Dynamical Processes in Astrophysics Prof Wladimir Lyra

Live Oak, 1119-G Office Hours: Mon 3:30pm - 4:00pm Class hours: Mon/Wed 2:00pm - 3:15pm

Quick Bio

Wladimir Lyra

B.Sc. in Astronomy, Federal University of Rio de Janeiro (UFRJ, Brazil), 1999-2003.

Research Assistant 2003-2004

Space Telescope Science Institute (*STScl*, Baltimore **MD**) Cerro Tololo Interamerican Observatory (*CTIO*, La Serena – **Chile**) European Southern Observatory (*ESO*, Munich – **Germany**) Lisbon Observatory, **Portugal**.

Ph.D. in Astronomy, Uppsala University (Uppsala, Sweden), 2004-2009. Nordic Institute for Theoretical Physics (NORDITA, Stockholm, Sweden) Max-Planck Institute for Astronomy (MPIA, Heidelberg, Germany)

Postdoctoral Researcher

American Museum of Natural History (*AMNH*, New York NY), 2009-2011. Jet Propulsion Laboratory (NASA-JPL/Caltech, Pasadena CA), 2011-2015.

Stellar Astrophysics, Planetary Sciences

Solar-type stars, extrasolar planets, star formation, *circumstellar disks and planet formation*. Hydrodynamics, plasma physics, turbulence, life in the universe, *icy moons and Europa*.

Grading

Homework	(30%)
Exams Checkpoint Midterm Exam	(70%)

Topics

- Coordinate Systems
- Photometric Systems
- Stellar and Galactic Dynamics
- Relativistic Astronomy
- Cosmology

Class #	Date	Topics
1	8/27	Syllabus and overall overview.
2	8/29	Celestial Sphere - Definitions
3	9/5	Celestial Sphere - Planetary motion
4	9/10	Coordinate Systems - Equatorial
5	9/12	Coordinate Systems - Other systems
6	9/17	Spherical Trigonometry - Fundamentals
7	9/19	Spherical Trigonometry - Conversions
	9/24	Checkpoint
8	9/26	Distances of nearby stars - Parallax
9	10/01	The brightness of the stars: Stellar Magnitudes
10	10/03	The colors of the stars
11	10/08	Color-magnitude diagrams
12	10/10	Photometric systems
13	10/15	Angular radii of stars
14	10/17	Masses and radii of stars
	10/22	Midterm
15	10/24	Dynamics of planetary and satellite systems
16	10/29	Dynamics of planetary rings
17	10/31	Stellar dynamics - collisionless systems
18	11/5	Stellar dynamics - clusters
19	11/7	Galactic Dynamics
20	11/14	Dark Matter
21	11/19	Relativistic orbits - Mercury's orbit
22	11/21	Relativistic orbits - Binary pulsars
23	11/26	Black holes - Formation and structure
24	11/28	Black holes - Dynamics
25	12/3	Cosmology: Fundamentals
26	12/5	Hubble law and Friedmann equation
27	12/10	Evolution of the Universe
	12/17	Final exam.

Positional Astronomy

- Spherical Astronomy
- Coordinate Systems
- Time

Diurnal motion

Celestial Sphere

Celestial Sphere

Celestial Sphere

The celestial sphere

Our perception of the sky

Celestial Equator

Diurnal Motion

Hour Circle

Great Circle

The Spherical Triangle

The dual triangle

https://commons.wikimedia.org/w/index.php?curid=19127102

Parameter	WASP-12
D 4 (10000)	06 20 22 70
RA(J2000)	06:30:32.79
Dec(J2000)	+29:40:20.4
В	12.11 ± 0.08
V	11.69 ± 0.08
Ι	11.03 ± 0.08
J	10.477 ± 0.021
Н	10.228 ± 0.022
Κ	10.188 ± 0.020
$T_{\rm eff}$	6300^{+200}_{-100} K
[M/H]	$0.30^{+0.05}_{-0.15}$
$\log g$	4.38 ± 0.10
$v \sin i$	$< 2.2 \pm 1.5 ~\mathrm{km/s}$

Alt-azimuthal (Horizontal) Coordinates

Time (hour) Coordinates and Horizontal Coordinates

Time (hour) Coordinates and Horizontal Coordinates

Maximum and minimum altitudes

Hour Coordinates and Equatorial Coordinates

Right Ascension

Declination

Observer at the pole

Observer at arbitrary latitude

Observer on equator

Hour Coordinates and Equatorial Coordinates

Solar path in Equatorial Coordinates

Solar path in Ecliptic coordinates

The Zodiac : Constellations arbitrarily defined on the Ecliptic

Northern Hemisphere Seasons

Southern Hemisphere Seasons

The ecliptic and tropic circles

Twilight

Twilight

• 2 • 3 • 4 • 5 • 6

https://commons.wikimedia.org/w/index.php?curid=20028939

. Stars in the local solar neighborhood move randomly relative to one another...

1

6

Sun .

27,000 light-years

230-million-year orbin

.... while the galaxy's rotation carries them around the galactic center at even higher speed.

921 BATSE Gamma-Ray Bursts

Galactic Coordinates

Parallax

Motion Parallax

Lunar Parallax

Lunar Parallax Demonstration Project - Update 2004 October 28 http://www.DigitalSky.org.uk/lunar_parallax.html

> Upper Moon - Gerardo Addiego Lower-left-hand Moon - Pete Cleary Background stars, lower-right-hand Moon and image composition - Pete Lawrence

Pete Lawrence, Selsey, UK

Geocentric Parallax

Geocentric Parallax

Geocentric Parallax

Distance to the Sun

Annual Parallax

Geocentrism

Aristotle's Universe

Retrograde Motion

Retrograde Motion

An ingenious idea: Epicycles

Two circles!

The planet executes an orbit (epicycle) around a point This point executes an orbit (deferent) around Earth An ingenious idea: Epicycles

Two circles!

The planet executes an orbit (epicycle) around a point This point executes an orbit (deferent) around Earth

Sometimes more epicycles were needed to accurately predict the position of the planets

Sophistications: The Equant

Earth is at an "eccentric" point, off the center of the deferent.

The center of the epicycle moves with constant speed around the Equant.

.

Why does the geocentric model work?

$$f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos(nx) + \sum_{1}^{\infty} b_n \sin(nx)$$

Why does the geocentric model work?

Why does the geocentric model work?

The geocentric model

 $a_n \cos(nx) + \sum_{1}^{\infty} b_n \sin(nx)$ f(x)Equant **Epicycles** 29.46 y 11.86 y 1.88 y

Tycho's model

Parallax Ellipse

Parallax hypothesis

Hypothesis

Measurement

Aberration of Light

Earth's Apex

Proper Motion

Barnard's Star

How do we measure proper motion?

Stellar velocity components

Stellar velocity components

We see the *transverse velocity* as a star's "*proper motion*", which changes its position in the sky.

Proper motions of stars at the vicinity of the Big Dipper

Constellations change over time

Constellations change over time

Constellations change over time

THE SUN'S CLOSEST NEIGHBORS

Solar Orbit

Copyright © Addison Wesley

Solar Apex and Anti-Apex

Solar Apex and Anti-Apex

Elongation

angle between a Planet and the Sun

The Ptolemaic Model

Inferior and Superior planets in the Copernican Model

Inferior planets : special points

Distance to the inferior planets

Superior planets : special points

Distances to the superior planets

Distance to the inferior planets: Ptolemaic System

Retrograde Motion

Retrograde Motion

Mars Path in the Sky – Ecliptic Coordinates

IX 6. Model for planets other than Mercury Dinclination 57 planet A anon epicycle H Zodiacal Deccen. A precession D - the movement of the stars, philB Z 1º/100 yar E Deguar K Fig. 9.1

planets. Next, we say that the whole plane [of the eccentre] moves uniformly about centre E towards the rear [i.e. in the order] of the signs, shifting the position of apogee and perigee 1° in 100 years, and that diameter LØM of the epicycle rotates uniformly about centre D, again towards the rear [i.e. in the order] of the signs, with a speed corresponding to the planet's return is longitude, and that it carries with it points L and M of the epicycle, and centre of the epicycle (which always moves on the eccentre HØK), and also carries with it the planet; the planet, for its part, moves with uniform motion on the epicycle [which points towards centre D, with a speed corresponding to the mean period of the synodic anomaly, and [a sense of rotation] such that it motion at the apogee L takes place towards the rear.

We can visualise the peculiar features of the hypothesis for Mercury a follows. Let [Fig. 9.2] the eccentre producing the anomaly be ABG about centr D, and let the diameter through D and centre E of the ecliptic be ADEG [passing] through the apogee at A. On AG take DZ towards the apogee A, equito DE. Then everything else remains the same, namely the whole plan amount as for the other planets, the epicycle is revolved uniformly about centr On the epicycle in the same way as the others. But in this case the centre of the the epicycle centre is always located, is carried around point Z in the opposiof the signs, but uniformly and with the same speed as the epicycle, as[here]]

D – Equant E – Centre of ecliptic (Earth)

A – apogee G – perigee

 $H\Theta K$ – deferent ABG – eccentre

 $AB = ae = \frac{1}{2}(CA - DA).$

Analemma

Ptolemy – The Sun had a small epicycle (~1/25 of deferent)

Circular and Centered Orbit

Regular Epicycles produce regular retrogradations

In reality the retrogradations vary both in position and duration.

Move the Earth from the Center

Circular Off-Centered Orbit (the Eccentre)

The Equant

The Equant

Even for the highest eccentricity (Mercury), the equant reproduces the observations to the degree.

The equant: Equal angles at equal time

Changing to the Sun's Reference Frame: Observations at Opposition

Locating the Equant

Equant(Mean)

Observed (Apparent)

Time between Oppositions

Locating the Equant

Kepler's solution

Eccentric anomaly and True anomaly

Equant fails at larger eccentricities

Hypothetical planet, *e=0.45*

Orbital Elements

Deviation True and Mean Anomaly

The analemma

Equation of Time

Equation of Time

"If this wearisome method has filled you with loathing, it should more properly fill you with compassion for me as I have gone through it at least seventy times at the expense of a great deal of time."

Kepler, Johannes, Astronomia Nova, 1609

d	h	
0	0	· · · · · · · · · · · · · · · · · · ·
0	12	e e e e e
1	0	a 🦓 🤹 🧌
1	12	
2	0	: •
2	12	-
3	0	۲
3	12	
4	0	
4	12	
5	0	
5	12	
6	0	
6	12	
7	0	
7	12	e e e e e
8	0	·
8	12	
9	0	
9	12	
10	0	

Images captured from http://www.shallowsky.com/jupiter/

20.0 17.5 Callisto T (Orbital period, in days) 15.0 $r^{1.5}$ 12.5 10.0 Ganymede 7.5 Europa 5.0 Io

3

r (Distance from Jupiter, Io=1)

2

5

4

2.5

Obronating Depuiser
2 St. Foris 1500
manlH.12 () * *
30. mone ** 0 *
2. 76m: Q** *
3. more 0 * *
3. Ho. s. * 0 *
9. ment. *0 **
6. mand * * 0 *
8. marc H. 13. # * * 0
10. mape: * * * 0 *
11. * * 0 *
12. H. q regg: * 0 *
17. mare * * · · · *
14 dane. * * * 0 *

Planets

Kepler's 3rd law

The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.

Stuff close in moves fast stuff far out moves slow

Hypothesis

What keeps the planets in motion is *something* that **emanates from the Sun** and **dilutes with distance**.

Stuff close in moves fast stuff far out moves slow
Geometric dilution

The same amount of light, expanding spherically outwards, crosses progressively larger areas.

Inverse square

As distance increases, the same energy spreads through a larger area

" And the same year [1665] I began to think of gravity [...] from Kepler's rule of the periodical times of the planets being in a sesquialterate proportion of their distances from the centers of their orbs, I deduced that the forces which keep the planets in their orbs must be reciprocally as the squares of their distances from the centers about which they revolve: and thereby compared the force requisite to keep the moon in her orb with the force of gravity at the surface of the earth, and found they answer pretty nearly."

— Isaac Newton, 1665-1666

Isaac Newton, 1642-1727

" And the same year [1665] I began to think of gravity [...] from Kepler's rule of the periodical times of the planets being in a sesquialterate proportion of their distances from the centers of their orbs, I deduced that the forces which keep the planets in their orbs must be reciprocally as the squares of their distances from the centers about which they revolve: and thereby compared the force requisite to keep the moon in her orb with the force of gravity at the surface of the earth, and found they answer pretty nearly."

22-23 y-old Isaac Newton, 1642-1727

— Isaac Newton, 1665-1666

Planetary Orbital Semi-Major Axis (AU)

Stellar Mass (M_{\odot})

Semi-Major Axis [Astronomical Units (AU)]

Copyright © 2010 Pearson Education, Inc.

Types of orbit

Conic Sections

Figure 4.1

Types of orbit: Conic Sections

Halley's comet

Halley's comet

Figure 1a: Comet Semimajor Axis Distribution

Figure 1b: Comet Eccentricity Distribution

A majority of comets have parabolic orbits

Inclination

Argument of Perihelion

