
1. Introduction
Forecasting the future state of the ionosphere is a fundamental challenge for near-space environment re-
search and operations. In pursuit of this goal, the international space weather community recognizes the 
need for enhanced fundamental understanding of space weather and its drivers and for improved pre-
dictive models of various ionospheric and thermospheric parameters. Recent efforts by the international 
Community Coordinated Modeling Center have identified several critical ionospheric and thermospheric 
parameters that can be used for the assessment of the predictive capabilities (Scherliess et al., 2019). These 
parameters include total electron content (TEC), peak electron density (NmF2), and peak electron density 
height (hmF2). Reliable specification and forecasting of these parameters have significant societal impacts, 
as they can help mitigate uncertainties in precision timing and navigation, which impede space situational 
awareness, single-band high-frequency radio operations, and satellite geolocation. In particular, TEC is an 
important parameter for estimation of phase delay effects in the ground-to-satellite navigation signals.

A significant ongoing effort to address these goals includes continuous development of different types of 
models, including first-principles models of the coupled ionosphere/thermosphere systems, data-assimila-
tive models, and purely empirical models that are based on available observations. Despite significant devel-
opment and improvement in first-principles models, quantitative validation efforts indicate that empirical 
models often outperform first-principles models for geomagnetically quiet conditions, though first-prin-
ciples models can perform better during disturbed conditions if they include more complex and accurate 
input drivers (Shim et al., 2011, 2012, 2017b, 2018). Among the empirical models, the International Refer-
ence Ionosphere (IRI) (Bilitza et al., 2017) and NeQuick (Nava et al., 2008) models are best known and most 
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widely used. In particular, the IRI model is the basis for the International Standards Organization (ISO) 
International Standard IS 16457 (ISO16457, 2014).

Originally developed in the late 1960s, the IRI model has been continuously updated and improved as a 
result of coordinated dedicated efforts by the international research community. However, it still has certain 
limitations in simulating TEC. One of them is related to the representation of the electron density profile. 
The TEC in the IRI model is obtained through integration of the electron density profile up to 2000 km and 
thus does not include contributions to TEC from the plasmasphere, which can reach several (2–6) TECu 
(1 TECu = 1016 el/m2) (Cherniak et al., 2012; Liu et al., 2018; Shim et al. 2017; Yizengaw et al., 2008). In 
addition, the IRI model, as a global model, can significantly overestimate or underestimate regional TEC 
variations, even for midlatitude locations (e.g., Zakharenkova et al., 2015). As the IRI model electron den-
sity is based mostly on ionosonde observations below the F-region peak and on observations from Alouetee 
1,2 and ISIS 1,2 (Bilitza, 2004) above the F-region peak, deficiency in the description of the topside profile is 
thought to be the primary reason for the reported differences between IRI and TEC observations (Zakharen-
kova et al., 2015). The second limitation of IRI is related to its low sensitivity to short-term variations in solar 
ionizing flux. As the model is aimed at representing monthly mean ionospheric conditions, it uses monthly 
values of either IG12 (a 12 months running mean of the global ionosphere index) or Rz12 (a 12 months 
running mean of the sunspot number) which F107 can be scaled to.

Recognition of the significant need for more accurate empirical models, together with the continued in-
crease in availability and quality of ionospheric data, has led to a rapid development in additional empirical 
models during the last several years. Expansion of TEC data obtained from the GNSS satellites presented 
an opportunity to develop independent TEC models that do not rely on vertical extrapolation of the elec-
tron density profile or assumptions about the shape of the profile above the peak electron density, like in 
IRI or NeQuick. Such TEC models can be broadly characterized as global, regional, or local. Several global 
models were developed based on Global Ionospheric Maps (GIMs) which are generated since 1998 with 
2-h temporal resolution (Komjathy et al., 2005; Mannucci et al., 1998; Vergados et al., 2016). Mukhtarov, 
Andonov, and Pancheva (2013) has built a monthly mean TEC model with 5° × 5° resolution in latitude and 
longitude utilizing data from the Center for Orbit Determination of Europe (CODE) and representing TEC 
variations as a function of solar flux, rate of change in solar flux, season, time of day, and magnetic latitude; 
further development of that model included dependence on geomagnetic activity (Mukhtarov, Pancheva, 
et al., 2013). Aa et al. (2012) developed a global TEC model based on GIMs provided by the Jet Propulsion 
Laboratory (JPL) and using empirical orthogonal function (EOF) analysis, a technique which decomposes 
data using functions determined by the data themselves rather than the predefined functions used in other 
methods such as Fourier decomposition (Chen et al., 2015). Lean et al. (2016) constructed a model of 2-h 
TEC data by combining representations of solar EUV, sinusoidal parameterizations of annual, semiannual, 
terannual, and biennial oscillations, diurnal, semidiurnal, and terdiurnal cycles, and geomagnetic activity. 
The distinctive feature of the Lean et al. (2016) model is the description of solar ionizing flux; it includes to-
tal EUV irradiance summarized for wavelengths less than 105 nm and 11-time lags ranging from 0 and 12 h 
to 36 days. Recognizing the limitations of IGS TEC-GIM maps and their lower accuracy over the oceans, 
Feng et al. (2019) suggested a global TERM-GRID model that consists of 5,183 independent single point 
empirical models.

Many new TEC empirical models were developed for the description of the regional ionosphere, including, 
for example, the ionosphere over Europe (Jakowski et al., 2011), China (Mao et al., 2008), North America 
(Chen et al., 2015), South Africa (Habarulema et al., 2010, 2011), Australia (Bouya et al., 2010), and the 
Arctic (Liu et al., 2014). Regional empirical models often outperform global empirical models as they are 
based on additional data not included in IGS GIM maps and use fewer assumptions about spatial variations 
in TEC. Single-location empirical models are often used to describe distinctive ionospheric features over 
a specific geographic location and/or explore different modeling approaches (Huang & Yuan,  2014; Liu 
et al., 2012; Mao et al., 2005). Empirical ionospheric modeling remains an active area of research, as increas-
ingly accurate and detailed global specification of the near-Earth space environment is required to further 
understand its intricate organization and behavior.

Ionospheric electron density is produced by solar EUV radiation at wavelengths less than 103 nm (Schunk 
& Nagy, 2009) that ionizes thermospheric atomic oxygen and molecular nitrogen and oxygen. The most 
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important contribution to ionization comes from EUV radiation at wavelengths 26–34 nm which is most-
ly absorbed by atomic oxygen at altitudes above 200 km (Richards et al., 1994; Schunk & Nagy, 2009). 
Solar EUV flux is also an important source of atmospheric heating, determining neutral temperature, 
composition, and winds which are all directly coupled to the ionospheric photoionizatio, chemistry, and 
dynamics. Previous studies have demonstrated that solar EUV emission can be well described by the solar 
activity proxy F10.7 which represents solar radio flux at the wavelength of 10.7 cm. We use the definitions 
of solar index and solar proxy from IS 21348 where a solar proxy is a data type used as a substitute for 
solar spectral irradiances at other wavelengths or band passes and a solar index is a data type that is an 
activity level indicator. The vast majority of empirical ionospheric models, even those developed most 
recently, use the F10.7 proxy to describe solar EUV influence on ionospheric parameters (Chen et al., 2015; 
Feng et al., 2019; Mukhtarov, Andonov, & Pancheva, 2013; Mukhtarov, Pancheva, et al., 2013; Themens 
et al., 2017; Zhang et al., 2005). The popularity of the F10.7 proxy is based on its long data record, as it is 
available since 1947, and well-demonstrated performance for the description of critical frequency foF2 (or 
peak electron density NmF2) that was historically widely available due to the abundance of ionosondes 
(Liu et al., 2006). However, the F10.7 proxy does not directly describe the solar emission in the EUV wave-
length range <102.5 nm which is directly responsible for the ionization of the thermosphere. In addition, 
as a significant portion of the contribution to TEC comes from the profile of electron density above the 
peak, and the impact of different portions of the EUV spectrum varies with altitude, it is not immediately 
clear if the F10.7 proxy performs as well for TEC as for foF2. With increasing availability of satellite EUV 
data, numerous observational datasets and new indices became available within the last 2 decades that 
can better characterize solar energy input to the thermosphere. These observations include solar extreme 
ultraviolet monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), Solar Backscatter 
Ultraviolet (SBUV) spectrometer on NOAA satellites (Viereck et  al.,  2001), and SEE onboard TIMED 
(Woods, 2005; Woods et al., 2000). New indices include, for example, the S10.7 index that reflects integrated 
solar emission between 26 and 34 nm (Bowman et al., 2008a; Tobiska et al., 2008), the Mg II core-to-wing 
ratio that corresponds to emission near 160 nm (Bowman et al., 2008a; Viereck et al., 2001), the M10.7 
index which is derived from the Mg II (Bowman et al., 2008a; Tobiska et al., 2008), the Xb10 index that 
corresponds to 0.1–0.8 nm solar X-ray emission (Tobiska & Bouwer, 2005), and the Y10.7 index that com-
bines Xb10 and Lyman-alpha emission. The impact of these indices is better studied in the thermosphere, 
and their usage substantially improved thermospheric density models (Bowman et al., 2008a; Emmert 
et al., 2008; He et al., 2018; Tobiska et al., 2008). However, the impact of these indices on improvement in 
ionospheric empirical models and, specifically, on TEC, is much less known. Maruyama (2010) compared 
the performance of models that include the sunspot number R, solar F10.7 proxy, Mg II index or S10.7 index 
on midlatitude TEC over Japan and concluded that the S10.7 index was the best proxy for modeling TEC of 
those included in the study. Lean et al. (2011) used TIMED SEE observations with the F10.7 proxy and the 
Mg II index to develop a model of EUV variability and later use it in the global TEC model (Lean, 2019; 
Lean et al., 2016). It is thus of great interest to further examine whether new solar flux indices are better 
suited for empirical models of TEC than the F10.7 proxy.

Another issue with the F10.7 proxy relates to its ability to describe both the direct impact on ionospheric 
electron density (through ionization processes) and indirect impact (through thermospheric heating that 
operates on longer temporal scales). The response of electron density to an increase in F10.7 saturates for 
high levels of solar activity, usually between 160 and 200 sfu (1 sfu = 10−22 W m−2 Hz−1), depending on lat-
itude (Lei et al., 2005; Liu et al., 2006). To account for this saturation, various ionospheric models usually 
use a combination of the F10.7 flux and the 81 days average of F10.7 flux (Brum et al., 2011; Liu et al., 2006; 
Richards et al., 1994). While it might be sufficient for some types of studies, the need to rely on the knowl-
edge of solar flux that will occur up to 40 days in the future is not acceptable for ionospheric predictions. 
Maruyama (2010) investigated the delayed response of TEC to several solar flux proxies and concluded 
that inclusion of 1–2 days delays, the 27 days delay, and the 81 days delay improved TEC modeling. The 
2 days delay in the neutral atmosphere, especially in the temperature (Zhang et al., 2015), is a very pro-
nounced feature that has been well recognized and included in the thermospheric empirical models like 
MSIS (Picone et al., 2002). Lean et al. (2016) found that adding several lagged terms with 1–36 days delays 
of daily solar EUV irradiance alleviates the need for 81 days averaging of solar flux. Thus, the concept 
of using delayed solar flux terms instead of the 81 days average term has been already introduced and 
demonstrated.

GONCHARENKO ET AL.

10.1029/2020JA028466

3 of 28



Journal of Geophysical Research: Space Physics

This paper describes a first phase in a new empirical TEC model that has several distinct features as com-
pared to already available models. It uses TEC data from the CEDAR Madrigal database that are obtained 
with much higher resolution in space and time as compared to GIM TEC. Recognizing that representation 
of diurnal behavior with superposition of harmonics with a 24-h period, 12-h period, etc., results in an in-
adequate description of diurnal behavior, especially around sunrise and sunset, the proposed model is based 
on independent fitting of TEC with 30-min temporal resolution. As a main portion of the current effort, we 
examine different representations of the solar ionizing flux in order to determine the solar flux proxy most 
suitable for TEC. In addition, the model considers the delayed response of TEC to solar ionization. In this 
study, the proposed model and solar flux proxies are examined for a single midlatitude location, 45°N and 
0°E. Future efforts will present extension of this approach to other locations.

2. Data Sources and Preparation
2.1. CEDAR Madrigal Database

In this new empirical model, we use the CEDAR Madrigal database for TEC observations that were pro-
cessed, and provided for public access, by the Massachusetts Institute of Technology's Haystack Observato-
ry (Rideout & Coster, 2006; Vierinen et al., 2016). This database includes ionospheric observations from an 
ever-increasing set of globally distributed GNSS dual-frequency ground-based receivers, beginning with 500 
receivers in 2,000 to more than 6,000 in 2020. By including data from all publicly available multifrequency 
GNSS receivers, and by providing data products at a high cadence (5 min) and high spatial resolution (1° 
latitude and longitude), the Madrigal standard vertical TEC product provides a more comprehensive and 
detailed description of TEC variations than the GIM TEC product. GIM TEC products are based on only the 
several hundred IGS receivers, and are available at a 2 h cadence in a bin of 5° latitude and longitude. The 
procedure used in the Madrigal processing to calculate the unknown satellite and receiver biases is provided 
in Vierinen et al. (2016). Although not used here, a new higher resolution TEC product is also available in 
Madrigal that includes all of the line-of-sight TEC at 1-min resolution. The standard Madrigal TEC product 
is available in the CEDAR Madrigal database from January 1, 2000. The empirical model discussed in this 
study is based on 20 years of TEC data, from January 1, 2000 to December 31, 2019, almost two solar cycles 
of data. This large dataset is well suited for empirical modeling, as it provides good coverage of both solar 
minimum and solar maximum conditions, and contains a large number of geomagnetic storms.

2.2. Data Preparation and Error Reduction

Techniques for error and noise reduction in these data are employed nevertheless. The data are of varying 
quality, with clear outliers present at times. For example, from −33° longitude to −27° longitude, data is 
scarce. In addition to the incongruous completeness of the dataset, small artificial variations in TEC track 
the motion of satellites according to sidereal hour rather than universal time (UT) hour. These variations 
are roughly the same magnitude as small-scale fluctuations in TEC which the model ideally reflects. It is 
therefore important to minimize or remove the error due to this sidereal motion prior to model construction.

To account for the first issue in data quality (the presence of outliers), a Hampel filter is applied with a 
13-point window and a 1-standard-deviation criterion for outlier detection. If a given point varies from the 
median of 13 surrounding data points by 1 standard deviation, the datum is replaced with the median of 
the 13-point window. A similar filter is then applied, ordering the data from day-to-day rather than hour-to-
hour, with a 3 days window around each point and a 3-standard-deviation criterion for outlier replacement. 
After the application of this filter, in order to account for the sidereal motion of satellites, a cubic spline 
interpolant is applied to the data with a low tolerance for outlier removal. Figure 1 shows the result of this 
process for the year 2014 at 45°N, 0°E.

2.3. Solar Flux Proxies

One of the goals of this study is to compare the impact of different solar flux formulations on the perfor-
mance of the new empirical TEC model. We examined 11 solar flux formulations that include direct EUV 
measurements, proxies that are measured directly (F10.7, Mg II core-to-wing ratio, Lyman-alpha), proxies 
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that are special cases of measurements (S10.7, corrected F10.7, P10.7) and finally the proxies from solar irradi-
ance models (SIP E10.7, FISM2 EUV). This section presents several recently developed proxies that were not 
yet applied to an ionospheric model and compares them to proxies traditionally used in studying the solar 
influence on the upper atmosphere. The utilized solar flux data over the course of 2000–2019 (time period 
used in model development) are shown in Figure 2.

2.3.1. TIMED SEE EUV

The Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) spacecraft includes the Solar EUV 
Experiment (SEE) as one of its four scientific instruments (Woods, 2005). The data is available from the Uni-
versity of Colorado at Boulder Laboratory for Atmospheric and Space Physics (LASP) website (http://lasp.
colorado.edu/home/see/data/), and an overview of the data for 2000–2019 is shown in Figure 2a. SEE Level 3 
data are used for model construction. After corrections are applied for atmospheric absorption, degradation, 
flare removal, and normalization to 1 astronomical unit (AU), data are time averaged for each day. Flux meas-
urements are provided for each nanometer in the EUV range; for this study, the data were processed by inte-
grating from 0.5 to 105 nm. There are noteworthy omissions in the TIMED SEE EUV data which prompt eval-
uation of other datasets describing variation in the EUV range. These include (i) that the TIMED mission was 
launched in 2002, 2 years after the commencement of the TEC data collected by the Madrigal database, and 
(ii) that there exist several data gaps, typically associated with the TIMED “safe mode,” within the 2002–2019 
tenure of the data. These result in a significant lack of data around the maximum of solar cycle 23.
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Figure 1. An example of the data cleaning process for the year 2014 at 45°N, 0°E. The solar flux proxy used in the 
model is shown as a black line to indicate the correlation between increases in solar flux and TEC. Periodic fluctuations 
in TEC and solar flux also occur in concert. TEC, total electron content.

http://lasp.colorado.edu/home/see/data/
http://lasp.colorado.edu/home/see/data/
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2.3.2. SOHO SEM EUV

The Solar and Heliospheric Observatory (SOHO) spacecraft includes the Solar EUV Monitor (SEM), the 
data for which are made available by USC Dornsife (https://dornsifecms.usc.edu/space-sciences-center/
download-sem-data/) and are shown for the relevant time period in Figure 2b. These data provide the 0.1–
50 nm flux as a daily average value, normalized to 1 AU. Although a smaller wavelength range than the 
TIMED SEE data, it includes the 26–34 nm bandwidth which is considered the primary driver of ionization 
in the F-region ionosphere. Therefore, this dataset is considered valuable despite its omission of radiation 
in the 50–105 nm range included in other EUV data. The data are available with a 15 s cadence for 2018 
and 2019 and a daily average for 1996 through 2019. The latter are used for the present modeling purposes.

2.3.3. F10.7

Past empirical models for ionospheric TEC have typically used the 10.7 cm radio flux density (F10.7) as the 
input proxy for solar flux. This is partially due to the temporal coverage provided by the F10.7 dataset. De-
veloped first in 1947, this proxy provides a data source for solar variability across several solar cycles. The 
data used are the ground-based observed F10.7 at Ottawa and are not adjusted to one AU before application 
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Figure 2. Time series comparison of the solar flux proxies studied for the period over which the model is built. Only the TIMED SEE EUV data do not cover 
the entirety of the 2000 to 2019 period, having commenced in 2002. TIMED, Thermosphere Ionosphere Mesosphere Energetics Dynamics, SEE, Solar EUV 
Experiment; EUV, extreme ultraviolet flux.

https://dornsifecms.usc.edu/space-sciences-center/download-sem-data/
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to the model. It is mostly the extreme ultraviolet (EUV) wavelengths—roughly the 26–34 nm bandwidth in 
particular—which directly ionize the F-region ionosphere and are therefore absorbed before reaching the 
ground. While it does not directly contribute to ionization or atmospheric heating, F10.7 has been shown to 
correlate with satellite acceleration (Jacchia, 1959) and EUV variability over multiyear time scales (Lean 
et al., 2011).

Data for F10.7 are available for more than six solar cycles. The data used here are provided by the CE-
DAR Madrigal database and shown in Figure 2c. It should be noted that F10.7 is a daily value measured 
between 17 and 20 UT. In ionospheric TEC models, the index is typically applied in conjunction with 
an 81 days moving average, which takes the mean of F10.7 values 40 days prior to and following the day 
in question (F81). The International Reference Ionosphere (IRI) model depends on sunspot number 
(Rz12) and an ionosphere-effective solar index (IG12), and includes both the daily F10.7 and F81 as solar 
flux and ionospheric inputs. Feng et al. (2019) use an average of these two indices as their solar flux 
input parameter. Mukhtarov, Pancheva, et al. (2013) use the daily F10.7 and the linear rate of change of 
F10.7, KF.

2.3.4. Mg II Core-to-wing Ratio

The Mg II index is the core-to-wing ratio of the Mg II Fraunhofer doublet centered at 280 nm (Heath & 
Schlesinger, 1986). The k and h emission lines at 279.55 and 280.27 nm are generated in the upper chromo-
sphere, with nearby wings (“background”) generated in the upper photosphere. Calculation of the ratio be-
tween these emission lines and nearby wings provides a measure for chromospheric activity which is often 
used as a proxy for the extreme ultraviolet flux. The data, the relevant subset of which are shown in Figure 2d, 
are available since 1978 and are developed as a composite index from several data sources (http://www.
iup.uni-bremen.de/UVSAT/Datasets/mgii), including the Global Ozone Monitoring Experiment (GOME), 
Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), GOME-2A, 
GOME-2B, and GOME-2C missions. These data are updated daily, and are normalized to one AU. Viereck 
et al. (2001) suggested for the period of 1978 through 2000 that the Mg II core-to-wing ratio serves as a better 
proxy for EUV radiation in the region of most concern to the ionosphere (roughly 26–34 nm wavelengths) 
than the F10.7 index. Its performance in representing the radiation corresponding to this wavelength range 
makes it particularly applicable to the study at hand.

2.3.5. Lyman-Alpha Index

Machol et al. (2019) describes the development of the Lyman-alpha (Lyman-α) composite. This represents 
the solar output at 121.56 nm, the strongest solar vacuum ultraviolet emission line. The data are available 
from the LASP Interactive Solar Irradiance Data Center (http://lasp.colorado.edu/lisird/), and the corre-
sponding time series for 2000–2019 is shown in Figure 2e. The time series takes into account measurements 
from several instruments and models, as listed on the LASP Interactive Solar Irradiance Data Center web-
page corresponding to the dataset. Machol et al. (2019) describe the scaling of the values from each dataset 
to match the SORCE SOLSTICE reference levels at one AU.

2.3.6. Jacchia-Bowman 2008 (JB2008) S10.7 Index

Tobiska et al. (2008) and ISO14222 (2013) describe the development of the S10.7 index, a solar flux proxy 
measured by the SOHO Solar Extreme ultraviolet Monitor (SEM), the TIMED SEE, the SDO EVE, the 
GOES-14, GOES-15 EUVS, and the GOES-16, GOES-17 EXIS. It isolates the 26–34 nm range, the band-
width which has the most physical impact on ionization in the F-region ionosphere (Banks & Kock-
arts, 1973). The daily values are available for download at the Jacchia-Bowman 2008 Empirical Ther-
mospheric Density Model (JB2008) website (https://sol.spacenvironment.net/JB2008/). The 2000–2019 
time series is shown in Figure 2f. The data are available since December 16, 1995, are updated daily, 
and are normalized to 1 AU. The relationship between the F10.7 and S10.7 indices is shown in the middle 
panel of Figure 3. The best fitting function between the two indices is quartic after scaling S10.7 to the 
units of F10.7.
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Figure 3. Verification of the fit between the corrected F10.7 proxy and the original F10.7, as provided in Schonfeld 
et al. (2019) (top). Relationship between F10.7 and S10.7 for the years 2000–2019 (middle). Relationship between F10.7 and 
FISM2 EUV for the years 2000–2019 (bottom). FISM, Flare Irradiance Spectral Model; EUV, extreme ultraviolet flux.
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In addition to the S10.7 index, which is modified to remove energy at the top of the atmosphere during solar 
minimum as a method of compensating for thermospheric cooling at the bottom of the thermosphere, a 
pure solar version of this index, also called raw without the energy removal, is tested. The corresponding 
time series is shown in Figure 2g. It is found that the official S10.7 index, described above, yields a better-per-
forming ionospheric TEC model. These results are discussed below.

2.3.7. Corrected F10.7

Seeking to correct for some discrepancy observed between F10.7 and EUV, Schonfeld et al. (2019) present a 
corrected F10.7 index by decomposing F10.7 into radiation produced by optically thick bremsstrahlung radia-
tion, optically thin bremsstrahlung radiation, and optically thick gyroresonance radiation. For development 
of this index, the adjusted F10.7 (i.e., normalized to one AU) data are used. These components correspond to 
radiation from the chromosphere, transition region and corona, and the cores of active regions in the coro-
na, respectively. It is the optically thin bremsstrahlung radiation (corrected F10.7 proxy), the data for which 
are shown in Figure 2h, which is suggested for use in place of F10.7 to approximate solar EUV output. A fit 
between the traditional F10.7 and the corrected F10.7 shows a linear relationship up to about F10.7 equal to 96 
solar flux units (sfu) and a power law for solar flux values above 96 sfu. The top panel of Figure 3 shows 
this relationship, reproduced from the fit derived in Schonfeld et al. (2019). The spread in the data around 
the piecewise fit is due to the conversion between the observed F10.7 and the 1 AU-adjusted F10.7 on which 
these fits are defined. Converting F10.7 to its one AU-equivalent, applying the correction, and then reversing 
the one AU-conversion yields the tight spread, with the sharp upper and lower limits resulting from the 
maximum and minimum Earth-Sun separations, respectively. This index is available for the entire duration 
of F10.7.

2.3.8. P10.7 Index

Also derived from F10.7 is the P10.7 index, calculated by taking the mean of the real-time F10.7 with the 81 days 
averaged F10.7 index (F81). Neither of these two indices are normalized to 1 AU, so neither is the derived P10.7. 
This index is used in other ionospheric models to capture solar variability, as described above, but presents 
a philosophical dilemma by using future values of solar flux to predict TEC (Lean et al., 2016). Equation (1) 
shows the method used to calculate the values corresponding to this input parameter. Figure 2i shows the 
time series corresponding to this index.

 10.7 10.7 81( ) / 2P F F (1)

2.3.9. Solar Irradiance Platform (SIP) E10.7

The Solar Irradiance Platform (SIP, formerly the SOLAR2000 model) provides a comprehensive solar 
spectrum developed by the Space Environment Technologies (SET) company (http://www.spacewx.com/
solar2000.html). The company has developed several proxies for solar activity and provides them to the 
research community. The E10.7 index, shown in Figure 2j, most closely resembles the solar EUV spectrum by 
reporting the flux from 1 to 105 nm scaled to solar flux units (sfu). The index is also normalized to one AU. 
The index reflects general solar activity on 27 days and solar cycle (11 years) time scales (Tobiska, 2002). The 
index was developed with the intention of capturing the solar cycle variability and output most directly in-
fluential on the ionosphere-thermosphere system. However, as shown in Figure 2f, the index shows a sharp 
peak in late 2001 and early 2002 not reflected in the other EUV datasets. This is found to have a detrimental 
effect on the model as discussed below.

2.3.10. Flare Irradiance Spectral Model EUV

The Flare Irradiance Spectral Model (FISM) is an empirical model which estimates the solar irradiance in 
the EUV range with a time cadence of 1 day and a spectral resolution of 0.1 nm, 10 times better resolved 
than TIMED SEE EUV. FISM was developed to improve the accuracy of space weather model estimations 

GONCHARENKO ET AL.

10.1029/2020JA028466

9 of 28

http://www.spacewx.com/solar2000.html
http://www.spacewx.com/solar2000.html


Journal of Geophysical Research: Space Physics

(Chamberlin et  al.,  2007). In addition, the development of this model increases temporal resolution for 
the sake of capturing variations due to solar flares (Chamberlin et al. 2008). Here we use version two of 
the FISM data. This formulation is based on data from SORCE SOLSTICE XPS (Level 4, version 11), the 
Miniature X-ray Solar Spectrometer (MinXSS), SDO/EVE MEGS A/B (Level 3, version 6), and SORCE SOL-
STICE (version 18), all of which are normalized to 1 AU. The proxy is available in bands from 0 to 190 nm, 
although, as with the TIMED SEE data, only the 0.05–105.05 nm wavelength bins are used here. The data 
were processed by integrating across this band pass. Upon investigation it was found that the inclusion of 
higher wavelengths in the EUV range does not significantly contribute to the performance of the iono-
spheric model. The data are available from the LASP Interactive Solar Irradiance Data Center (http://lasp.
colorado.edu/lisird/), and are shown for the 2000–2019 period in Figure 2k. The relationship between the 
F10.7 and FISM2 indices is shown in the bottom panel of Figure 3.

3. Formulation of the New Empirical Model
We construct a model of TEC variation at a given location (45°N, 0°E in this specific case) and a given time 
t as a function of solar flux, season, and geomagnetic activity through a multiple linear regression fit of the 
observed TEC to time series of solar flux proxies (with multiple delays), seasonal oscillations, geomagnetic 
activity indices (with multiple delays), and cross modulation of these terms. Explicitly, the model is formu-
lated as follows:

    0( , ) ( ) ( ) ( ) ( , ),sol seas geo cr termsTEC t DOY TEC TEC t TEC DOY TEC t TEC t DOY (2)
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Equation (3) describes the TEC response to solar activity, where F is a solar activity proxy (i.e., one of 
the proxies described in Section 2.3) and n is a temporal lag of this proxy (in days). As formulation of the 
model allows easy manipulation with addition or exclusion of different terms, extensive testing of dif-
ferent lags in the solar activity proxy was performed. Delay terms of 1 day, 2 days, 3 days, 4 days, 6 days, 
8 days, 24 days, and 36 days were considered for the solar flux terms in addition to the real-time (0 h 
delay) term. Although delay terms with 2–6 days showed some statistical significance, their inclusion 
resulted in lower coefficients for real-time solar flux terms, but did not lead to meaningful improvement 
of the model. Ultimately, only the real-time, 1-day delay, 8 days delay, 24 days delay, and 36 days delay 
terms showed highest significance, and the n listed after the formula indicates solar proxy delays that 
were included in the current version of the model (n = 0, 1, 8, 24, 36 days). Note that a square term for the 
real-time solar proxy is also included. Equation (4) describes seasonal variation as a combination of sine 
and cosine functions that correspond to annual, semiannual, 4 months, and 3 months variations. Short-
er-term variations (4 months, 3 months) were found to be significant and improve the description of the 
timing for equinoctial enhancements in TEC. The annual oscillation term included in formula (4) also 
accounts for TEC variations due to the varying Sun-Earth distance that is not considered in some of the 
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proxies. Equation (5) describes the dependence on geomagnetic activity as a function of Ap3 index and 
different temporal lags of Ap3 index. Several temporal Ap3 lags were included in the model after extensive 
testing for their statistical significance, specifically, 3 , 24, 48 , and 72 h. Finally, equation (6) describes 
the statistically significant cross terms (e.g., amplitude modulation of solar flux and seasonal terms). This 
approach produces 35 fitting coefficients a, b, c, d, e, and f. We note that solar flux terms and geomagnetic 
activity terms were standardized based on the median and standard deviation of the observed values in 
the 20-year period considered in this study.

The model uses standardization (also called Z-score normalization) which is a scaling technique that 
rescales predictors so that they have the properties of a standard normal distribution with mean, μ = 0 
and standard deviation, σ = 1. This technique scales the predictors in a way that they range between 
[−1,1]. The standardization technique is shown in Equations (7)–(10), where Fmed and Ap3med are the 
medians of the FISM2 EUV and Ap3 index, respectively, calculated for each LT, and Fstd and Ap3std are 
the standard deviations of the FISM2 and Ap3 indices, respectively, calculated for each LT. Squared 
variables are not standardized independently, but rather are calculated by squaring the standardized 
linear terms. This is done to reduce multicollinearity without affecting the correlation coefficients with 
other variables (Kim & Dong-Ku, 2011). We slightly modify this method by using the median rather 
than the mean to account for the large number of statistical outliers which exist in both the solar flux 
and geomagnetic datasets.

EUV t n EUV t n F F nFISM stand FISM med std2 2 0 1 8 24( ) [ ( ) ] / ( ); , , , ,     336 days (7)

 22 22 FISM standFISM stand
EUV EUV (8)

Ap t l Ap t l Ap Ap l houstand med std3 3 3 3 0 3 24 48 72( ) [ ( ) ] / ( ); , , , ,     rrs (9)

Ap t l Ap t l lstand stand3
2

1 3 1
2

1 0 48( ) ; ,   



  h (10)

A distinctive feature of this model is its description of diurnal behavior. While most other models describe 
diurnal behavior as a superposition of sines and cosines with 24, 12, and 8-h periods, this model is com-
posed of 48 separate models, i.e., every 30-min bin of TEC is fitted with equations (2)–(6), resulting in 1,680 
fitting coefficients for a local model. This approach is similar to that used by Themens et al.  (2017) and 
allows accurate description of diurnal behavior, especially the rapid TEC increase after the sunrise and 
decrease after the sunset. This formulation is also useful in assessing the importance of each predictor at 
different local times. To construct the model, we have used 90% of the available TEC data, randomly select-
ed out of all 20 years of observations. The remaining 10% of data were used for testing purposes. Statistical 
significance of each input parameter in Equations (2)–(6) was examined based on the Analysis of Variables 
(ANOVA) tables and significance values (P values). While not all UT time bins had high statistical signifi-
cance for all predictors, all showed significance at some point during the day, and therefore were included 
in the model. For example, the squared 48-h delayed Ap3 index (Equation (5)) was relatively insignificant 
from 0 to 4UT and 8 to 17UT, but highly significant (P value less than 0.01) from 5 to 7UT and 19 to 24UT. 
Section 5.1 discusses this aspect in more detail.

Data inspection showed that in addition to data quality issues on the scale of a few days, long-term errors 
(e.g., artificially elevated readings for TEC lasting more than a few days) were present in the original data-
set. To account for these outlier cases, the model is built in two iterations. This involves constructing the 
model at each location twice in succession. After the first iteration, points satisfying the following criteria 
are removed from the set:

1.  Data-model percentage difference exceeds 2 standard deviations
2.  Solar flux (using FISM2 EUV) and relevant delays remain below 6.5 mW/m2

3.  Geomagnetic index (Ap3) and relevant delays remain below 80
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The state of the ionosphere at a given location also depends on several other factors that are not included 
in the present model, like thermospheric composition, temperature, winds, and electric field. These factors 
contribute to the residual variability not captured by the model.

4. Investigation of Solar Flux Proxies
A significant task of the current study is to determine the most suitable solar flux proxy out of those de-
scribed in section 2.3 to use as input to the model. The data themselves show noticeable differences, as 
displayed in Figure 2. In particular, the relative strengths of solar cycles 23 and 24 vary largely depending 
on proxy. For F10.7, S10.7, P10.7, FISM2 EUV, TIMED SEE EUV, Lyman-alpha, and the Mg II core-to-wing ratio, 
the peak of solar cycle 23 (occurring, according to monthly sunspot number, in November 2001) is slight-
ly stronger than that of solar cycle 24 (April 2015). The best-performing models typically use these data 
as their solar flux parameters. In the corrected F10.7, the two solar cycles show similar maximum activity. 
Finally, SOHO EUV, the raw S10.7 index, and especially the E10.7 index predict significantly higher activity 
during the peak of solar cycle 23. Only the TIMED SEE EUV data are not available for the entire 2000 to 
2019 epoch, having begun operations in January 2002.

For each proxy, the same terms were included as parameters in the model: real-time, 24-h delay, 192-h 
(8 days) delay, 576-h (24 days) delay, and 864-h (36 days) delay terms. The real-time solar flux parameter 
included both linear and quadratic terms; the delay terms were only linear. The model was developed twice 
for each solar flux proxy: once from 2002 to 2019, once from 2000 to 2019. This was done in order to provide 
a meaningful comparison of the TIMED SEE EUV data to the other chosen solar flux indices. Several error 
metrics were used to evaluate the performance of these developed models, including the root mean squared 
error (RMSE), mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error 
(MAPE), correlation coefficient (r2), and the mean of the data-model difference. The results of error analysis 
for 45°N 0°E are shown in Table 1 for the entirety of the TEC dataset (2000–2019) and in Table 2 for the years 
covered by the TIMED SEE EUV data (January 2002–2019). We note that the errors in 2002–2019 epoch 
are clearly lower than in 2000–2019. This is most likely related to higher solar activity in 2000–2001 and, 
consequently, higher absolute TEC values during those years. In addition, model errors are evaluated with 
a dependence on LT, as shown in Figure 4 for the 2000–2019 epoch and Figure 5 for the 2002–2019 epoch. 
Diurnal variation in the accuracy of the model is clearly evident for all solar flux proxies, with the largest 
absolute errors typically observed around 12–13 LT and smallest errors around 5 LT, reflecting maximum 
and minimum values of total electron content.
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RMSE (TECu) MSE (TECu2) MAE (TECu) MAPE (%) Correlation coefficient
Mean of data-model 

difference (TECu)

SOHO EUV 3.4108 11.6338 2.0645 17.4295 0.8597 −0.1333

F10.7 2.2039 4.8570 1.4413 13.0032 0.9402 −0.0139

Mg II CWR 2.0706 4.2874 1.4044 12.8850 0.9475 −0.0379

Lyman-alpha 2.2157 4.9094 1.4568 13.0893 0.9402 −0.0597

S10.7 2.064 4.2600 1.3516 12.2320 0.9489 −0.0135

Solar S10.7 2.1577 4.6557 1.4274 12.9051 0.9419 −0.0538

Corrected F10.7 2.5432 6.4679 1.6436 14.8091 0.9106 −0.0704

P10.7 2.1587 4.6598 1.4198 12.8312 0.9420 0.0092

E10.7 2.3204 5.3841 1.5038 13.7618 0.9334 −0.1104

FISM2 EUV 1.9539 3.8177 1.3120 11.9038 0.9537 −0.0269

The error value corresponding to the best-performing proxy in each column is in bold and italic. For all metrics besides the mean of the difference between data 
and model, the model which uses FISM2 EUV performs the best.

Table 1 
Error Evaluation of the Solar Flux Proxies for 2000–2019 at 45°E, 0°N
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Clear differences are observed in the relative performance of each solar flux proxy. For the model which in-
cludes data from 2000 to 2019, the best-performing are the FISM2 EUV, the S10.7 index, the solar S10.7 index, 
and the Mg II core-to-wing ratio. As F10.7 has been traditionally the most-used solar flux proxy, we include 
this proxy for comparison in lieu of solar S10.7 in the bottom panels of Figure 4. P10.7 is excluded from these 
panels, as well, on account of its modest performance in conjunction with the philosophical dilemma in 
its use described above. In comparing the model to the data on which it is built, the best-performing four 
proxies have root mean squared error below 2.2 TECu, mean squared error below 4.66 TECu, mean abso-
lute error below 1.43 TECu, and correlation coefficient above 0.94. These results are consistent with con-
clusions of Maruyama (2010), who investigated five types of solar flux proxies and concluded that the S10.7 
index outperforms M10.7 and F10.7 for TEC modeling over Japan. The Mg II core-to-wing ratio also performs 
better than F10.7 in application to our ionospheric model. This also agrees with the claim made by Viereck 
et al. (2001) in their suggestion that the Mg II data is more suitable than F10.7 as a proxy for the solar extreme 
ultraviolet flux, a suggestion made based on data from 1978 to 2000.

The model built with TIMED SEE EUV data performs well, though we will mostly consider only those prox-
ies available for the longer time period (including all of years 2000 and 2001). The TIMED data do not out-
perform the other indices to an extent which warrants neglecting a large part of the maximum correspond-
ing to solar cycle 23. Even for the 2002–2019 period covered by the TIMED SEE data, there are frequent data 
gaps listed by Woods (2005). Many of these are attributed to the TIMED SEE “Safe Mode.” In terms of r2, for 
daytime hours, TIMED SEE EUV rivals the SIP E10.7. This is expected, as the two proxies represent roughly 
the same wavelength range and the removal of the time period not covered by TIMED SEE avoids the sharp 
peak in E10.7 observed in Figure 2j. SIP v2.38 was derived mostly with the correspondence of indices and 
proxies to the TIMED SEE v11 data. In terms of RMSE, for the 2002–2019 period, the TIMED SEE EUV per-
forms better than all proxies except S10.7 and FISM2 EUV. Regardless, FISM2 EUV outperforms TIMED SEE 
EUV and other proxies in terms of all error metrics and does not suffer from the data gaps shown by TIMED 
SEE EUV, making FISM2 EUV the most appropriate choice of solar flux proxy as input to the model.

As shown in Figure 4, the model built using SOHO SEM EUV is generally the worst-performing. This is 
evident across all error metrics used with the exception of the mean of the data-model difference. Although 
the reason for this is not clear, we note that the ratio between solar maxima 23 and 24 for SOHO SEM 
solar flux is higher than for other formulations of solar flux. In addition, the SOHO SEM flux during the 
solar minimum 2018–2019 is lower than during the solar minimum of 2008–2009 (see Figure 2). While we 
cannot completely rule out some uncorrected degradation of the SEM data during the last several years, 
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RMSE (TECu) MSE (TECu2) MAE (TECu) MAPE Correlation coefficient
Mean of data-model 

difference (TECu)

TIMED EUV 1.7473 3.0532 1.2279 12.5472 0.9397 −0.0030

SOHO EUV 2.7853 7.7576 1.7292 16.4171 0.8602 −0.1153

F10.7 1.8460 3.4075 1.2683 12.8598 0.9411 0.0091

Mg II CWR 1.8402 3.3863 1.2592 12.7875 0.9422 −0.0673

Lyman-alpha 1.9153 3.6684 1.2894 12.9100 0.9363 −0.074

S10.7 1.7272 2.9831 1.1884 12.0422 0.9486 −0.0242

Solar S10.7 1.8502 3.4232 1.2631 12.7769 0.9357 −0.0359

Corrected F10.7 1.9795 3.9183 1.3743 14.1752 0.9107 −0.0452

P10.7 1.8074 3.2667 1.2504 12.6814 0.9431 −0.0016

E10.7 1.9944 3.9775 1.3361 13.5732 0.9267 −0.0972

FISM2 EUV 1.7277 2.9848 1.1717 11.8086 0.9483 −0.0288

The error value corresponding to the best-performing proxy within each column is in bold and italic. For RMSE, MSE, and the correlation coefficient, the model 
which uses S10.7 performs the best. For MAE and MAPE, FISM2 EUV produces the best-performing model. For the mean of the difference between data and 
model, the P10.7 index produces the best-performing model.

Table 2 
Error Evaluation of the Solar Flux Proxies for 2002–2019 at 45°N, 0°E
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comparison of SOHO SEM with SDO EVE measurements shows good agreement of observations at least 
until the end of 2013 (Wieman et al. 2014).

To indicate an overall relationship between TEC and different solar data, Figure 6 presents a relative devi-
ation in the ratio TECmod/Fsol for four of the best-performing formulations of solar flux at 6 LT (top) and 15 
LT (bottom). The relative deviation is determined as:

 
  
 

 
 
 

Δ

mod mod

sol solmod mean

sol mod

sol mean

TEC TEC
F FTEC

F TEC
F

 (11)

where TECmod is the TEC value provided by the model and Fsol is the solar flux proxy used in that model. We 
note that the same behavior in relative deviation is seen in TEC observations, though it is more clear in the 
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Figure 4. A comparison of the performance of solar flux proxies with a dependence on local time for 2000–2019.



Journal of Geophysical Research: Space Physics

modeled TEC. For six LT, relative deviation is simple and shows a strong annual variation, with wintertime 
minimum and summertime maximum, and a weak solar activity dependency. For 15 LT, the relative devia-
tion is more complex and is dominated by two main features: solar activity variation and seasonal variation. 
Positive values are seen for high-solar activity levels and negative values for lower solar activity levels, 
probably reflecting the nonlinear nature of TEC response to increases in solar flux. The seasonal response 
is more complex and shows a minimum in TECmod/Fsol in winter and two peaks during the equinoxes. This 
behavior reflects an annual variation in TEC with lower TEC in winter than in summer, and a semiannual 
variation in TEC which is partially related to semiannual variation in neutral composition and density. All 
four formulations of solar flux show these features, though dependence on solar activity level is strongest 
for the MgII index and weakest for the S10.7 index. In developing the S10.7 index, SET artificially removes 
about 30% of the energy at the top of the atmosphere during solar minimum by reducing the solar value of 
S10.7 in order to correct for thermospheric cooling and to best match the orbital drag above 200 km for the 
NORAD catalog, where S10.7 is primarily used in operations. Apparently, this adjustment affects the TEC 
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Figure 5. A comparison of the performance of solar flux proxies with a dependence on local time for 2002–2019.
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values as well, as the S10.7 index is found to perform very well for TEC modeling and only slightly worse 
than FISM2 EUV.

To summarize, our analysis of the several formulations of the model differing only in the solar flux proxy 
suggest that FISM2 EUV is statistically the best choice to use in the final formulation of the model. Models 
built with this proxy outperform those developed with datasets traditionally used to reflect solar activity, 
F10.7 in particular. Not only does FISM2 EUV show that it is the most appropriate proxy to use through statis-
tical analysis, but also according to physical application to the system being modeled. These data are devel-
oped to directly reflect the solar output between 0.05 and 105.05 nm. This includes the 26–34 nm range, the 
subset of the extreme ultraviolet range absorbed by atomic oxygen above 200 km (Tobiska et al., 2008), [IS 
14222] which corresponds mostly to the F-region ionosphere. From a physical point of view, it is reasonable 
that an index reflecting the solar irradiance in the bandwidth responsible for a large portion of ionization 
in the ionosphere (in addition to other wavelengths in the EUV range) should produce the best-performing 
model. S10.7 reflects the 26–34 nm range, but does not cover other potentially relevant wavelengths in the 
EUV range. FISM2 EUV, therefore, is ultimately the dataset used to characterize solar flux in the final for-
mulation of the model. For historical purposes and for comparison with other models, we also retained the 
version of the model using F10.7, as F10.7 proxy has been traditionally used for thermospheric and ionospheric 
modeling.

5. Evaluation of Model Performance
5.1. Performance Metrics

It was concluded in Section 4 that the model with FISM2 EUV as a solar flux index performs better than 
with other solar flux surrogates. In this section, we examine in more detail performance of the model with 
the FISM2 EUV data. A variety of metrics are used to examine different features in the models' performance, 
with several of them already presented in Figures 4 and 5. The top panel of Figure 7 shows a scatter plot of 
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Figure 6. Relative deviation of TECmod/Fsol ratio for different solar flux proxies at 6 LT (top) and 15 LT (bottom).
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the observed and modeled TEC for all conditions, together with a linear 
fit and several performance metrics. The RMSE of the model is 1.9539 
TECu. We note that this is lower than RMSE = 2.5–3.0 TECu obtained 
by Feng et al. (2019) at midlatitudes, even though Feng et al. (2019) used 
highly smoothed IGS TEC maps with inherently lower variability in 
TEC data. In a study which is closer to our effort, when the empirical 
TEC model was constructed based on high-resolution observations over 
middle latitudes in Japan, the RMSE is equal to 3.3–3.4 TECu (Maruy-
ama, 2010). The higher accuracy of our model is thought to result from a 
more detailed description of solar flux, seasonal and local time behavior, 
and inclusion of geomagnetic activity effects.

The bottom panel of Figure 7 shows a scatter plot of the observed and 
modeled TEC for all conditions for the model developed using S10.7 as the 
solar flux input parameters. This is the second-best-performing model of 
those developed using the formulation for model construction defined 
here. The error metrics corresponding to this model are less favorable 
than those for the model developed using FISM2 EUV, though both mod-
els perform better than previous models referenced above which provide 
error metrics for this latitude (Feng et al., 2019; Maruyama, 2010).

Figure 8 illustrates the performance of the TEC model with season and 
local time using common error metrics such as mean absolute percent-
age error (MAPE, top), root mean square error (RMSE, middle), and root 
mean square percentage error (RMSPE, bottom). In Figure 8, all metrics 
are calculated independently for each 30-min local time bin with a sliding 
10 days window. The daytime MAPE is mostly within 8–13% for all sea-
sons, indicating that the model does not have seasonal biases and prop-
erly reflects seasonal variation in TEC. The nighttime MAPE increases to 
15–17% due to the decrease in TEC at night, but does not reach 20%. The 
RMSE variation (middle panel) shows the opposite local time behavior, 
again following diurnal variation in TEC, and varies mostly within 2–3 
TECu for daytime and 0.5–1.5 TECu at night. The increase in RMSE in 
March-April and September-October is related to a combination of the 
semiannual variation in TEC, i.e., equinoctial enhancement, and elevated 
levels of geomagnetic activity. The RMSPE closely follows the variation 
in MAPE and varies within 12–15% during daytime and 15–20% at night. 
Overall, the model does not show seasonal or local time biases, and sea-
sonal or local time variations in considered metrics are consistent with 
such variations in TEC.

Figure  9 presents more details on fitting coefficients (left panels) and 
P values (right panels) for several terms reflecting geomagnetic activity 
(top) and solar flux (bottom). For geomagnetic activity, the largest co-
efficients are real-time Ap3 and Ap3 with a 3-h delay; they reach maxi-
mum values during daytime hours (9–18 LT). Note that the coefficient 
for real-time quadratic Ap3 is negative, thus decreasing the influence of 
real-time Ap3. Overall, the combination of terms indicates positive coef-
ficients for real-time Ap3 and Ap3 with 3-h delay for daytime hours and 
mixed or negative results around dawn (3–7 LT), with a nonlinear im-
pact of Ap3 variations on TEC. This dependency corresponds to a positive 
storm effect (increase in electron density and, subsequently, in TEC) oc-
curring at midlatitude locations during daytime shortly after an increase 
in geomagnetic activity, and mixed or negative storm effect (decrease in 
TEC) after an increase in geomagnetic activity occurring at dawn. The 
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Figure 7. Scatter plot showing the relationship between observed and 
modeled TEC for the model built with FISM2 EUV as the solar flux proxy 
(top). Scatter plot showing the relationship between observed and modeled 
TEC for the model built with S10.7 as the solar flux proxy (bottom). TEC, 
total electron content; FISM, Flare Irradiance Spectral Model; EUV, 
extreme ultraviolet flux.
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positive ionospheric storms at middle latitudes are typically observed in the initial phase of the storm and 
are most likely to occur at longitudes that are in the ionization production dominated morning-noon local 
time sectors during the onset of geomagnetic storm (Balan et al., 2010; Lu et al., 2008; Prölss, 1995). Positive 
storm effects are driven by combined effects of equatorward wind and prompt penetration electric fields 
that lift the ionospheric plasma to higher altitudes with lower recombination rates. Our results are fully 
consistent with earlier studies of positive storm effects. Study of storm effects by Thomas et al. (2016) noted 
first emergence of weak negative storm effects 3–6 h after the storm onset in the dusk and dawn regions. 
Our results of weak negative Ap3 coefficients around dawn are also consistent with Thomas et al. (2016) 
study. We also note a pronounced 3-h variation in coefficients for Ap3 and Ap3 with 3-h delay; this variation 
has the opposite behavior (increase in the Ap3 coefficient at a time of decrease of the coefficient for Ap3 with 
3-h delay). This most likely reflects the competing nature of temporal delays in TEC to a geomagnetic storm 
and points to the shortcomings of the Ap3 index; an index with higher temporal resolution than the 3-h 
resolution of Ap3 is required to better resolve TEC changes due to geomagnetic activity, as in the example 
of using Dst for 1-h time resolution in the JB2008 model during storm periods. The coefficient for Ap3 with 
24-h delay (black line in top left panel of Figure 9) is negative and highly significant (P values well below 
0.05) for all local times. This corresponds to a well-known negative storm effect in the midlatitude iono-
sphere occurring the day after a geomagnetic storm (Mendillo, 2006; Wood et al., 2016). The coefficient for 
Ap3 with 48-h delay is also negative and statistically significant for all local times. Moreover, we found that 
the coefficient for Ap3 with 72-h delay is statistically significant, especially for nighttime hours, although 
lower than the coefficient for Ap3 with 24-h delay. Physically, this corresponds to long-lasting negative storm 
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Figure 8. Performance of the TEC model in terms of mean absolute percentage error (MAPE, top), root mean square 
error (RMSE, middle), and root mean square percentage error (RMSPE, bottom) as a function of season and local time. 
Performance metrics were calculated using 20 years of data, 2000–2019. TEC, total electron content.
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effects that are weaker but still can be identified 48 h and even 72 h after the storm. Our empirical model is 
expected to capture these negative storm effects.

The dependence of TEC on solar flux (lower panels of Figure 9) is more straightforward. Coefficients and 
P values for FISM2 EUV and S10.7, the solar flux indices which produce the best-performing models, are 
shown. Coefficients for real-time solar flux and all delays are positive for most local times, but largest for 
daytime hours, indicating an obvious connection: the increase in TEC in response to increase in solar ra-
diation. For FISM2 EUV, a larger response is observed during daytime in the 24-h delay term than in the 
real-time solar flux term. The opposite effect is observed for the S10.7 coefficients. The combined effects of 
contributions from both linear and quadratic terms for real-time solar flux are lower during daytime than 
for FISM2 EUV with a 24-h delay, and the two are comparable for nighttime from 0 to 6 LT. From 18 to 24 LT, 
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Figure 9. Modeling coefficients (left) and P values (right) for terms describing dependency on geomagnetic activity (top panels), FISM2 EUV (center panels), 
and S10.7 (bottom panels). The two solar flux datasets are used to develop independent models and inserted here for comparison; the coefficients and P values 
corresponding to Ap3 are mostly independent of the solar flux parameter used. FISM, Flare Irradiance Spectral Model; EUV, extreme ultraviolet flux.
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the real-time linear and quadratic coefficients combined are larger than 
the 24-h delay coefficients, the latter of which are negative from 21 to 24 
LT. The real-time S10.7 coefficients are lower than the 24-h delay from 0 to 
5 LT and higher from 18 to 24 LT; from 20 to 24 LT, the 24-h delay term is 
negative as it was in the case of the FISM2 EUV.

Studies of the thermospheric response to the S10.7 index found that ther-
mospheric density correlates best with S10.7 with a 24-h delay (Bowman 
et al., 2008b), which is consistent with the atomic oxygen thermal con-
duction timescale in the thermosphere. Higher coefficients for the re-
al-time S10.7 index in our model for TEC represent the prevalence of a rap-
id response of ionospheric electron density to ionizing radiation. Longer 
time scales—in particular, solar flux with 24-h delay and 192 , 576, and 
864-h delays—represent the temporal scales of thermospheric response 
to ionizing radiation. However, in the model with FISM2 EUV as the so-
lar flux index, the 24-h delay term has larger coefficients during daytime 
than real-time solar flux. This suggests a higher contribution from the de-
layed thermospheric response to ionizing radiation in this model. Maruy-
ama (2010) has demonstrated that the delayed response of TEC to solar 
irradiance is different for different solar proxies; in their study, SSN and 
the F10.7 proxy perform better with a 2 days delay, while the S10.7 and Mg 
II indices performed better with a 1-day delay. Our study suggests that not 
only is the 1-day delay term significant for FISM2 EUV, but it is more so 
than for the real-time term. Our test also indicates that a temporal delay 
of 144 h has some statistical significance for certain local times. However, 
this term does not lead to a marked increase in the performance of the 
model, and therefore was not included in the current version of the mod-
el. Delay terms of 48, 72, and 96 h do not show statistical significance. 
Similar to Lean et al. (2016), we found that inclusion of solar flux terms 
with several delays decreases the need for 81 days smoothed values, as 

inclusion of an 81 days smoothed solar flux term does not improve the model. Several studies have indicated 
that the combined use of several proxies of solar activity improved the empirical model in comparison with 
a single proxy (Lean et al., 2016; Maruyama, 2010, 2011). We have not explored the use of the combined 
proxies in this study.

We also validate our model through comparison with TEC observations in the year 2020. As our model was 
developed using data collected in 2000–2019, observations in the year 2020 represent an independent data-
set that was not used for model development. Figure 10 presents TEC observations (top panel), predictions 
from our model (middle panel), and data-model differences in TECu (bottom panel) for January-March 
2020. Blue lines indicate variations in the FISM2 EUV index, while black lines indicate variations in Ap3 
index. We note that the January-March 2020 conditions represent very low solar activity and serve as an 
extreme case for comparison. Figure 10 shows that our model accurately captures diurnal variation in TEC, 
with peak TEC predicted for 12–15 LT, in agreement with observations. The model also properly describes 
seasonal variation, a gradual increase from low wintertime TEC to the equinoctial peak in late March. This 
time period also has several minor increases in geomagnetic activity, which nevertheless can produce signif-
icant ionospheric variations during low solar activity conditions. Our model properly captures the increase 
in daytime TEC observed on February 6–7 in response to a prolonged increase in geomagnetic activity 
(Ap3 = 15–27, Kp = 3.0–4.0), and on February 18, 19, and 21 (Ap3 = 18–27). It also describes reasonably well 
the ionospheric response to a short-lived increase in Ap3 that was observed only at one Ap3 value (March 
19, Ap3 = 32 at 1.5UT and Ap3 = 9 at 4.5 UT). The largest data-model differences are observed in March 
and could be related to unresolved variations due to an increase in geomagnetic activity and/or due to iono-
spheric oscillations with multiday periods. For example, upward propagating planetary waves with 5–6 day 
periods have maximum amplitudes during the equinox and could potentially affect electron density, espe-
cially for solar minimum conditions (Gu et al., 2018; Qin et al., 2019; Yamazaki et al., 2018). Our model is 
not expected to capture this type of influence on TEC. The RMSE for the entire 3-month period is 1.0022 
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Figure 10. TEC observations (top), model predictions (middle), and data-
model difference (bottom) for January-March 2020. Variations in FISM2 
EUV (blue line) and Ap3 index (black line) show that this period had 
extremely low solar activity with several minor geomagnetic disturbances. 
TEC, TEC, total electron content; FISM, Flare Irradiance Spectral Model; 
EUV, extreme ultraviolet flux.
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TECu, in line with what would be expected for low solar activity. Overall, the model performs very well for 
these extreme solar minimum conditions and is expected to perform even better for more typical conditions.

Figure 11 presents a prediction of TEC variation with season and local time for different levels of solar ac-
tivity and different formulations of the model, with the FISM2 EUV index (left panels) and F10.7 proxy (right 
panels). The strongest feature in seasonal dependence is semiannual variation, with TEC peaks occurring 
in late March and mid-October for moderate and high levels of solar flux (bottom four panels). This semian-
nual variation in TEC is closely related to semiannual variation in thermospheric composition and density 
(Bowman et al., 2008b; Fuller-Rowell, 1998; Jones et al., 2018; Rishbeth et al., 2000) and has been histor-
ically reported in ionospheric data (Richards (2001) and references therein). For moderate to high levels 
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Figure 11. Model predictions of TEC variations with season and local time for different levels of solar activity. Left panels show the output for a model using 
FISM2 EUV, right panels show a model using F10.7 index. TEC, TEC, total electron content; FISM, Flare Irradiance Spectral Model; EUV, extreme ultraviolet 
flux.
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of solar flux, TEC is higher during the spring equinox than during the fall equinox; this feature has been 
observed in, for example, COSMIC data (Burns et al., 2012). For moderate to high-solar flux, peak values of 
TEC are predicted around local noon for winter and equinox conditions. However, for summer conditions, 
morning (8–11 LT) and evening (17–19 LT) peaks are predicted starting in May and June, shifting to a well 
pronounced evening peak in July–September. This local time behavior is particularly well pronounced for 
low solar flux conditions (top panels), when it dominates seasonal variation to the point where March peak 
in TEC does not develop. Overall, the new TEC model properly predicts numerous ionospheric features that 
are consistent with previous observations of ionospheric variations with solar flux, season, and local time. 
This demonstrates the utility of the model for in-detail studies of such features.

5.2. Comparison with International Reference Ionosphere

The International Reference Ionosphere (IRI, available at irimodel.org) provides an empirical model of 
the ionosphere with outputs of monthly averages of the electron density, electron temperature, ion tem-
perature, ion composition, and other parameters between 50 and 2,000 km altitude (Bilitza, 2004; Bilitza 
et al., 2014, 2017). The model is a result of the long-term effort by international research community and 
collaboration between the Committee on space Research (COSPAR) and the International Union of Radio 
Science (URSI).

For comparison to our model, we use the most recent version, IRI-2016. The 2012 update to the IRI 
model had previously provided improvements in the representations of electron density, electron tem-
perature, and ion composition according to Bilitza et al. (2014). These improvements are attributed to 
updates in ionosonde design and data analysis techniques, including, notably, the representation of 
seasonal and solar flux variability response. The IRI-2016 model also uses F10.7, the sunspot number (R), 
and the ionosonde-based ionospheric global index (IG) as solar flux and ionospheric indices (Bilitza 
et al., 2017). Major improvements of IRI-2016 over IRI-2012 are described by Bilitza et al. (2017) and 
include new model options for hmF2 and an improvement of the representation of topside ion densities 
at the extremes of solar activity. In addition, this update includes progress in developing the IRI Re-
al-Time model. Few differences are observed between IRI-2012 and IRI-2016 in terms of the structure 
of TEC output.

The IRI-2016 model includes F10.7 and F81 (the 81 days averaged F10.7 using 40 days prior to and following the 
date in question) as an optional input. Varying these parameters does not change the output of the model 
significantly, however, as IRI uses the 12-months running means of an ionosphere-effective solar index 
(IG12), sunspot number (Rz12), and other solar flux proxies as the default values to capture variations in 
solar flux (Gulyaeva et al., 2018).

Figure 12 shows the comparison between the GNSS TEC data, our model output, and the IRI-2016 output 
for a year of low solar flux (2008, left panel) and high-solar flux (2012, right panel). FISM2 EUV data, used 
as the solar flux input to our model, is plotted in the top panels as a black line. Several notable differences 
are present.

The most significant difference observed is the presence of short-term fluctuations in TEC in our model 
and the raw data, particularly during a high-solar flux year such as shown in the right panel of Figure 12. 
This periodicity in TEC shown in the data and our model appears to match the solar rotation period of 
27 days. The IRI model does not show this periodicity, presumably because of a lower direct dependence 
on solar flux. The difference is less present in a low solar flux year, as represented in the left panel of 
Figure 12.

We compare the local time dependence of TEC in the data, new model, and IRI-2016. The right panel of 
Figure 12 shows that, during a year of high-solar flux (2012), the spring and autumn peaks in TEC occur 
around 12 LT for the data and both models. During a low solar flux year (2008), an early April peak in TEC 
occurs in the data and new model around 12–14 LT (Figure 12, left panel). IRI-2016 does not predict this 
peak, and in fact shows little LT variation in TEC at this point in the year, possibly because it does not cap-
ture the ionospheric response to a short-term increase in solar flux as shown in the left panel of Figure 12. 
Both IRI-2016 and our model correctly predict a second peak in TEC that occurs around 18–22 LT in May 
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through September. Another local time peak in the late spring and summer, observed at 9–10 LT, is well 
predicted by our model. However, IRI expects it to occur later, around 12 LT. The autumn peak for the data 
and both models is relatively consistent in LT, occurring around 12–14 LT. Under low solar flux conditions, 
the IRI model generally underestimates nighttime TEC values, while our model represents them well. Dur-
ing the spring of a high-solar flux year, the IRI model overestimates daytime TEC, while underestimating 
daytime TEC from June to August. Our model shows a significant improvement in prediction of TEC during 
these times.

Differences in seasonal variation are also present. For a year of low solar flux (2008), IRI predicts twice-daily 
enhancement in TEC in June, and a fall equinox peak in mid-October around 12–14 LT. Our model reflects 
similar seasonal peaks but captures another period of elevated TEC in April which corresponds to an in-
crease in solar flux. For a year of high-solar flux, as shown in the right panel of Figure 12, the spring peak in 
IRI is both earlier and more substantial than in either our model or the TEC data. IRI shows a higher peak in 
TEC centered around mid-March, whereas the most elevated TEC in the new model and data occurs later, in 
late May and early June. The autumn peak in TEC as predicted by IRI is slightly later in the year, in early to 
mid-November, whereas the data and model show an autumn peak in mid-October. Perhaps most notably, 
IRI overestimates daytime TEC during the winter months (December, January, and February in particular) 
during the year of high-solar flux. Our model describes TEC levels during these months well. Figures S1 
and S2 in the supporting information show comparisons of time series of TEC observations, our model, and 
IRI-2016 for different seasons. Figure S3 in the Supporting Information demonstrates the seasonal and local 
time improvement in error of our model over IRI-2016.
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Figure 12. A comparison of GNSS TEC data (top panels), new model output (middle panels), and IRI-2016 output (bottom panels) for 2008 (left column) and 
2012 (right column) at 45°N, 0°E. The FISM2 EUV for 2008 and 2012 is included for comparison to periodic fluctuations in TEC output. GNSS, global navigation 
satellite system; TEC, TEC, total electron content; FISM, Flare Irradiance Spectral Model; EUV, extreme ultraviolet flux.
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Similar limitations in the predictions made by the IRI model are described in other studies. Li et al. (2016) 
make a comparison similar to ours above, but for the years 2009 and 2013, using IRI-2012 to TEC-GIM 
maps at the midlatitude Beijing Fangshan station (BJFS) in China (39.6°N). They note that the periodicity 
of TEC-IRI more closely resembles TEC-GIM during the low solar flux year, while during a high-solar flux 
year, main differences between GIM and IRI-2012 may be largely attributed to periodic (annual, semian-
nual, three-monthly, and four-monthly) components and the solar activity component. Nighttime under-
estimation and daytime overestimation of TEC by IRI-2012 during a high-solar flux year are also noted. 
In this study, the IRI-2012 solar activity component shows very little variation over the course of the year, 
and the IRI-2012 dependence on periodic components is strongly muted when compared to GIM-TEC. 
Large differences are observed, in particular, between the TEC-GIM and TEC-IRI annual and three-month-
ly components during 2013. This suggests that the inclusion of a major dependence on both periodic and 
solar activity components may yield better agreement with the data, particularly during years of relatively 
high-solar flux. Similar patterns are observed in comparison of IRI-2016 to our model and the GNSS TEC 
data, as described above.

As described by Tariku (2016), who studies IRI-2012, this version tends to underestimate TEC at midlati-
tudes during years of low solar flux, and often overestimates the data during years of higher solar flux. In 
a comparison of IRI-2016 and IRI-2012 to TEC data over midlatitude locations in the continental United 
States, Tariku (2019) notes that IRI-2016 is better able to estimate TEC during evening hours than IRI-2007 
and IRI-2012, but largely overestimates TEC when solar flux increases during the day. This is particularly 
clear during periods of low solar flux, including the December solstice. Differences between IRI-2012 and 
IRI-2016 are attributed to IRI-2012's omission and IRI-2016's subsequent addition of the plasmaspheric 
TEC, which contributes to overall TEC more significantly during nighttime (Kumar, 2016). Zakharenkova 
et al.  (2015) similarly shows that the IRI-Plas model, an extension of IRI accounting for plasmaspheric 
contributions prior to the development of IRI-2016, overestimates TEC at middle latitude even during pe-
riods of low to moderate solar flux. The limitations of IRI-2016 are attributed to the new model options in 
estimating hmF2 directly as well as the improved representation of topside ion densities at extremes of solar 
activity, as discussed in Bilitza et al. (2017) and Tariku (2019). Of particular concern to Kumar (2016) is the 
difference between EUV (particularly 26–34 nm) and the solar flux parameters used in the IRI model; in 
IRI-2012, the TEC output depends on NmF2 and hmF2, which depend on IG12 and Rz12, respectively. Many 
sources cite that differences between IRI-TEC and TEC data tend to be less significant at midlatitudes than 
low and high latitudes (Alcay et al., 2017; Kumar, 2016; Kumar et al., 2015).

Our model addresses several of the limitations of IRI addressed by these studies and our discussion above. 
Most notably, the 27-day periodic variations in TEC during years of high-solar flux are well captured by 
our model, while both IRI-2012 (Li et al., 2016) and IRI-2016 fail to describe it. Our model captures the 
daytime and nighttime amplitude as well as the seasonal and local time position of the TEC peak, a notable 
improvement over the nighttime underestimation, daytime overestimation, and seasonal and local time 
limitations of IRI.

6. Summary
Development of forecasting capabilities of the near-Earth space environment remains one of the important 
topics in space weather research. As the accuracy of existing empirical models falls short of what is required 
to meet the needs of space weather services and the needs of academic research community, development 
of new empirical models with increased accuracy and spatiotemporal resolution is required.

This work presents the first stage in the development of a new empirical TEC model that aims to provide 
high temporal and spatial resolution. The model is formulated at a single location, 45°N and 0°E, and aims 
to accurately describe variations in TEC with solar cycle, season, LT, and geomagnetic activity with 30-min 
resolution. The model is constructed using 20 years of high-resolution TEC observations from the CEDAR 
Madrigal database (2000–2019) and uses multiple temporal delays (ranging from 24 h to 36 days for solar 
flux and from 3 to 72 h for geomagnetic activity) to describe TEC dependence on solar EUV and geomag-
netic activity.
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The central focus of the current work is investigation of different descriptions of solar flux proxies with the 
goal to select the most appropriate proxy to describe TEC variations. This study examined 11 descriptions of 
solar flux surrogates and measurements (TIMED SEE EUV, SOHO EUV, F10.7, the Mg II core-to-wing ratio, 
the Lyman-alpha composite, S10.7, raw S10.7, corrected F10.7, P10.7, E10.7, and FISM2 EUV) for two time periods, 
2000–2019 and 2002–2019, using the same formulation of the empirical model. Our results indicate that the 
FISM2 EUV index performs the best, closely followed by the S10.7 index, the F10.7 proxy, and the Mg II index. 
As inclusion of the years 2000–2001 is important for proper description of TEC variations during high-solar 
activity, the absence of TIMED EUV data prior to 2002 limits its applicability.

The overall RMSE of the model is 1.9539 TECu, lower than that of comparable empirical models. The RMSE 
of the new empirical model varies within 0.5–1.5 TECu at night and 2–3 TECu during the daytime. MAPE 
(Mean Absolute Percentage Error) varies within 8–13% during daytime and within 15–17% at night, without 
seasonal biases. Higher accuracy is attributed to the combined influences of more accurate descriptions of 
TEC dependency on solar flux, season, local time, and geomagnetic activity.

The model represents well features such as changes in TEC with solar activity, season, and LT, semiannual 
variation in TEC, and stronger enhancement in TEC in March as compared to October.

The new empirical model properly captures several features that are not well represented by IRI-2016, in 
particular wintertime TEC for moderate to high-solar flux, and LT variations of TEC for low solar flux con-
ditions. However, the largest strength of our model in comparison with IRI-2016 is an accurate description 
of TEC variation in response to short-term changes in solar flux.

Future efforts envision extension of the modeling approach to other longitudes and latitudes, as well as 
inspection and introduction of additional space weather and meteorological drivers.

Data Availability Statement
All of the data used in this paper are publicly available. GPS TEC data products and access through the 
CEDAR Madrigal distributed data system (http://cedar.openmadrigal.org/) are provided to the communi-
ty by the MIT Haystack Observatory. The F10.7 proxy and Ap3 index are also available from (http://cedar.
openmadrigal.org/). The Mg II core-to-wing ratio is available at (http://www.iup.uni-bremen.de/UVSAT/
Datasets/mgii). S10.7 index data is provided by (https://sol.spacenvironment.net/JB2008/). E10.7 index is pro-
vided by Space Environment Technologies (SET) (http://www.spacewx.com/solar2000.html. The SOHO 
SEM EUV data are made available by USC Dornsife (https://dornsifecms.usc.edu/space-sciences-center/
download-sem-data/). The FISM2 EUV and Composite Lyman-alpha data are available from the LASP In-
teractive Solar Irradiance Data Center (http://lasp.colorado.edu/lisird/). The TIMED SEE data are available 
from the University of Colorado at Boulder Laboratory for Atmospheric and Space Physics (LASP) website 
(http://lasp.colorado.edu/home/see/data/). Data for TEC processing is provided from the following organ-
izations: UNAVCO, Scripps Orbit and Permanent Array Center, Institut Geographique National, France, 
International GNSS Service, The Crustal Dynamics Data Information System (CDDIS), National Geodetic 
Survey, Instituto Brasileiro de Geografia e Estatística, RAMSAC CORS of Instituto Geográfico Nacional de 
la República Argentina, Arecibo Observatory, Low-Latitude Ionospheric Sensor Network (LISN), Topcon 
Positioning Systems, Inc., Canadian High Arctic Ionospheric Network, Centro di Ricerche Sismologiche, 
Système d'Observation du Niveau des Eaux Littorales (SONEL), RENAG: REseau NAtional GPS permanent, 
GeoNet—the official source of geological hazard information for New Zealand, GNSS Reference Networks, 
Finnish Meteorological Institute, and SWEPOS—Sweden.

References
Aa, E., Zhang, D., Ridley, A. J., Xiao, Z., & Hao, Y. (2012). A global model: Empirical orthogonal function analysis of total electron content 

1999-2009 data. Journal of Geophysical Research, 117, A03328. https://doi.org/10.1029/2011JA017238
Alcay, S., Oztan, G., & Selvi, H. (2017). Comparison of IRI_PLAS and IRI_2012 model predictions with GPS-TEC measurements in differ-

ent latitude regions. Annals of Geophysics, 60(5), 0549. https://doi.org/10.4401/ag-7311
Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., et al. (2010). A physical mechanism of positive iono-

spheric storms at low latitudes and midlatitudes. Journal of Geophysical Research, 115, A02304. https://doi.org/10.1029/2009JA014515

GONCHARENKO ET AL.

10.1029/2020JA028466

25 of 28

Acknowledgments
Larisa P. Goncharenko and Cole A. 
Tamburri acknowledge support of this 
study from NASA Grant 80NSS-
C19K0262. Larisa P. Goncharenko, 
Anthea J. Coster, Shun-Rong Zhang, 
and Cole A. Tamburri also acknowledge 
funding from the ONR Grant N00014-
17-1-2186. Cole A. Tamburri gratefully 
acknowledges support from the US Na-
tional Science Foundation (NSF) REU 
(Research Experience for Undergradu-
ates) program Grant AST-1659420 to the 
Massachusetts Institute of Technology 
(MIT) Haystack Observatory that 
funded his effort in summer 2019. TEC 
data processing and research activities 
at MIT Haystack Observatory are sup-
ported by US NSF Grant AGS-1952737. 
W. Kent Tobiska acknowledges support 
from SPAWAR contract N6600120P6336 
for the production of the S10, M10, and 
Y10 indices. The authors acknowledge 
the MATLAB interface to IRI-2016 that 
was used in this study and available 
at https://github.com/space-physics/
IRI2016.

http://cedar.openmadrigal.org/
http://cedar.openmadrigal.org/
http://cedar.openmadrigal.org/
http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii
http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii
https://sol.spacenvironment.net/JB2008/
http://www.spacewx.com/solar2000.html
https://dornsifecms.usc.edu/space-sciences-center/download-sem-data/
https://dornsifecms.usc.edu/space-sciences-center/download-sem-data/
http://lasp.colorado.edu/lisird/
http://lasp.colorado.edu/home/see/data/
https://doi.org/10.1029/2011JA017238
https://doi.org/10.4401/ag-7311
https://doi.org/10.1029/2009JA014515


Journal of Geophysical Research: Space Physics

Banks, P., & Kockarts, G. (1973). Aeronomy—Part A. New York and London: Academic Press.
Bilitza, D. (2004). A correction for the IRI topside electron density model based on Alouette/ISIS topside sounder data. Advances in Space 

Research, 33(6), 838–843. https://doi.org/10.1016/j.asr.2003.07.009
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. (2017). International Reference Ionosphere 2016: From 

ionospheric climate to real-time weather predictions. Space Weather, 15, 418–429. https://doi.org/10.1002/2016SW001593
Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., et al. (2014). The International Reference Ionosphere 2012—A 

model of international collaboration. Journal of Space Weather and Space Climate, 4, A07. https://doi.org/10.1051/swsc/2014004
Bouya, Z., Terkildsen, M., & Neudegg, D. (2010, July 18–25). Regional GPS-based ionospheric TEC model over Australia using spherical 

cap harmonic analysis. In COSPAR scientific Assembly 2010: 38th COSPAR scientific Assembly. (Abstracts, p. 4). Bremen, Germany: 
COSPAR.

Bowman, B. R., Tobiska, W. K., & Kendra, M. J. (2008a). The thermospheric semiannual density response to solar EUV heating. Journal of 
Atmospheric and Solar-Terrestrial Physics, 70(11–12), 1482–1496. https://doi.org/10.1016/j.jastp.2008.04.020

Bowman, B., Tobiska, W. K., Marcos, F., Huang, C., Lin, C., & Burke, W. (2008b). A new empirical thermospheric density model JB2008 
using new solar and geomagnetic indices. Paper presented at the AIAA/AAS astrodynamics specialist conference and exhibit, Honolulu, 
Hawaii. https://doi.org/10.2514/6.2008-6438

Brum, C. G. M., Rodrigues, F. D. S., Santos, P. T. D., Matta, A. C., Aponte, N., Gonzalez, S. A., & Robles, E. (2011). A modeling study of fof2 
and hmf2 parameters measured by the Arecibo incoherent scatter radar and comparison with IRI model predictions for solar cycles 21, 
22, and 23. Journal of Geophysical Research, 116, A03324. https://doi.org/10.1029/2010JA015727

Burns, A. G., Solomon, S. C., Wang, W., Qian, L., Zhang, Y., & Paxton, L. J. (2012). Daytime climatology of ionospheric NmF2 and hmf2 
from COSMIC data. Journal of Geophysical Research, 117, A09315. https://doi.org/10.1029/2012JA017529

Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. (2007). Flare Irradiance Spectral Model (FISM): Daily component algorithms and results. 
Space Weather, 5, S07005. https://doi.org/10.1029/2007SW000316

Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. (2008). Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. 
Space Weather, 6, S05001. https://doi.org/10.1029/2007SW000372

Chen, Z., Zhang, S.-R., Coster, A. J., & Fang, G. (2015). EOF analysis and modeling of GPS TEC climatology over North America. Journal 
of Geophysical Research: Space Physics, 120, 3118–3129. https://doi.org/10.1002/2014JA020837

Cherniak, I., Zakharenkova, I., Krankowski, A., & Shagimuratov, I. (2012). Plasmaspheric electron content derived from GPS TEC 
and FORMOSAT-3/COSMIC measurements: Solar minimum condition. Advances in Space Research, 50(4), 427–440. https://doi.
org/10.1016/j.asr.2012.04.002

Emmert, J. T., Picone, J. M., & Meier, R. R. (2008). Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 
near-earth objects. Geophysical Research Letters, 35, L05101. https://doi.org/10.1029/2007GL032809

Feng, J. F., Han, B., Zhao, Z., & Wang, Z. (2019). A new global total electron content empirical model. Remote Sensing, 11, 706. https://doi.
org/10.3390/RS11060706

Fuller-Rowell, T. J. (1998). The “thermospheric spoon”: A mechanism for the semiannual density variation. Journal of Geophysical Re-
search, 103(A3), 3951–3956. https://doi.org/10.1029/97JA03335

Gulyaeva, T., Arikan, F., Sezen, U., & Poustovalova, L. (2018). Eight proxy indices of solar activity for the international reference ionosphere 
and plasmasphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 172, 122–128. https://doi.org/10.1016/j.jastp.2018.03.025

Gu, S.-Y., Ruan, H., Yang, C.-Y., Gan, Q., Dou, X., & Wang, N. (2018). The morphology of the 6-day wave in both the neutral atmosphere 
and f region ionosphere under solar minimum conditions. Journal of Geophysical Research: Space Physics, 123, 4232–4240. https://doi.
org/10.1029/2018JA025302

Habarulema, J. B., Mckinnell, L.-A., & Opperman, B. D. (2010). TEC measurements and modeling over Southern Africa during mag-
netic storms; a comparative analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 72(5–6), 509–520. https://doi.org/10.1016/j.
jastp.2010.01.012

Habarulema, J. B., Mckinnell, L.-A., & Opperman, B. D. L. (2011). Regional GPS TEC modeling: Attempted spatial and temporal extrapola-
tion of TEC using neural networks. Journal of Geophysical Research, 116, A04314. https://doi.org/10.1029/2010JA016269

Heath, D. F., & Schlesinger, B. M. (1986). The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. Journal of Geo-
physical Research, 91(D8), 8672–8682. https://doi.org/10.1029/jd091id08p08672

He, C., Yang, Y., Carter, B., Kerr, E., Wu, S., Deleflie, F., et al. (2018). Review and comparison of empirical thermospheric mass density 
models. Progress in Aerospace Sciences, 103, 31–51. https://doi.org/10.1016/j.paerosci.2018.10.003

Huang, Z., & Yuan, H. (2014). Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Science, 49, 283–292. 
https://doi.org/10.1002/2013RS005247

ISO14222 (2013). ISO 14222: Space environment (natural and artificial)—Earth upper atmosphere. Retrieved from https://www.iso.org/
standard/54507.html

ISO16457 (2014). Iso 16457: Space systems—Space environment (natural and artificial)—The earth's ionosphere model: International 
reference ionosphere (IRI) model and extension to the plasmasphere. Retrieved from https://www.iso.org/standard/61556.html

Jacchia, L. G. (1959). Solar effects on the acceleration of artificial satellites (SAO Special Report 29, pp. 1–15). SAO = Smithsonian Astro-
physical Observatory.

Jakowski, N., Mayer, C., Hoque, M. M., & Wilken, V. (2011). Total electron content models and their use in ionosphere monitoring. Radio 
Science, 46, RS0D18. https://doi.org/10.1029/2010RS004620

Jones, M., Emmert, J. T., Drob, D. P., Picone, J. M., & Meier, R. R. (2018). Origins of the thermosphere-ionosphere semiannual oscilla-
tion: Reformulating the “thermospheric spoon” mechanism. Journal of Geophysical Research: Space Physics, 123, 931–954. https://doi.
org/10.1002/2017JA024861

Kim, D.-S., & Dong-Ku, S. (2011). A standardization technique to reduce the problem of multicollinearity in polynomial regression analy-
sis. Retrieved from http://stat.fi/isi99/proceedings/arkisto/varasto/kim0574.pdf

Komjathy, A., Sparks, L., Wilson, B. D., & Mannucci, A. J. (2005). Automated daily processing of more than 1000 ground-based gps receiv-
ers for studying intense ionospheric storms. Radio Science, 40, RS6006. https://doi.org/10.1029/2005RS003279

Kumar, S. (2016). Performance of IRI-2012 model during a deep solar minimum and a maximum year over global equatorial regions. 
Journal of Geophysical Research: Space Physics, 121, 5664–5674. https://doi.org/10.1002/2015JA022269

Kumar, S., Tan, E. L., & Murti, D. S. (2015). Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid 
latitudes. Earth Planets and Space, 67(1), 42. https://doi.org/10.1186/s40623-015-0205-3

Lean, J. L. (2019). One to 10 day forecasts of ionospheric total electron content using a statistical model. Space Weather, 17, 313–338. 
https://doi.org/10.1029/2018SW002077

GONCHARENKO ET AL.

10.1029/2020JA028466

26 of 28

https://doi.org/10.1016/j.asr.2003.07.009
https://doi.org/10.1002/2016SW001593
https://doi.org/10.1051/swsc/2014004
https://doi.org/10.1016/j.jastp.2008.04.020
https://doi.org/10.2514/6.2008-6438
https://doi.org/10.1029/2010JA015727
https://doi.org/10.1029/2012JA017529
https://doi.org/10.1029/2007SW000316
https://doi.org/10.1029/2007SW000372
https://doi.org/10.1002/2014JA020837
https://doi.org/10.1016/j.asr.2012.04.002
https://doi.org/10.1016/j.asr.2012.04.002
https://doi.org/10.1029/2007GL032809
https://doi.org/10.3390/RS11060706
https://doi.org/10.3390/RS11060706
https://doi.org/10.1029/97JA03335
https://doi.org/10.1016/j.jastp.2018.03.025
https://doi.org/10.1029/2018JA025302
https://doi.org/10.1029/2018JA025302
https://doi.org/10.1016/j.jastp.2010.01.012
https://doi.org/10.1016/j.jastp.2010.01.012
https://doi.org/10.1029/2010JA016269
https://doi.org/10.1029/jd091id08p08672
https://doi.org/10.1016/j.paerosci.2018.10.003
https://doi.org/10.1002/2013RS005247
https://www.iso.org/standard/54507.html
https://www.iso.org/standard/54507.html
https://www.iso.org/standard/61556.html
https://doi.org/10.1029/2010RS004620
https://doi.org/10.1002/2017JA024861
https://doi.org/10.1002/2017JA024861
http://stat.fi/isi99/proceedings/arkisto/varasto/kim0574.pdf
https://doi.org/10.1029/2005RS003279
https://doi.org/10.1002/2015JA022269
https://doi.org/10.1186/s40623-015-0205-3
https://doi.org/10.1029/2018SW002077


Journal of Geophysical Research: Space Physics

Lean, J. L., Meier, R. R., Picone, J. M., Sassi, F., Emmert, J. T., & Richards, P. G. (2016). Ionospheric total electron content: Spatial patterns 
of variability. Journal of Geophysical Research: Space Physics, 121, 10367–10402. https://doi.org/10.1002/2016JA023210

Lean, J. L., Woods, T. N., Eparvier, F. G., Meier, R. R., Strickland, D. J., Correira, J. T., & Evans, J. S. (2011). Solar extreme ultraviolet irradi-
ance: Present, past, and future. Journal of Geophysical Research, 116, A01102. https://doi.org/10.1029/2010JA015901

Lei, J., Liu, L., Wan, W., & Zhang, S.-R. (2005). Variations of electron density based on long-term incoherent scatter radar and ionosonde 
measurements over Millstone Hill. Radio Science, 40, RS2008. https://doi.org/10.1029/2004RS003106

Li, S., Li, L., & Peng, J. (2016). Variability of ionospheric TEC and the performance of the IRI-2012 model at the BJFS station, China. Acta 
Geophysica, 64(5), 1970–1987. https://doi.org/10.1515/acgeo-2016-0075

Liu, J., Chen, R., An, J., Wang, Z., & Hyyppa, J. (2014). Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. 
Journal of Geophysical Research: Space Physics, 119, 601–619. https://doi.org/10.1002/2013JA019501

Liu, J., Liu, L., Zhao, B., Wan, W., & Chen, Y. (2012). Empirical modeling of ionospheric F2 layer critical frequency over Wakkanai un-
der geomagnetic quiet and disturbed conditions. Science China Technological Sciences, 55(5), 1169–1177. https://doi.org/10.1007/
s11431-012-4801-1

Liu, L., Wan, W., Ning, B., Pirog, O. M., & Kurkin, V. I. (2006). Solar activity variations of the ionospheric peak electron density. Journal of 
Geophysical Research, 111, A08304. https://doi.org/10.1029/2006JA011598

Liu, L., Yao, Y., Kong, J., & Shan, L. (2018). Plasmaspheric electron content inferred from residuals between GNSS-derived and TOPEX/
JASON Vertical TEC data. Remote Sensing, 10, 621. https://doi.org/10.3390/RS10040621

Lu, G., Goncharenko, L. P., Richmond, A., Roble, R., & Aponte, N. (2008). A dayside ionospheric positive storm phase driven by neutral 
winds. Journal of Geophysical Research, 113, A08304. https://doi.org/10.1029/2007JA012895

Machol, J., Snow, M., Woodraska, D., Woods, T., Viereck, R., & Coddington, O. (2019). An improved Lyman alpha composite. Earth and 
Space Science, 6, 2263–2272. https://doi.org/10.1029/2019EA000648

Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., & Runge, T. F. (1998). A global mapping technique for GPS-derived 
ionospheric total electron content measurements. Radio Science, 33, 565–582. https://doi.org/10.1029/97RS02707

Mao, T., Wan, W.-X., & Liu, L.-B. (2005). An EOF based empirical model of TEC over Wuhan. Chinese Journal of Geophysics, 48(4), 827–834. 
https://doi.org/10.1002/cjg2.720

Mao, T., Wan, W., Yue, X., Sun, L., Zhao, B., & Guo, J. (2008). An empirical orthogonal function model of total electron content over China. 
Radio Science, 43, RS2009. https://doi.org/10.1029/2007RS003629

Maruyama, T. (2010). Solar proxies pertaining to empirical ionospheric total electron content models. Journal of Geophysical Research, 115, 
A04306. https://doi.org/10.1029/2009JA014890

Maruyama, T. (2011). Modified solar flux index for upper atmospheric applications. Journal of Geophysical Research, 116, A08303. https://
doi.org/10.1029/2010JA016322

Mendillo, M. (2006). Storms in the ionosphere: Patterns and processes for total electron content. Reviews of Geophysics, 44, RG4001. https://
doi.org/10.1029/2005RG000193

Mukhtarov, P., Andonov, B., & Pancheva, D. (2013). Global empirical model of TEC response to geomagnetic activity. Journal of Geophys-
ical Research: Space Physics, 118, 6666–6685. https://doi.org/10.1002/jgra.50576

Mukhtarov, P., Pancheva, D., Andonov, B., & Pashova, L. (2013). Global TEC maps based on GNSS data: 1. Empirical background TEC 
model. Journal of Geophysical Research: Space Physics, 118, 4594–4608. https://doi.org/10.1002/jgra.50413

Nava, B., Coïsson, P., & Radicella, S. (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and 
Solar-Terrestrial Physics, 70(15), 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015

Picone, J., Hedin, A., Drob, D., & Aikin, A. (2002). NRL-MSISE-00 empirical model of the atmosphere: Statistical comparisons and scien-
tific issues. Journal of Geophysical Research, 107(A12), 1468. https://doi.org/10.1029/2002JA009430

Prölss, G. W. (1995). Ionospheric f-region storms. Handbook of Atmospheric Electrodynamics, 2, 195–248.
Qin, Y., Gu, S., Dou, X., Gong, Y., Chen, G., Zhang, S., & Wu, Q. (2019). Climatology of the Quasi 6 Day wave in the mesopause region and 

its modulations on total electron content during 2003–2017. Journal of Geophysical Research: Space Physics, 124, 573–583. https://doi.
org/10.1029/2018JA025981

Richards, P. G. (2001). Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and 
models. Journal of Geophysical Research, 106(A7), 12803–12819. https://doi.org/10.1029/2000JA000365

Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994). EUVAC: A solar EUV Flux Model for aeronomic calculations. Journal of Geophysical 
Research, 99(A5), 8981. https://doi.org/10.1029/94JA00518

Rideout, W., & Coster, A. (2006). Automated gps processing for global total electron content data. GPS Solutions, 10(3), 219–228. https://
doi.org/10.1007/s10291-006-0029-5

Rishbeth, H., Müller-Wodarg, I. C. F., Zou, L., Fuller-Rowell, T. J., Millward, G. H., Moffett, R. J., et  al. (2000). Annual and semian-
nual variations in the ionospheric F2-layer: II. Physical discussion. Annales Geophysicae, 18(8), 945–956. https://doi.org/10.1007/
s00585-000-0945-6

Scherliess, L., Tsagouri, I., Yizengaw, E., Bruinsma, S., Shim, J. S., Coster, A., & Retterer, J. M. (2019). The international community co-
ordinated modeling center space weather modeling capabilities assessment: Overview of ionosphere/thermosphere activities. Space 
Weather, 17, 527–538. https://doi.org/10.1029/2018SW002036

Schonfeld, S. J., White, S. M., Henney, C. J., Hock-Mysliwiec, R. A., & Mcateer, R. T. J. (2019). The slowly varying Corona. II. The compo-
nents of F 10.7 and their use in EUV proxies. The Astrophysical Journal, 884(2), 141. https://doi.org/10.3847/1538-4357/ab3af9

Schunk, R. W., & Nagy, A. F. (2009). Ionospheres: Physics, plasma physics, and chemistry (2nd ed.). Cambridge, UK: Cambridge University 
Press.

Shim, J. S., Jee, G., & Scherliess, L. (2017). Climatology of plasmaspheric total electron content obtained from Jason 1 satellite. Journal of 
Geophysical Research: Space Physics, 122, 1611–1623. https://doi.org/10.1002/2016JA023444

Shim, J. S., Kuznetsova, M., Rastätter, L., Bilitza, D., Butala, M., Codrescu, M., et al. (2012). CEDAR Electrodynamics Thermosphere Ion-
osphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and 
hmF2 using space based observations. Space Weather, 10, S10004. https://doi.org/10.1029/2012SW000851

Shim, J. S., Kuznetsova, M., Rastätter, L., Hesse, M., Bilitza, D., Butala, M., et al. (2011). CEDAR Electrodynamics Thermosphere Iono-
sphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground-
based observations. Space Weather, 9, S12003. https://doi.org/10.1029/2011SW000727

Shim, J. S., Rastätter, L., Kuznetsova, M., Bilitza, D., Codrescu, M., Coster, A. J., et al. (2017b). CEDAR-GEM challenge for systematic as-
sessment of ionosphere/thermosphere models in predicting TEC during the 2006 December storm event. Space Weather, 15, 1238–1256. 
https://doi.org/10.1002/2017SW001649

GONCHARENKO ET AL.

10.1029/2020JA028466

27 of 28

https://doi.org/10.1002/2016JA023210
https://doi.org/10.1029/2010JA015901
https://doi.org/10.1029/2004RS003106
https://doi.org/10.1515/acgeo-2016-0075
https://doi.org/10.1002/2013JA019501
https://doi.org/10.1007/s11431-012-4801-1
https://doi.org/10.1007/s11431-012-4801-1
https://doi.org/10.1029/2006JA011598
https://doi.org/10.3390/RS10040621
https://doi.org/10.1029/2007JA012895
https://doi.org/10.1029/2019EA000648
https://doi.org/10.1029/97RS02707
https://doi.org/10.1002/cjg2.720
https://doi.org/10.1029/2007RS003629
https://doi.org/10.1029/2009JA014890
https://doi.org/10.1029/2010JA016322
https://doi.org/10.1029/2010JA016322
https://doi.org/10.1029/2005RG000193
https://doi.org/10.1029/2005RG000193
https://doi.org/10.1002/jgra.50576
https://doi.org/10.1002/jgra.50413
https://doi.org/10.1016/j.jastp.2008.01.015
https://doi.org/10.1029/2002JA009430
https://doi.org/10.1029/2018JA025981
https://doi.org/10.1029/2018JA025981
https://doi.org/10.1029/2000JA000365
https://doi.org/10.1029/94JA00518
https://doi.org/10.1007/s10291-006-0029-5
https://doi.org/10.1007/s10291-006-0029-5
https://doi.org/10.1007/s00585-000-0945-6
https://doi.org/10.1007/s00585-000-0945-6
https://doi.org/10.1029/2018SW002036
https://doi.org/10.3847/1538-4357/ab3af9
https://doi.org/10.1002/2016JA023444
https://doi.org/10.1029/2012SW000851
https://doi.org/10.1029/2011SW000727
https://doi.org/10.1002/2017SW001649


Journal of Geophysical Research: Space Physics

Shim, J. S., Tsagouri, I., Goncharenko, L., Rastaetter, L., Kuznetsova, M., Bilitza, D., et  al. (2018). Validation of ionospheric specifica-
tions during geomagnetic storms: TEC and foF2 during the 2013 March storm event. Space Weather, 16, 1686–1701. https://doi.
org/10.1029/2018SW002034

Tariku, Y. A. (2016). The study of variability of TEC over mid-latitude American regions during the ascending phase of solar cycle 24 
(2009–2011). Advances in Space Research, 58(4), 598–608. https://doi.org/10.1016/j.asr.2016.05.012

Tariku, Y. A. (2019). Mid latitude ionospheric TEC modeling and the IRI model validation during the recent high solar activity (2013–
2015). Advances in Space Research, 63(12), 4025–4038. https://doi.org/10.1016/j.asr.2019.03.010

Themens, D. R., Jayachandran, P. T., Galkin, I., & Hall, C. (2017). The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): 
NmF2 and hmF2. Journal of Geophysical Research: Space Physics, 122, 9015–9031. https://doi.org/10.1002/2017JA024398

Thomas, E., Baker, J., Ruohoniemi, J., Coster, A., & Zhang, S.-R. (2016). The geomagnetic storm time response of GPS total electron content 
in the north american sector. Journal of Geophysical Research: Space Physics, 121, 1744–1759. https://doi.org/10.1002/2015JA022182

Tobiska, W. K. (2002). E10.7 use for global atmospheric density forecasting in 2001. Paper presented at AIAA/AAS Astrodynamics Specialist 
Conference and Exhibit, Monterey, CA. https://doi.org/10.2514/6.2002-4892

Tobiska, W., & Bouwer, S. (2005). Solar flare evolution model for operational users. In J. Goodman (Ed.), 2005 Ionospheric effects symposium 
(76pp.). Janakpuri, Delhi: JMG Associates.

Tobiska, W. K., Bouwer, S. D., & Bowman, B. R. (2008). The development of new solar indices for use in thermospheric density modeling. 
Journal of Atmospheric and Solar-Terrestrial Physics, 70(5), 803–819. https://doi.org/10.1016/j.jastp.2007.11.001

Vergados, P., Komjathy, A., Runge, T. F., Butala, M. D., & Mannucci, A. J. (2016). Characterization of the impact of glonass observables on 
receiver bias estimation for ionospheric studies. Radio Science, 51, 1010–1021. https://doi.org/10.1002/2015RS005831

Viereck, R., Puga, L., Mcmullin, D., Judge, D., Weber, M., & Tobiska, W. K. (2001). The Mg II index: A proxy for solar EUV. Geophysical 
Research Letters, 28(7), 1343–1346. https://doi.org/10.1029/2000GL012551

Vierinen, J., Coster, A. J., Rideout, W. C., Erickson, P. J., & Norberg, J. (2016). Statistical framework for estimating GNSS bias. Atmospheric 
Measurement Techniques, 9(3), 1303–1312. https://doi.org/10.5194/amt-9-1303-2016

Wieman, S., Didkovsky, L., & Judge, D. (2014). Resolving differences in absolute irradiance measurements between the soho/celias/sem 
and the sdo/eve. Coronal magnetometry (pp. 285–303). New York: Springer.

Wood, B. E., Lean, J. L., Mcdonald, S. E., & Wang, Y.-M. (2016). Comparative ionospheric impacts and solar origins of nine strong geo-
magnetic storms in 2010-2015. Journal of Geophysical Research: Space Physics, 121, 4938–4965. https://doi.org/10.1002/2015JA021953

Woods, T. N. (2005). Solar EUV Experiment (SEE): Mission overview and first results. Journal of Geophysical Research, 110, A01312. 
https://doi.org/10.1029/2004JA010765

Woods, T., Bailey, S., Eparvier, F., Lawrence, G., Lean, J., Mcclintock, B., et al. (2000). TIMED solar EUV experiment. Physics and Chemistry 
of the Earth: Solar, Terrestrial & Planetary Science, 25(5–6), 393–396. https://doi.org/10.1016/s1464-1917(00)00040-4

Yamazaki, Y., Stolle, C., Matzka, J., & Alken, P. (2018). Quasi-6-day wave modulation of the equatorial electrojet. Journal of Geophysical 
Research: Space Physics, 123, 4094–4109. https://doi.org/10.1029/2018JA025365

Yizengaw, E., Moldwin, M., Galvan, D., Iijima, B., Komjathy, A., & Mannucci, A. (2008). Global plasmaspheric TEC and its relative contribu-
tion to GPS TEC. Journal of Atmospheric and Solar-Terrestrial Physics, 70(11–12), 1541–1548. https://doi.org/10.1016/j.jastp.2008.04.022

Zakharenkova, I., Cherniak, I., Krankowski, A., & Shagimuratov, I. (2015). Vertical tec representation by IRI 2012 and IRI Plas models for 
European midlatitudes. Advances in Space Research, 55(8), 2070–2076. https://doi.org/10.1016/j.asr.2014.07.027

Zhang, S.-R., Holt, J. M., Erickson, P. J., & Goncharenko, L. P. (2015). Day-to-day variability and solar preconditioning of thermospheric 
temperature over Millstone Hill. Journal of Geophysical Research: Space Physics, 120, 3913–3927. https://doi.org/10.1002/2014JA020578

Zhang, S.-R., Holt, J. M., van Eyken, A. P., McCready, M., Amory-Mazaudier, C., Fukao, S., & Sulzer, M. P. (2005). Ionospheric local model 
and climatology from long-term databases of multiple incoherent scatter radars. Geophysical Research Letters, 32, L20102. https://doi.
org/10.1029/2005GL023603

GONCHARENKO ET AL.

10.1029/2020JA028466

28 of 28

https://doi.org/10.1029/2018SW002034
https://doi.org/10.1029/2018SW002034
https://doi.org/10.1016/j.asr.2016.05.012
https://doi.org/10.1016/j.asr.2019.03.010
https://doi.org/10.1002/2017JA024398
https://doi.org/10.1002/2015JA022182
https://doi.org/10.2514/6.2002-4892
https://doi.org/10.1016/j.jastp.2007.11.001
https://doi.org/10.1002/2015RS005831
https://doi.org/10.1029/2000GL012551
https://doi.org/10.5194/amt-9-1303-2016
https://doi.org/10.1002/2015JA021953
https://doi.org/10.1029/2004JA010765
https://doi.org/10.1016/s1464-1917(00)00040-4
https://doi.org/10.1029/2018JA025365
https://doi.org/10.1016/j.jastp.2008.04.022
https://doi.org/10.1016/j.asr.2014.07.027
https://doi.org/10.1002/2014JA020578
https://doi.org/10.1029/2005GL023603
https://doi.org/10.1029/2005GL023603

	A New Model for Ionospheric Total Electron Content: The Impact of Solar Flux Proxies and Indices
	Abstract
	1. Introduction
	2. Data Sources and Preparation
	2.1. CEDAR Madrigal Database
	2.2. Data Preparation and Error Reduction
	2.3. Solar Flux Proxies
	2.3.1. TIMED SEE EUV
	2.3.2. SOHO SEM EUV
	2.3.3. 
          F
          10.7
        
	2.3.4. Mg II Core-to-wing Ratio
	2.3.5. Lyman-Alpha Index
	2.3.6. Jacchia-Bowman 2008 (JB2008) S10.7 Index
	2.3.7. Corrected F10.7
	2.3.8. 
          P
          10.7 Index
	2.3.9. Solar Irradiance Platform (SIP) E10.7
	2.3.10. Flare Irradiance Spectral Model EUV


	3. Formulation of the New Empirical Model
	4. Investigation of Solar Flux Proxies
	5. Evaluation of Model Performance
	5.1. Performance Metrics
	5.2. Comparison with International Reference Ionosphere

	6. Summary
	Data Availability Statement
	References


