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[abridged] Demographic surveys of protoplanetary disks, mainly with ALMA, have provided access to a large range of disk dust masses (Mg, ) around
stars with different stellar types and for different star-forming regions. These surveys found a linear relation in logarithmic scale between My, and M,
that steepens with time, but that is flatter for ransition disks (TDS). We perform dust evolution models and include perturbations to the gas surface
density with different amplitudes to investigate the effect of particle trapping on tt — M, relation. These perturbations aim to mimic pres
bumps originated by planets. We focus on the effect caused by different stellar and disk masses because exoplanet statistics show a dependence of planet
‘mass with stellar mass and metallicity. We find that models of dust evolution can reproduced the observe , relation in different star-forming
regions when strong pressure bumps are included and when the disk mass scales with stellar mass (case of Mg, = 0.05 M, in our models). This result
arises from dust trapping and dust growth beyond centimeter-size grains inside pressure bumps. However, the flatter relation of M. — M., for TDs and
disks with substructures cannot be reproduced by the models, unless the formation of boulders is inhibited inside pressure bumps. In the context of
planets originating pressure bumps, our results agree with the current exoplanet statistics about giant planet occurrence increasing with stellar mass, but
we cannot conclude about the type of planets needed in the case of low mass stars. This is because for M, < 1Mo, the observed My, obtained from
‘models is very low due to the efficient growth of dust particles beyond centimeter sizes (boulders) inside pressure bumps.
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Pulsar Planets




Pulsar Planets are RARE

List of pulsar planets [edit]

Confirmed planets |[edit]

Pulsar

PSR B1620-26

PSR B1257+12

PSR B0943+10

PSR B0329+54

Planetary object Mass

PSR B1620-26 b 25 M,
PSR B1257+12 A 0.020 M,
PSR B1257+12B 43 M,
PSR B1257+12C 3.90 M,
PSR B0943+10 b 2.8 M,
PSR B0943+10 ¢ 26 M,
PSR B0329+54 b | 1.97 +0.19 M,

Semimajor axis
(AU)

23
0.19
0.36
0.46
1.8
29
10.26 +0.07

Orbital period

100 years
25.262+0.003 days
66.5419+0.0001 days
98.2114+0.0002 days
730 days
1460 days
27.76 +0.03 years

Discovered

2003
1994
1992
1992
2014
2014
2017
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Limits on Planet Formation Around Young Pulsars and Implications for Supernova
Fallback Disks

Matthew Kerr, Simon Johnston, George Hobbs, Ryan M. Shannon
(Submitted on 23 Jul 2015)

We have searched a sample of 151 young, energetic pulsars for periodic variation in pulse time-of-arrival arising from the influence of planetary
companions. We are sensitive to objects with masses two orders of magnitude lower than those detectable with optical transit timing, but we find
no compelling evidence for pulsar planets. For the older pulsars most likely to host planets, we can rule out Mercury analogues in one third of our
sample and planets with masses > 0.4Mg and periods P, < 1 yrin all but 5% of such systems. If pulsar planets form primarily from supernova
fallback disks, these limits imply that such disks do not form, are confined to < 0.1 AU radii, are disrupted, or form planets more slowly (> 2 Myr)
than their protoplanetary counterparts.

Comments: 5 pages, 4 figures, accepted to ApJL

Subjects:  High Energy ical Ph ph.HE); Earth and Planetary Astrophysics (astro-ph.EP)
Dol 10.1088/2041-8205/809/1/L11
Cite as: arXiv:1507.06982 [astro-ph.HE]

(or arXiv:1507.06982v1 [astro-ph.HE] for this version)
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5. SUMMARY AND CONCLUSION

We have searched a large sample of young pulsars for
periodic modulation characteristic to planetary compan-
ions. Our work is an improvement on previous efforts
(Thorsett & Phillips [1992), as our pulsar sample is two
orders of magnitude larger and we employ sophisticated
methods to mitigate pulsar timing noise and model re-
alistic (noncircular) orbits. Despite the good sensitiv-
ity to low-mass planets we find no compelling evidence
for such systems. We argue that such companions could
have formed in debris disks within the 2 Myr age range
spanned by our sample, and their absence implies super-
nova fallback disks are either rare or confined to small
radii.




Extrasolar planets — Direct Imaging

Four planets around HR 8799

Jason Wang
2009-07-31 e Christian Marois




Extrasolar planets — Direct Imaging

Beta Pictoris b
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Contrast

Difficulty: Brightness ratio
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Contrast to Host Star
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Exoplanet Direct Imaging in the Optical and Near—infrared
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Temperature (K)
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Easier to find when young
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Direct Imaging

® Advantages

® Allows physical characterization: Temperature, log
g, chemical composition

® Direct detection, no other explanations possible
(must exclude background star chance alignment.)
® Disadvantages

® \ery difficult, only young objects. Huge
brightness contrast, tiny projected separation.

® Measures intrinsic (or reflected) luminosity L.
Not mass M. L-M relation is model dependent
and very uncertain.



Radial Velocity vs Time
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Declination (mas)
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Astrometry — Gaia

It's that simple...

Right ascension (mas)

Astrometnc displacement of the Sun due to Jupiter
as seen from 10 parsecs.
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Gaia will test the fine structure of GP parameters distributions and fr quencies

(including the GP/BD transition), and investigate their changes as a function of

.

stellan mass, metallicity, age, and multiplicity with unprecedented resolution



Game Changer — The Kepler mission

K'e.ple-r :
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Sagittarius Arm
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Others, since Kepler
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New types of planets

Exoplanet Populations

e Radial Velocity
e Transit

w
=
©
@
&
£
: =
(S
w
e
©
=
5
R
[}
2
®
N
(2}

* Imaging
Microlensing
Pulsar Timing

* Kepler

10 100
Orbital Period (Days)




6& Over 3700 Confirmed Exoplanets

leL The Periodic Table of Exoplanets

Qe Qe
2209 419

Super-Earths
are the most common type of planet

Stellar Systems
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Orbital Properties: Eccentricity
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Rossiter-McLaughlin effect
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Inclination
Shift at the radiative/convective transition

Hot Jupiters (P = 0.7-7 d)
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Physical Properties: Radius




Planet Fraction, f(M,F)
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Brown Dwarf desert

Grether & Lineweaver 2006
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Other icelines
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Minimum Mass Extrasolar Nebula
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Minimum Mass Extrasolar Nebula
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Figure 1. Diversity of minimum mass extrasolar nebulae. Each
grey curve is the minimum-mass disk inferred from a system
of Kepler planet candidates (solid grey) or radial velocity plan-
ets (dashed grey). The thick black curve is the median fit:
¥ oc 7145 The black dashed curves represents two estimates
of the minimum-mass solar nebula (MMSN) built using just the
terrestrial planets.



What we need to explain

How do terrestrial and gas giant planets form?

How can we understand their orbits:
* in the Solar System?
* in extrasolar planetary systems?

The hope is that this will inform questions such as:
- how typical is the Solar System?
- how common are habitable planets?



Theory

Given initial conditions,
putting pen to paper
(plus computer simulations)
goes a long way

Planet Formation

Very detailed, Comprehensive statistics,
but only one system but limited scope of information

Solar System Constraints Exoplanet Observations



Planetary Mass (Mjup)

Number of planets
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