#### Hubble's Law: How old is the Universe?

Rakesh Nath

April 18, 2013

### What is the Hubble's constant?

• What exactly do astronomer's use Hubble's constant for?

#### What is the Hubble's constant?

- What exactly do astronomer's use Hubble's constant for?
- The Hubble's constant defines the expansion rate of the Universe by the formula  $V = H_O \times d$  where d is the distance from the object and  $H_O$  is the Hubble's constant and V is the velocity with which the object is receding from the observer AKA us!
- The Hubble's law at some level represents the change in the velocity with distance and the Hubble's constant as a slope of this relation.
- The Hubble's constant is important in various levels because if we know the Hubble's constant accurately we can measure an important property of the age of the Universe.



# Redshift

• Have you heard of redshift?

#### Redshift

- Have you heard of redshift?
- Redshift is the apparent change in frequency when the observed source has relative motion with the destination. The redshift is measured using the formula

$$z = \frac{\Delta \lambda}{\lambda}$$

where  $\lambda$  is the wavelength without any redshift,  $\Delta\lambda$  is the change in wavelength due to redshift

• The figure shows redshift of the  $H\alpha$  wavelength we saw in the Sun lab

You will be measuring redshifts of various galaxies in this lab looking at the spectral shifts



4 D > 4 B > 4 B > 4 B >

# when do you have redshifts?

- When the source moves towards the observer the waves scrunch together as shown and result in a shorter wavelength and a higher frequency, this means the observed frequency/wavelength becomes lesser/shorter.
- When the source moves away from the observer, the wavelengths stretch out and becomes longer(reducing in frequency) making it "redder" and hence "redshifts".
- Therefore do galaxies(assuming the universe is expanding and no other motion) get redshifted or blueshifted?



The Doppler Effect for a Moving Sound Source

## How far can we see?

- You have a problem where you want to know if a supernova is visible in a particular galaxy.
- You will first assume that brightness of the supernova is  $6 \times 10^6$  units(don't worry what units).
- $\bullet$  Now 1 MPc corresponds to a brightness of  $6\times 10^6.$  The inverse square law

$$\text{brightness} \propto \frac{1}{\text{distance}^2}$$

 $\bullet$  So distance with brightness of  $6\times 10^6$  is 1 Mpc, now you have to find the distance at which the brightness reduces to 1 unit.

### How far can we see?

- You have a problem where you want to know if a supernova is visible in a particular galaxy.
- You will first assume that brightness of the supernova is  $6 \times 10^6$  units(don't worry what units).
- $\bullet$  Now 1 MPc corresponds to a brightness of  $6\times 10^6.$  The inverse square law

brightness 
$$\propto \frac{1}{\text{distance}^2}$$

- $\bullet$  So distance with brightness of  $6\times 10^6$  is 1 Mpc, now you have to find the distance at which the brightness reduces to 1 unit.
- Do the math! Call me if you are confused

