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Effects of scattering, temperature gradients, and settling on the derived dust properties
of observed protoplanetary disks

Anibal Sierra, Susana Lizano

(Submitted on 6 Mar 2020)

The orbital period ratios of neighbouring sub-Neptunes are distributed asymmetrically near first-order resonances. There are deficits of systems---
"troughs" in the period ratio histogram---just short of commensurability, and excesses---"peaks"---just wide of it. We reproduce quantitatively the
strongest peak-trough asymmetries, near the 3:2 and 2:1 resonances, using dissipative interactions between planets and their natal disks. Disk
eccentricity damping captures bodies into resonance and clears the trough, and when combined with disk-driven convergent migration, draws planets
initially wide of commensurability into the peak. The migration implied by the magnitude of the peak is modest; reductions in orbital period are ~10\%,
supporting the view that sub-Neptunes complete their formation more-or-less in situ. Once captured into resonance, sub-Neptunes of typical mass ~5--
15Mg stay captured (contrary to an earlier claim), as they are immune to the overstability that afflicts lower mass planets. Driving the limited, short-scale
migration is a gas disk whose surface density is fairly constant inside 1 AU and depleted relative to a solar-composition disk by 3--5 orders of magnitude.
Such gas-poor but not gas-empty environments are quantitatively consistent with sub-Neptune core formation by giant impacts (and not, e.g., pebble
accretion). While disk-planet interactions at the close of the planet formation era adequately explain the 3:2 and 2:1 asymmetries at periods > 5--15
days, subsequent modification by stellar tides appears necessary at shorter periods, particularly for the 2:1.
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It is known that the millimeter dust thermal emission of protoplanetary disks is affected by scattering, such that for optically thick disks the emission
decreases with respect to the pure absorption case and the spectral indices can reach values below 2. The latter can also be obtained with temperature
gradients. Using simple analytical models of radiative transfer in thin slabs, we quantify the effect of scattering, vertical temperature gradients, and dust
settling on the emission and spectral indices of geometrically thin face-on accretion disks around young stars. We find that in vertically isothermal disks
with large albedo (@, > 0.6), the emergent intensity can increase at optical depths between 1072 and 10~ . We show that dust settling has important
effects on the spectral indices in the optically thick regime, since the disk emission mainly traces small dust grains in the upper layers of the disk. The

A = 870 um emission of these small grains can hide large grains at the disk mid plane when the dust surface density is larger than ~ 3.21 g cm™2.
Finally, because of the change of the shape of the spectral energy distribution, optically thick disks at 1.3 mm and grains with sizes between 300 um

< @max < 1 mm have a 7 mm flux ~ 60\% higher than the extrapolation from higher millimeter frequencies, assumed when scattering is neglected. This
effect could provide an explanation to the excess emission at A = 7 mm reported in several disks.
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Global 3-D Radiation Magnetohydrodynamic Simulations for FU Ori's Accretion Disk and
Observational Signatures of Magnetic Fields

Zhaohuan Zhu, Yan-Fei Jiang, James M. Stone

Protostars and young stars are strongly spatially "clustered” or “correlated” within their natal giant molecular clouds (GMCs). We demonstrate that such
clustering leads to the conclusion that the incident bolometric radiative flux upon a random young star/disc is enhanced (relative to volume-averaged
fluxes) by a factor which increases with the total stellar mass of the complex. Because the Galactic cloud mass function is top-heavy, the typical star in our
Galaxy experienced a much stronger radiative environment than those forming in well-observed nearby (but relatively small) clouds, exceeding fluxes in
the Orion Nebular Cluster by factors of >30. Heating of the circumstellar disc around a median young star is dominated by this external radiation beyond
~ 50 AU. And if discs are not well-shielded by ambient dust, external UV irradiation can dominate over the host star down to sub-AU scales. Another
consequence of stellar clustering is an extremely broad Galaxy-wide distribution of incident flux (spanning > 10 decades), with half the Galactic star
formation in a substantial “tail" towards even more intense background radiation. We also show that the strength of external irradiation is amplified
super-linearly in high-density environments such as the Galactic centre, starbursts, or high-redshift galaxies.
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Peas in a Pod? Radius correlations in Kepler multi-planet systems

Lena Murchikova, Scott Tremaine
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We address the claim of Weiss et al. (2018) that the radii of adjacent planets in Kepler multi-planet systems are correlated. We explore two simple toy.
models~-in the first the radii of the planets are chosen at random from a single universal distribution, and in the second we postulate several types of
system with distinct radius distributions. We show that an apparent correlation between the radii of adjacent planets similar to the one reported by Weiss
etal. (2018) can arise in both models. In addition the second model fits all other aspects of the radius distribution, including the signal-to-noise
distribution of the observed planets. We also comment on the validity of a commonly used correction that is used to estimate intrinsic planet occurrence
rates, based on weighting planets by the inverse of their detectabiliy.
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FU Ori is the prototype of FU Orionis systems which are outbursting protoplanetary disks. Magnetic fields in FU Ori's accretion disks have previously been
detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori's inner accretion
disk. We find that (1) when the disk is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z~R,
similar to the "surface accretion” mechanism in previous locally-isothermal MHD simulations. (2) A moderate disk wind is launched in the vertical field
simulations with a terminal speed of ~300-500 km/s and a mass loss rate of 1-10\% the disk accretion rate, which is consistent with observations. Disk
wind fails to be launched in simulations with net toroidal magnetic fields. (3) The disk photosphere at the unit optical depth can be either in the wind
launching region or the accreting surface region. Magnetic fields have drastically different directions and magnitudes between these two regions. Our
fiducial model agrees with previous optical Zeeman observations regarding both the field directions and magnitudes. On the other hand, simulations
indicate that future Zeeman observations at near-IR wavelengths or towards other FU Orionis systems may reveal very different magnetic field structures.
(4) Due to energy loss by the disk wind, the disk photosphere temperature is lower than that predicted by the thin disk theory, and the previously inferred
disk accretion rate may be lower than the real accretion rate by a factor of ~2-3.
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Recent ALMA observations revealed concentric annular structures in several young class-1l objects. In an attempt to produce the rings and gaps in some of Tiny meteoroids entering the Earth's atmosphere and inducing meteor showers have long been thought to originate partly from cometary dust. Together

these systems, they have been modeled numerically with a single embedded planet assuming a locally isothermal equation of state. This is often justified
by observations targeting the irradiation-dominated outer regions of disks (approximately 100 au). We test this assumption by conducting hydrodynamics
simulations of embedded planet; locally isothermal and radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the
effect of including the energy equation in a seemingly locally isothermal environment as far as planet-disk interaction is concerned. We find that modeling
such disks with an ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally
isothermal disks produce sharper annular or azimuthal features and overestimate a single planet's gap-opening capabilities by producing multiple gaps.
In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate modeling of planets with semimajor axes
up to about 100 au, radiative effects should be taken into account even in seemingly locally isothermal disks. In addition, for the case of AS 209, we find
that the primary gap is significantly different between locally isothermal and radiative models. Our results suggest that multiple planets are required to
explain the ring-rich structures in such systems.

with other dust partices, they form a huge cloud around the Sun, the zodiacal cloud. From our previous studies of the zodiacal light, as well as other
independent methods (dynamical studies, infrared observations, data related to Earth's environment), it is now established that a significant fraction of
dust particles entering the Earth's atmosphere comes from Jupiter-family comets UFCs). This paper relies on our understanding of key propertis of the
zodiacal cloud and of comet 67P/Churyumov-Gerasimenko, extensively studied by the Rosetta mission to a JFC. The interpretation, through numerical and
experimental simulations of zodiacal light local polarimetric phase curves, has recently allowed us to establish that interplanetary dust is rich in absorbing
organics and consists of fluffy particles. The ground-truth provided by Rosetta presently establishes that the cometary dust particles are rich in organic
compounds and consist of quite fluffy and irregular aggregates. Our aims are as follows: (1) to make links, back in time, between peculiar
micrometeorites, tiny meteoroids, interplanetary dust particles, cometary dust particles, and the early evolution of the Solar System, and (2) to show how
detailed studies of such meteoroids and of cometary dust particles can improve the interpretation of observations of dust in protoplanetary and debris
disks. Future modeling of dust n such disks should favor irregular porous particles instead of more conventional compact spherical particles.



Balbus & Hawley (1991) — Magnetorotational Instability as source of turbulence
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model, including the effects of compressibility and stratification. Supersonic flows are initially
generated by the Balbus-Hawley magnetic shear instability. The resulting flows regenerate a turbulent
Graphics magnetic field which, in turn, reinforces the turbulence. Thus, the system acts like a dynamo that

Volume Content

generates its own turbulence. However, unlike usual dynamos, the magnetic energy exceeds the

Metrics kinetic energy of the turbulence by a factor of 3-10. By assuming the field to be vertical on the outer

Export Citation (upper and lower) surfaces we do not constrain the horizontal magnetic flux. Indeed, a large-scale
toroidal magnetic field is generated, mostly in the form of toroidal flux tubes with lengths comparable
to the toroidal extent of the box. This large-scale field is mainly of even (i.e., quadrupolar) parity with

respect to the midplane and changes direction on a timescale of 30 orbits, in a possibly cyclic
manner. The effective Shakura-Sunyaev alpha viscosity parameter is between 0.001 and 0.005, and
the contribution from the Maxwell stress is"3-7 times larger than the contribution from the Reynolds
stress.
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Dead zones and “Layered” accretion
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LAYERED ACCRETION IN T TAURI DISKS

CHARLES F. GAMMIE
Center for Astrophysics, MS-51, 60 Garden Street, Cambridge, MA 02138
Received 1995 May 8 accepted 1995 July 28

ABSTRACT

We put forward a model for accretion disks around T Tauri stars. The model assumes that angular momen-
tum transport is driven by magnetic fields and can occur only in those parts of the disk that are sufficiently
ionized that the gas can couple to the magnetic field. These regions liec at R < 0.1 AU, where collisional ion-
ization is effective, and at R 2 0.1 AU in a layer of thickness ~ 100 g cm~? at the surface of the disk where
cosmic-ray ionization is effective.

The model predicts that the stellar accretion rate is about 10°®* M yr™!, independent of the rate of infall
onto the disk. Matter that is not accreted onto the star accumulates in the inner few AU of the disk at a rate
of about 1073 M in 10* lr. Given this buildup it is unlikely that accretion is steady. The effective tem-
perature profile is T, ~ r~ '/ outside of 0.1 AU, which differs from the canonical T, ~ r~*%, We calculate the
expected spectral energy distribution for the disk and show that this temperature profile produces an infrared
excess. Finally, we discuss some of the leading uncertainties in the theory.

Subject headings: accretion, accretion disks — stars: magnetic fields — stars: pre-main-sequence

Layered Accretion in a T Tauri Disk
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