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Evidence from the Solar System

Mass - Angular Momentum Segregation

e Jupiter
Mass: The planets sum up to less than 0.2%
® Saturn of the mass of the Sun
e Neptune

®Uranus

Angular Momentum: The planets (mostly Jupiter)
. have about 100 times the angular
Sun momentum of the Sun.

Angular momentum

e Earth
®*\Venus

e Mars
e Mercury

Mass



Inference from theory
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Refractories in meteorites: Solar Composition
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Inference from theory

The Minimum Mass Solar Nebula (MMSN)

How much mass was needed to form the planets?
1. Take the mass in each planet
2. Increase H/He to solar composition

3. Spread the mass into an annulus around each orbit

- =~

Jupiter’s orbit

Spread Jupiter’s augmented mass (~5x real mass)
across this annulus to yield a column density.



Evidence from the Solar System

The Minimum Mass Solar Nebula (MMSN)
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Fig. 1. Surface densities, a, obtained by restoring the planets to solar composition and spreading

the resulting masses through contiguous zones surrounding their orbits. The meaning of the ‘error
bars' is discussed in the text,



Evidence from the Solar System

The Minimum Mass Solar Nebula (MMSN)

Planetary zones: masses and surface densities

Mass Fe mass Solar comp. Zone limits Surface density
(Mg) fraction mass (Mg) (AU) (gcm~—?)
Mercury 0.053 0.62 27 0.22 880
Venus 0.815 0.35 235 0.56 4750
Earth 1 0.38 320 0.86 3200
Mars 0.107 0.30 27 1.26 95
Asteroids
present 0.0005 0.25 0.1 20 0.13
original 0.15? 30 40
33
Jupiter 318 - 600-12 000 7.4 120-2400
Saturn 95 - 1000-6000 144 55-330
Uranus 14.6 - 700-2000 24.7 15-40
Neptune 17.2 - 800-2000 35.5 10-25
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Fig. 1. Surface densities, a, obtained by restoring the planets to solar composition and spreading

the resulting masses through contiguous zones surrounding their orbits. The meaning of the ‘error
bars' is discussed in the text.
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e The Distribution of Mass in the Planetary System and Solar
Citations (630) Nebula
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Co-Reads Weidenschilling, S. J.

Similar Papers A model ‘solar nebula’ is constructed by adding the solar complement of light elements to each

planet, using recent models of planetary compositions. Uncertainties in this approach are
estimated. The computed surface density varies approximately asr “¥2. Mercury, Mars and the
Graphics asteroid belt are anomalously low in mass, but processes exist which would preferentially
remove matter from these regions. Planetary masses and compositions are generally consistent
with a monotonic density distribution in the primordial solar nebula.
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Evidence from the Solar System
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Disk Masses
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Phase Diagram - Water

S Pressure of MMSN at 1AU




Where was the water iceline?




The Carbonaceous / Non-Carbonaceous Divide

Enstatite chondrites
(E-Chondrites)

Rich in MgSiO; (enstatite)

Most Fe is either metallic or sulfide,
not oxides (water-poor)

Parent bodies in inner asteroid belt.

Carbonaceous chondrites
(C-Chondrites)

Rich in water and volatile organic chemicals

Have not been exposed to
high (above water sublimation) temperatures

Parent bodies in outer asteroid belt.




ASTEROID TAXONOMY

The composition of the surface of an
asteroid can be determined by
reflectance spectroscopy at ultraviolet,
visible, and infrared wavelengths.

Broad classes (Bus & Binzel 2002):

 C group — carbonaceous, low albedo (< 0.1)

- § group — silicaceous (stony), moderate albedo
(0.1 - 0.25)

* X group — metallic, usually moderate to large
albedo

And several “assorted” groups

The first four asteroids discovered, shown on the same scale as Earth and the
Moon (NASA). Together, they comprise 2/3 of the mass of the asteroid belt.



S-GROUP ASTEROIDS: S-TYPES

(stony) asteroids are the
second-most numerous type: about
30% of all asteroids.
Concentrated toward the inner part of the
main belt, with large albedos (~0.20); thus
we may be overestimating their fraction of
the total. 500 nm
Reflection bands in the infrared are similar
to those from pyroxenes and olivines.
They are either thermally processed and
crystallized (like igneous rocks) or have
been “space weathered” by impacts and
uv.

Adoptive-optical images and arfisfs concoption of

second-lorgest S-type

X-GROUP ASTEROIDS: M-TYPES

(metal) asteroids comprise about 10% of asteroids.

They are shiny and relatively blue, with an albedo ~0.20, but lacking in silicate spectral
features, o they are probably rich in metallic elements.

Live mostly in the center of the main belt.

Adificially-shorpened Aricebo rodar

moges of ot the
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(-GROUP ASTEROIDS: C-TYPES

ids are the largest | at

least 40% of all asteroids. They lie toward the
outer part of the main belt.

Dark, with albedo ~0.05; flat spectrum at red visible
wavelengths

Reflectance spectra generally similar fo carbonaceous
chondrite meteori

A few show addifional absorption at UV wavelengths
and are given by some the classification

@ C- (or G- type asteroid (HST/STSc/NASA

the lorgest and third brightest of fhe asteroid



The Carbonaceous / Non-Carbonaceous Divide

Putative parent body (p.b.) locations
and water content at the time of the
Earth’s growth
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Evidence from the Solar System
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How Did Water Get on Earth?

About 70 percent of our planet’s surface is covered with water, and it plays an important role in
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Water delivery to dry protoplanets by hit-and-run collisions
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Water delivery and giant impacts in the ‘Grand Tack’ scenario
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ABSTRACT

A new model for terrestrial planet formation (Hansen [2009]. Astrophys. ). 703, 1131-1140; Walsh, KJ.,
et al. [2011]. Natus 1.206-209) has explored accretion in a truncated protoplanetary disk, and
found that such a configuration s able to reproduce the distribution of mass among the planets in the
Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been
able to match. Walsh et al. (Walsh, KJ. et al. [2011]. Nature, 2011, 206-209) tested a possible mechanism
to truncate the disk—a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in
numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk
and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates
the asteroid belt with two distinct populations of bodies—the inner belt is filled by bodies originating
inside of 3 AU, and the outer belt s filled with bodies originating from between and beyond the giant
planets (which are herealter referred to as ‘primitive’ bodies)
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The Carbonaceous / Non-Carbonaceous Divide

The great isotopic dichotomy of the early
Solar System
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The isotopic composition of meteorites and terrestrial planets holds important clues about the earliest history of the Solar | & NCachondrites —?:’iiorcv ‘ NWA 2676 27
System and the processes of planet formation. Recent work has shown that meteorites exhibit a fundamental isotopic 31 O NC chondrites -o- * ]
non-carb (NC) and cart (CC) groups, which most likely represent material from the { m Earth, Moon, Mars CM R nwa 6704 = OC s EC e
inner and outer Solar System, respechvely Here we review the isotopic evidence for this NC-CC dichotomy, discuss its Foo2q 58" *8- o 0 "’Kngvi\es{sann Moon Y704
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inner (NC) and outer (CC) disk reservoirs, lasting between ~1 and -4 Myr after Solar System formation. This is most easily | Mesosiderites Aubrites E“’"‘ 2 CM('D_’G% RN
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reconciled with the early and rapid growth of Jupiter's core, of material from inside and | Acapulcoites OC 1 v Tafassasset
outside its orbit. The growth and migration of Jupiter also led to the later implantation of CC bodies into the inner Solar 14 \ '_i’,}_MafS 1 Ky v
System and, therefore, can explain the co-occurrence of NC and CC bodies in the asteroid belt, and the delivery of volatile { =% Pt -4 *—CO?“—
and water-rich CC bodies to the terrestrial planets. 24 SUrsiites Paliasites (MG) |
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Fig. 1| NC-CC meteorite dichotomy inferred from isotopic signatures of bulk meteorites. a-d, £°°Ti versus £°“Cr (a), A”O versus £Cr (b), €' Ru

versus £%*Mo (¢), £#*Ni versus £*Mo (d). Note that 1 e-unit represents the 0.01% deviation (and 1 8-unit the 0.1% deviation) in the isotopic ratio of a
sample relative to terrestrial rock standards. Mass-independent O isotope variations are expressed in A70 (A”0 =870 - 0.5258%0, where 0.52 is the
slope of mass-dependent mass fractionation). Note that A0 variations are not nucleosynthetic in origin, but probably reflect photochemical processes
in the molecular cloud or the solar nebula®. Errors bars denote external uncertainties (26) reported in respective studies. OC, ordinary chondrites;

EC, enstatite chondrites; RC, rumuruti chondrites; HED, howardites, eucrites, diogenites; MG, Main Group. The isotopic data plotted here are summarized
and tabulated in refs. .
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Fig. 2 | Molybdenum isotope dichotomy of meteorites. a, €°°Mo versus
£%“Mo data for bulk meteorites. NC (red) and CC (blue) meteorites
define two parallel s-process mixing lines with identical slopes, but
distinct intercept values®““. The offset between the two lines reflects
an approximately uniform r-process excess in the CC reservoir relative
to the NC reservoir. b, Zoomed-in version of a illustrating that the BSE
plots between the NC and CC lines. Plotted NC and CC lines are based
on regression results reported in ref. "*. Error bars denote external
uncertainties reported in respective studies (26). A summary of the Mo
isotopic data shown in the figure is also given in ref. “. Abbreviations as
given in main text and Fig. 1; group IAB non-magmatic iron meteorites
are denoted ‘IAB'. Figure reproduced with permission from ref. %,
Springer Nature Ltd.
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Linked to the formation of Jupiter?

& Earty infall (t= 0 Myn) Outward transport of CAls
and initial disk formation by outflow
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L g ,\,\
Enriched in nuclides from neutron-rich stellar environments
Depleted in nuclides from neutron-rich stellar environments
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Implantation of CC bodies
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Inward of snowline

Rocks only
(small)

The idea, roughly

“Frost line”

Hydrogen-helium
. gas nebula

Accreting rocky Accreting rock-ice
planetesimals planetesimals

Outward of snowline

Ice comes to aid!
Growing big
icy/rocky cores.

These two never did.
They are simply the
icy/rocky cores.




The Surprise

nature > articles > article

nature

Article \ Published: 23 November 1995

A Jupiter-mass companion to a solar-type
star

Michel Mayor & & Didier Queloz

Nature 378, 355-359(1995) | Cite this article
19k Accesses | 2365 Citations | 701 Altmetric | Metrics

The presence of a Jupiter-mass companion to the star 51 Pegasi is

inferred from observations of periodic variations in the star’s radial
velocity. The companion lies only about eight million kilometres from
the star, which would be well inside the orbit of Mercury in our Solar
System. This object might be a gas-giant planet that has migrated to

this location through orbital evolution, or from the radiative

FIRST EXOPLANET

stripping of a brown dwarf.
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Original detection
(Mayor & Queloz 1995)

The Surprise

Confirmation
(Marcy & Butler 1995)

A HOT Jupiter!

a=0.052 AU
P =4.23 days
M sin | = 0.468 M,



Planet Migration
was not new...

Ap), 241,425 (October |, 1980)

DISK-SATELLITE INTERACTIONS

PeTer GOLDREICH
California Institute of Technology

AND

Scort TREMAINE
Institute for Advanced Study, Princeton, New Jersey
Received 1980 January 7; accepted 1980 April 9

ABSTRACT

We calculate the rate at which angular momentum and energy are transferred between a disk
and a satellite which orbit the same central mass. A satellite which moves on a circular orbit exerts
a torque on the disk only in the immediate vicinity of its Lindblad resonances. The direction of

lar momentum transport is outward, from disk material inside the satellite’s orbit to the
satellite and from the satellite to disk material outside its orbit. A satellite with an eccentric orbit
exerts a torque on the disk at corotation resonances as well as at Lindblad resonances. The angular
momentum and energy transfer at Lindblad resonances tends to increase the satellite's orbit
eccentricity whereas the transfer at corotation resonances tends to decrease it. Ina Keplerian disk,
1o lowest order in eccentricity and in the absence of nonlinear effects, the corotation resonances
dominate by a slight margin and the eccentricity damps. However, if the monmt corotation
resonances saturate due to icle tra then the eccentricit

Subject headings: hydrodynamics — planets: Jupiter — planets: satellites —
solar system: general

discovered |5 years
earlier... by theorists!



Planetary Mass (Mjup)

The Exoplanet Landscape
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Kepler-16
(transit)

HR 8799
(imaged)

51 Peg
(radial velocity)

TRAPPIST-1
(transit)

Solar
System

0.01 AU

0.1AU

Different Architectures

. D o - - - -

Kepler multi-planet systems
(Fabricky+ 2014)
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