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Discretization of Equations

• The first step in solving any computational fluid dynamics problem is to discretize the equations

• Usually all fluid dynamics equations are in a partial differential equation format

• These differential equations must be transformed into algebraic form, so that they can become solvable

• The most straightforward discretization technique for partial differential equations is the finite difference method

𝜕𝑓
𝜕𝑥 = lim

!"→$

𝑓 𝑥 + Δ𝑥 − 𝑓(𝑥)
Δ𝑥



Finite differences

Finite volumes

robust, simple concept, easy to parallelize, regular grids, explicit method

Finite elements
implicit approach, matrix inversion, well founded,
irregular grids, more complex algorithms, engineering problems

robust, simple concept, irregular grids, explicit  method

Numerical methods: properties



What is a finite difference?

Common definitions of the derivative of f(x):
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These are all correct definitions in the limit dx --> 0.

But we want dx to remain FINITE



The equivalent approximations of the derivatives are:
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forward difference

backward difference

centered difference

What is a finite difference?



The BIG question

How good are the finite difference approximations?
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This leads us to Taylor series....



Taylor Series
Taylor series are  expansions of a function f(x) for some 
finite distance dx to f(x+dx)

What happens, if we use this expression for
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... that leads to :

The error of the first derivative using the forward 
formulation is of order dx. 

Is this the case for other formulations of the derivative?
Let’s check!

Taylor Series
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... with the centered formulation we get:

The error of the first derivative using the centered 
approximation is of order dx2. 

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!

Taylor Series
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f x( )x

f(x)
Higher-order accuracy

What is the (approximate) value of the first 
derivative at the desired location?
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Finite Difference Coefficients
How can we calculate the weights for the neighboring points?

f x( )x

f(x)

Δx

xi xi+1 xi+2 xi+3xi-1xi-2xi-3

s = (-3,-2,-1,0,1,2,3) stencil positions
N = size of stencil
d = order of the derivative 
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Finite Difference Coefficients
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• Higher order derivative = smaller truncation error

• Higher orders naturally require a larger stencil (more ghost 
zones)

• Higher order derivatives approach machine precision faster.

• Alternative to spectral schemes

Higher-order accuracy



High-order finite-difference vs Spectral

• Calculate keff that is returned by the numerical derivative
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Or, to avoid dividing by zero

• Define a vector A = (0, sin kx, cos kx).
• Note that B = ∇×A = kA.
• Evaluate numerically A.B
• Since |A|=1 we find immediately the effective
     wavenumber as keff = <A.B>.

Similarly for the second derivative 

• k2eff = <A.J>.

where J = -∇2A,
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Advection test – Alfvén wave



Gibbs Phenomena



Hyperdiffusion



Hyperdiffusion



Hyperdiffusion

(n=3)(n=1)

Laplacian dissipation Hyper dissipation

∝ 𝒌𝟐 ∝ 𝒌𝟐𝒏

Hyper-dissipation allows low Reynolds number at the grid scale
while maintaining high Reynolds number at the inertial range.



Perils of hyperviscosity: bottleneck effect



Shock Viscosity



Shock Viscosity



Shock Viscosity



Shock Viscosity
Shock viscosity smooths the discontinuity 

so that the stencil can resolve it.

Shock viscosity takes the form of a bulk viscosity
(only relevant in regions of strong convergence)

Viscous force

Viscous heating



• Higher order derivative = smaller truncation error

• Higher orders naturally require a larger stencil (more ghost 
zones)

• Higher order derivatives approach machine precision faster.

• Alternative to spectral schemes

• Non-conservative methods become feasible because of 
the high accuracy.

Higher-order accuracy



Non-conservative method

• Conservation is not enforced, the method relies on accuracy of 
numerical derivative (but monitor the numerical solution).

• Possible to solve for 
• ln ρ (density never goes negative)
• vector potential A (B = ∇×A, automatically gives ∇ . B= 0)
• Entropy (pdV work eliminated from equations)
• Any quantity really (Pencil is essentially a general PDE solver)



Finite Differences - Summary

Ø Conceptually the simplest of the numerical methods and can be learned quite quickly

Ø Depending on the physical problem FD methods are conditionally  stable (relation 
between time and space increment)

Ø High-order FD methods have difficulties concerning damping at the grid scale

Ø FD methods are usually explicit and therefore very easy to implement and efficient on 
parallel computers

Ø FD methods work best on regular, rectangular grids



The Pencil Code



History

• Started in Sept 2001 by Axel Brandenburg and Wolfgang Dobler
• Finite difference high order (default 6th in space, 3rd in time)
• Fully compressible code written in Fortran 90/2003
• Cache & memory efficient
• MPI parallelized
• Maintained/developed by ~50 people (Github) # of users > 200
• Live repository on GitHub
• Automatic daily validation of ~80 samples 



Capabilities

• Advanced particle module
• Advanced MHD module

• Selfgravity (FFT)
• Radiation (long characteristics)
• Cartesian, Cylindrical, Spherical geometries
• N-body
• Chemistry, combustion
• Embarrassingly parallel



• Hands-off
1. Code coverage is done in nightly auto-tests, 
2. which are also the only gatekeeping 

• Research-driven – “Forever beta”

• Minimum interconnectivity
1. Pencil is an engine and a toolbox
2. The engine is clean and streamlined
3. The toolbox is like a patchwork quilt (“it’s like walking into 

someone’s attic”)

• Only one version – Minimal duplication

Pencil Code Philosophy 



• Interstellar medium 
 – Galaxy clusters, Early Universe 

• Planet formation 
 –Inertial particles, planet-disk interaction  

• Accretion disks 
 – Shear flows
  – Dynamical instabilities, 

• Solar Physics 
 – Coronal heating, dynamos, spot formation 
 – Convection, global convective dynamos 

• Miscellanea 
– Test-field method, Hydro turb, turb combustion, covid pandemics evolution.

Versatility



Scaling

Kraken 2011



Scaling



• In CRAY days: worked with full chunks f(nx,ny,nz,nvar) 
 – On modern CPUs, nearly 100% cache misses 

• Instead work with f(nx,nvar), i.e. one nx-pencil 

• No cache misses, negligible work space, just 2N 
 – Can keep all components of derivative tensors 

• Communication before sub-timestep 

• Then evaluate all derivatives, e.g. call curl(f,iA,B) 
 – Vector potential A=f(:,:,:,iAx:iAz), B=B(nx,3)

Pencil formulation 



Parallelization





Block domain decomposition

Solid particles

Blocks


