Homework 2

Rakesh Nath

February 11, 2013

Problem 1

(a)

The standard equation for the viscosity of a medium with path length l_p is given by

$$\nu = C_s l_p \tag{1}$$

where ν is the viscosity C_s is the sound speed

Therefore,

The viscosity is

$$\nu = 1 \times 10^5 \times 10$$

The viscosity is

$$\nu = 1 \times 10^6 \text{cm}^2 - \text{s}^{-2}$$

This value of viscosity is too low, so a good method of calculating viscosity is by using the molecular viscosity equation. This method uses a few assumptions, this is rather interesting because with little or no observational data we can roughly calculate the time taken for collapse.

The equation for the viscosity is given by

$$\nu = C_s H_z \alpha_v \tag{2}$$

where H_z is the scale height α_v is the fudge factor

The scale height is given by

$$H_z = 4.8 \times 10^5 \sqrt{T} \left(\frac{R}{1.49 \times 10^{14}}\right)^{\frac{3}{2}} \left(\frac{M_{\odot}}{M_c}\right)^{\frac{1}{2}} \tag{3}$$

where T is the temperature at a distance R from the central mass M_c

$$C_s = \sqrt{\gamma RT}$$

$$\sqrt{T} = \frac{C_s}{\sqrt{R\gamma}}$$

we shall assume a $\gamma = 1.4$ and a central mass $M_C = M_{\odot}$ Substituting in (3)

$$H_z = 4.8 \times 10^5 \frac{C_s}{\sqrt{\gamma R}} (\frac{R}{1.48 \times 10^{13}})^{\frac{3}{2}}$$

$$H_z = 2.44 \times 10^{11} \text{cm}^2 \text{s}$$

substituting this in (2) with $\alpha_{\nu} = 1$

$$\nu = 10^5 \times 2.44 \times 10^{11}$$

$$\nu = 2.44 \times 10^{16} \text{cm}^2 - \text{s}$$

(b)

The time scale is given by

$$\tau_d = \frac{R^2}{\nu} \tag{4}$$

where τ_d is the diffusion time scale at a distance R with a viscosity ν From the previous case we have $\nu = 1 \times 10^6$ Substituting in eq(4) we have

$$\tau_d = \frac{(10^{14})^2}{1 \times 10^6}$$

$$\tau_d = 10^{22} \text{s}$$

$$\tau_d = 3.17 \times 10^{14} \text{years}$$

This is obviously not true but if we employ the molecular reasoning argument from the previous case $R=10^{14} {\rm cm}$ and $\nu=2.44\times 10^{16} {\rm cm}^2-{\rm s}$. Substituting these values in (4)

$$\tau_d = \frac{10^{28}}{2.06 \times 10^{16}}$$

$$\tau_d = 4.08 \times 10^{11} \text{s}$$

$$\tau_d = 1.2877 \times 10^4 \text{ years}$$

This represents a more sensible cogent answer.

Problem 2

If we continue to assume that the viscosity operates macroscopically in order to achieve a a time scale of 10^6 years we will get an $\alpha_{\nu}=10^{-16}$ which is an incredibly small value to be reasonable.

However if we assume the molecular scale, In order to achieve a time scale of 10^6 years we need a fudge factor $\alpha_{\nu}=0.01$

Problem 3

(a)

The diffusion time scale is given by the eq(4). The viscosity ν is give by eq(2). $c_s = 10^5 r^{\frac{-1}{2}}, H_z = 0.1r$, substituting in eq(2) we get

$$\nu = \alpha_{\nu} 10^5 r^{\frac{-1}{2}} 0.1 r$$

$$\nu = \alpha_{\nu} 10^4 r^{\frac{1}{2}}$$

Substituting R = r in the eq(4)

$$\tau_d = \frac{r^2}{\alpha_{\nu}} 10^4 r^{\frac{1}{2}}$$

$$\tau_d = 10^{-4} \alpha_\nu r^{\frac{3}{2}}$$

For
$$\alpha_{\nu} = 0.01$$
 and $r = 1.49 \times 10^{13} \mathrm{cm}$

$$\tau_d = 10^{-4} \times 10^{-2} \times (1.49 \times 10^{13})^{3/2}$$

$$\tau_d = 5.75 \times 10^{13} \mathrm{s}$$

$$\tau_d = 1.831 \times 10^6 \text{years}$$

For
$$\alpha_{\nu} = 0.01$$
 and $r = 7.5 \times 10^{13} \mathrm{cm}$

$$\tau_d = 10^{-4} \times 10^{-2} \times (7.5 \times 10^{13})^{3/2}$$

$$\tau_d = 6.4303 \times 10^{14} \text{s}$$

$$\tau_d = 2.047 \times 10^7 \text{years}$$