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Keplerian disks can't develop hydrodynamical turbulence

Most astrophysical discs are close to Keplerian
nearly circular
angular velocity profile Qo r32

angular momentum (irz_()] increases outwards

Stable to axis-symmetric
disturbances

(Rayleigh criterion)




Rayleigh instability

Normally, angular velocity
decreases outwards but angular
momentum increases outwards.

Ring A losing angular momentum
needs to jump to an orbit of lower
angular momentum, which s
inwards.

But IF both angular velocity and
momentum decrease outwards,
then when ring A loses angular, the
orbit of lower angular momentum it
must jump to is past B.

Likewise, B gaining angular
momentum must jump to a higher
angular momentum orbit, which is
past A.

A and B must swap. The situation
is UNSTABLE.



Gas parcels joined by a spring




The restoring force destabilizes the flow

Otherwise Rayleigh-stable, Keplerian motion is destabilized
if a restoring force connects two gas parcels.

The restoring force resists the shear, trying to enforce rigid rotation.

The parcel inwards is tugged back, which enforces it to rotate at the angular velocity it
had at the equilibrium position.

The angular momentum it loses is given to the outer gas parcel. Losing angular
momentum, it jumps to an inner orbit.

The outer parcel gains angular momentum and jumps to an even more outward orbit.

The situation is unstable.



Magnetorotational Instability (MRI)

B
rotates faster

rotates slower

Magnetic fields in a conducting, rotating plasma behave
EXACTLY like springs!



Turbulence and Accretion in 3D Global
MHD Simulations of Stratified Protoplanetary Disk




Magneto-Rotational Instability

Turbulence in disks is enabled by the
Magneto-Rotational Instability (Balbus & Hawley, 1991)
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Magneto-Rotational Instability
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Saturated State of MRI

Energy budget
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Fi16. 6.—Sketch of the energy budget. Encrgy is tapped from the Keplerian
motion and goes into magnetic and kinetic energy, and is finally converted into
heat. The numbers give the approximate energy fluxes in units of (§8°Q).




Dead zones
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Next class

The MRI is dead
Long live the Thermal Instabilities

Vertical Shear Convective Zombie Vortex
Instability Overstability Instability
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Vertical shear instability
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Violates the Rayleigh criterion: Unstable
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