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Tools for Success in ASTR 105G

Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject they
are looking at, and submit their results for publication. Along the way astronomers use
all of the mathematical techniques and physics necessary to understand the objects they
examine. Thus, just like any other science, a large number of mathematical tools and con-
cepts are needed to perform astronomical research. In today’s introductory lab, you will
review and learn some of the most basic concepts necessary to enable you to successfully
complete the various laboratory exercises you will encounter during this semester. When
needed, the weekly laboratory exercise you are performing will refer back to the examples in
this introduction—so keep the completed examples you will do today with you at all times
during the semester to use as a reference when you run into these exercises later this semester
(in fact, on some occasions your TA might have you redo one of the sections of this lab for
review purposes).

The Metric System

Like all other scientists, astronomers use the metric system. The metric system is based on
powers of 10, and has a set of measurement units analogous to the English system we use
in everyday life here in the US. In the metric system the main unit of length (or distance)
is the meter, the unit of mass is the kilogram, and the unit of liquid volume is the liter. A
meter is approximately 40 inches, or about 4”7 longer than the yard. Thus, 100 meters is
about 111 yards. A liter is slightly larger than a quart (1.0 liter = 1.101 qt). On the Earth’s
surface, a kilogram = 2.2 pounds.

As you have almost certainly learned, the metric system uses prefixes to change scale. For
example, one thousand meters is one “kilometer.” One thousandth of a meter is a “millime-
ter.” The prefixes that you will encounter in this class are listed in Table 1.2.

In the metric system, 3,600 meters is equal to 3.6 kilometers; 0.8 meter is equal to 80
centimeters, which in turn equals 800 millimeters, etc. In the lab exercises this semester we
will encounter a large range in sizes and distances. For example, you will measure the sizes of
some objects/things in class in millimeters, talk about the wavelength of light in nanometers,
and measure the sizes of features on planets that are larger than 1,000 kilometers.



Table 1.1: Metric System Prefixes

Prefix Name | Prefix Symbol Prefix Value
Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundredth)
milli m 0.001 (one thousandth)
micro I 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

Beyond the Metric System

When we talk about the sizes or distances to objects beyond the surface of the Earth, we
begin to encounter very large numbers. For example, the average distance from the Earth
to the Moon is 384,000,000 meters or 384,000 kilometers (km). The distances found in
astronomy are usually so large that we have to switch to a unit of measurement that is much
larger than the meter, or even the kilometer. In and around the solar system, astronomers
use “Astronomical Units.” An Astronomical Unit is the mean (average) distance between
the Earth and the Sun. One Astronomical Unit (AU) = 149,600,000 km. For example,
Jupiter is about 5 AU from the Sun, while Pluto’s average distance from the Sun is 39 AU.
With this change in units, it is easy to talk about the distance to other planets. It is more
convenient to say that Saturn is 9.54 AU away than it is to say that Saturn is 1,427,184,000
km from Earth.

Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is something
you must master during this semester. You already do this in your everyday life whether
you know it or not (for example, if you travel to Mexico and you want to pay for a Coke in
pesos), so do not panic! Let’s look at some examples (2 points each):

1. Convert 34 meters into centimeters:

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:



3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. In August 2003, Mars made its closest approach to Earth for the next 50,000 years.
At that time, it was only about .373 AU away from Earth. How many km is this?

Map Exercises

One technique that you will use this semester involves measuring a photograph or image
with a ruler, and converting the measured number into a real unit of size (or distance). One
example of this technique is reading a road map. Figure 1.1 shows a map of the state of
New Mexico. Down at the bottom left hand corner of the map is a scale in both miles and
kilometers.

Use a ruler to determine (2 points each):

6. How many kilometers is it from Las Cruces to Albuquerque?

7. What is the distance in miles from the border with Arizona to the border with Texas
if you were to drive along 1-407

8. If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?

9. If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?
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Figure 1.1: Map of New Mexico.



Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square roots. Let
us briefly review what is meant by such terms as squares, cubes, square roots and exponents.
The square of a number is simply that number times itself: 3 x 3 = 3% = 9. The ezponent
is the little number “2” above the three. 52 = 5 x 5 = 25. The exponent tells you how
many times to multiply that number by itself: 8% = 8 x 8 x 8 x 8 = 4096. The square of
a number simply means the exponent is 2 (three squared = 3?), and the cube of a number
means the exponent is three (four cubed = 4%). Here are some examples:

e P=TxT=49

T=Tx7xTx7x7T=16_807

The cube of 9 (or “9 cubed”) = 9% =9 x 9 x 9 = 729

The exponent of 121 is 16

2.56% = 2.56 x 2.56 x 2.56 = 16.777

Your turn (2 points each):

10. 6% =

11. 4% =

12. 3.12 =

The concept of a square root is fairly easy to understand, but is much harder to calculate (we
usually have to use a calculator). The square root of a number is that number whose square
is the number: the square root of 4 = 2 because 2 x 2 = 4. The square root of 9 is 3 (9 =
3 x 3). The mathematical operation of a square root is usually represented by the symbol
“/ 7, as in v/9 = 3. But mathematicians also represent square roots using a fractional
exponent of one half: 9'/2 = 3. Likewise, the cube root of a number is represented as 27'/3
=3 (3 x 3 x 3 = 27). The fourth root is written as 16"/* (= 2), and so on. Here are some
example problems:



e 100 = 10
e 10.5° = 10.5 x 10.5 x 10.5 = 1157.625

e Verify that the square root of 17 (v/17= 171/2) = 4.123

Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of subatomic
particles, to the size of the entire universe. You are certainly comfortable with numbers
like ten, one hundred, three thousand, ten million, a billion, or even a trillion. But what
about a number like one million trillion? Or, four thousand one hundred and fifty six million
billion? Such numbers are too cumbersome to handle with words. Scientists use something
called “Scientific Notation” as a short hand method to represent very large and very small
numbers. The system of scientific notation is based on the number 10. For example, the
number 100 = 10 x 10 = 102. In scientific notation the number 100 is written as 1.0 x 102
Here are some additional examples:

e Ten =10=1 x 10 = 1.0 x 10!

e One hundred = 100 = 10 x 10 = 10? = 1.0 x 10?

e One thousand = 1,000 = 10 x 10 x 10 = 10* = 1.0 x 103

e One million = 1,000,000 = 10 x 10 x 10 x 10 x 10 x 10 = 10° = 1.0 x10°

Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific notation? 6,563
= 6563.0 = 6.563 x 10%. To figure out the exponent on the power of ten, we simply count
the numbers to the left of the decimal point, but do not include the left-most number. Here
are some more examples:

e 1,216 = 1216.0 = 1.216 x 10®
e 8,735,000 = 8735000.0 = 8.735000 x 10°

o 1,345,999,123,456 = 1345999123456.0 = 1.345999123456 x 102 ~ 1.346 x 10'?



Note that in the last example above, we were able to eliminate a lot of the “unnecessary”
digits in that very large number. While 1.345999123456 x 10'? is technically correct as the
scientific notation representation of the number 1,345,999,123,456, we do not need to keep
all of the digits to the right of the decimal place. We can keep just a few, and approximate
that number as 1.346 x 10'2.

Your turn! Work the following examples (2 points each):

13. 121 = 121.0 =

14. 735,000 =

15. 999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First, lets look at
powers of 10, but this time in fractional form. The number 0.1 = %. In scientific notation
we would write this as 1 x 107!, The negative number in the exponent is the way we write

the fraction %. How about 0.0017 We can rewrite 0.001 as % X % X %0 =0.001 =1 x

1073. Do you see where the exponent comes from? Starting at the decimal point, we simply
count over to the right of the first digit that isn’t zero to determine the exponent. Here are
some examples:

e 0.121 = 1.21 x 107!
e 0.000735 = 7.35 x 1074

e 0.0000099902 = 9.9902 x 10~

Your turn (2 points each):
16. 0.0121 =
17. 0.0000735 =

18. 0.0000000999 =



19. —-0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in scientific
notation. It is kind of silly to write the number 23.7 as 2.37 x 10%, or 0.5 as 5.0 x 107!, You
use scientific notation when it is a more compact way to write a number to insure that its
value is quickly and easily communicated to someone else. For example, if you tell someone
the answer for some measurement is 0.0033 meter, the person receiving that information
has to count over the zeros to figure out what that means. It is better to say that the
measurement was 3.3 x 1072 meter. But telling someone the answer is 215 kg, is much
easier than saying 2.15 x 102 kg. It is common practice that numbers bigger than 10,000 or
smaller than 0.01 are best written in scientific notation.

Calculator Issues

Since you will be using calculators in nearly all of the labs this semester, you should become
familiar with how to use them for functions beyond simple arithmetic.

Scientific Notation on a Calculator

Scientific notation on a calculator is usually designated with an “E.” For example, if you see
the number 8.778046E11 on your calculator, this is the same as the number 8.778046 x 10!
Similarly, 1.4672E-05 is equivalent to 1.4672 x107°.

Entering numbers in scientific notation into your calculator depends on layout of your cal-
culator; we cannot tell you which buttons to push without seeing your specific calculator.
However, the “E” button described above is often used, so to enter 6.589 x107, you may
need to type 6.589 “E” 7.

Verify that you can enter the following numbers into your calculator:

e 7.99921 %102

e 2.2951324 x10°¢

Order of Operations

When performing a complex calculation, the order of operations is extremely important.
There are several rules that need to be followed:

i. Calculations must be done from left to right.

ii. Calculations in brackets (parenthesis) are done first. When you have more than one
set of brackets, do the inner brackets first.



iii. Exponents (or radicals) must be done next.
iv. Multiply and divide in the order the operations occur.

v. Add and subtract in the order the operations occur.

If you are using a calculator to enter a long equation, when in doubt as to whether the
calculator will perform operations in the correct order, apply parentheses.

Use your calculator to perform the following calculations (2 points each):

(7+34)
20. (2+23) —

21. (4% 4+ 5) — 3 =

22.20 = (12 —2) x 32 — 2 =

Graphing and/or Plotting

Now we want to discuss graphing data. You probably learned about making graphs in high
school. Astronomers frequently use graphs to plot data. You have probably seen all sorts
of graphs, such as the plot of the performance of the stock market shown in Fig. 1.2. A
plot like this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market. Each
place on the curve that shows the performance of the stock market is represented by two
numbers, the date (x axis), and the value of the index (y axis). For example, on May 10 of

2004, the Dow Jones index stood at 10,000.

Plots like this require two data points to represent each point on the curve or in the plot.
For comparing the stock market you need to plot the value of the stocks versus the date. We
call data of this type an “ordered pair.” Each data point requires a value for x (the date)
and y (the value of the Dow Jones index).

Table 1.2 contains data showing how the temperature changes with altitude near the Earth’s
surface. As you climb in altitude, the temperature goes down (this is why high mountains
can have snow on them year round, even though they are located in warm areas). The data
points in this table are plotted in Figure 1.3.

The Mechanics of Plotting

When you are asked to plot some data, there are several things to keep in mind.
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Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003 to July
2004).

Table 1.2: Temperature vs. Altitude

Altitude | Temperature
(feet) °F
0 59.0
2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

First of all, the plot axes must be labeled. This will be emphasized throughout the
semester. In order to quickly look at a graph and determine what information is being con-
veyed, it is imperative that both the x-axis and y-axis have labels.

Secondly, if you are creating a plot, choose the numerical range for your axes such that the
data fit nicely on the plot. For example, if you were to plot the data shown in Table 1.2, with
altitude on the y-axis, you would want to choose your range of y-values to be something like
0 to 18,000. If, for example, you drew your y-axis going from 0 to 100,000, then all of the
data would be compressed towards the lower portion of the page. It is important to choose
your ranges for the x and y axes so they bracket the data points.
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Figure 1.3: The change in temperature as you climb in altitude with the data from Table 1.2.
At sea level (0 ft altitude) the surface temperature is 59°F. As you go higher in altitude, the
temperature goes down.

Plotting and Interpreting a Graph

Table 1.3 contains hourly temperature data on January 19, 2006, for two locations: Tucson
and Honolulu.

23. On the blank sheet of graph paper in Figure 1.4, plot the hourly temperatures mea-
sured for Tucson and Honolulu on 19 January 2006. (10 points)

24. Which city had the highest temperature on 19 January 20067 (2 points)

25. Which city had the highest average temperature? (2 points)
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Table 1.3: Hourly Temperature Data from 19 January 2006

Time | Tucson Temp. | Honolulu Temp.
hh:mm °F °F
00:00 49.6 71.1
01:00 47.8 71.1
02:00 46.6 71.1
03:00 45.9 70.0
04:00 45.5 72.0
05:00 45.1 72.0
06:00 46.0 73.0
07:00 45.3 73.0
08:00 45.7 75.0
09:00 46.6 78.1
10:00 51.3 79.0
11:00 56.5 80.1
12:00 59.0 81.0
13:00 60.8 82.0
14:00 60.6 81.0
15:00 61.7 79.0
16:00 61.7 77.0
17:00 61.0 75.0
18:00 59.2 73.0
19:00 55.0 73.0
20:00 53.4 72.0
21:00 51.6 71.1
22:00 49.8 72.0
23:00 48.9 72.0
24:00 47.7 72.0

26. Which city heated up the fastest in the morning hours? (2 points)

While straight lines and perfect data show up in science from time to time, it is actually
quite rare for real data to fit perfectly on top of a line. One reason for this is that all
measurements have error. So even though there might be a perfect relationship between
x and y, the uncertainty of the measurements introduces small deviations from the line.
In other cases, the data are approximated by a line. This is sometimes called a best-fit
relationship for the data.

Does it Make Sense?

This is a question that you should be asking yourself after every calculation that you do in
this class!
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Figure 1.4: Graph paper for plotting the hourly temperatures in Tucson and Honolulu.

One of our primary goals this semester is to help you develop intuition about our solar sys-
tem. This includes recognizing if an answer that you get “makes sense.” For example, you
may be told (or you may eventually know) that Mars is 1.5 AU from Earth. You also know
that the Moon is a lot closer to the Earth than Mars is. So if you are asked to calculate the
Earth-Moon distance and you get an answer of 4.5 AU, this should alarm you! That would
imply that the Moon is three times farther away from Earth than Mars is! And you know
that’s not right.

Use your intuition to answer the following questions. In addition to just giving your answer,
state why you gave the answer you did. (5 points each)
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27. Earth’s diameter is 12,756 km. Jupiter’s diameter is about 11 times this amount.
Which makes more sense: Jupiter’s diameter being 19,084 km or 139,822 km?

28. Sound travels through air at roughly 0.331 kilometers per second. If BX 102 suddenly
exploded, which would make more sense for when people in Mesilla (almost 5 km away)
would hear the blast? About 14.5 seconds later, or about 6.2 minutes later?

29. Water boils at 100 °C. Without knowing anything about the planet Pluto other than
the fact that is roughly 40 times farther from the Sun than the Earth is, would you
expect the surface temperature of Pluto to be closer to -100° or 50°7

Putting it All Together

We have covered a lot of tools that you will need to become familiar with in order to complete
the labs this semester. Now let’s see how these concepts can be used to answer real questions
about our solar system. Remember, ask yourself does this make sense? for each answer
that you get!

30. To travel from Las Cruces to New York City by car, you would drive 3585 km. What
is this distance in AU? (10 points)
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31.

32.

The Earth is 4.5 billion years old. The dinosaurs were killed 65 million years ago due
to a giant impact by a comet or asteroid that hit the Earth. If we were to compress the
history of the Earth from 4.5 billion years into one 24-hour day, at what time would
the dinosaurs have been killed? (10 points)

When it was launched towards Pluto, the New Horizons spacecraft was traveling at
approximately 20 kilometers per second. How long did it take to reach Jupiter, which
is roughly 4 AU from Earth? [Hint: see the definition of an AU in Section 1.3 of this
lab.] (7 points)
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