

Use the definition of optical depth, and define Sν ≡ jν/κν

dIν

dτν
= −Iν + Sν (26)

This is the fundamental equation of radiation transfer. The function Sν is called the source
function.

Notice that in the special case of blackbody radiation, Iν = Bν and dIν = 0, so Sν = Bν.
The general solution of the equation is found by using the integration factor eτ

ν on both sides.

eτ
νdIν + eτ

ν Iνdτν = Sνeτ
νdτν (27)

d(eτ
ν Iν) = Sνeτ

νdτν (28)

And integrating between 0 and τν

eτν Iν(τν)− Iν(0) =
∫ τν

0
Sν(tν)etν dtν (29)

Iν(τν) = Iν(0)e−τν +
∫ τν

0
Sν(tν)e−(τν−tν)dtν (30)

The 1st term is the extinction of the original intensity, and the 2nd is the emission in a point tν,
extinguished in the path from tν to τν.
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1.5 Limits

Let us consider some limits that will illustrate some cases of physical interest. Consider first the
optically thin limit, of τν � 1. In this case we can approximate

e−τν → 1− τν (31)

and thus

Iν(L) = Iν(0) + jνρL (32)

The result shows that in the optically thin case, the original intensity is unaltered, but emission
was added. The emission is unnatenuated, so all contributions from 0 to the full geometrical depth
L are added. In terms of the optical depth, this becomes

Iν(τν) = Iν(0) + Sντν (33)

In the optically thick case, τν � 1, the equation of radiative transfer becomes

Iν = Sν =
jν
κν

=
jν
κν

κνρ

κνρ
= jνρ

(
1

κνρ

)
(34)

Iν = jνρl̄ (35)

Meaning that only stuff at 1 mean free path contributes to the emission.

2 Kirchhoff three laws of spectroscopy

Gustav Robert Kirchhoff, not knowing about energy levels in the atom, coined the term “black-
body” radiation and also postulated three empirical laws that take his name.

1. A hot dense gas produces light with a continuous spectrum.

2. A hot tenuous gas produces light with emission lines at discrete wavelengths

3. A hot dense gas surrounded by a cool tenuous gas produces light with a continuous spec-
trum which has gaps at discrete wavelengths.

An illustration of the laws is shown in fig 1. Let us understand them in the light of the equation
of radiative transfer.

Consider the case Iν(0) = 0. No light shining, only hot gas.

Iν = Sν(1− e−τν) (36)

The 1st law is derived from this in the optically thick case. Simply putting τν � 1. Leads to
Iν = Sν. As we know that for a hot object or gas is a blackbody, Sν is the Plank function, so Iν = Bν.

The 2nd law is also derived from this, but in the optically thin case, e−τν = 1− τν, so Iν = Sντν.
The intensity will be high where τν is high. Since there is no background intensity, these are seen
as emission lines.

The 3rd law is the case where there is a background intensity but no emission. For the hot gas
the intensity is Bν, where the cold gas has Sν = 0. Thus Iν = Bνe−τν . The intensity is a Planck
continuum, lowered where τν is high. Thus, we see absorption lines.
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Figure 1: Illustration of the 3 empirical Kirchhoff laws of spectroscopy.

5


