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Cosmology notes: Class 1 (Nov 30th, 2015)

Cosmology is the study of the Universe as a whole. Since the Universe is everything that exists,
no other discipline can claim a more encompassing subject of study.

As gravity is the only force that survives in the large scales of cosmology (even magnetic fields
get feeble in comparison, since the magnetic dipole field scales at 1/r3), the tools of cosmology are
those of general relativity. However, significant insight can be gained from a Newtonian approach,
which is the one we will take. This “Newtonian cosmology” does not have too misguided a name.
In fact, had Isaac Newton known about the expansion of the Universe, he could have derived
the main results of modern cosmology. Indeed, as we will promptly see, these results arise a)
the cosmological principle and b) conservation of energy combined with Hubble’s law. This law
which states that a galaxy at a distance r from Earth recedes from us with velocity

v = Hr, (1)

where H is called Hubble constant.
The cosmological principle states that the Universe is homogeneous and isotropic. If isotropy

holds, all galaxies see the same Hubble law, as if they were the center. This is a straightfoward
result from simple vector algebra. Consider two galaxies A and B away from Earth from a dis-
tance rA and rB, respectively. Hubble’s law states that the recessional velocity of these galaxies as
measured from Earth is

vA = H0rA (2)
vB = H0rB (3)

Substracting one from the other we have the recessional velocity of galaxy B as seen from
galaxy A

vB − vA = H0(rB − rA) (4)

So, the observer in galaxy A sees other galaxies in the Universe moving away with the same
Hubble law as Earth.

Homologous expansion

Notice that the cosmological principle also implies that, if we consider the Universe as composed
of concentric shells, each of radius r, the expansion is the same for all shells. That is to say, the
expansion is homologous: all shells take the same time to double their radius. Therefore, we need
only concentrate on one single shell to understand the behavior of the Universe.

Consider thus a shell of mass m at time t, expanding with the Universe with recessional veloc-
ity v = dr/dt. As the Universe expands, the density and radius of the shell change in time, i.e.,
ρ = ρ(t) and r = r(t). We can write the mechanical energy of the shell as

K(t) + U(t) = E (5)
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Given that the potential energy is the gravitational pull of the mass inside the shell, the me-
chanical energy is

1
2

mv2(t)− GMrm
r(t)

= E (6)

According to the cosmological principle, the mass Mr inside the shell has the same density as
the shell, so

Mr =
4π

3
r3(t)ρ(t), (7)

and we can write the mechanical energy as

v2(t)− 8π

3
Gρ(t)r2(t) =

2E
m

. (8)

Scale factor

Since the radius r(t) of each shell changes with time, it is convenient to define a reference radius
against which to measure the expansion. I.e., we can write

r(t) = R(t)ω (9)

where r(t) is the radius of the shell, called coordinate distance. The quantity ω does not change
for a particular shell: it effectively “labels” a shell and follows its expansion. It is called comoving
coordinate. R(t) is dimensionless and is called the scale factor, i.e., the factor by which we have to
scale the comoving coordinate to get the coordinate distance. By convention, at present time the
scale factor is unity, R(t0) = 1, corresponding to r(t0) = ω.

The evolution of the shell (and by consequence, the Universe), is given by the time behavior of
R(t). We can substitute the velocity in the mechanical energy by Hr, as given by Hubble’s law

v(t) = H(t)r(t) = H(t)R(t)ω (10)

Or, alternatively,

v(t) =
dr(t)

dt
= ω

dR(t)
dt

(11)

So the Hubble constant can also be written as

H(t) =
1

R(t)
dR(t)

dt
(12)

Putting this back in the energy equation, and omitting the ”(t)” for clarity, we have

v2 − 8π

3
Gρr2 =

2E
m

(13)

(
H2 − 8π

3
Gρ

)
R2 =

2E
mω2 (14)

Here we can redefine the total energy to get rid of the mass of the shell m, the co-moving
distance ω, as well as the factor 2. A suitable choice is
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E = −1
2

mc2kω2 (15)

where k is a constant. So, (
H2 − 8π

3
Gρ

)
R2 = −kc2 (16)

and we arrive then at the Friedmann equation[(
1
R

dR
dt

)2

− 8π

3
Gρ

]
R2 = −kc2. (17)

We can also write the Friedmann equation in terms of the present density ρ0 (which we can
measure) by making use of mass conservation

R(t)3ρ(t) = R3(t0)ρ(t0) = ρ0 (18)

And substituting the above equality in the Friedmann equation(
dR
dt

)2

− 8πGρ0

3R
= −kc2 (19)

Closed, Open, or Flat

Based on the sign of the energy, the Universe has three behaviors:

Closed (bounded) Universe: k > 0 (negative energy)
Open (unbounded) Universe: k < 0 (positive energy)
Flat Universe: k = 0 (zero energy).

For critical density, k = 0 (
H2 − 8π

3
Gρ

)
R2 = 0 (20)

where the equality holds when the density has the critical value

ρc(t) =
3H2(t)
8πG

. (21)

To find the numerical value of this critical density, we need to know the Hubble constant. The
Hubble constant is usually written as

H0 = 100 h km s−1 Mpc−1 = 3.24× 10−18 h s−1 (22)

The quantity h is historical. In the early days they could not measure H0 precisely, but they
knew the value was around 100 km s−1 Mpc−1. So, they wrote it as that number, times a dimen-
sionless factor, that embodied how far from this round number the actual value was. The original
estimate was between 0.5 and 1. WMAP 1 measured h = 0.71+0.04

−0.03. So

1The value was updated by Planck to h = 0.678± 0.0077.
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[H0]WMAP = 71 km s−1 Mpc−1 = 2.30× 10−18s−1 (23)

And the present value of the critical density is

ρc,0 = 9.47× 10−27 kg m−3 (24)

Which is roughly six hydrogen atoms per cubic meter. WMAP measured the density of visible
matter in the Universe as ρb,0 = 4.17× 10−28 kg m−3, or 4% of the critical density.

Redshift

A quantity of great interest in cosmology is the redshift, a readily observable quantity, defined as
the shift in a wavelength with respect to the original wavelength

z ≡ λobs − λemitted

λemitted
. (25)

Considering that the cosmological redshift is due to Hubble’s law, we can write

z =
robs − remitted

remitted
=

robs

remitted
− 1. (26)

And given robs = r0 = ω, and remitted = r(t), the first term in the RHS is the inverse of the scale
factor

R =
r(t)
r0

. (27)

So, we can write

z =
1
R
− 1 (28)

and convsersely

R =
1

1 + z
. (29)

Density Parameter

Consider the ratio of measured density to critical density

Ω(t) =
ρ(t)
ρc(t)

=
8πGρ(t)
3H2(t)

(30)

Presently

Ω0 =
ρ0

ρc,0
=

8πGρ0

3H2
0

(31)

According to WMAP, the density of matter (dark + luminous) is Ωm,0 = 0.27± 0.04. And the
density of luminous matter alone is Ωb,0 = 0.044± 0.004.

We can write the ratio of the density parameter to the current density parameter as
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Ω

Ω0
=

ρ

ρ0

H2
0

H2 (32)

And considering the conservation of mass, ρ/ρ0 = 1/R3. Writing this in terms of the redshift,

Ω

Ω0
= (1 + z)3 H2

0
H2 (33)

or

ΩH2 = (1 + z)3Ω0H2
0 (34)

Substituting this in the Friedmann equation, we arrive at

H2(1−Ω)R2 = −kc2 (35)

which, for present time becomes

H2
0(1−Ω0) = −kc2 (36)

So, if
Ω0 > 1 then k > 0, E < 0: Universe is closed;
Ω0 < 1 then k < 0, E > 0: Universe is open;
Ω0 = 1 then k = 0, E = 0: Universe is flat.

An interesting result arises from these equations as well. Equating Eq. (35) and Eq. (36), and
substituting R for z

H2(1−Ω) = H2
0(1−Ω0)(1 + z)2 (37)

Or,

H = H0(1 + z)
(

1−Ω0

1−Ω

)1/2

(38)

That is, we can relate the density parameter with the present one by

Ω =

(
1 + z

1 + Ω0z

)
Ω0 = 1 +

(Ω0 − 1)
(1 + Ω0z)

(39)

A couple of results can be derived from this equation.
First, as z → ∞, H → ∞. That is, as the scale factor goes to zero, the rate of expansion goes to
infinity. This means that if the universe had zero size, there was a big bang.
Second, the sign of Ω− 1 does not change. The Universe is either always closed, always open, or
always flat. The last is particularly interesting: if Ω = 1 any time, then Ω = 1 at all times.
Third, as z→ ∞, Ω→ 1. The early Universe was essentially flat.
The last one allows us to simplify several equation in the early Universe by setting k = 0.
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