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Discretization of Equations

The first step in solving any computational fluid dynamics problem is to discretize the equations
Usually all fluid dynamics equations are in a partial differential equation format
These differential equations must be transformed into algebraic form, so that they can become solvable

The most straightforward discretization technique for partial differential equations is the finite difference method
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Numerical methods: properties

Finite differences

Finite elements

Finite volumes
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robust, simple concept, easy to parallelize, regular grids, explicit method

implicit approach, matrix inversion, well founded,
irregular grids, more complex algorithms, engineering problems

robust, simple concept, irregular grids, explicit method




What is a finite difference?

Common definitions of the derivative of f(x):

axf: lim f(x+dx)—f(x)

dx—0 dx
o f 22210 f(X)_Z;x(x_dX)

5 f = 1lim f(x+dx)— f(x—dx)

dx—0 2dx

These are all correct definitions in the limit dx --> 0.

But we want dx to remain FINITE



What is a finite difference?

The equivalent approximations of the derivatives are:
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The BIG question

How good are the finite difference approximations?

A —

This leads us to Taylor series....



Taylor Series

Taylor series are expansions of a function f(x) for some
finite distance dx to f(x+dx)

f(x*dx) :f(x)idxf'(x)+dzi'f"(x)i%fm(x)+%fm(x)i...

What happens, if we use this expression for

f(r+do) = f(x) .

O '~
o dx



Taylor Series

... that leads to :

J(x+dx)—f(x) 1 . dx’ . x> .
r = {dxf (x)+7!f (x)+?f (x)+..1

— £'(x)+O(dx)

The error of the first derivative using the forward
formulation is of order dx.

Is this the case for other formulations of the derivative?
Let’s check!



Taylor Series

... with the centered formulation we get:

J(x+dx/2)— f(x—dx/2) 1 x> .

dx dx R)

{dxf'(x)+— f (x)+..1
= f (x)+O0(dx")

The error of the first derivative using the centered
approximation is of order dx?.

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!



Higher-order accuracy

f(x)
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Finite Difference Coefficients

f(x) How can we calculate the weights for the neighboring points?

- £(x)
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s =(-3,-2,-1,0,1,2,3) stencil positions
N = size of stencil
d = order of the derivative
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From Wikipedia, the free encyclopedia

In mathematics, to approximate a derivative to an arbitrary order of accuracy, it is possible to use the finite difference. A finite difference can be central,
forward or backward.

Central finite difference [edit]

This table contains the coefficients of the central differences, for several orders of accuracy and with uniform grid spacing:[]

N-—1 Derivative Accuracy =5 -4 -3 -2 -1 0 1 2 3 4 5
2 -1/2 0 1/2
N — Al
$;,Ci = d! 6('"' d) for 0<n< N 1 4 M2 -23 0 23 | -112
1
1=0 6 -1/60 | 3/20 -3/4 0 3/4 -3/20 | 1/60
8 1/280 | -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280
2 1 -2 1
s=(-3,-2,-1,0,1,2,3) stencil positions \ 4 -the a3 52 4 N2
_ . . 6 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90
N = size of stencil
8 -1/560 @ 8/315 -1/5 8/5 -205/72 8/5 -1/5 8/315 | -1/560
d = order of the derivative > S 0 T Y
3 4 1/8 -1 13/8 0 -13/8 1 -1/8
6 -7/240 | 3/10 | -169/120 61/30 0 -61/30 | 169/120 -3/10 | 7/240
2 1 -4 6 -4 1
4 4 -1/6 2 -13/2 28/3 -13/2 2 -1/6
6 7/240 -2/5 169/60 | -122/15 91/8 -122/15  169/60 @ -2/5 | 7/240
2 -1/2 2 -5/2 0 5/2 -2 1/2
5 4 1/6 -3/2 13/3 -29/6 0 29/6 -13/3 3/2 -1/6
6 -13/288 19/36 | -87/32 13/2 -323/48 0 323/48 -13/2 | 87/32  -19/36  13/288
2 1 -6 15 -20 15 -6 1
6 4 -1/4 3 -13 29 -75/2 29 -13 3 -1/4
6 13/240 | -19/24 | 87/16 -39/2 323/8 | -1023/20 | 323/8 -39/2 | 87/16 -19/24 13/240



Finite Difference Coefficients

These coefficients come from Taylor expansion. Suppose that we want to compute df/dx to 2nd order. Using a 3-point stencil, we have

4 — L1Af(x — h)+ Bf(2) + Cf(a + h)

where h = Az. According to the table above, we expect to find A = —1/2, B=0andC = 1/2. Let us prove this.

If we Taylor expand around z,

2

Af(z — ) = Af(z) + Af (@)(~h) + Af"(2)
Bf(z) = Bf(a)
h2

Cf(z+h) = Cf(z) + Cf'(z)(h) + Cf"(2) -

Summing them all

Z—i = f(x)(A+B+C)+ f'(z)(A— C)h + f"(ar:)%2(A +C)

Since only the first derivative should survive in the RHS, this leads to the conditions

A+B+C=0
A-C=1
A+C=0

Leadingto A = —1/2, C =1/2, B = 0, as expected.
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Higher-order accuracy

» Higher order derivative = smaller truncation error

* Higher orders naturally require a larger stencil (more ghost

zones)

« Higher order derivatives approach machine precision faster.
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« Alternative to spectral schemes




High-order finite-difference vs Spectral

Calculate k¢ that is returned by the numerical derivative

1 d(coskx)

Ketr = —

Or, to avoid dividing by zero

Similarly for the second derivative

Define a vector 4 = (0, sin kx, cos kx).

Note that B = Vx4 = kA.
Evaluate numerically A.B

Since |A|=1 we find immediately the effective
wavenumber as k. = <A.B>.

kzeff =<A.J>.

where J = -V24,
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High-order finite-difference vs Spectral

* Calculate k. and k. returned by the numerical derivatives

1 d(coskx)

Kegr = — sinkx  dx

Or, to avoid dividing by zero

e Define a vector A = (0, sin kx, cos kx).
* Note that B =VxA4 = kA.

* Evaluate numerically A.B

» Since |4|=1 we find immediately the effective
wavenumber as k. = <A.B>.

Similarly for the second derivative

° kzeff =<A.J>.

where J = -V24,
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Advection test — Alfvén wave

0.0002 | 0.0002 |

0.0001 | 0.0001 |
0.0000 ¢ 0.0000

~0.0001 | 1-0.0001 }

~0.0002 1-0.0002 |




Gibbs Phenomena

A common criticism of high order schemes is their tendency to produce Gibbs phenomena (ripples)
near discontinuities. Consequently one needs a small amount of diffusion to damp out the modes near
the Nyquist frequency. Thus, one needs to replace eq. (50) by the equation

f=—uf +vf". (56)

The question is now how much diffusion is necessary, and how this depends on the spatial order of the
scheme.

In figure 2 we plot the result of advecting the periodic step-like function, f(kz), over 5 wavelengths,
corresponding to a time 7' = L/u. The goal is to find the minimum diffusion coefficient v necessary to
avoid wiggles in the solution. In the first two panels one sees that for a 6th order scheme the diffusion
coefficient has to be approximately v = 0.01 uéz. For v = 0.005 udz there are still wiggles. For a 10th
order scheme one can still use v = 0.005 uéx without producing wiggles, while for a spectral scheme of
nearly infinite order one can go down to v = 0.002 udz without any problems.

We may thus conclude that all these schemes need some diffusion, but that the diffusion coefficient
can be much reduced when the spatial order of the scheme is high. In that sense it is therefore not true
that high order schemes are particularly vulnerable to Gibbs phenomena, but rather the contrary!

6th order, v=0.01udx 6th order, v=0.005udx
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Figure 2: Resulting profile after advecting a step-like function 5 times through the periodic mesh. The
dots on the solid line give the location of the function values at the computed meshpoints and the dotted
line gives the original profile. For the panels on the right hand side the diffusion coefficient is too small
and the profile shows noticeable wiggles. dz = 1/60.
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f(x)

Hyperdiffusion

Advection of Hat Function -- Ny = 1024 -- 1 crossing
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Hyperdiffusion . G

Hyper-dissipation allows low Reynolds number at the grid scale
while maintaining high Reynolds number at the inertial range. ° ¢
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Perils of hyperviscosity: bottleneck effect
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f(x)

Advection of Hat Function -- Ny = 1024 -- 10 crossings

Shock Viscosity
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Shock Viscosity




Shock Viscosity




Shock Viscosity

Shock viscosity smooths the discontinuity
so that the stencil can resolve it.

Cshock = Cshock <m5ax[(—V : U)+]> (mln(éa:, 53/’ 62))27

o

Shock viscosity takes the form of a bulk viscosity
(only relevant in regions of strong convergence)

Tij = 2pVSi; + Plshockds; V - U.

Viscous force pF e =V <V2u + %VV -4 +2S-Vin p) + Gohoek [VV - u+ (VInp+ Vin (pow) V - 1.

Viscous heating P Tyise = 205 + Conoa(V - ).



Higher-order accuracy

» Higher order derivative = smaller truncation error

* Higher orders naturally require a larger stencil (more ghost

zones)

« Higher order derivatives approach machine precision faster.
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« Alternative to spectral schemes

« Non-conservative methods become feasible because of

the high accuracy.
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Non-conservative method

Conservation is not enforced, the method relies on accuracy of
numerical derivative (but monitor the numerical solution).

Possible to solve for
* In p (density never goes negative)
e vector potential A (B = VXA, automatically gives V- B=0)
e Entropy (pdV work eliminated from equations)
* Any quantity really (Pencil is essentially a general PDE solver)

DInp
Dt VY
Du 9 s jx B
—~. - _ 1 - (I)rav
D cSV(Cp+ np) Vo + ;
1

—I—V(V2u+§VV~u+25-Vlnp)+C(VV-u);
D
pTD—j=’H—C—|—V-(KVT)+77Moj2+2p1/S®S+Cp(V-u)2
0A :
EZUXB_UMOJ

D/Dt = 0/ot +u - V



Finite Differences - Summary

Conceptually the simplest of the numerical methods and can be learned quite quickly

Depending on the physical problem FD methods are conditionally stable (relation
between time and space increment)

High-order FD methods have difficulties concerning damping at the grid scale

FD methods are usually explicit and therefore very easy to implement and efficient on
parallel computers

FD methods work best on regular, rectangular grids



The Pencil Code

$=95.58 T,

& > C @ github.com/pencil-code

= 0 pencil-code Q Type (/) to search

() Overview [ Repositories 4 [ Projects @ Packages A Teams 2 A People 108 {2 Settings

Pencil Code

Pinned Customize pins

B pencil-code | Public

A high-order finite-difference code for compressible hydrodynamic
flows with magnetic fields and particles

@Fortran  Y¥168 % 96

] Repositories

Q Find a repository... Type ~ Language ~ Sort ~ m

pencil-code | Public
A high-order finite-difference code for compressible hydrodynamic flows with magnetic fields and particles w—W\N\/\«/\/\_
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History

 Started in Sept 2001 by Axel Brandenburg and Wolfgang Dobler
« Finite difference high order (default 6" in space, 3" in time)

* Fully compressible code written in Fortran 90/2003

« Cache & memory efficient

* MPI parallelized

« Maintained/developed by ~50 people (Github) # of users > 200

* Live repository on GitHub

« Automatic daily validation of ~80 samples



Capabilities

« Advanced particle module
« Advanced MHD module

« Selfgravity (FFT)

« Radiation (long characteristics)

« Cartesian, Cylindrical, Spherical geometries
* N-body

* Chemistry, combustion

* Embarrassingly parallel



Pencil Code Philosophy

» Hands-off
1. Code coverage is done in nightly auto-tests,
2. which are also the only gatekeeping

* Research-driven — “Forever beta”

* Minimum interconnectivity

1. Pencil is an engine and a toolbox

2. The engine is clean and streamlined

3. The toolbox is like a patchwork quilt (“it’s like walking into
someone’s attic”)

* Only one version — Minimal duplication



Versatility

* Interstellar medium
— Galaxy clusters, Early Universe

* Planet formation
—Inertial particles, planet-disk interaction

» Accretion disks
— Shear flows
— Dynamical instabilities,

- Solar Physics
— Coronal heating, dynamos, spot formation
— Convection, global convective dynamos

 Miscellanea
— Test-field method, Hydro turb, turb combustion, covid pandemics evolution.
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Scaling
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Figure 17: Strong scaling on Triolith (2014). Figure 18: Comparison Triolith (black, plus signs) and Lindgren (red, triangles). Weak scaling (2014).



Pencil formulation

 In CRAY days: worked with full chunks f(nx,ny,nz,nvar)
— On modern CPUs, nearly 100% cache misses

- Instead work with f(nx,nvar), i.e. one nx-pencil

* No cache misses, negligible work space, just 2N
— Can keep all components of derivative tensors

- Communication before sub-timestep

* Then evaluate all derivatives, e.g. call curl(f,iA,B)
— Vector potential A=f(.,:,:,iAx:iAz), B=B(nx,3)



Alignment of data in memory:

€21 522
E(3,1) [F(3,2)
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Cache efficiency:
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Alighed access:

Unalighed access:

C/ C++ / NumPy: C/ C++ / NumPy:
foriy = 1...3 { [AED[B@D] forix=1..2{
forix=1...2 { i 2)ip@2) foriy=1...3 {
flix,iy] = ix+iy*2-2 E(13) | F(2.3) flix,iy] = ix+iy*2-2
} }
} } \
=> “Row Major” ® <:Z;Z>
c(1,2) [D2,2) [E@,3) [F2,3) c(1,2) [p2,2) [E,3) [F2.,3)
il 3 5 i 2
Fortran / IDL / Julia / Matlab / R: Fortran / IDL / Julia / Matlab / R:
forix=1...2 14 foriy =1...3 {
foriy=1...3 { forix=1...2 {
flix,iy] = ix+iy*2-2 flix,iy] = ix+iy*2-2
} }
} }

=> “Column Major”



Block domain decomposition
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