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For the complex series
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The square of the amplitude is the sum
of the square of the amplitudes .

How does that play at ?

For a light wave , following

Maxwell
equations
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The energy in  an  electric field is E ? so
, if  we expand a light
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Parsed theorem stats that
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i.  e . the energy of thesignal is the sum of the energy of the
individual components .

Odd / even transforms
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For even functions
,

keep the co - sine
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Then we defined the fourier pair
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The three are used is the literate .

Application to Poisson equation to the gravitational potential
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Extra credit homework
, compute the we rectors ?
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defines the direction of propagation
See : cosine .
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Both the electric and magnetic fields are perpendicular to the direction of
motion : the wave is transverse

.

what do de get from Faraday and Ampere
laws ?
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The amplitudes are in phase
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↳ Recall that  E and Dave complex.

Dispersion : w2=c2K2 If the relationship  was Et i. Bi
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the fields  would be out of phase .



Parsed theorem for Fourier integrals

÷4 ;ffji ,
He :# dx

Multiply by g ,( k ) end integratein K

¥%1k)gzlkldk It ,f![ faoofilxlei "d×] g.
( k ) dk

¥ Loft'
a ' dx [ Bg .me#diftafIIHfIxtdx

[ of5. Kg,Ndu= t.EE#,Hdx
set fi=fz=f and S ,=Sz=g

[ lglultdk = ¥, f.gl flhtdx



Parsevothon
Think of  a vector V

. As  seen  in  aoordinde systems with

basis  vector es .  it an be written
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Proceeding with the analogy
,

for a function flu ) one can here a positron
space representation in f- function basis as
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are the
" basis  vectors
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and glkl are the components effhe) .

along these basis vectors
. You  would then agree that
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, Parevd theorem  is just the restatement of the invariance of the

length ef  a vector
, independent ofthe representation used .

In our case it means that the energy in  red space is egnel to the  energy
in Fourier  space .

Image processing example

Convolution theoremtineenja@Next  dam .


