Homework 1

Rakesh Nath

February 12, 2013

Problem 1

We need to integrate the function

1000
flx) = /0 23 sin(z) exp(—x)

We use the simpson’s formula which is generalized by

b
[F)de =22 (f a0+ 35(0) +36(22) + 25 (w0) + 3 (00 + F22)

where

where n is the number of bins
T, =a+1Xh

The convergence of this function determines if the integral has been solved or
not. Convergence is measured when the difference between the values produced
by the current bin size and the previous bin size differ by a relative value of
10~°. If I is the interval size then the error E is

In_-[nfl
E=_tnl
I,

The integral does not converge and the answer is . The Fig(1) shows the
plot of convergence of the error over the value of the number of bins

The error values have a lot of bins so it does not make sense to include them
as a table. So it has not been included.The code is included in the appendices

log((Interval —Interval _,)/Interval,)

1.0

0.5

Converging errors

1.5F

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

interval values

Figure 1: Error convergences over bin size

Appendices

/KKK KKK KRR K K K K SR SR SR R R R R R R KKK KKK KKK SR R SR R oK oK oK K SR SR K R K KKK K K Kk K
xkxx Program to compute the integral of z"3sin(x)e’(—xz) between the
limits 0 to 1000. This program uses the simpson’s 8/8th rule to compute
the integral and does it to an interval of 6000. Fach interval has 2 bins
so the total number of bins can go upto 12000.

Functions: simpsonthree declared implicitly and used as a separate
piece of code

Author: Rakesh Nath

sk sk sk sk ok ok sk o KKK KK KKK KK K SRR SR oK oK oK ok ok Sk Sk ok SR SR K R R R KKK K KKK KK Sk ok sk ok ok ok ok ok ok Sk SR SR R R R K K Kk ok /)
#include<stdio .h>

#include<stdlib . h>

#include<math . h>

#include<float . h>

#include<string .h>

#include<file .h>

#include<omp. h>

//#include<thread.h>

/x Precompiler definitionsx*/

#define N 6000/« Number of interval N=2xnumber of binsx/

#define ERR 1.0e—5//error tolerance

/+xformal declaration of the function x/

double simpsonthree (double (xfunc)(double),h double,double,int);
/KRR KKK KKK SR SR K K K K SR K SR R R R R KKK KK K K R R R SR R oK oK SR K SR R R K KK K K K
Function: f

Description: Function merely returns double value of the math function
declared within it.

Returns: double

Input: Double values which will be supplied by the main program

sk sk ok sk o o R R R R KRR KKK KK KKK SR SR SR R K SR SR R SR R R R R R KKK KKK KR sk sk R ok R R R sk sk ko %/

double f(double x)
{

return pow(x,3)*sin(x)*exp(—x);
//return sin(x);
//return exp (pow(z,2));

}

/A otk R R R ok R ok kKKK KRR R R SR R SR SR SRR KRR R R R R SR SR SRR KRR R R R R SR oK SRR KK K KRR R K ok ok ok
Function Name:main ()
Description: The main program does the integration wusing Simpson’s 3/8th rule
by calling the simpsonthree() function. The error wvalues are calculated using
relative error and are saved to a file mamed error_values. dat.
Returns: If successful 0
Input:none
sk ok ok ok ok o kR R KK KKK KKK KKK SR R K K K SR K SR R R R R R KKK KKK KRR R sk ok R oK SR R sk Rk ko %/
int main()
{ FILE *fp;
/x file pointer fpx/
double xdSim= malloc ((N+1)xsizeof(double));
/xsize is allocated based on the number of intervals
this will have the array of values of the result of the

simpson’s integration .x/
double iLowerLimit ,iUpperLimit ;
//upper and lower limits
int i;
//loop wvariable
double dRes,dErr[N],dFinres;

//results , errors and intermediate results

iLowerLimit=0;
iUpperLimit=1000;
/*The lower limit is set to 0 and the wupper limit to a 1000x/

fp=fopen (7 error_values.dat” ,”wt”);
//open the file error_values.dat
for (i=1;i<N;i+=1)

{
dSim[i]=simpsonthree (f,iLowerLimit ,iUpperLimit ,i);
//the first set of values computed with an interval i
dFinres=simpsonthree (f,iLowerLimit ,iUpperLimit ,i—1);
//the preveious wvalue with interval i—1
dErr[i]=fabs ((dSim[i]—dFinres)/dSim[i]);
//error calculation
fprintf (fp,”%e\n” ,dErr[i]);
/xif the error is less than the 10°—5 then print,
this is the convergence of the integralx/
if (dErr | i]<=ERR)
{
printf (7at_i=Ad\t” ,i);
printf(”The_value_using._Simpson’s.3/8th_rule_is %e\n” ,dSim[i]);
printf(”the_value_of_error.is %e\n” ,dErr[i]);
//break ;
¥
}

fclose (fp);

free (dSim);
return 0;

}

/KRR KKK KKK K SR SR SR R SR SR SR SR SR R R R KRR R KK KKK K K K KR K SR R R SR R SR SR SR R R R R K KK K K KKK K K K Kok ok
Function Name: Simpsonthree

Description: The simpsonthree works wusing the 3/8th rule of simpson that
replicates the number of bins wusing the formula for simpsons rule.

output: Double value corresponding to the sum of the individual integral
results from the bins

Input: Function to be integrated, upper limit, lower limit, number of bins
s sk oot SRR R SR R oK SR SRR KRR R R R R SR KKK KR KR R R R SR KKK R KRR R R R sk SR KKK KRR R K R oK KKK KK KR R R ok ok ok ok /)

#include<stdio .h>

#include<math . h>

double simpsonthree(double (xfunc)(double),double a,double b,int n)
{
double dH,dRes;
int N=n;
//This is the number of intervals

double xx;
x=malloc ((N+1)xsizeof (double));
//malloc to allocate the memory for the size of the output to be summed

int i;

//loop wariable
x[0]=a;

//intial value at which function is evaluated
x [N]=b;

//Final value at which function is evaluated
dH=(b—a)/(double)N;
//bin size
dRes=3+dH/8x func(a);
//variable initialized to integral wvalue
omp-set_num_threads (100);
/xthis sets the number of threads that will be used for
the programs/
for (i=1;i<N; i++)
{

}

#pragma omp parallel reduction(+:dRes) //pragmall!

x[i]=a+ixdH;

#pragma omp for
//for loop is being parallized
for (i=1;i<N;i+=3)
{
//split the bins
dRes+=3+dH /8% (3« func (x[1i])+3*func (x[i+1])+2«func(x[i+2]));
/*compute integral at all the values summing up
all the binsx/

}

return dRes;

