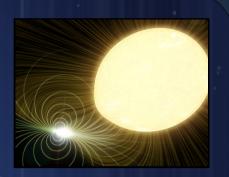
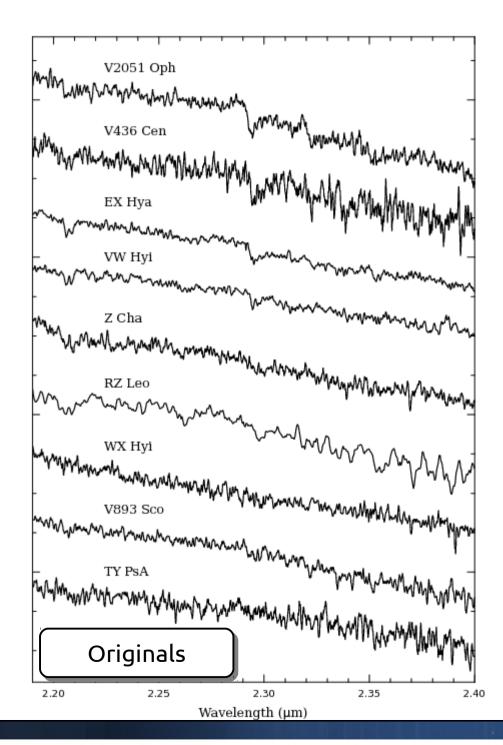
K-band Observations of Sub-Gap Cataclysmic Variables

Ryan T. Hamilton, Thomas E. Harrison New Mexico State University

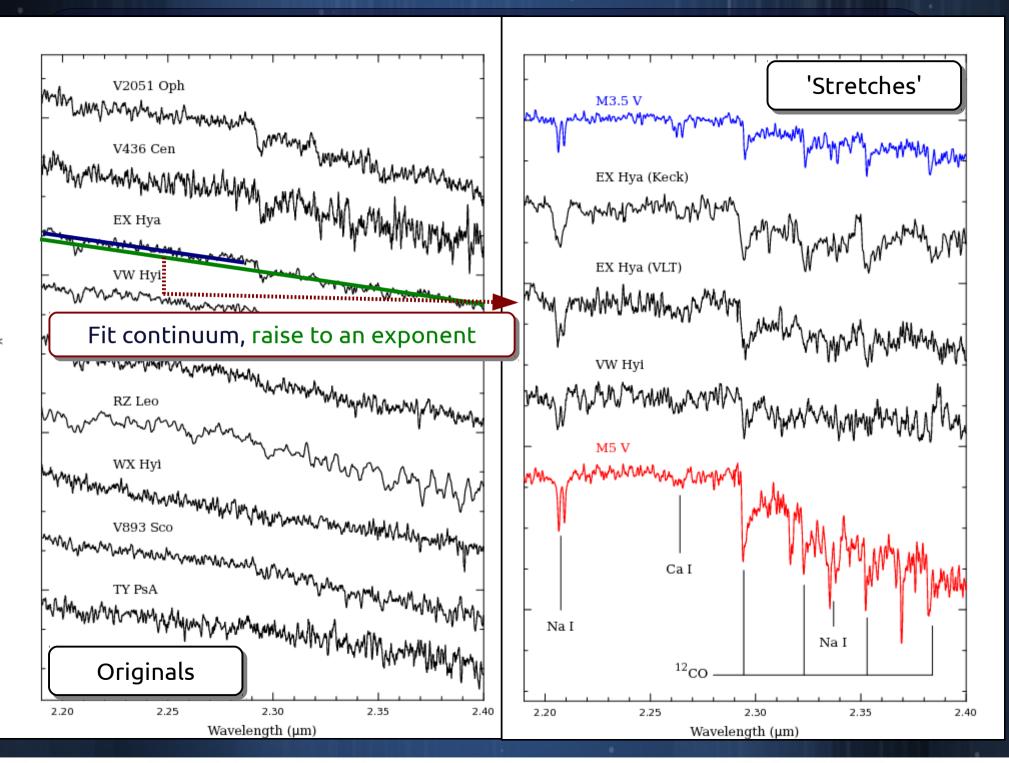

> Claus Tappert Universidad de Valparaiso

> > Steve B. Howell NOAO

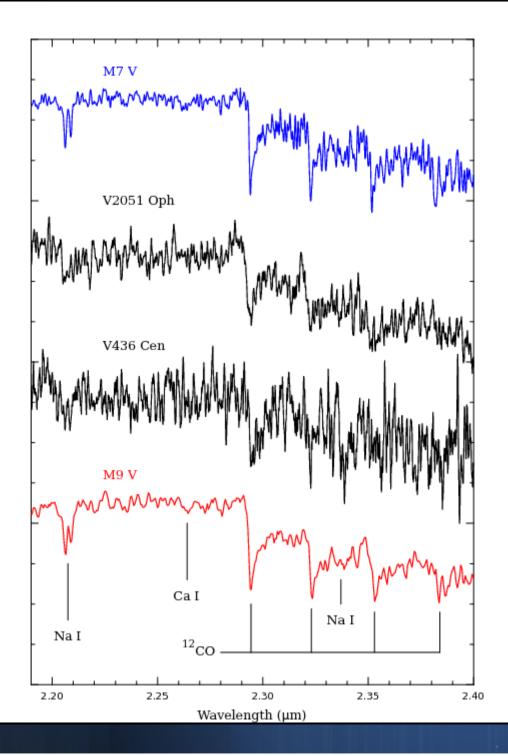
217th AAS, Seattle, WA

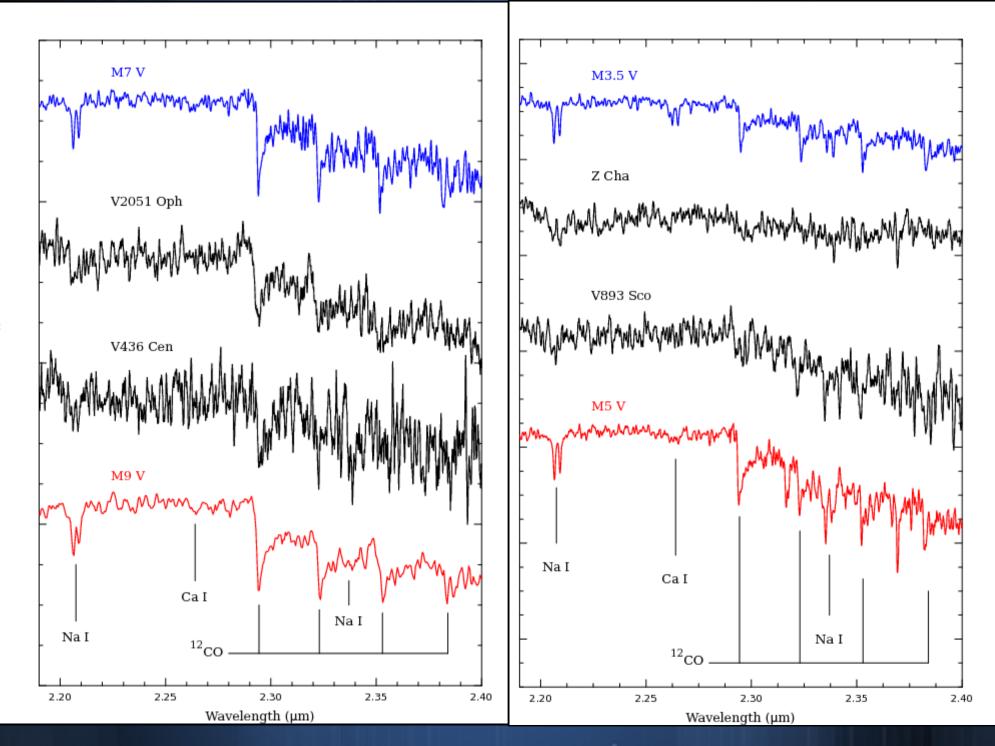


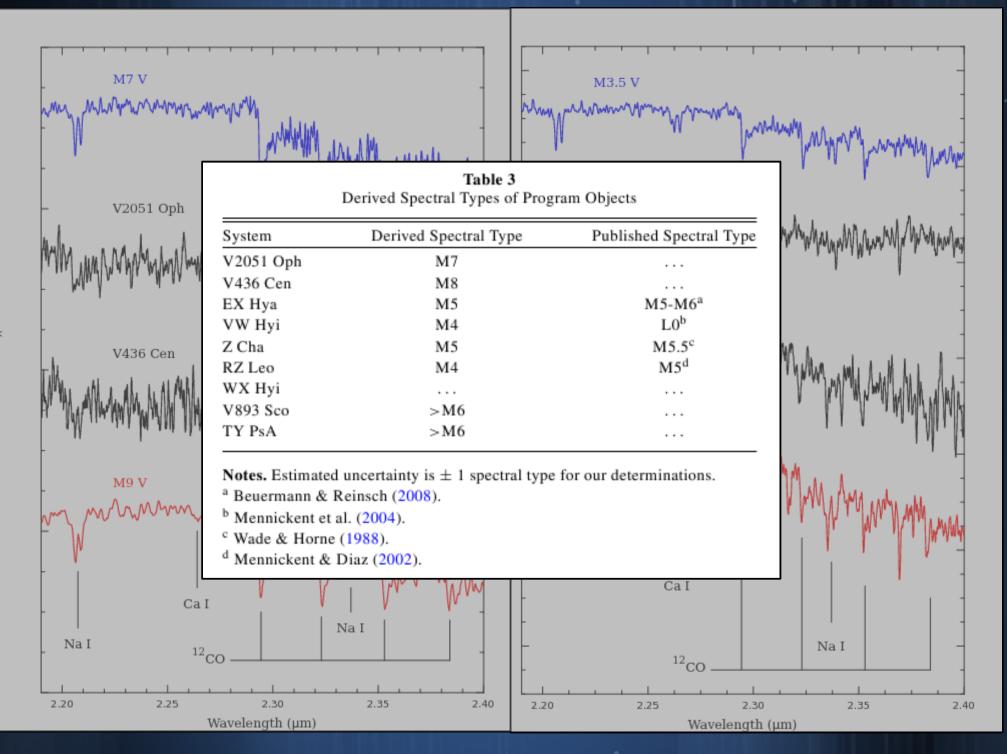
Motivation

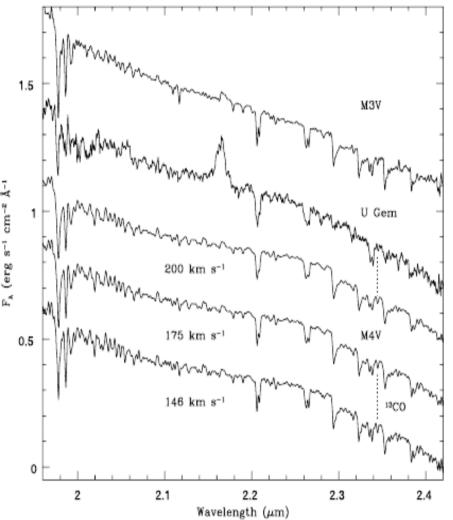


• CV's in 6 words or less: White dwarf, low-mass dwarf, accretion, boom Explanation for 2-3 hr period gap rough • NIR spectra examine secondary directly NIR \rightarrow UV connection? CVs with UV CNO anomaly tend to show weak CO bands... Need more observations! Have any to share? ③ 61 systems with NIR spectra


• 19 Pre-CVs, 31 Non-Mag., 11 Mag./IP

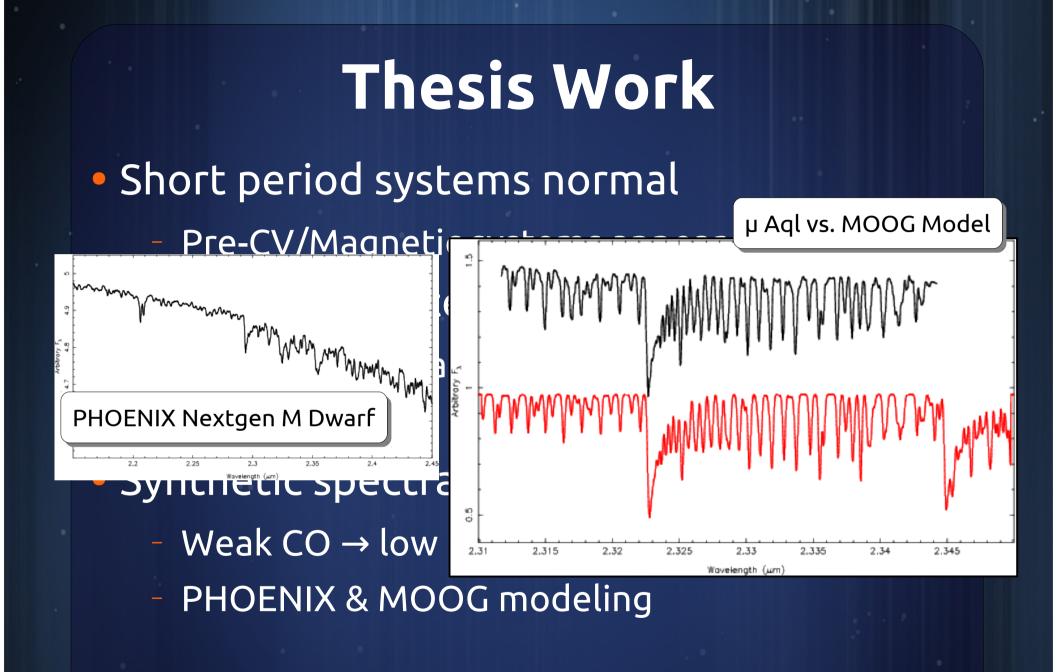

Arbitrary F_{λ}





Thesis Work

- Short period systems normal
 - Pre-CV/Magnetic systems appear normal too
- Long period systems strange
 - 13/19 show weak/absent CO features (~70%)
 - Some enhanced ¹³CO (Harrison et al. 2005)
- Synthetic spectra to play with
 - Weak CO \rightarrow low C abundance?
 - PHOENIX & MOOG modeling


Thesis Work

 Short per Pre-CV Long peri - 13/19 s Some e Synthetic Weak C PHOEN

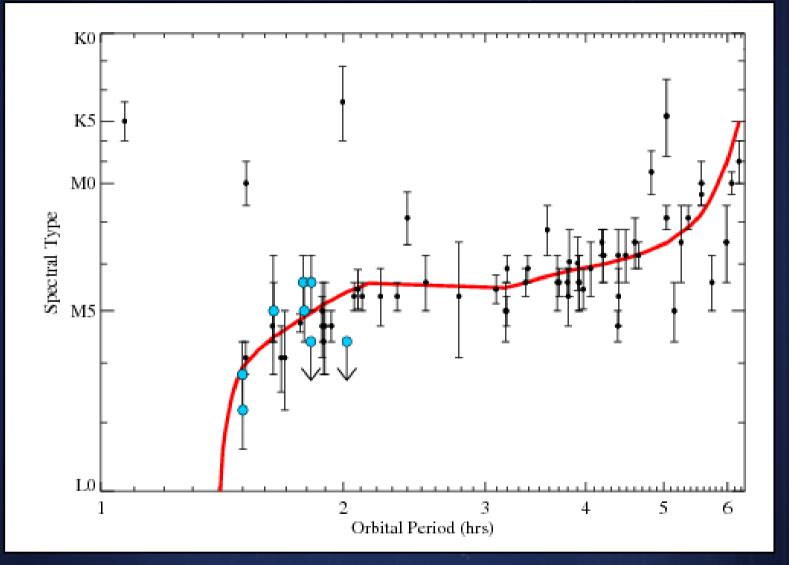
rmal too

es (~70%) 2005)

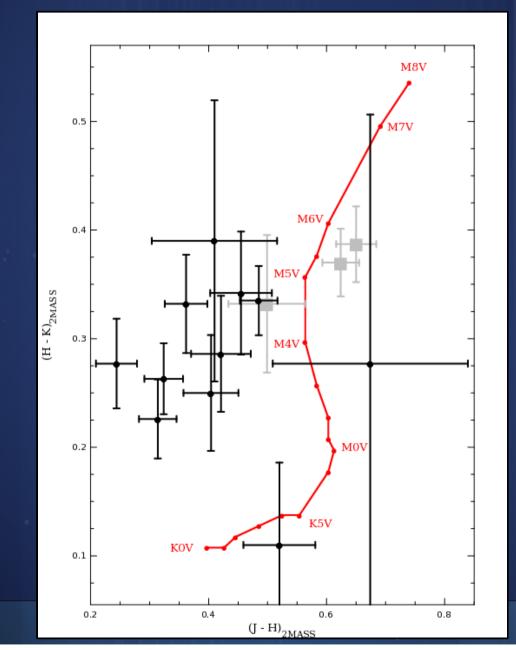
Thanks!

Our paper is available! ApJ soon and arXiv now: arXiv:1012.1368

Special thanks to K. Cunha, V. Smith, and E. Sion for all their helpful discussions!


R.T. Hamilton, T.E. Harrison, C. Tappert, S.B. Howell

http://astronomy.nmsu.edu/rthamilt/conferences


Extra Slides

Knigge Comparison

Comparison Colors

Big List (PreCV, NonMag)

Table 4 CO Absorption Strength Across all CV Subtypes								
Star	Subtype	Porb (hr)	CO Ab. ^a	Ref ^b				
Pre-CV Systems								
P831-57	Pre-CV		Y	11				
HS1136	Pre-CV	20.1	ND	8				
RE 1016-053	Pre-CV	18.9	Y	11				
UZ Sex	Pre-CV	14.3	Y	11				
EC 12477-1738	Pre-CV	13.7:	Y	11				
V471 Tau	Pre-CV	12.5	Y	8				
EC 13349-3237	Pre-CV	11.4:	Y	11				
EC 14329-1625	Pre-CV	8.4:	Y	11				
BPM 6502	Pre-CV	8.08	Y	11				
RR Cae	Pre-CV	7.29	Y	11				
CC Cet	Pre-CV	6.82	Y	11				
SDSS0743	Pre-CV	4.6	Y	8				
BPM 71214	Pre-CV	4.33	Y	11				
BPM 71213	Pre-CV	4.33	Y	8				
EC 13471-1258	Pre-CV	3.62	Y	11				
LTT 560	Pre-CV	3.54	Y	11				
SDSS0757	Pre-CV	3.5	Y	8				
NN Ser	Pre-CV	3.12	Y	11				
SDSS0830	Pre-CV	2.9	Y	8				

Non-magnetic Systems						
EY Cyg	DN UG	11.0	Wc	9		
BT Mon	NL SW	7.99	ND	8		
SY Cnc	DN ZC	9.12	ND^*	5		
RU Peg	DN UG	8.99	W	5		
CH UMa	DN UG	8.23	W	5		
MU Cen	DN UG	8.21	W	5		
AC Cnc	NL SW	7.21	Y ?	5		
EM Cyg	DN ZC	6.98	W**	5		
V426 Oph	DN ZC	6.85	Y	5		
SS Cyg	DN UG	6.60	W	5		
AH Her	DN ZC	6.20	W	5		
BV Pup	DN UG	6.35	ND	5		
EX Dra	DN UG	5.04	Y	4		
TW Vir	DN UG	4.38	Ν	4		
SS Aur	DN UG	4.38	Y	8		
U Gem	DN UG	4.25	W^d	4		
UU Aql	NL SW	3.92	Ν	4		
IP Peg	DN UG	3.80	Y	4		
RR Pic	NL Nb SW	3.48	W	4		
TY PsA	DN SU	2.02	ND	10		
RZ Leo	DN SU	1.82	Y	8		
V893 Sco	DN SU	1.82	?	10		
WX Hyi	DN SU	1.80	ND	10		
Z Cha	DN SU	1.79	W	10		
VW Hyi	DN SU	1.78	Y	10		
VY Aqr	DN SU WZ	1.51	Ν	1		
V436 Cen	DN SU	1.50	Y	10		
V2051 Oph	DN SU	1.50	Y	10		
WZ Sge	DN SU WZ	1.35	Е	6		
GW Lib	DN SU WZ ZZ	1.33	?	8		
EI Psc	DN SU	1.07	N ^e	1		

Big List (Magnetics)

Magnetic Systems							
GK Per	DN Na IP	47.9	W	3			
AE Aqr	NL DQ	9.86	Wf	7			
V1309 Ori	NL AM	7.98	Wg	8			
MQ Dra	NL AM LA	4.39	Y	3			
SDSS0837	NL AM LA	3.18	Y	8			
AM Her	NL AM	3.09	Y	4			
AR UMa	NL AM	1.93	Y	3			
ST LMi	NL AM	1.91	Y	3,8			
MR Ser	NL AM	1.89	Y	4			
VV Pup	NL AM	1.67	Y	2,3			
EX Hya	NL IP	1.64	Y	10			
Litt in yu	.,		•				

Notes. Only objects with NIR observations in the *K* band with $R \gtrsim 1500$ are included. A colon next to the orbital period indicates an uncertain result.

^a Y = appears normal for spectral type; W = appears weaker than normal for spectral type; N = not present, but should have been for spectral type; ND = not detectable; ? = too low S/N; and E = emission.

^b (1) Harrison et al. 2009; (2) Howell et al. 2006; (3) Harrison et al. 2005b; (4) Harrison et al. 2005a; (5) Harrison et al. 2004b; (6) Howell et al. 2004; (7) Harrison et al. 2007; (8) Howell et al. 2010; (9) T. E. Harrison (2010, private communication); (10) this Work; (11) Tappert et al. 2007.

^c Sion et al. (2004); Gänsicke et al. (2003).

d Long & Gilliland (1999).

e Gänsicke et al. (2003).

f Jameson et al. (1980).

^g Szkody & Silber (1996); Schmidt & Stockman (2001).

* Very early spectral type, G1.5V so CO bands are not prominent.

** Third light contamination in the system, see North et al. (2000).