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Resonances

In resonances, the interaction with the planet is
amplified.

The gas only interacts with the planet at resonances
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Location of Lindblad resonances
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Lindblad Resonances
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Lindblad Resonances
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Asymmetry!
Outer Lindblad resonance is
closer to the planet than
inner Lindblad resonance
for same m.

Im(Q —0,) =+«

SR T
3 4 567. ...165 4 3
1 2/3
re=a(1£)

nN -

=



Migration Torques

Density Torque
020 020 10-?
187
Q1s 01s
1724
010 010 3
1571 10-!
005 1418 0os
000 1265 000 gapn
1112
Q.05 0.05
0959
—0.10 -0.10 10-»
0500
-0.15 -0.15
0653
Q20 020 10
080 0BS 0% 0os 100 108 110 115 120 0500 080 08s (R 09 100 105 110 115 120

Outer spiral is closer to the planet
Lindblad torque is negative

The migration it causes is inward



Total Torque

k InnerLindblad Resonance 2 =0, +Kk/m
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—k Outer Lindblad Resonance 02 =12, -k/m

Sum the torques from all resonances
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Corotational Torque
(Horseshoe Drag)

Gas in corotation
librates around the planet

in “horseshoe orbits”
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Horseshoe Drag

In the leading (A) U-turn, the gas loses angular momentum,
so its torque on the planet is positive

Y [AV]

In the trailing (B) U-turn, the gas gains angular momentum,
So its torque on the planet is negative
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The excitation of density waves at the Lindblad and corotation
resonances by an external potential.

Show affiliations

Goldreich, P; Tremaine, S.

The linear response of a differentially rotating two-dimensional gas disk, both with and without self-
gravity, to a rigidly rotating external potential is calculated on the assumptions that the speed of
sound is much smaller that the orbital velocity and that the external potential varies on the scale of
the disk radius. The results show that: (1) the external potential exerts torques on the disk only at the
Lindblad and corotation resonances; (2) the torque is positive at the outer Lindblad resonance and
negative at the inner Lindblad resonance; (3) the torque at corotation has the sign of the radial
vorticity gradient; and (4) the torques are of the same order of magnitude at both types of resonance
and independent of the speed of sound in the disk. It is found that the external potential also excites
density waves in the vicinity of the Lindblad and corotation resonances, that the long trailing wave is
excited at a Lindblad resonance, and that short trailing waves are excited at the corotation
resonance. The behavior of particle disks is briefly discussed, and the external torques on particle
disks are proven to be identical to those on gas disks
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HORSESHOE ORBIT DRAG. Wm. R. Ward, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA 91109.

A ring of particles occupying a horseshoe orbit region interacts
gravitationally with and, in general, exerts a net cumulative torque on a
perturbing body. Quinn and Goodman (1) have provided an estimate of this
torque in connection with their discussion of sinking satellite galaxies.
Their torque expression is proportional to the local gradient of the disk’s
surface density, do/dr. However, the disturbing potential in the horseshoe
region of a perturber in a circular orbit is dominated by a series of
overlapping corotation resonances (2) and torques associated with such
resonances are known to be proportional to the gradient, d(¢/B)/dr; where B
= (2r)'1d(r20)/dr is the Oort constant measuring disk vorticity (2,3). Here
we show that this is indeed the case for the horseshoe ring torque as well,
clarifying its connection with corotation resonances. In cases where the
density gradient is mild, this additional dependence may reverse the
expected sign of the torque. Such situations are common in astrophysical
applications.

Consider a perturber, M_, in a circular orbit, r_, of mean motion, Q_,
that is approached from the’ rear by an interior particle (m << M ) in a
circular orbit of radius r, < r  and mean motion @, > Q , [assuming the Oort
constant A = (r/2)dQ/dr < 0]. “The particle experiences a torque during its
approach that increases its angular momentum. This, in turn, promotes the
particle to a higher orbit. If the initial differential semi-major axis is
small enough, i.e., |r -r | s W= |GM /2AB|*/?, the orbit radius will drift
above r, before encounter (1). The relative mean motion (- reverses sign
and the particle falls behind the perturber on an outer orbit r. > r_,
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Tanaka (Isothermal) Torque

Sum the torques from all resonances
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Still negative...



Non-isothermal

If horseshow turn is fast compared to heat transfer, the dynamics is adiabatic

Entropy is conserved!
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Image: D‘Angelo, Henning & Kley (2002)
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Orbital Migration of Low-mass Planets in Evolutionary
Radiative Models: Avoiding Catastrophic Infall
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Lyra, Wladimir; Paardekooper, Sijme-Jan; Mac Low, Mordecai-Mark

Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic
disks. We examine the consequences of this result in evolutionary models of protoplanetary disks.
Planet migration occurs toward equilibrium radii with zero torque. These radii themselves migrate
inwards because of viscous accretion and photoevaporation. We show that as the surface density
and temperature fall the planet orbital migration and disk depletion timescales eventually become
comparable, with the precise timing depending on the mass of the planet. When this occurs, the
planet decouples from the equilibrium radius. At this time, however, the gas surface density is already
too low to drive substantial further migration. A higher mass planet, of 10 M &, can open a gap during
the late evolution of the disk, and stops migrating. Low-mass planets, with 1 or 0.1 M 4, released
beyond 1 AU in our models avoid migrating into the star. Our results provide support for the reduced
migration rates adopted in recent planet population synthesis models.
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Source: Lyra, Paardekooper, & Mac Low (2010)
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Migration in Evolutionary Models

Disks evolve in time, due to
photoevaporative winds and viscous evolution
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Single planets in a planetary trap
evolve in lockstep with the gas at the
accretion timescale.

At some point, the disk becomes too thin
to drive accretion. The planet decouples
and is released in a safe orbit.

Rule of thumb: Migration is

outwards in
steep temperature gradients,

inwards in
isothermal regions.
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Source: Lyra, Paardekooper, & Mac Low (2010)



Single planets in a planetary trap
evolve in lockstep with the gas at the
accretion timescale.

At some point, the disk becomes too thin
to drive accretion.

The planet decouples and is released in a
safe orbit.
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SemiMajor Axis (AU)
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