Summary: Physical Properties of Stars

Photospheric ("Surface") Temperatures
3,000°K (Red M stars) to 40,000°K (Blue-White O stars)

Luminosities

Main Sequence: $L_{M5V} \approx 10^{-2} L_{Sun}$ to $L_{O5V} \approx 10^{+6} L_{Sun}$

Also red supergiants at 10⁺⁵ LSun to white dwarfs at 10⁻⁴ LSun.

Stellar Radii

Main Sequence: $R \approx 0.3$ to $18 R_{Sun}$ (M5V to O5V) Giants & Supergiants: $R \approx 1,000$ to $18 R_{Sun}$ (M5V to O5V) White Dwarfs, Neutron Stars: $R_{wd} \approx 10^{-2} R_{Sun} \& R_{ns} \approx 10^{-5} R_{Sun}$

 Stellar Masses

 M ≈ 0.1 M_{Sun} to M ≈ 30 M_{Sun}

 Also white dwarfs at 0.6 to 1.2 M_{Sun}

 The Mass-Luminosity Relation for main sequence stars:

 LStar/LSun ≈ [MStar/MSun]^{3.5}

Surface Temperature - Luminosity - Radius (The Hertzsprung Russell Diagram)

The Mass-Luminosity Relation for main sequence stars: L_{Star}/L_{Sun} ≈ [M_{Star}/M_{Sun}]^{3.5}

What Makes the Stars Shine?

Estimating Stellar Lifetimes

Assumptions 1. All stars "run" on the same basic process. ... whatever that may be. (The "efficiency" is the same for all stars)

- 2. A star's fuel reserves are contained within the star ... and proportional to the star's <u>initial</u> mass. (Stars are not "refueled" from external sources.)
- 3. A star's energy production rate is given by its luminosity ... with no other sources of energy loss. (The luminous output is the only energy output.)

Remember, these are assumptions.....

Estimating Stellar Lifetimes

Then stellar lifetimes τ_{star} are proportional to M_{star}/L_{star} or $\tau_{star}/\tau_{Sun} = M_{star}/L_{star}$ (solar units)

It is observed that, <u>for main sequence stars</u> L_{star} = M_{star}^{3.5} (solar units) (This is the "Mass-Luminosity Relation") So that

 $\tau_{\text{star}} / \tau_{\text{Sun}} = M_{\text{star}}^{-2.5}$ (solar units)

Implications:

Low-mass stars are long-lived, high-mass stars short-lived.

Examples:

What Makes the Stars Shine? Consider the Sun:

Estimating the Energy Production Requirement

The Sun's Luminosity is L_{Sun} = 3.8 x 10²⁶ watts

The Sun's Lifetime is τ_{Sun} > 1.4 x 10¹⁷ seconds (i.e., <u>at least</u> 4.5 Billion Years)

The energy produced is $E_{Sun} = L_{Sun}\tau_{Sun} > 5.5 \times 10^{43}$ joules (at least 1.5 x 10³⁷ kilowatt-hours)

Question:

What processes might be able to produce at least this amount of energy from, <u>at most</u> 1 M_{Sun} = 2 x 10³⁰ kilograms of fuel?

What Makes the Sun Shine? POSSIBILITIES **Residual Heat?** $\tau_{Sun} \approx MTc_{V}/L$ τ_{Sun} ~ 20,000 yr $(c_v = Specific heat, T = Temperature)$...but.... **Chemical Reactions?** $\tau_{Sun} \approx M\epsilon_c/L$ $\tau_{Sun} \sim 5,000 \text{ yr}$ $(\varepsilon_c = \text{Specific energy production rate; Assume H + F \rightarrow HF) \dots \text{but...}$ **Gravitational Energy?** $\tau_{Sun} \approx GM/RL$ $\tau_{Sun} \sim 5 \times 10^7 \text{ yr}$ (G = Gravity Constant; Assume contraction to radius R.) ...but... Nuclear <u>Fission</u>? $\tau_{Sun} \approx M \epsilon_u / L$ $\tau_{Sun} \sim 1 \times 10^{10} \text{ yr}$ $(\varepsilon_{u} = \text{Specific energy production rate; Assume U} \rightarrow \text{Pb.})$...but... but finally τ_{Sun} ~ 1 x 10¹¹ yr **Nuclear Fusion** $\tau_{Sun} \approx M \epsilon_N / L$ $(\varepsilon_N = \text{Specific energy production rate; Assume 4H} \rightarrow \text{He.})$ **Fusion: Historical Motivation** Einstein's Theory of Relativity ($E = Mc^2$) Atomic Masses (H & He), the Solar Composition (H & He)

Nuclear Reactions

Nomenclature

Atomic Number (Z)→ 6^C12 ← Atomic Weight (A) Chemical Symbol ↑ (C for Carbon)

Atomic Number = Number of Protons(+) (Identifies the <u>element</u>: 6 → "Carbon") Atomic Weight = Number of Protons (+) plus Neutrons (o) (Identifies the <u>isotope</u>: "Carbon-12")

Nuclear Fusion:Nuclear Reaction Examples
 $92U^{235} + 0n^1 \rightarrow 92U^{236}$
neutron \uparrow Nuclear Fission: $92U^{236} \rightarrow 54Xe^{140} + 38Sr^{94} + 0n^1 + 0n^1 + \gamma$
gamma ray \uparrow The Simplest Fusion Reaction:
 $1H^1 + 1H^1 \rightarrow 1H^2 + e^{+} + \gamma \leftarrow a$ "neutrino"

"deuterium" ↑ ↑a "positron"

also Matter-Antimatter Annihilation:

 $\begin{array}{c} \mathbf{e}^- + \mathbf{e}^+ \longrightarrow \gamma \\ \text{electron} \uparrow \quad \uparrow \text{positron} \end{array}$