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Popertiesofseriese
Geometric progression .

Consider the series
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The value of 5 we found is the sum of the series .

Convergent series : has finite sum

Divergent series has infinite sum

Up to the nth
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and repeating the same trick
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:an see from this that if r >i the series diverges . If
rd the series converges .

The series son S is the limit

of Sn as n goes
to  infinity
smosn = orr

It  is inpntntto knowif a series diverges

Weird things can happen ifyou apply ordinary
algebra to divergent series
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this is the series expansion of µ+lpz fixit
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That  is
,

we conclude that the Sum  of  all infinite
natural numbers §°

,

n = -

÷z .

which is  nonsense
.

Another example , from sow book

5=1+2+4+8 +16

ZS  =  2+4 +8+16+32

:
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These spuriously nonsensical values appear simply
because , doing algebra on divergent series

,
we aresubtractinginfinities from  one another

,
which is an  indeterminateoperation .

Statements about corn

r÷=my
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Sn÷'S: where S is finite .

Then the his

is Convergent .

S is the sum of the Series
.

The difference Rw= S.sn is called the remainder
.
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Convergence tests :

.

simple tests :

If nhjnaanto
,

then the series diverges

Notice that the opposite is not true .
some series that hee

aµ→o diverge .

comparison test : Let
.
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then
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If  oh 'tdztdz +
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Compare with geometric series :
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The

geometric

series converges .
It :S
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Yu diverges

Harmonics
Theharmonicseries , given by

Ig t.tt tztttft .
.
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is divergent.

A proof by Him - by - term comparison is shown below
.

.
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6h Sider the harmonic series
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si it ttH¥t¥¥¥t.tt#tntttatntTttHetHtfI .

The terms in parentheses sum to 42
,

so

Sz = ltltltlt { +
: :

Which obviously diverges .

We then notice that each and every
term of St is greater or end than the corresponding term in Sz

sent's test.net#fttttoittti*ei+HtHt
.
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So, if 52 diverges
,

S
,

has to diverge as well
,

Integrate
cheek figures 6.1 and 6.2 of the book

.

The sum
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can be turned into an integral and evaluated :
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first terms In not matter for convergence :

A Amusing tries / an ,
{ an ) will diverge if integral

is infinite and wnmye if  integral is finite .

The ratio
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Test : If  an  allnhetiy is absolutely convergent, then it
is

convergent . That  is
,

if

Itau omeyn ,
then EE Hihu converges .



hti  an althnehy series
may

be
convergent even though

it  isnot absolutely convergent .
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Leibniz test shows that one only needs to test if an

goes
to zero  monotonically , that is
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Since am converges to zero ,
the slips conveys

Example : damped osulc
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Conveys only in the interval .
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Test the

end points
.
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the ratio test shows divergence .
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